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FOREWORD 
  

It is indeed a pleasure to write this Foreword note in favor of two outstanding 
statisticians of our time: Bimal and Bikas Sinha, whom we affectionately address as the 
"Statistical Twins". They were born in1946 in the village Atgharia in Pabna District of 
Bengal Province in undivided India, a year before the region was engulfed in the newly 
created East Pakistan (which later gave birth to Bangladesh in 1971 December). The Sinha 
family migrated to Kolkata, West Bengal, India, in 1958 when they were just 12 years old. 
For 12 years to follow, they had hard economic time, albeit both Bimal and Bikas excelled in 
their college education and earned their Ph.D. degrees in Statistics in1972-1973 under the 
able guidance of [Late] Professor Hari Kinkar Nandi in Calcutta University. I have known 
them since 1968 when they started working on their dissertations in two disjoint areas: Bimal 
on Bayesian Inference, and Bikas on Optimal Designs. During the past fifty years their 
research and organizational accomplishment may simply be categorized as outstanding. Both 
stretched their research work in diverse areas with little overlap to each other, and they have 
taken leading roles in the development of Statistical Science all over the world. Bimal has 
been more visible in USA, Europe, Africa, Thailand and Australia, while Bikas in Brazil, 
USA, Europe and more actively in India, Bangladesh and the South Asian Countries. In 
Bangladesh, they regard Bikas and Bimal as their native sons and owe to Bikas a deep sense 
of gratitude for his tireless efforts to promote and organize Int'l Conferences in Statistics at 
Rajshahi University. I wish [Late] Professor H.K. Nandi were alive to witness the 
fundamental contributions of his outstanding advisees Bimal and Bikas. I am really 
deputizing [Late] Professor Nandi, my advisor too, in writing this foreword note. There is an 
accompanying detailed document in this volume on their vitae and significant contributions 
which depicts the details. There are some twenty five contributors of high academic stand to 
this volume; all of these contributors have known Bimal and Bikas, have mostly collaborated 
with them in research and organizational tasks and I would like to thank each of them for 
showing this support and respect for the statistical twins. Finally, I would like to extend my 
deep appreciation to the Guest-Editors (Vinod Gupta, Sanat Sarkar and Ayanendranath Basu) 
for their time and efforts to make this volume a true collection of notes of appreciation from 
all of us. Bimal and Bikas are now about 75 years old, and they are in excellent academic 
stand; we wish them a continuation of long and active career in the years ahead too. 
 
 
Pranab K. Sen 
Cary C. Boshamer Professor Emeritus 
Biostatistics, and Statistics & Operations Research, 
University of North Carolina at Chapel Hill, NC 27599-7420, USA 
 

 
 

 
 
 
 





 
 

A Clique in Sight ... suddenly disappears ... to 
resurface again … in a milder form … 

 
Gour Mohan Saha 

Indian Statistical Institute (Retired) 
 

 It is an honour to ruminate over my years of friendship with Bimal and Bikas – known 
as “Statistical Twins” in the statistical community at large. I have known them since the 
summer of 1962, when we entered Asutosh College, Calcutta, as first year Stat. Hons. 
students in B.Sc. Degree Course. In those days, they were very much look alike, in 
appearance, and also in outfits. And, surprisingly, our classmates found similarity in my 
physique too with those of Sinha Brothers and we were a classic example of a ‘clique’ – in 
the terminology of graph theory! And this continued even in later years when we were at ISI, 
Kolkata as faculty. We were labeled as an example of ‘uniform distribution’! We were, at 
times, sources of ‘joy and confusion’, without any clarification as to “who is who” and we 
very much enjoyed this episode amongst us. After completion of college program in 1965, 
Sinha Brothers joined the Calcutta University Department of Statistics [CUDS] for their 
Master’s program, while I left for the Indian Agricultural Statistics Research Institute 
(IASRI) [called IARS at that time], under the I.C.A.R., in New Delhi, for my Master’s 
program. Our friendship temporarily ended at that moment. That was in 1965 and I lost 
contact with them. Our ‘clique’ was reduced to an ‘edge’ between them while I was left as an 
‘isolate’. Truly I was in “isolation” in a new place and I had to find my new friends and, 
against my timid nature, a few unexpected foes as well! 
  

At IASRI, fortunately, everything was smooth for me. By 1970, I had the M.Sc. and 
Ph.D. Degree of IARI (IASRI) and I was inducted as a junior faculty over there. My 
specialization was in the area of Design of Experiments (DoE). In December 1970, there was 
an Annual Conference of IASRI which was held in the premises of University of Madras. I 
attended the same and delivered a technical talk as well. While I was addressing the 
gathering, I was pleasantly surprised to see my ‘old friends’ among the audience! 
 

Sinha Brothers were up to attending Science Congress in Bangalore University the 
following week. It was a moment of immense joy for us to sit and talk and talk, with another 
friend Srijib Bagchi [of Asutosh College] being with them. They were in the doctoral 
programme at CUDS and Bikas was working in the area of Optimal Experimental Designs. 
They both had [Late] Professor H.K. Nandi as their supervisor while I had worked with 
[Late] Prof. M.N. Das. All of them were at the final stages of their research for Ph.D. This 
surprising encounter acted as an inspirational moment for them since my nametag was 
prominently displaying Ph.D. Degree! We exchanged addresses and phone numbers. 
  

In due course, Sinha Brothers obtained their Ph.D. Degrees, and Bimal [Thesis in the 
area of Bayesian Inference] joined the Research and Training School [RTS] of ISI, Kolkata in 
November, 1971, while Bikas joined CUDS soon thereafter. They both entered as Lecturers at 
their respective places. 
  

At some point of time, I had expressed my inclination to join ISI to Bimal and he 
immediately spoke with the then Dean of Studies Professor Hanurao (now deceased). It so 
happened that ISI, Kolkata, also was then looking for a strong faculty on DoE! The Dean 
arranged for my interview with Professor C.R. Rao at Delhi ISI around 1972. I was 
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interviewed and offered a position and I took no time to opt for Kolkata Centre. After a long 
gap of almost 7 years (1965 – 1972), I returned to Kolkata and on October 3, 1972, I joined 
the Indian Statistical Institute, Calcutta, as a Senior Lecturer in the Research and Training 
School (RTS). My earlier stamp as an ‘isolate’ was re-labeled as a member of the clique with 
Sinha Brothers, but I must hasten to add that it was very much weighted network. Of course, 
the strongest tie [heaviest weight] was between them. To start with, I had ‘weak’ ties with 
them but very soon Bimal and I had worked together to strengthen the weight of the arc 
connecting us. My direct contact with Bikas could not be improved and it remained as a weak 
tie for a while. Distance between ISI Centre and CUDS/Sinha Residence was a major factor. 
How long would it remain so? We both wished to ‘come closer’ but who would be the 
catalyst? 
  

Sometime in 1974, to our utter surprise, Professor C.R. Rao called upon Bikas at ISI; 
also called me at his office and told both of us about Visiting Faculty Positions in one 
Brazilian University, initially for a period of 2 years. Primary responsibilities would be to 
focus on Faculty Development Programme in Statistical Theory and Applications. He would 
be ready to recommend if we were willing to go. We spontaneously agreed.  
 

Professor Rao had been Ph.D. Thesis Examiner for Bikas at CUDS. Both Bimal and 
Bikas have been extremely energetic and systematic in their thoughts and actions. Honestly, 
my position is almost in the ‘opposite pole’. I am, most of the time and in most cases, slow-
moving – by nature. Bikas joined The Institute of Mathematics, Federal University at Bahia, 
Brazil sometime around November, 1975 while I took my own time to reach there sometime 
in April, 1977. By the twist of Professor Rao’s hands and his blessings, this time I developed 
a very strong tie with Bikas while the tie with Bimal started fading away! Bikas and I were 
together in Brazil for more than 2 years. 
 

In September 1979, Bikas returned back home and joined Stat-Math Division of ISI, 
Kolkata. I was told – [Late] Professor J.K. Ghosh was interested in absorbing Bikas at ISI 
and Professors C.R. Rao and [Late] D. Basu made the recommendations! I returned in April, 
1980 to my position in the same division of ISI, Kolkata. Our tie continued to strengthen over 
all these years till the time of our retirement around 2008-2011. I may add that one node of 
the clique has been designated as ‘Prabhu’ by the other two and this labeling has been quite 
popular among our friends and relations – far and near. We leave it to the readers to solve the 
mystery behind the special designation “Prabhu” – why so! 
 

Meanwhile, Bimal was shuttling between ISI, University of Montreal (Canada) and 
University of Pittsburgh (USA). Eventually, Bimal left ISI for USA in August 1980. In 1985, 
Bimal joined University of Maryland – Baltimore County [UMBC] as Founder-Professor of 
Statistics Graduate Programme. 
  

Regarding our marriage and nurturing respective families, I got married first, then 
Bimal and then Bikas. I have two daughters, Bimal has two sons while Bikas has one 
daughter and one son.......you may draw your own conclusions accordingly – whom to rely to 
play a game with 50-50 chance of win. Naturally Bikas became smarter after observing our 
outcomes and played unbiasedly! 
  

During the period of our stay in Brazil, Bikas and I had to learn Portuguese language 
for teaching Brazilian students and Faculty and for carrying on our social lives. We discussed 
various topics for teaching and preparing notes. Somehow we could work on one research 
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problem in the area of DoE and it was eventually published. Much later, I had another 
opportunity to interact with Bikas at ISI, Kolkata on another research problem – formulated 
by him, along with S.B. Rao and Prasad Rao. 
 
With Bikas, I had developed mutual friendship and regard to the extent that we used to [and 
still] address each other as “Chefe’ – meaning ‘Chief’ in Portugese. In this connection, I 
should mention that my “Chefe” wrote a book on sampling methods in Portugese while in 
Brazil. And I had prepared some Lecture Notes on DoE in Portuguese while in Brazil. 
  

