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Abstract
Count data modelling using Poisson distribution has applications in medicine, biology,

physical sciences etc,. For example, the number of people affected by a strain of virus, number
of gamma ray emissions etc., can be modelled using Poisson distribution. Sometimes, it is
necessary to alter the rate of occurrence of counts through intervention, like administering
vaccines that alters the rate of people getting affected by a virus. Such an alteration of
Poisson counts results in what is generally called in the literature as an intervened Poisson
distribution whose support is the set of positive integers. There are situations in which
these counts can occur with more frequency than what is expected from the underlying
distribution. For example, the number of visits to a physician has more frequency of 1’s.
This can happen either due to people visiting for a general health checkup or treatment of
any ailment. Inflated count data models are often used to model count data with excess
counts. Popular inflated count data models include inflated Poisson and negative binomial
distributions. In this paper, an intervened Poisson distribution with one inflated count is
developed. Also, two stochastic representations of the model are discussed. The moment
generating function of the model is derived, and parametric estimation using the frequentist
approach is carried out. A real-life application of the model is also discussed.

Key words: EM algorithm; Intervened Poisson; Maximum likelihood estimation; Moment
generating function; One inflation; Zero-truncated Poisson.
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1. Introduction

Poisson distribution is one of the oldest distributions for modelling count data. Over the
years, this distribution has evolved into various forms like truncated, intervened, inflated and
generalized Poisson distribution. Applications of Poisson distribution can be seen in medical,
epidemiological, environmental, physical sciences etc. For a detailed discussion on various
Poisson models and their applications, one may refer to Johnson et al. (2005). Inflated count
models are used when a particular count frequency is more prominent than expected from
the model. The excess count frequencies are attributed to having come from other generating
processes. Inflated Poisson models can be used to model count data with excess counts by
considering them to be generated from a degenerate distribution. Lambert (1992) introduced
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the zero-inflated Poisson distribution for modelling the number of defects of manufacturing
equipment. Following Lambert (1992), many researchers have developed various inflated
Poisson distributions. Godwin and Bohning (2017) have developed a one-inflated positive
Poisson model to estimate the population size of an animal species. Melkersson and Olsson
(1999) have proposed a zero-one-inflated Poisson model to analyze the number of visits to a
dentist.

In certain situations, the count data generating process is altered due to an intervention
mechanism. It is to be noted that the intervention mechanism is activated when at least
one event has occurred. For example, the intervention mechanism can be administering a
drug to control the spread of disease, adjusting the specifications of a manufacturing process
to reduce the number of defects etc. To accommodate the effect of the intervention on
the mean of the Poisson distribution, Shanmugam (1985) introduced an intervened Poisson
distribution whose probability mass function (pmf) is as given in equation (1) using a zero-
truncated Poisson distribution. The intervention parameter ρ alters the mean of the Poisson
distribution after the intervention mechanism.

When the intervention mechanism decreases the mean of the underlying Poisson dis-
tribution, one can expect the frequency of the smaller counts to be high. As a consequence,
there might be a surge in the one counts. Also, assuming some of these 1’s to be arising
from a degenerate distribution outside the intervened Poisson model, the overall counts can
be modelled by a one-inflated intervened Poisson distribution (OIIPD). For example, in the
context of controlling the spread of the SARS-CoV-2 virus through vaccination, it is observed
that people can still be infected by the virus even after vaccination. Thus, if we consider the
number of individuals infected exactly once, they belong either to the vaccinated group or
the unvaccinated group. Thus, the number of 1’s is from two generating processes.

The rest of the paper is organized as follows. In Section 2, the pmf of the OIIPD is
derived and its distributional properties are presented. Two stochastic representations (SR)
of the proposed distribution are constructed in Section 3, and their equivalence is shown. In
Section 4, the stochastic representations are used to derive the moment generating function
and the moments of OIIPD. The estimation of parameters of the OIIPD is discussed in
Section 5 through maximum likelihood (ML) estimation and EM algorithm. A Numerical
illustration of the estimation procedure is presented in Section 6 using real-life data. The
conclusion of the paper is given in Section 7.

2. Model Formulation and Properties

The pmf of zero-truncated Poisson distribution for positive integer-valued random vari-
able T with mean λ is given by

P (T = t) = λt

t!(eλ − 1); t = 1, 2, . . . , λ > 0.