I must say that Bikas had many areas of research interests, while I had interest only in 
the construction and analysis of Design of Experiments in a variety of application areas like 
agricultural experiments, industrial experiments, animal experiments, bioassays etc. I may 
also mention here that on a request from my dear ‘Chefe’, I wrote the Foreword of his 
Monograph on "Optimal Covariate Designs”, co-authored by Premadhis Das, Ganesh Dutta, 
Nripes Mandal and Bikas K. Sinha in the year 2015. 
  

On a very personal note of gratitude, I must add that my Chefe had helped me in my 
visits to Penn State University during 1987-88, and for a subsequent visit to Western 
Michigan University at Kalamazoo, during 1988-89.  
  

Sinha Brothers were brilliant as students all along, and as we all know now, later on, 
they turned out to be brilliant researchers and teachers too, in their fields of interest in 
Statistics. This is why the publication of a Volume in their honor is very much desirable, and 
welcome on their 75th birthday! This collection is a reflection of their collective research 
interests in Statistics and the chapters are contributed by their students / fellow researchers / 
research collaborators and admirers. I am sure it will serve as a reference of great use to the 
future research scholars in so many areas of statistical theory and applications. 

 
May my friends cherish their retired lives to their fullest satisfaction academically and 

socially. 
                                                                               
 





PREFACE 
 

This Issue (No. 2) of the Volume 18 of Statistics and Applications has been brought out 
to felicitate the twin statisticians, Bimal Kumar Sinha and Bikas Kumar Sinha (twin brothers) 
and honour them on their 75th birthday that falls on 16 March 2021. 

 
In March, 2019, Prof. Pranab K. Sen had suggested to Prof. Vinod K. Gupta that a special 

issue of the journal Statistics and Applications may be brought out to honour and felicitate the 
twin statisticians on their 75th birthday. The proposal was accepted with pleasure by the 
Editorial Board of the journal. It was also decided that this special issue would be titled 
"Challenges and Opportunities in Statistical Data Designing and Inference in the Emerging 
Global Scenario."  

 
Prof. Sen also suggested some possible names for consideration as Guest Editors for this 

issue of the journal. Accordingly, in a discussion between Prof. Sen, the (then) Chair Editor 
Late Prof. Aloke Dey and the Editorial Board of the journal, it was decided that Aloke Dey, 
Sanat K. Sarkar, Ayanendranath Basu and Vinod K. Gupta would act as the Guest Editors of 
this special issue. In consultation with the twin statisticians, the Guest Editors prepared a list 
of authors to whom invitations were sent for possible contributions to the special issue. The 
list contained, by and large, authors who were students/collaborators/colleagues of the twin 
statisticians. It was not easy to tell the total number of research collaborators these twin 
statisticians have, but surely this would be no less than 180 by any stretch of imagination. There 
was an overwhelming response to our invitations. Almost all of those who were contacted 
happily agreed to contribute to this issue and offer their felicitations to these towering stalwarts 
who have made remarkable contributions towards the growth of statistical sciences and their 
innovative applications. At the end, we are immensely proud to report that this felicitation issue 
contains 26 excellent papers from authors spread all over the globe. Of special interest is 
another article prepared by Bimal and Bikas describing their life and achievements and also a 
list of their research publications limited to books and research papers in reviewed journals. 
We strongly feel that this would benefit the younger generation of researchers immensely. 

  
It has indeed been a great pleasure and a matter of pride and honour for us to work on 

this project and prepare this issue as a mark of respect to these two great scientists who have 
made significant contributions towards the advancement of statistical thinking. Not only are 
they great researchers, they are also brilliant teachers and mentors who have influenced the 
thoughts of many young researchers and inspired them along the journey of their research. 
With their unparalleled love and affection and unflinching willingness to help, they have made 
indelible mark on the lives of many students and budding young researchers. Beyond their 
professional accomplishments and recognitions, they are two great human beings who are 
generously endowed with the qualities of gentleness, humbleness and kindness, and liked by 
all who make their acquaintance.  

 
We would like to express our sincere thanks to all the authors who have responded 

positively to our request. While initially we were not entirely sure about what to expect, we are 
pleasantly overwhelmed by the actual level of response from the authors. The reviewers, the 
unobservable layer without which the process of journal publication cannot function properly, 
have also been prompt and thorough; we are indebted to all of them and thank them sincerely 
for their support. We would like to place on record our highest admiration for Dr. Rajender 
Parsad, Executive Editor and Dr. B.N. Mandal, Managing Editor, and the Editorial Board of 
Statistics and Applications for their support and for entrusting their faith on the Guest Editors 



 x 

for bringing out this special issue in honour of the twin statisticians. The Guest Editors, in turn, 
are greatly honoured by this responsibility. The help received from Dr. B.N. Mandal for 
bringing the papers in the format of the journal is highly appreciated. The template provided 
by Prof. Jyotirmoy Sarkar for preparing articles in LATEX was a tremendous help and we 
generously thank Prof. Sarkar for his support. Prof. Sarkar and Dr. B.N. Mandal have later 
modified the template further.  
 
The issue contains papers of high academic standards covering a wide spectrum of statistical 
research. We are confident that the readers would find these papers enjoyable to read and 
generating newer ideas for advancing research in statistical sciences.  It is hoped that the 
volume will be a fitting commemoration of the 75 year milestone of the illustrious and 
celebrated Sinha brothers. We wish Bimal and Bikas a long and healthy life so that the statistics 
community continues to benefit from their brilliance, knowledge, experience and wisdom for 
a long time.  
 

V.K. Gupta 
Sanat K. Sarkar 

Ayanendranath Basu 
 
Unfortunately, on 10 February 2020, Prof Aloke Dey left for his heavenly abode after a brief 
illness. It was decided that we shall not seek any replacement and the remaining three of us 
would continue as Guest Editors and complete the project in time. The responsibility of Prof. 
Aloke Dey was discharged jointly by the three guest editors adequately and the project could 
be completed well within the stipulated time, in fact ahead of time. Vinod K. Gupta shared the 
key responsibility of coordinating with the authors, the reviewers and the other guest editors. 
We take this opportunity to express our grief and condolences to the bereaved family and pray 
for the liberation of the noble soul. Om Shanti!!  
 

GUEST EDITORS 
November 2020 
 



 

Corresponding Author: Bimal K. Sinha and Bikas K. Sinha 
Email: sinha@umbc.edu; bikassinha1946@gmail.com 

The Sinha Brothers (Bimal and Bikas) – The Twin Statisticians 
 

 

 

 

 

 

 

 

BIMAL KUMAR SINHA  

 

 

 

 

 

 

 

   BIKAS KUMAR SINHA 

 

0. Early Days of Twin Brothers 

The twins were born to Birendra Nath Sinha and Jogmaya Sinha on 16 March 1946 in  
Village Atgharia, District Pabna in Bengal Province of undivided India (now in Bangladesh). 
They were christened as Bimal and Bikas, with Bimal being elder of the twins. 

They had their early education in village school before the Sinha Family migrated to 
Calcutta (now Kolkata) in 1958. 

The twins were extremely notorious and gave hard time to their mother, elder sister and 
near relations with day-time harmful/destructive activities. 

1. General Information About Twin Brothers 

Over to Kolkata in 1958: Sinha Brothers got admission in Class VIII in a local school.  
They showed early promise and secured top positions in school exams.  They passed School 
Final Exam [Class X] in 1961 and got admission into One-year Pre-University Course.  In 
1962, they got admission into 3-year Degree Course in Asutosh College, Calcutta under 
Calcutta University with Honours in Statistics, and Mathematics and Physics as combination 
subjects. They felt highly privileged to be under the tutelage of Late Professors S.B. 
Chaudhuri and K.K. Mukherjee.  In 1965 they passed out with Statistics Honours in the 
Calcutta University Exam, holding First Class First and First Class Second positions. In 
1967, they passed out in M.Sc. [Statistics] Exam under Calcutta University – again holding 
top two positions. Bimal is senior of the twin brothers and he held 1st position in both the 
exams!  During 1968 - 1971, they carried out doctoral research under the guidance of [Late] 
Professor H.K. Nandi in the Department of Statistics, Calcutta University.  Bimal worked in 
the area of Bayesian Inference and Bikas worked in the area of Optimal Designs. They were 
awarded Ph.D. Degree [Statistics] of Calcutta University in 1972-1973.  

Soon Bimal was inducted as a Lecturer at the Research and Training School [RTS], 
Indian Statistical Institute, Calcutta on November 1, 1971. And, thereafter, Bikas was 
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inducted as the youngest faculty member in Calcutta University Department of Statistics 
[CUDS] in early 1972. While they were together in the Department of Statistics engaged as 
research scholars, they worked on a problem in the area of Design of Experiments and this 
resulted in their first joint publication in 1969 in Calcutta Statistical Association Bulletin.  

Subsequently, their work places were virtually different and they were together as 
faculty by ‘choice’ on only 1-2 occasions. They have worked together on a total of 8 more 
research papers – covering such topics as Sequential estimation / Linear regression / 
Multivariate power series distribution / Bivariate exponential models / Ranked set sampling  
and Multiple Criteria Decision Making. This list is compiled in Section 6.  

2. Bimal K. Sinha [BMS] 

Bimal [BMS] joined the Indian Statistical Institute (ISI) Kolkata in 1971 and stayed 
until 1974, and left for the University of Montreal (UM) in Canada for his post-doctoral 
research. After staying for one year (1974-1975) at UM, BMS joined the Department of 
Mathematics/Statistics at the University of Pittsburgh in the fall of 1975 and stayed there for 
about ten years (with a brief return to ISI/Kolkata for a couple of years: Fall, 1977- Summer, 
1980).  In 1985 BMS joined the University of Maryland Baltimore County (UMBC) as the 
Founder of Statistics Graduate Program.  