After some intervention mechanism, let us suppose that the mean changes from λ to ρλ.
The parameter ρ, 0 ≤ ρ < ∞ is called the intervention parameter. Let V denote a Poisson
random variate with mean ρλ. Define X = T + V . The pmf of X is then obtained using
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convolution and is given by (Shanmugam (1985))

P (X = x) =
x−1∑
l=0

P (T = x − l)P (V = l|T = x − l)

= e−ρλ

(eλ − 1)

[
(ρ + 1)x − ρx

x!

]
λx; x = 1, 2, . . . (1)

X defined above is said to have intervened Poisson distribution (IPD). The first two moments
of X are respectively given by

E(X) = λ

[
ρ + eλ

(eλ − 1)

]
(2)

and
E(X2) =

[
λ

(eλ − 1)((ρ + 1)eλ(1 + λ(ρ + 1)) − ρ(1 + ρλ)
]

. (3)

To obtain the pmf of OIIPD, we proceed as follows. Let π ∈ (0, 1) denote the proportion of
1’s obtained from outside the generating process. Thus, (1 − π) is the proportion of counts
obtained from the IPD. The pmf of a random variable Y having OIIPD can thus be written
as

P (Y = y) =


π + (1 − π) e−ρλλ

(eλ − 1) , y = 1

(1 − π) e−ρλ

(eλ − 1)

[
(ρ + 1)y − ρy

y!

]
λy , y = 2, 3, . . .

(4)

From equation (4), it is seen that OIIPD has three parameters, namely, λ > 0 that denotes
the location parameter, ρ ∈ [0, ∞) that denotes the intervention parameter and π ∈ (0, 1)
that denotes the inflation parameter.

2.1. Distributional Properties

Using the pmf given in equation (4), the following properties of OIIPD are obtained.
The moment generating function (mgf) and the probability generating function (pgf) of Y
are respectively given by

MY (t) = πet + (1 − π)
(eλ − 1)eλρ(et−1)(eλet − 1) (5)

and
PY (s) = sπ + (1 − π) esλρ(eλs−1)

(eλ − 1)eρλ
.

Using equation (5), the mean and variance of Y are obtained, respectively as

E(Y ) = µ = π + (1 − π)λ
[
ρ + eλ

(eλ − 1)

]

and
V (Y ) = µ(1 − π)

[
1 − λρ + λ

(eλ − 1)(λeλ − eλ + ρ2)
]

.
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The rth factorial moment of OIIPD is obtained as

µ[r] = πIr + (1 − π)
(eλ − 1)λr

[
(ρ + 1)reλ − ρr

]
,

where Ir = 1 when r = 1 and Ir = 0 if r > 1.

3. Stochastic Representations

In this section, two SRs for the pmf given in equation (4) are presented, and their
equivalence is discussed. Zhang et al. (2016) contain SRs for zero-one inflated Poisson
distribution. The same methodology is adopted in the sequel.

3.1. First SR

Let Z denote a Bernoulli random variable having outcomes Z1, Z2. Suppose the prob-
ability of Z1 happening is ϕ1 and the probability of Z2 happening is ϕ2 i.e., P (Z1 = 1) = ϕ1,
P (Z2 = 1) = ϕ2, ϕ1 + ϕ2 = 1. Let X ∼ IPD(λ, ρ) with pmf as defined in equation (1) and
let Y ∼ OIIPD(ϕ1, λ, ρ). The first SR of Y is given by

Y = Z1 + Z2X. (6)

Note that Y takes the value one when Z1 = 1 or {Z2 = 1 and X = 1}. Also Y takes value
other than one when {Z2 = 1 and X = y}. Assuming X and Z are independent, the pmf of
Y is obtained as

P (Y = y) =


ϕ1 + ϕ2

e−ρλλ

(eλ − 1) , y = 1

ϕ2
e−ρλ

(eλ − 1)

[
(ρ + 1)y − ρy

y!

]
λy , y = 2, 3, . . .

(7)

Note that the pmf in equation (7) obtained through the first SR is the same as the pmf given
in equation (4). The advantage of using the SR in equation (6) is that the moments of Y
can be obtained easily as discussed in the next section.

3.2. Second SR

Let Z and η be two Bernoulli random variables such that P (Z = 1) = 1 − ϕ and
P (η = 1) = p. Let X ∼ IPD(λ, ρ). Also Z, η and X are assumed to be independent. The
second SR of Y is given by

Y = (1 − Z)η + ZX. (8)

Note that Y takes the value one when {Z = 0, η = 1} or {Z = 1, X = 1}. Also, Y takes
value other than one when {Z = 1, X = y}.

P (Y = y) =


ϕp + (1 − ϕ) e−ρλλ

(eλ − 1) , y = 1

(1 − ϕ) e−ρλ

(eλ − 1)

[
(ρ + 1)y − ρy

y!