BMS worked extensively on a number of research topics during the last fifty (50) years, 
published numerous original papers in many international journals, produced thirty (30) 
doctoral students and became IMS/ASA Fellow. Due to his singular contributions in 
statistics, UMBC honored him with the title: UMBC Presidential Research Professor. The 
University System of Maryland (USM) in recognition of BMS’s tremendous contributions in 
statistics offered him the title: USM Research Professor.  

BMS has been an ardent devotee of the discipline and uses every opportunity to 
promote it throughout the globe. His outreach and research collaboration is indeed global 
with collaborators from many countries: Australia, Canada, India, Thailand, Japan, Taiwan, 
Germany, Sweden, Portugal. Through an MOU with Mahidol University in Thailand, BMS 
jointly supervised five (5) doctoral dissertations.  

At UMBC, under BMS’s initiative/leadership, a series of highly successful annual 
statistics conferences have been ongoing for the last fifteen (15) years, covering many topics 
of contemporary relevance. Recently under BMS’s pioneering leadership, a series of African 
International Conferences (AIC) took place in several African countries: Senegal, Cameroon, 
Ethiopia, Botswana, South Africa, Ghana. This unique initiative has been uniformly praised 
by the entire statistics community and, in particular, by ASA with commitment for funding.     

BMS made pioneering contributions in a number of important topics in mathematical 
statistics: asymptotic theory (higher order efficiency), decision theory, multivariate analysis, 
ranked set sampling, statistical meta-analysis, advanced inference in linear models, risk 
analysis in environmental science, data analysis under confidentiality protection. 

BMS is the coauthor of four books [Academic Press, John Wiley (2), Springer], and has 
written more than 130 original research papers with his national and international 
collaborators and students, including: Pranab Sen (Chapel Hill), Malay Ghosh (Univ. 
Florida), (Late) Jayanta Ghosh, Nitis Mukhopadhyay (UConn, Storrs), Anirban Dasgupta 
(Purdue), Martin Klein (Census Bureau / FDA), Takeaki Kariya (Japan), Jerzy Filar 
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(Australia), Wei-Shing Shen (Taiwan), Dietrich von Rosen (Sweden), Carloc Coelho 
(Portugal), Montip Tiensuwan (Thailand), Thomas Mathew / Neerchal Nagaraj (UMBC), 
Sanat Sarkar (Temple/USA), Zidong Bai / Zehua Chen / Rita Das (Singapore), Roman  
Zmyslony (Poland)). BMS is also extremely grateful to Dr. Barry Nussbaum [US EPA] and 
Dr. Tommy Wright [US Census Bureau] for their sincere friendship and research support for 
a long period of thirty years! 

           To top it all, BMS is thankful to his twin brother BKS for creating and sharing very 
rewarding and healthy research atmosphere in some university departments and for giving 
collaboration opportunities to the students with his rich and diverse research experience. 

3. Bikas K. Sinha [BKS] 

Bikas [BKS] joined CUDS in early 1972. BKS doctoral thesis was examined by two 
giants: Late Prof. Jack Kiefer and Prof. C.R. Rao. At the initiative of Prof. C.R. Rao, BKS got 
an opportunity and accepted a Visiting Faculty Position in one Brazilian University [1975-
1979]. This gave him an Int’l exposure and an opportunity to master the Portuguese language. 

At the personal initiative of Late Prof. J.K. Ghosh and upon recommendation from 
Prof. C.R. Rao and Late Prof. D. Basu, BKS was inducted in the Stat-Math Division, ISI, 
Kolkata, as an Associate Professor in September, 1979 upon his return from Brazil. BKS was 
promoted to Full Professor at ISI w.e.f. January 1, 1985. He retired from ISI on March 31, 
2011. 

Joining ISI opened up a ‘vista’ for BKS! At the initiative of Prof. P.K. Sen, BKS was 
invited as a Visiting Faculty at North Carolina State University, Raleigh, NC, for the 
academic year 1982 and then again, during July 1, 1985 – June 30, 1986.  

Since then there was no looking back for BKS. He has comfortably collaborated with 
researchers in many different topics in statistical theory and applications and so far he has an 
impressive list of 105 collaborators worldwide and around 160 research papers/publications. 
Notable among the collaborators are : Pranab Sen [UNC-Chapel Hill], (Late) Jayanta Ghosh, 
Malay Ghosh [Univ. Florida, Gainesville], Samad Hedayat [UIC, Chicago], Kirti Shah [Univ. 
Waterloo, Canada], Erkki Liski [Tampere Univ., Finland], Talluri J Rao [ISI], Rahul 
Mukerjee [IIMC], (Late) Samin Sengupta [CUDS], Nitis Mukhopadhyay [Uconn., Storrs], 
Arup Bose [ISI],  Montip Tiensuwan [Mahidol Univ., Thailand], Tapio Nummi [Tampere 
Univ., Finland], Nripes Mandal [CUDS], Friedrich Pukelsheim [Univ. Augsburg, Germany], 
Thomas Mathew [UMBC, USA], Siddani B Rao [ISI], Prasad Rao [ISI], Manisha Pal 
[CUDS], Jyoti Sarkar [IUPUI, USA] and Sobita Sapam [Manipur Univ., Imphal]..  

Because of expertise in Portuguese language, BKS got an opportunity to serve the UN 
as an ‘Expert on Mission’ in the summer of 1991 in Guinea Bissau, West Africa for 3 weeks.  

In India, BKS took every opportunity to organize / attend national / international 
conferences, workshops and he visited almost all corners within the country. This included: 
special courses  structured, developed, organized and conducted in N-E States and there again 
BKS took a leading role. He visited all these N-E States with great enthusiasm and 
participated in such activities. He was instrumental to setting up of Tezpur Centre of ISI. 

BKS was awarded PCM Gold Medal in 1980 by Sadharan Brahmo Samaj, Kolkata. He 
has been an Elected Member of Int’l Stat Inst. since 1985. He became Sectional President 
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(Statistics) in Indian Science Congress Association 89th Annual Meeting held at Lucknow 
University in 2002. BKS held the prestigious position of Member/Chairman, National 
Statistical Commission, GoI during the first term [2006-2009]. BKS was also awarded 
“Centenary Medal for Excellence” by the School of Tropical Medicine, Kolkata in 2014.  

BKS continues to have a special bondage with IASRI, Pusa Institute since the time of 
[Late] Prof. M.N. Das in mid 1970’s.  He is closely attached to the Research Group in the 
area of DoE and has visited this institute any number of times as a Resource Person in 
workshops / conferences. He is a Founder-cum-Life Member of the Society of Statistics and 
Computer Applications (SSCA).   

Special mention must be made of the soft corner BKS has expressed towards CUDS 
and the country of his origin. He has a great bondage with both the Department of Statistics, 
CU and Rajshahi University [RU], Bangladesh. Over there in RU, he has organized and 
participated in three Int’l Conferences with lot of enthusiasm and taking along a good number 
of Int’l participants in the category of Keynote Speakers / Plenary Speakers / Invited 
Speakers / Invited Discussants from within Kolkata / India and other foreign countries.  

Needless to say, BMS has been instrumental to introducing BKS in a few Int’l 
Conferences to showcase his twin brother’s presentation styles in topics not covered by him! 
BKS is proud of BMS, being his twin brother !!! 

Inherently and interestingly, Sinha Brothers have always maintained a healthy 
competition in the academic world and in the process, both of them have excelled beyond any 
bounds.  

4. Research Publications of Bimal K. Sinha 
 

4.1. Books       
                       

1. Chen, Z., Bai, Z. and Sinha, Bimal K. (2003). Ranked Set Sampling: Theory and 
Applications. Springer-Verlag Lecture Notes in Statistics. 

2. Hartung, J., Knapp, G. and Sinha, Bimal K. (2008). Statistical Meta-Analysis with 
Applications. John Wiley Series in Probability and Statistics. 

3. Kariya, T. and Sinha, Bimal K. (1989). Robustness of Statistical Tests. Academic Press, 
Boston. 

4. Khuri, A. I., Thomas, M. and Sinha, Bimal K. (1998). Statistical Tests in Mixed Linear 
Models. John Wiley Series in Probability and Statistics. 
 

4.2. Edited Books  
 

1.  Sinha, Bimal K. (1993). Probability and Statistics, Volume I. (Joint Editor), Narosa 
Publishing House, New Delhi. 

2.  Sinha, Bimal K. (1996). Probability and Statistics, Volume II. (Joint Editor), Narosa 
Publishing House, New Delhi, India. 

3.  Sinha, Bimal K. (1998). Applied Statistical Science III. (Joint Editor), Nova Science 
Publishers, Inc. 

4.  Sinha, Bimal K. (2000). Perspectives in Statistical Sciences. (Joint Editor), Oxford 
University Press. 
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4.3. Research Articles in Journals 

 
1. Ahmed, M., Giri, N. and Sinha, Bimal K. (1983). Estimation of mixing proportion of 

two known distributions. Sankhya, A45, 357–371. 
2. Ahmed, M., Chaubey, Y. P. and Sinha, Bimal K.  (1991). Estimation of a common 

mean of several inverse Gaussian distributions. Annals of Institute of Statistical 
Mathematics, 43, 357–367. 

3. Banerjee, P. K. and Sinha, Bimal K. (1979). Generating an event with probability p∝, 
∝> 0. Sankhya, B41, 282–285. 

4. Banerjee, P. K. and Sinha, Bimal K. (1985). Optimal and adaptive strategies in 
discovering new species. Sequential Analysis, 4, 111–122 

5. Basu, S. K. and Sinha, Bimal K. (1975). Locally best invariant and locally minimax test 
of independence.  Canadian Journal of Statistics, 3, 222–12.  