]
λy , y = 2, 3, . . .

(9)
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It can be observed from the right-hand side of equations (7) and (9) that,
{

ϕp = ϕ1

(1 − ϕ) = ϕ2
⇐⇒

{
ϕ = ϕ1

p = 1.

Hence the equivalence of the two SRs.

4. Moment Generating Function based on SRs

Consider the second SR of OIIPD given in equation (8). The mgf of Y is given by

MY (t) = E(exp(tY ))
= E {exp[t(1 − Z)η + tZX]}
= EZ [EY {exp[t(1 − Z)η + tZX]|Z}]
= EZ

[
EY

(
et(1−Z)ηetZX |Z

)]
= EZ [Mη(t(1 − Z))MX(tZ)]

= EZ

[
{(1 − p) + pet(1−Z)}eρλ(etZ−1)(eλetZ − 1)

(eλ − 1)

]

= ϕ[(1 − p) + pet] + (1 − ϕ)eρλ(et−1)(eλet − 1)
(eλ − 1) . (10)

Using the equivalence of the two SRs, substituting p = 1 and taking ϕ = ϕ1 in equation (10),
the mgf of Y based on the first SR can be obtained as below.

MY (t) = ϕ1e
t + ϕ2

eρλ(et−1)(eλet − 1)
(eλ − 1) .

From equation (6), using the binomial expansion, we get

E(Y r) = ϕ1 + ϕ2E(Xr), r = 1, 2, . . . (11)

Using the equations (2), (3) and (11), the first two moments of Y are respectively obtained
as

E(Y ) = ϕ1 + ϕ2λ

[
ρ + eλ

(eλ − 1)

]

and

E(Y 2) = ϕ1 + ϕ2

[
λ

(eλ − 1)((ρ + 1)eλ(1 + λ(ρ + 1)) − ρ(1 + ρλ)
]

.

Thus,

V (Y ) = E(Y )ϕ2

[
1 − λρ + λ

(eλ − 1)(λeλ − eλ + ρ2)
]

.
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5. Parametric Estimation

5.1. Method of Maximum Likelihood

Let y⃗ = (y1, y2, . . . yn) be a sample of n iid observations from OIIPD(π, λ, ρ). Let m
denote the number of 1’s in the sample and (n − m) denote the number of observations
taking values other than one. The likelihood function of (π, λ, ρ) corresponding to the pmf
given in equation (4) is

L(π, λ, ρ|y⃗) =
[
π + (1 − π) λe−ρλ

(eλ − 1)

]m

× (1 − π)n−m
n−m∏
i=1

e−ρλ

(eλ − 1)

[
(ρ + 1)yi − ρyi

yi!

]
λyi .

The corresponding log-likelihood function is

l(π, λ, ρ|y⃗) = m ln
[
π + (1 − π) λe−ρλ

(eλ − 1)

]
+ (n − m)

[
ln(1 − π) − ρλ − ln(eλ − 1)

]
+ ln(λ)

n−m∑
i=1

yi +
n−m∑
i=1

ln ((ρ + 1)yi − ρyi) −
n−m∑
i=1

ln(yi!).

The score functions of the parameters (π, λ, ρ) are respectively obtained as below.

∂l

∂π
=

m
(
1 − λe−ρλ

(eλ−1)

)
π + λe−ρλ(1−π)

(eλ−1)

− n − m

1 − π
, (12)

∂l

∂λ
=

m

(
− (1−π)λeλ(1−ρ)

(eλ−1)2 − (1−π)ρλe−ρλ

(eλ−1) + (1−π)e−ρλ

(eλ−1)

)
π + (1−π)λe−ρλ

(eλ−1)

+ (n − m)
(

− eλ

(eλ − 1) − ρ

)
+ 1

λ

n−m∑
i=1

yi,

(13)
∂l

∂ρ
= m (1 − π) λ2e−λρ

(eλ − 1)
(
π + (1−π)λe−λρ

(eλ−1)

) +
n−m∑
i=1

[
yi (ρ + 1)yi−1 − yiρ

yi−1

(ρ + 1)yi − ρyi

]
− (n − m) λ. (14)

Equating the score functions in equations (12), (13) and (14) to zero and solving them simul-
taneously, the ML estimates of the parameters (π, λ, ρ) are obtained provided the Hessian
matrix evaluated at the ML estimates is negative definite. Since the score functions are
nonlinear in the parameters, one has to use numerical methods to obtain the ML estimates.
To ease out the computation, in the sequel, the parameters are estimated using the EM
algorithm by treating the 1’s coming from the degenerate distribution as latent.