6. Chuiv, N., Wu, Z. and Sinha, Bimal K. (1998). Estimation of the location parameter of 
a Cauchy distribution using a ranked set sample. Applied Statistical Science III, 297–
308.  

7. Clement, B., Giri, N. and Sinha, Bimal K. (1978). Effect of additional variates on the 
power function of multiple correlation R2-test. Sankhya, B40, 74-82. 

8. Clement, B., Giri, N and Sinha, Bimal K.  (1985). Tests for means with additional 
information. Communications in Statistics, 14, 1427–1452. 

9. Dasgupta, A. and Sinha, Bimal K. (1980). On the admissibility of polynomial 
estimators in the one-parameter exponential family. Sankhya, B29, 129–142. 

10. Dasgupta, A. and Sinha, Bimal K. (1984). Admissibility of generalized Bayes and 
Pitman estimates in non-regular families. Communications in Statistics, 13, 1709–1722. 

11. Dasgupta, A. and Sinha, Bimal K. (1986). Estimation in the multiparameter exponential 
family: Admissibility and inadmissibility results. Statistics and Decisions, 4, 101–130. 

12. Dasgupta, A. and Sinha, Bimal K. (1999). A new general interpretation of the Stein 
estimate and how it adapts: Applications. Journal of Statistical Planning and Inference, 
75, 247–268. 

13. Das, R. and Sinha, Bimal K. (1986). Detection of outliers with dispersion slippage in 
elliptically contoured distributions. Annals of Statistics, 14, 1619–1624. 

14. Das, R. and Sinha, Bimal K. (1988). Optimum invariant tests in random MANOVA 
models. Canadian Journal of Statistics, 16, 193–200. 

15. Das, R. and Sinha, Bimal K. (1990). Robust optimum invariant tests of covariance 
structures useful in linear models. Sankhya, A52, 244–258. 

16. Fei, H., Wu, Z. and Sinha, Bimal K. (1994). Estimation of a gamma mean based on a 
ranked set sample. Pakistan Journal of Statistics, 10(1)A, 235–249. 

17. Fei, Z., Wu, Z. and Sinha, Bimal K. (1994). Estimation of parameters in two-parameter 
Weibull and extreme-value distributions using ranked set sample. Journal of Statistical 
Research, 28, 149–162. 

18. Fox, J., Frazier, E. and Sinha, Bimal K. (2011). Dose-response modeling for continuous 
responses: Alternative variance models. International Journal of Statistical Sciences, 
11, 189-206. 

19. Ghosh, J. K., Joshi, S. M. and Sinha, Bimal K. (1980). On a property of the maximum 
likelihood estimator. Sankhya, B29, 143–152. 

20. Ghosh, J. K. and Sinha, Bimal K. (977). Multivariate power series distributions and 
Neyman’s properties for multinomial. Journal of Multivariate Analysis, 7, 397–408. 
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21. Ghosh, J. K., Sinha, Bimal K. and Subramanyam, K. (1977). Edgeworth expansions for 
Fisher- consistent estimators and second order efficiency. Calcutta Statistical 
Association Bulletin, 28, 1–18. 

22. Ghosh, J. K. and Sinha, Bimal K. (1980). A necessary and sufficient condition for 
second order admissibility with applications to Berkson’s problem. Annals of Statistics, 
9, 1334–1338.  

23. Ghosh, J. K., Sinha, Bimal K. and Weiand, H. S. (1980). Second order efficiency of the 
MLE wrt any bounded Bowl-shaped loss function. Annals of Statistics, 8, 506–521. 

24. Ghosh, J. K. and Sinha, Bimal K. (1982). Third order efficiency of the MLE- a 
counterexample. Calcutta Statistical Association Bulletin, 31, 151–158. 

25. Ghosh, M., Banerjee, P. K. and Sinha, Bimal K. (1981). An admissibility result and its 
applications. Aligarh Journal of Statistics, 1, 19–22. 

26. Ghosh, M., Sinha, Bimal K. and Mukhopadhyaya, N. (1976). Multivariate sequential 
point estimation. Journal of Multivariate Analysis, 6, 281–294. 

27. Ghosh, M. and Sinha, Bimal K. (1980b). On the robustness of least squares procedures 
in regression models. Journal of Multivariate Analysis, 10, 332–342.  

28. Ghosh, M. and Sinha, Bimal K. (1987). Inadmissibility of the best equivariant 
estimators of the variance-covariance matrix, the precision matrix, and the generalized 
variance under entropy loss. Statistics and Decisions, 5, 201–227. 

29. Ghosh, M. and Sinha, Bimal K. (1988). Empirical and hierarchical Bayes competitors 
of preliminary test estimators in two sample problems. Journal of Multivariate 
Analysis, 27, 206–227. 

30. Ghosh, M. and Sinha, Bimal K. (2002). A simple derivation of the Wishart distribution. 
American Statistician, 56, 100–101. 

31. Giri, N., Clement, B., Chakraborty, S. R. and Sinha, Bimal K. (1981). Tests for the 
mean vector under intraclass covariance structure. Journal of Statistical Computation 
and Simulation, 12(3–4), 237–245. 

32. Giri, N. and Sinha, Bimal K. (1975). On the distribution of a random matrix. 
Communications in Statistics – Theory and Methods, 4, 1057–1063. 

33. Giri, N. and Sinha, Bimal K. (1976). On the optimality and non-optimality of some 
multivariate normal test procedures. Sankhya, B38, 116–123. 

34. Giri, N. and Sinha, Bimal K. (1987). Robust tests of mean vector in symmetrical 
multivariate distributions. Sankhya, A49, 254–263. 

35. Huang, W. T. and Sinha, Bimal K. (1993). On optimum invariant tests of equality of 
several intraclass correlation coefficients. Annals of Institute of Statistical Mathematics, 
45, 579–597. 

36. Kariya, T., Sinha, Bimal K. and Subramanyam, K. (1984a). First, second and third 
order efficiencies of the estimators for a common mean. Hitotsubashi Journal of 
Economics, 25, 61–69. 

37. Kariya, T., Sinha, Bimal K. and Subramanyam, K. (1984b). Berksons’s bioassay 
problem - revisited. Sankhya, A46, 408– 415. 

38. Kariya, T., Sinha, Bimal K. and Krishnaiah, P. R. (1984). On multivariate left O(n) 
invariant distributions. Hitotsubashi Journal of Economics, 25, 155–159. 

39. Kariya, T. and Sinha, Bimal K. (1985). Nonnull and optimality robustness of some 
multivariate tests. Annals of Statistics, 13, 1182– 1197. 

40. Kariya, T. and Sinha, Bimal K. (1987). Optimality robustness of tests in two population 
problems. Journal of Statistical Planning and Inference, 15, 167–176. 

41. Klein, M., Mathew, T. and Sinha, Bimal K. (2014). Noise multiplication for disclosure 
limitation of extreme values in log-normal samples. Journal of Privacy and 
Confidentiality, 6, 77-125. 
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42. Klein, M., Nagaraj, N., Weihsueh, C., White, P. and Sinha, Bimal K. (2013). Statistical 
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44. Klein, M. and Sinha, Bimal K. (2015a). Likelihood-based inference for synthetic data 
based on a normal model. Statistics and Probability Letters, 105, 168-175. 

45. Klein, M. and Sinha, Bimal K. (2015b). Inference for singly imputed synthetic data 
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Abstract 

 
How will a mathematician identify a single poisonous bottle of wine from among 1000, 

if she is permitted only one opportunity to make the fewest number of test subjects drink small 
extracts from these bottles? 
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Design of experiments. 
 

 

PREAMBLE 
 

I revisit a puzzle that has proliferated the Internet in its many different incarnations. Not 
all sites report the solution to the puzzle; and those that do, do so in a matter-of-fact manner, 
without explaining how the solution was discovered or why it is optimal. This includes 
Coldwell (2019), which I liked the most. My objective here is to derive the optimal solution 
starting from first principle. Additionally, I adopt a story-telling style in hope of exposing a 
vast array of readers to the secrets of how a mathematician goes about practicing the creative 
art of Mathematical Sciences. I conclude the paper inviting the reader to solve another 
optimization problem. 

 
To my family and friends, a reassurance: The story here is entirely fictitious, with no 

hidden agenda to promote either wine drinking, gambling or calculated killings. 
 

WHAT’S THE PROBLEM? 
 

1.      Travel to 20 CE 
 
Hop on a time machine, travel back to 20 CE (common era), and visit the kingdom of the 

mythical Irish King Conchobar mac Nessa of Ulster. The king is facing an unprecedented 
predicament. Consequently, he has made an edict inviting all and sundry to participate in a 
contest in which the winner (to be determined if no one else beats the participant’s performance 
within the next 24 hours) will receive as reward ten thousand gold coins, and any loser (beaten 
by someone else within the 24 hours limit) will not only lose face, but also lose his head. Will 
you join the contest?  

I think you should not forgo this golden opportunity - after you have derived the optimal 
solution (with proof) or you have carefully read this paper. 
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2.      The King’s Conundrum 
 
King Conchobar amassed 1000 bottles of exotic wine, which he had collected from lands 

far and near, and preserved in a heavily guarded cellar. He had curated the bottles for the 
express purpose of indulging and impressing his select guests at the Coronation Anniversary 
Celebration coming up in five weeks’ time. Unfortunately, his treasured possession was 
stealthily invaded by a neighboring queen’s clever spy, who managed to inject one bottle with 
poison so lethal that anyone who drinks just a single drop will surely die ¾ though not 
immediately, but in exactly 30 days. As fate would have it, the spy was quickly caught by the 
king’s elite guards who demanded to know which bottle he had poisoned. However, the spy 
was unwilling to identify the contaminated bottle, even when offered one thousand gold coins 
as reward, for he could not trust the guards’ offer. Moreover, preferring to demonstrate his total 
loyalty to his queen even unto death, he swallowed a fatal pill which he had brought with him 
for a situation just as this one and committed instant suicide ¾ hurling the king in a conundrum. 

 
This suicidal death of the only person who knew which single wine bottle was 

contaminated with poison left the king first to ponder about how to identify the offending bottle 
and save the remaining 999 bottles for his prestigious party; then to become progressively 
puzzled, bewildered and hopelessly perplexed; and eventually to write an edict offering ten 
thousand gold coins to anyone who could identify the poisonous bottle. He would let the 
identifier devise a clever experiment in which a few of his 1000 prisoners of war, whom he had 
captured a year ago when he had invaded the neighboring kingdom, would be forced to drink 
a concoction extracted from one or more bottles at least 31 days before his Anniversary. He 
would reward the proposer who is properly trained in the science of mathematics and in the art 
of exposition who could explain to him, though he himself was not a mathematician by any 
stretch of the imagination, that indeed the experiment would involve as few prisoners as 
absolutely necessary. You see, the king wanted to save as many prisoners as possible to serve 
as slaves, and yet with a very high probability identify the poisonous bottle. In fact, the king 
had resolved in his mind that on the eve of his celebration, avoiding any spectacle and arousing 
no suspicion from his subjects and guests, every single experimental prisoner who would 
survive the forced drinking would be put to death in complete secrecy.  

 
The king’s edict also included a rejoinder: Within 24 hours of a proposed solution, if 

someone else would discover a better solution, which would either increase the probability of 
correctly identifying the poisonous bottle with the same number of experimental prisoners or 
fewer, or reduce the number of prisoners without lowering the probability of identification, 
then the prize would go to the latter solver; and the former proposer would be taunted, 
humiliated and publicly beheaded in the infamous Field of Gallows. 

 
The king sent his emissaries all over the kingdom proclaiming his edict and inviting 

potential contestants who would design for him the most ideal solution to identify the 
poisonous bottle with a high probability subject to minimizing the number of experimental 
subjects. Posters proliferated the marketplace, public squares and sports arena: “Wanted! A 
Mathematician.” 

 
On arrival at Ulster, you learn about this edict from your host family who do their best 

to dissuade you from participating; but you, who has the benefit of two thousand more years 
of accumulated human knowledge than the then citizens of Ulster, are not going to give up so 
easily, are you? Having realized that in order to earn the reward and to save your head (along 
with your face) you must not only find a solution to the puzzle, but also have the utmost 
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confidence (via a mathematical proof) that no one else will beat your solution either by 
lowering the number of experimental subjects or by increasing the probability of correct 
identification, will you accept the king’s challenge? 

 
THINK LIKE A MATHEMATICIAN 

 
3.       Put Your Thinking Cap On 

 
Not wishing to give up the great, albeit dangerous, opportunity, you put your thinking 

cap on and start to ponder over the challenge: You begin with a naïve solution that matches 
each wine bottle with a unique prisoner, and makes each prisoner drink one shot from the bottle 
allocated to him. You even think of assigning a different bottle to 999 prisoners and leaving 
one bottle unassigned, since if no prisoner dies, then the unassigned bottle must be the 
poisonous one. However, within a short time you rule out this solution because although it 
would identify the poisonous bottle with 100% certainty, it would also engage too many 
prisoners in the experiment and expose you to a risk that someone else would easily reduce the 
number of prisoners. Likewise, you also must discard a second solution which uses only half 
as many prisoners and makes each experimental prisoner drink a concoction made of one-half 
shot from each of the two bottles allocated to him. For in this case, while on the eve of the 
Anniversary you will know for sure which pair of bottles includes the contaminated one, you 
will not know for sure which one of this pair is the truly poisonous one. Admittedly, compared 
to detecting one poisonous bottle from among 1000 bottles, it is a much simpler task to detect 
one bottle out of two. Nonetheless, it is impossible to do so with probability exceeding 1/2, for 
there remains only one night before the celebration party, rendering it unfeasible to conduct a 
follow-up experiment!   

Proceeding in this manner, you reject a whole family of designs which allocate disjoint 
batches of 𝑏 bottles to each of ⌈1000/𝑏⌉ prisoners (with the last prisoner perhaps being 
allocated fewer than 𝑏 bottles), and make each experimental prisoner drink one shot made by 
mixing 1/𝑏 fraction of a shot extracted from each of the bottles allocated to him, for while the 
number of experimental prisoners decreases as the batch size 𝑏 increases, the probability of 
correctly identifying the poisonous bottle decreases to only 1/𝑏, since you will only identify 
the batch that contains the poisonous bottle, but not the poisonous bottle itself. 

As you ponder more over the above family of designs, all at once it dawns on you that 
you have inadvertently imposed an additional constraint over the solution that was neither 
explicitly mentioned in the king’s edict, nor implied by it: While you permitted a prisoner to 
drink from multiple bottles, you have allowed only one prisoner to drink from each bottle! 
Surely someone must necessarily drink from each bottle, save perhaps one (so that at most one 
bottle is excluded from the experiment); but there was no requirement to restrict each bottle to 
only one prisoner. How can you construct a more efficient experiment (that is, involve fewer 
prisoners) that allocates each bottle to a multiplicity of prisoners allowing each prisoner to 
drink a small extract from that bottle along with extracts from all other bottles allocated to that 
prisoner and still identify the poisonous bottle?  

4.       A Sudden Inspiration 
 
While you keep pondering over how to allocate “bottles to prisoners” and “prisoners to 

bottles,” you hear some commotion out in the street caused by people going to the Field of 
Gallows to witness two prisoners who would be hanged, for they had broken into the king’s 
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cellar and during the chase that followed to catch them they had knocked off one bottle of wine 
¾ shattering it into a thousand pieces and ruining its content. Although curious as a cat, you 
resist the urge to follow the mob to the Gallows. Instead, you put multiple thinking caps on and 
come to realize two features that would affect your solution: (1) You no longer have 1000 
prisoners to engage in your experimental study ¾ your precious resource has depleted to 998 
prisoners; and (2) either the contaminated bottle is among the 999 bottles still intact, or it has 
been already destroyed! That is, at most one bottle among 999 is poisonous. You say to 
yourself: “The number of bottles and the number of prisoners have changed; and these numbers 
might change again! Therefore, I must be prepared to solve the king’s conundrum not only for 
1000 bottles and 1000 prisoners (or for 999 bottles and 998 prisoners), but also for any number 
of bottles 𝐵 and any number of prisoners 𝑃.”  

With these realizations, should you feel happy or sad? On the surface, it looks like your 
task has exploded out of proportion compared to the one you began with ¾ as if the challenge 
has become almost insurmountable. However, on deeper reflection, a light bulb goes on over 
your head (this is a purely fictitious idiomatic construction, since there wasn’t any light bulb 
around in the first century; but remember you have time traveled from the twenty-first century): 
“Perhaps I can solve the problem for small values first, then detect a pattern among the 
solutions, and eventually extend the solution to any pair (𝐵, 𝑃).” A much harder challenge 
seems to have given birth to a wonderful new opportunity!! 

5.      Solve Some Simpler Problems First 

Suppose that among 𝐵 bottles exactly one is poisonous. You can identify the poisonous 
bottle for small values of 𝐵, say for 1, 2 and 3. Then if you notice a systematic pattern among 
the solutions, perhaps you can conjecture the solution for an arbitrary value of 𝐵, and thereafter 
prove that conjecture.  

In fact, for 𝐵 = 1, the problem is already solved: The only available bottle is poisonous.  

For 𝐵 = 2, hopefully the king himself could solve the problem based on his own daily 
experience, without having to pay a mathematician! At every meal, as the king cautiously 
watches, his butler takes a portion from the king’s plate and eats, ensuring the king that his 
food is safe to eat. Translated to the problem at hand: If 𝐵 = 2, it suffices to enlist 𝑃 = 1 
prisoner and have him drink a shot from Bottle 1. If he dies (in 30 days), Bottle 1 is poisonous 
and the other bottle (labelled as Bottle 0) is safe; if he survives, Bottle 1 is safe, and Bottle 0 
must be poisonous.  

Had the king made one prisoner drink a little from each of the two bottles, then surely 
the prisoner would die; and the king would not know which bottle killed him. On the other 
hand, if the king had enrolled two prisoners and made each prisoner drink a little from a 
different bottle and kept track of who drank from which bottle, he would have surely identified 
the poisonous bottle, but he would have acted sub-optimally according to the terms of his own 
edict.  

What if there is exactly one poisonous bottle among 𝐵 = 3 bottles? Then one prisoner is 
not enough; but 𝑃 = 2 prisoners suffice. Label the bottles with serial numbers 1, 2, 3. Assign 
Bottle 1 to Prisoner 1, Bottle 2 to Prisoner 2, and Bottle 3 to both prisoners. Let each prisoner 
drink from the two bottles assigned to him. Surely, at least one prisoner must die. If both 
prisoners die, then Bottle 3 is poisonous; otherwise, if only Prisoner 1 dies, then Bottle 1 is 
poisonous; and if only Prisoner 2 dies, then Bottle 2 is poisonous. 
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For 𝐵 = 4 bottles, the same reasoning above shows that two prisoners suffice to detect 
the single poisonous bottle with 100% certainty: Just label the newest bottle as 0 and assign it 
to neither prisoner. If both prisoners survive, Bottle 0 must be poisonous. Thus, in the presence 
of three bottles, an additional fourth bottle did not make the problem more complex: We simply 
do nothing to the fourth bottle. Alternatively, having learned the solution to 𝐵 = 4, we can 
construct the solution to 𝐵 = 3 simply by eliminating any one of the four bottles. Thus, we 
discover a multiplicity of solutions for 𝐵 = 3. For instance, we could assign one bottle to each 
of the two prisoners, and set aside the third bottle, assigning it to neither prisoner. Now at most 
one prisoner may die. If neither prisoner dies, then the bottle that was set aside is poisonous; 
otherwise, whichever bottle the dead prisoner had drunk from is poisonous. Although there are 
multiple solutions to 𝐵 = 3 bottles and 𝑃 = 2 prisoners, the solution to 𝐵 = 4 is unique.  