5.2. ML Estimation via EM Algorithm

Let us assume the 1’s from OIIPD are from two distributions, namely, the degenerate
distribution and the IPD. Let U be the latent variable that denotes the number of 1’s from
the degenerate distribution. Suppose there are a total of m 1’s observed, then (m − U) 1’s
are from the IPD. Thus, the distribution of U given Y is Binomial(m, p) , where
p = π

π + (1 − π) λe−ρλ

(eλ − 1)

.
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The likelihood based on the complete sample Ycomp = (Y, U) is proportional to

L(π, λ, ρ|Ycomp) ∝ πu

[
(1 − π) λe−ρλ

(eλ − 1)

]m−u

×(1−π)n−m

(
e−ρλ

(eλ − 1)

)n−m

λN
n−m∏
i=1

[(ρ + 1)yi − ρyi ] ,

taking N = ∑n−m
i=1 yi. The corresponding log-likelihood function is thus proportional to

l(π, λ, ρ|Ycomp) ∝ u ln(π) + (n − u) ln(1 − π) + (n − u)(−ρλ) − (n − u) ln(eλ − 1)

+ (N + m − u) ln(λ) +
n−m∑
i=1

ln([(ρ + 1)yi − ρyi ]). (15)

In the E-step of the EM algorithm, the latent U is estimated as

û = mπ

π + (1 − π) λe−ρλ

(eλ − 1)

. (16)

The ML estimates of the parameters, namely, π̂, λ̂ and ρ̂ are obtained using the complete
log-likelihood given in equation (15) through the M-step of the EM algorithm by solving the
following simultaneous equations.

π̂ = û

n
, (17)

λ̂ = 1
(n − û)

n−m∑
i=1

[yi(ρ̂ + 1)yi−1 − yiρ̂
yi−1]

[(ρ̂ + 1)yi − ρ̂yi ] , (18)

and

ρ̂ = (N − m − û)
(n − û)λ̂

− eλ̂

eλ̂ − 1
. (19)

The E and the M steps in the equations (16) to (19) are repeated till the estimates converge.
To start the iterative procedure, initial values of the parameters, say π(0), λ(0) and ρ(0) need
to be specified. The advantage of using the EM algorithm is that the estimators have closed-
form expressions, unlike the ML method, making the computations easier.

6. Numerical Illustration

The application of the proposed OIIPD to a real-life dataset is illustrated in this section.
We consider the data on an epidemic of cholera in a village in India used in Shanmugam
(1985) to fit a intervened Poisson distribution. The data relate to the spread of cholera in
an Indian village and was earlier reported in McKendrick (1926). The data was observed
when preventive treatment to contain the spread of cholera had been initiated. The data
excluding the households not affected by cholera is tabulated below.

x 1 2 3 4+ Total
fx 32 16 6 1 55
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Here, x denotes the number of cholera cases, and fx denotes the number of households
with x cases. The primary reason for many households having cholera cases was attributed
to one particular infected well which was used by a large section of the people in the village.
However, other wells near its vicinity can also be the source of infection. Since the frequency
of the number of households having one cholera case is large, OIIPD model is used to
fit the data. The EM-algorithm steps given in the previous section are implemented to
estimate the parameters (π, λ, ρ) by fixing their initial values as (0.01, 0.5, 0.5) respectively.
The initial values of the parameters λ and ρ were fixed near to their moment estimates
obtained thorough the intervened Poisson model. The difference between the proportion of
the observed and the expected 1’s (rounded to two decimals) based on intervened Poisson
model is taken as the initial value of π. The final estimates of the parameters (π, λ, ρ) are
obtained as (0.0099, 0.7050, 0.2492). From the estimate of π, it is clear that the proportion
of 1’s emerging from outside the IPD is small. This means that the primary source of the
spread of cholera among the people in the village is the particular infected well. Also, a small
value of the estimate of the intervention parameter ρ suggests that the preventive mechanism
had a considerable effect in bringing down the number of cholera cases per household.

7. Concluding Remarks

The OIIPD introduced in this paper not only accounts for the excess 1’s but also
provides information on the effectiveness of the intervention mechanism. The two equivalent
stochastic representations of the model given in this work provide an efficient way to derive
the moment generating function and moments of OIIPD. EM algorithm approach is used to
estimate the model parameters, circumventing the need to solve simultaneously the nonlinear
equations given by the ML method. The proposed distribution can be used to model count
data process altered by an intervention mechanism resulting in 1’s with high frequency.
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