How are the solutions to 𝐵 = 2 and 𝐵 = 4 interrelated? Starting from the solution to 
either problem, can we construct the solution to the other problem? Notice that for 𝐵 = 2, we 
set aside one bottle and make one prisoner drink from the other bottle. Likewise, for 𝐵 = 4, 
we set aside one bottle and make each of the two prisoners drink from exactly two bottles, 
giving them a common bottle to drink from and then another bottle unique to each. In the next 
paragraph we describe an alternative way to understand this allocation of bottles to the two 
prisoners that will reveal how the solution for 𝐵 = 4 can arise out of the solution for 𝐵 = 2.  

Imagine that the four bottles are rearranged into two bundles of two bottles each ¾ very 
much like two bottles are packaged together to promote a buy-one-get-one-free deal in a 
twenty-first century grocery store. Set aside one bundle and assign the other bundle to Prisoner 
1. Then the fate of Prisoner 1 will detect which bundle contains the contaminated bottle. This 
is exactly the solution to the 𝐵 = 2 case. Next, to determine which member of the suspected 
bundle is the contaminated bottle, we need to experiment again using a second prisoner, except 
that such sequential experimentation is expressly disallowed. Fortunately, we can pick one 
bottle from each bundle and assign the two chosen bottles to Prisoner 2 at the same time we 
start to experiment with Prisoner 1, and then the responses from the two prisoners will be 
available at the same time. Thus, each of the 4 bottles is matched to a unique subset of the two 
prisoners. Accordingly, the death of a specific subset of prisoners (∅, {1}, {2}, {1,2}) 
uniquely identifies the poisonous bottle. 

Now we are ready to move on to the next step in the generalization: Among 𝐵 = 8 
bottles, exactly one is poisonous. In this case, simply form 4 pairs; allocate the pairs to two 
prisoners using the above solution to the 𝐵 = 4 case, by bundling two pairs together, etc. 
Remember that assigning a bundle to a prisoner is the same as assigning all bottles within the 
bundle to that prisoner. Their fate will determine which pair contains the contaminated bottle. 
Simultaneously, allocate one bottle from each pair to Prisoner 3, whose fate will determine 
which member of the detected bundle is the contaminated bottle. More specifically, pair up 
Bottles 1-2, 3-4, 5-6, 7-8. To Prisoner 1 assign Bottles 5-6-7-8, to Prisoner 2 assign Bottles 3-
4, 7-8, and to Prisoner 3 assign the even-numbered Bottles 2, 4, 6, 8. You may permute the 
bottles and/or permute the prisoners any way you like. 

In this manner, for any value of 𝐵 = 24, a power of 2, we can extend the above method 
of allocating 𝐵 = 24  bottles to 𝑘 prisoners. 

If 𝐵 is not a power of 2, simply augment some more bottles, filled with harmless water 
(or even keeping them empty), until there is a total of 𝐵 = 24 bottles. For example, suppose 
that there were 15 bottles, one of which is poisonous. How will you conduct the experiment to 
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detect the poisonous bottle? Augment a bottle of water; label it 1; and label the other bottles 
with serial numbers 2 through 16 = 27. You enroll four prisoners, labelled 1-4. Give Prisoner 
1 extracts from even numbered bottles; that is, alternately skip a bottle, include a bottle. For 
Prisoner 2, alternately skip two bottles, then include two bottles; that is, give Bottles 3-4, 7-8, 
11-12, 15-16. To Prisoner 3, alternately skip four bottles, then include four bottles; that is, give 
Bottles 5-8, 13-16. To Prisoner 4, give extracts from the last eight bottles 9-16. Note that no 
prisoner got anything from Bottle 1, which you had augmented, and is surely not poisonous. It 
is straightforward to verify that depending on which bottle is poisonous, the subset of dead 
prisoners after 30 days will be different.  

Reversing the logic, once you know which prisoners have died 30 days later, you can 
identify the poisonous bottle 𝑋 uniquely! For example, suppose that Prisoners 1, 2 and 4 die, 
but Prisoner 3 is alive. Since Prisoner 4 died, 𝑋 is among 9-16 (the latter half); since Prisoner 
3 is alive, 𝑋 is among 9-12 (the beginning half of the candidate bottles from the previous step); 
since Prisoner 2 died, 𝑋 is among 11-12 (why?); and since Prisoner 1 died, 𝑋 is 12 (since it 
must be even). Eureka! 

  
6.      Binary Codes to Allocate Bottles to Prisoners 

 
For 𝐵 = 27 bottles and 𝑃 = 4 prisoners, to smartly conduct the experiment and to 

confidently identify the offending bottle, you may want to label the bottles with four-digit 
binary codes 0000 to 1111 (representing numbers 0 through 15, the previously stated serial 
numbers 1 through 16 reduced by one). Using these binary codes, assign to Prisoner 1 extracts 
from all eight bottles that have 1 in the rightmost digit; to Prisoner 2 assign all eight bottles 
that have a 1 in the second digit from right; etc. After 30 days, when you know the fates of all 
prisoners, summarize that information by writing a 0 for a live prisoner and a 1 for a dead 
prisoner, starting from the rightmost digit for Prisoner 1 and moving leftward prisoner by 
prisoner. This summary code is the label of the poisonous bottle!  

The above strategy of allocating bottles to prisoners is easily extended to 𝑃 prisoners and 
𝐵 = 29 bottles, when exactly one bottle is poisonous. 

 
7.       Proving Optimality 

 
Can you prove that indeed four is the fewest number of prisoners needed when there is 

exactly one poisonous bottle among 𝐵 = 15 bottles? For if you cannot, you will have no 
confidence that your head will remain in its proper place if King Conchobar is still reigning. 

To prove optimality of our proposed solution, we utilize a duality principle at play here. 
It changes the original problem into an equivalent dual problem, whose solution may be easier. 

The Duality Principle: Optimization problems may be viewed from either of two perspectives 
¾ the primal problem and the dual problem. It suffices to solve either problem; the other 
problem is immediately solved. Moreover, the solution to the primal (minimization) problem 
provides an upper bound to the solution of the dual (maximization) problem; likewise, the 
solution to the dual (maximization) problem provides a lower bound to the solution of the 
primal (minimization) problem.  
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Returning to our detection of the single poisonous bottle out of 𝐵 bottles, let us state the 
primal and dual problems. 

Primal Problem: Given 𝐵 bottles, with exactly one poisonous among them, to determine the 
fewest number of prisoners 𝑃 needed to detect the poisonous bottle with the highest probability. 

Dual Problem: Given 𝑃 experimental prisoners, to find the largest number of bottles 𝐵 so that 
the single poisonous bottle from among 𝐵 can be identified with the highest probability. 

 
8.      Solving the Dual Problem 

 
The dual problem can be easily solved for small values of 𝑃, say for 1, 2 and 3. Then 

having noticed a systematic pattern in the solutions, one may conjecture a reasonable solution 
for an arbitrary value of 𝑃, and prove the conjecture. We follow this strategy below. 

If 𝑃 = 1 prisoner is available, we can have him drink a shot from one bottle. If he dies 
(in 30 days), the bottle is poisonous; if he survives, the bottle is safe. If there are 2 bottles and 
it is known that exactly one of them is poisonous, then also 𝑃 = 1 prisoner suffices. Let him 
drink from one bottle and set aside the other bottle: If he dies in 30 days, then the bottle he 
drank from is poisonous and the other bottle is safe; if he survives, then the bottle he drank 
from is safe and the other bottle is poisonous. Making him drink from both bottles is futile: For 
then, he will surely die; and we would not know which bottle killed him. 

Next, we must explain that if there are three bottles with exactly one of them poisonous, 
then 𝑃 = 1 prisoner is not sufficient to detect the poisonous bottle. If the prisoner drinks from 
two or more bottles and dies, we cannot identify which bottle killed him; if he drinks from only 
one bottle and survives, we cannot tell which of the remaining two bottles is poisonous. Thus, 
with 𝑃 = 1 prisoner, we can detect the single poisonous bottle from among at most 𝐵 = 2 
bottles. 

Now consider the situation when there are two bottles of wine and at most one of them 
is poisonous. In this case, one prisoner will not suffice, you will need two prisoners. Here is 
why. With only one prisoner available, we have two choices: (1) Make him drink from one 
bottle. If he dies on the 30th day, we know the bottle he drank from is poisonous; and the other 
bottle is safe. If he survives beyond the 30 days, we know the bottle he drank from is safe; and 
the second bottle may be either safe or poisonous, but we will not know the complete truth. (2) 
Make the prisoner drink a little from each of the two bottles. If he survives, then both bottles 
are safe. If he dies, then one of the bottles is poisonous; but we do not know which one. Thus, 
in each case, we fail to discover complete information about the two bottles. Therefore, we 
must enroll a second prisoner in the experiment; assign one bottle to each; make them drink a 
portion from the assigned bottle. If both prisoners survive beyond 30 days, then both bottles 
are safe. If not, the dead prisoner must have drunk from the poisonous bottle and the surviving 
one from the safe bottle. Note that both prisoners cannot die since at most one bottle is 
poisonous. 

Let us return to the case when exactly one of the bottles is poisonous. If 𝑃 = 2 prisoners 
are available, we can double the number of bottles to 𝐵 = 4. Pair up the bottles to form two 
bundles. Simply use Prisoner 1 to detect the bundle with the poisonous bottle (ensuring that the 
prisoner drinks from both bottles within the bundle assigned to him). Simultaneously, choose 
one bottle from each bundle and assign them to Prisoner 2 to detect which member of the 
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bundle is the poisonous bottle. Label the bottles with binary codes 00, 01, 10, 11. Then let 
Prisoner 1 drink from the second and the fourth bottles (which in binary code have 1 in the 
rightmost digit), and Prisoner 2 from the third and the fourth bottles (which have 1 in the 
leftmost digit). If both prisoners die, then the fourth bottle is poisonous; otherwise, if only 
Prisoner 1 dies, then the second bottle is poisonous; if only Prisoner 2 dies, then the third bottle 
is poisonous; finally, if none of the prisoners dies, then the first bottle, from which neither 
prisoner drank, is poisonous. 

We should also check that with 𝑃 = 2 prisoners available, it is not possible to detect the 
single poisonous bottle from among five bottles. To prove this impossibility, for each bottle, 
ask yourself: “To whom is the bottle assigned?” There are exactly four possible answers: The 
bottle is assigned to both prisoners, only to Prisoner 1, only to Prisoner 2, to neither prisoner. 
Therefore, by the pigeonhole principle [see Wikipedia (2019)], at least two bottles must be 
assigned to the exact same subset of prisoners. Should every member of that subset of prisoners 
die and no other prisoner die, then we would not know which of the two or more bottles 
assigned to that subset of prisoners is poisonous. 

We leave to the reader to study the situation when there are four bottles of wine and at 
most one of them is poisonous. Two prisoners will not suffice, you will need a third prisoner. 

By now a clear pattern has emerged, which we state as a Theorem. 

Theorem 1: Exactly 𝑃 prisoners suffice to detect the single poisonous bottle from among 
29;< < 𝐵 ≤ 29 bottles; but fewer than 𝑃 prisoners do not suffice. If among 29 bottles at most 
one is poisonous, then we must enroll (𝑃 + 1) prisoners. 

Proof: Suffices it to prove the theorem for the largest value of 𝐵, namely, 29. (For fewer than 
29 bottles, fill (29 − 𝐵) additional bottles with safe-to-drink water and conduct the experiment 
for 29 bottles.) Label the bottles (after permuting them randomly) with serial numbers 0 
through (29 − 1) written in binary codes consisting of 𝑃 digits ranging from (000…0) to 
(111…1). Then assign to Prisoner 𝑗 all those bottles that have 1 in the 𝑗-th digit from right. In 
other words, there is a one-to-one correspondence between the bottles and all possible subsets 
of 𝑃 prisoners. Therefore, the subset of prisoners who die in 30 days identifies the poisonous 
bottle with 100% accuracy: The binary code for the poisonous bottle has in digit 𝑗 from right 
the value 1 if Prisoner 𝑗 is dead, and the value 0 if Prisoner 𝑗 is alive.  

If fewer than 𝑃 prisoners are available, by the pigeonhole principle multiple bottles will 
have to be assigned to the same subset of (fewer than 𝑃) prisoners. Should that subset of 
prisoners and no other prisoner die, then we would not know which one of these multiple bottles 
is poisonous. 

When there are 29 bottles of which at most one is poisonous, 𝑃 prisoners will not suffice: 
One more prisoner must be enrolled and made to drink a shot from Bottle 000…0 (from which 
none of the previous 𝑃 prisoners drank) to determine whether this bottle is safe or poisonous, 
just in case no other prisoner dies. 

This completes the proof of the theorem.      � 
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Applying Theorem 1, we conclude that it suffices to enlist 10 prisoners in King 
Conchobar’s experiment to detect with complete certainty at most one poisonous bottle from 
among 999 bottles, since 2C < 999 < 2<E; but 9 prisoners will not do. Go ahead and accept 
King Conchobar’s challenge; just remember to pass on as royalty 15% of your reward to yours 
truly when you do safely return to the twenty-first century. 

 
9.      Executing the Experiment in Practice 

 
To maintain complete secrecy and absolute control over the experiment, the King himself 

should decide who will drink from which bottle (after he learns the strategy from the 
mathematician). In complete secrecy of his cellar, he should prepare 10 cups with distinct IDs 
monogrammed on them so that he would know who drank the cup. He should arrange these 
cups in random order in 10 positions. Then he should make tags with labels ranging from 0 to 
1023, written in ten-digit binary codes such as 0000001101(=13) or 1101110100 (=884), but 
discard the 22 = F100 G + F

10
1 G + F

10
9 G + F

10
10G tags that have 0, 1, 9 or 10 ones in them (that 

is, discard serial numbers 0 to 10 and 1013 to 1023). Although not necessary, in order to achieve 
a perfect balance, the king should augment the bottles of wine with a few more bottles of water 
for a total of 1002 bottles; and assign a unique tag to each of the 1002 bottles in a random order.  

The king should prepare what goes into each of the 10 cups, where each cup corresponds 
to a digit (position) of the binary code. From each bottle, labeled with a unique binary code, he 
should draw a small amount of wine (say, 1/4 ml if each bottle contains 1 liter) to put into each 
cup that corresponds to a digit (position) with value 1, and not into the other cups that 
correspond to digits (positions) with value 0. (He can use syringes to extract wine from the 
bottle without opening the cork, provided he carefully washes any syringe clean before reusing 
it.) Each cup will contain the concoction made up of portions drawn from exactly half of the 
1002 bottles, thereby containing only 125.25 ml total. This is because every digit (position) has 
as many 1’s as 0’s ¾ the balance we referred to earlier.  

Thereafter, the king should make a public announcement that he will not only set free but 
also elevate to nobility ten prisoners on the auspicious occasion of his anniversary ¾ the ten 
who are judged winners in a series of athletic competitions to be held immediately. This will 
ensure that the prisoners enrolled in his crafty experiment are healthy, will likely not die of any 
other cause in the next one month, and will participate willfully and joyfully, oblivious to his 
devious scheme. The king will invite these 10 athletic winners to a royal dinner, where they 
will be served the cup with the secret ID matched to each experimental prisoner.  

For such an experiment to be successful (from the king’s perspective), the king must 
ensure that none of his experimental subjects dies during these 30 days for any other reason. 
Perhaps he should invite them to dinner every evening for the next 30 days on pretext of 
teaching them proper manners of nobility, but truly for keeping attendance and checking on 
their health. To ensure absolute certainty that no one will kill himself or another participant 
enrolled in the experiment, he should assign guards and physicians to look after their total 
wellbeing. It is of paramount importance that he knows exactly which subset of the 10 prisoners 
died because of unknowingly drinking from the poisoned bottle ¾ for that subset of dead 
prisoners will uniquely identify the poisonous bottle. 

On the 31st day, the king will know which experimental participants have died. 
Whichever unique bottle was assigned to this subset of dead prisoners is the poisonous one! 
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While this subset may be of size 2 to 8, on average 5 subjects are expected to die of poisoning. 
Of course, to rule out any future information leak, the king will very likely renege on his 
promise; and kill all surviving experimental participants. The king can now enjoy the remaining 
bottles of wine (minus the 1/2-2 ml drawn out of each) and send the one “special bottle” as a 
gift to the neighboring queen, with “PEACE” inscribed on it. 

 
ACT LIKE A STATISTICIAN 
 
10.    Connection to Design of Experiments 

 
We narrated the above fictitious short story hoping to inspire students to learn the 

beautiful and useful art and science of experimental designs. How is the story of King 
Conchobar related to Design of Experiments? 

First, we find it astonishing that back in 20 AD, King Conchobar literally heeded the sage 
advice of our modern-day statisticians: 

“Experimentation is an essential part of any problem of decision-making. Whenever one is 
faced with the necessity of accepting one out of a set of alternative decisions, one has to 
undertake some experiments to collect observations on which the decision has to be made.”  

¾ Shah and Sinha (2012) 

In the story, we can substitute some terminologies from Design of Experiments: For 
instance, each bottle of wine can be thought of as a treatment to be assigned to one or more 
prisoners, each of whom can be thought of as an experimental unit (on which we can apply as 
many treatments as we wish).  

Since only one treatment is fatal and all other treatments are innocuous, we are essentially 
conducting a hypothesis test among 1000 hypotheses (each stating one particular bottle is 
poisonous or all 999 bottles are innocuous), based on data consisting of a single dichotomous 
response variable ¾ the prisoner is either dead or alive after 30 days. Indeed, since the king 
has diluted the poisonous drink by a factor of 1 in 501, and each cup either contains ¼ ml of 
poisonous wine or none at all, the poison remains potent; and it will surely kill any unfortunate 
soul that drinks it.  

In fact, our design is so well thought out that we need no sophisticated analyses: The 
responses from the ten subjects (almost magically) suffice to identify the poisonous bottle! 
Thus, the hypothesis test is 100% accurate, with zero probability of Type I error (declaring a 
bottle poisonous when it is not) and zero probability of Type II error (declaring a bottle safe 
when it is poisonous), provided that no one dies from a cause other than drinking from the 
poisoned bottle. 

Our story illustrates the following two quotes from leading experts in Design of 
Experiments on the importance of choosing the experimental design carefully: 

“If the experimental design is wisely chosen, a great deal of information in a readily 
extractable form is usually available, and no elaborate analysis may be necessary.”  

¾ Box, et al. (2005) 
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“If you do the pre-experiment planning carefully and select a reasonable design, the analysis 
will almost always be relatively straight-forward. In fact, a well-designed experiment will 
sometimes almost analyze itself!”  

¾ Montgomery (2013) 

Our story also demonstrates some best practices propounded by experts in Design of 
Experiments: An appropriate experimental design is a solution to an optimization problem that 
expends the least amount of resources and still extracts enough information to resolve an issue 
with the highest possible precision. One must be mindful of utilizing resources to their 
maximum potential; practice all kinds of safeguards to reduce biases in the study; and above 
all, one must not compromise the quality of knowledge one seeks to discover.  

A well-known strategy to reduce biases in an experiment is to incorporate proper 
randomization (that is, to the extent permitted, units must be chosen at random to receive a 
treatment or a combination of treatments). To accomplish this, we advised the king to randomly 
assign the binary codes to the wine bottles and to randomly permute the monogrammed cups 
in positions 1 through 10. Another useful concept in experimental design is balance; for 
example, each experimental unit must receive the same number of treatments. In the king’s 
experiment, we advocated augmenting two bottles of water to ensure that every cup receives 
extracts from 501 bottles and therefore contains the same amount of wine (125.25 ml). On the 
other hand, every treatment (bottle) was applied to 2-8 experimental units (prisoners) according 
as the binary code assigned to the treatment. Another key concept in implementing a designed 
experiment is to permit replication (that is, multiple units receive the same treatment 
combinations) with an aim to reduce associated statistical errors. Since the king’s experimental 
design already achieves a 100% accuracy, there is no need for further reduction of error. Hence, 
no replication is needed, or recommended.  

Lastly, the sanctity of the response variable must be preserved. In the king’s experiment, 
the cause of death must be none other than consumption of poisonous wine. Therefore, we 
advised the king to identify the healthiest prisoners through athletic competitions, to offer them 
freedom and a bright future to ensure their cooperation and desire to survive, and to keep them 
under watch by guards to prevent any homicide and to appoint physicians to treat them of any 
other ailment. 

 
11.    A Variation on the Detection Problem 

Recall that the prisoners who drink from the poisonous bottle die not immediately, but 
30 days later. Implicitly we are assuming that death can occur at a random time before the 30 
days are over; that is, during the time period (0, 30]. Other than knowing the support, the exact 
probability distribution of the delay time between drinking and death is unknown. This was the 
reason for restricting the experiment to only one opportunity; that is, make all experimental 
subjects drink wine at the same time.  

However, suppose that death will occur sometime during the period (29½, 30] days after 
drinking the poisonous wine. Then the experiment can be conducted on four successive days. 
In such a case, the king can get by with engaging only 8 prisoners in his experiment: On Day 
1, he will extract wine from Bottles 1-256 to assign to the 8 prisoners according to the binary 
rule described in Section 6. On Day 2, he will extract wine from Bottles 257-512 to give to the 
same 8 prisoners. On Day 3, he will use Bottles 513-768 to assign to the same 8 prisoners. On 
Day 4, he will use Bottles 769-1000 (plus 24 water bottles) to assign to the same 8 prisoners. 
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If some prisoners die on Day 31 minus half a day, then using the subset of dead prisoners, 
the king will identify the poisonous bottle from among 1-256. Otherwise, if all prisoners 
survive on Day 31, then all these bottles are innocuous, and the king must wait to check the 
survival status on Day 32. If some prisoners die on Day 32 minus half a day, then using the 
subset of dead prisoners, the king will identify the poisonous bottle from among 257-512. 
Otherwise, if all prisoners survive on Day 32, all these bottles are innocuous. And so on. 

Referring to Design of Experiments literature, we are reminded of a crossover design, in 
which the same unit receives different treatment combinations in different time periods 
provided that the response is attributable to the correct treatment combination. For the king’s 
experiment, the response on each prisoner is no longer a binary variable taking values 1 or 0; 
rather it is a quintenary variable taking values 1, 01, 001, 0001, 0000, according as the time of 
death is Day 31, 32, 33, 34 or no death at all respectively. Thus, when the time of death after 
drinking from the poisonous bottle is within half a day of the 30th day mark, we have reduced 
the number of experimental units to 8, without compromising the inference. 

Carrying this argument further, if anyone drinking from the poisonous bottle will surely 
die within 23 hours, then the king can conduct his devious experiment on 32 nights, requiring 
only 5 prisoners and utilizing 32 distinct bottles each night. Each prisoner’s status will be one 
of 33 possible outcomes: Death before Day 2, 3, …, 33 or Survival. Thus, with more precise 
information on the response variable, the sample size can be reduced without sacrificing the 
quality of inference. Moreover, the experiment can be terminated as soon as at least one 
prisoner dies. 

 
THINK SOME MORE 

 
12.      Further Study 
 

We invite the astute reader to solve another optimization problem.  
 
Exercise 

 
Suppose that a building has 1000 floors above ground. If you drop a marvelous marble 

from floor 𝑁 or above, the marble will surely break; but if you drop it from any lower floor, 
there will be absolutely no effect of the impact. Being as good as new, it can be dropped again 
(from a higher floor). Every time you want to drop a marble, you must pay ₹10 (with a coupon) 
to take the elevator to the desired floor. Taking the down-elevator to check whether the marble 
is intact or broken costs you nothing. At the start of the experiment, you can buy any number 
of marbles for ₹50 each and any number of coupons for ₹10 each. At any other time, you cannot 
buy or sell a marble or a coupon. What is the least amount of money you must spend to 
determine 𝑁 with complete certainty? 

Note that you must minimize the maximum amount of money you may spend, and not 
minimize the expected amount of money.  

My answer to the Exercise is ₹330; and I offer this answer in good faith that in case you 
beat my solution within 24 hours, you won’t demand my head. Partial explanation of my 
answer is given in the Appendix. Can you find a better solution? Or, can you prove that my 
solution is indeed optimal? Please email me (at jsarkar@iupui.edu) a better solution or a proof 
that my solution is the best. 
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APPENDIX 
 

My Answer to the Exercise in Section 12 
 

Do not read this Appendix until after you have tried to solve the Exercise. 
 

I will buy four marbles; and I plan to drop the first marble from floors (in order)  

286, 506, 671,791, 875, 931,966, 986,996, 1000. 

  (To understand where these floor numbers came from, study their successive 
differences). If the marble does not break at all, then 𝑁 exceeds 1000; and I will have three 
unused marbles and three unused coupons. Otherwise, if the marble breaks during any one of 
the above ten drops, then logic establishes that we need a total of 13 drops to determine 𝑁 with 
certainty using the remaining three marbles. Let me illustrate one such situation (leaving all 
the rest to the reader): Say, the first marble breaks after the 4th drop. Then 671 < 𝑁 ≤ 791; 
and the problem reduces to three marbles and 120 floors. In this case, identifying 𝑁 requires 9 
more drops, as explained below (and so a total of 4 + 9 = 13 drops are needed). 

Drop the second marble from floors (in order)  

707, 735, 756, 771, 781, 787, 790. 

Say, the second marble breaks after the 3rd drop (all other possibilities are left to the 
reader). Then 735 < 𝑁 ≤ 756. So, the problem reduces to two marbles and 21 floors, which 
requires 6 more drops (which justifies the required 3+6 = 9 drops after the first marble breaks): 
Drop the third marble from floors 741, 746,750, 753, 755. If the third marble breaks during 
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the second drop, then 741 < 𝑁 ≤ 746 (again, all other possibilities are left to the reader). So, 
the problem reduces to one marble and 4 floors, requiring 4 more drops (from floors 
742, 743,744, 745) and justifying the required 2+4 = 6 drops after the second marble breaks). 
Thus, in the worst case, the total number of drops of all four marbles is 4+9 = 13, and I must 
be prepared to spend a maximum total of 4 × ₹50 + 13 × ₹10 = ₹330.  

I claim that my choice of buying four marbles, followed by the above strategy of 
sequentially determining which floor to drop the marbles from, is indeed wise. To justify my 
claim, let me document what my prospect will be if I buy fewer than four marbles. First, if I 
buy only one marble, I must be prepared to spend at most ₹10,050 (dropping the marble from 
floors 1, 2, 3, …). I cannot risk skipping any floor: For if I do and the marble breaks, then 𝑁 
can be any one of the floors I have skipped or the one from which I dropped the marble last. 
However, in this case, I have no marble left to determine 𝑁 with certainty! Second, if I buy 
two marbles, then using the best possible strategy, I may require up to 45 drops (why?). 
Therefore, I must spend ₹550 in the worst case. Third, if I buy three marbles, then using the 
best possible strategy, I may have to drop the marbles a total of at most 19 times (why?). Hence, 
I must spend ₹340 in the worst case. All these options lead to spending more than ₹330, which 
I agreed to spend to buy four marbles and 13 drops. 

What if I buy more than four marbles? If I buy five marbles, then using the best possible 
strategy, I may need a maximum of 12 drops (why?). So, I must spend ₹370 in the worst case. 
If I buy six marbles, then using the best possible strategy, I may have to drop the marbles up 
to 12 times (why?). Hence, I must spend ₹420 in the worst case. Thus, compared to the best 
strategy using five marbles, the best strategy with a sixth marble does not reduce the number 
of drops! It was a waste to buy the sixth marble. Buying seven or more marbles will already 
cost me more than ₹330 even before I buy any elevator coupons! Hence, I recommend buying 
four marbles and 13 coupons. Can you beat my choice or prove that it is the optimal choice? 

The above solution is intricately associated with the relative cost of a marble to a coupon 
for each elevator ride up. When this relative cost changes, the answer may change. For 
example, if the cost of each marble decreases to ₹10 but the cost of each coupon remains at 
₹10, then I have two best choices: Either buy four marbles and 13 coupons; or buy five marbles 
and 12 coupons. For each choice I will incur a total cost of ₹170. On the other hand, if the cost 
of each marble increases to ₹100 but the cost of each coupon remains at ₹10, then my best 
choice is to buy three marbles and 19 coupons incurring a total cost of ₹490. What if the cost 
of each marble is ₹1000, but the cost of each coupon remains at ₹10? I leave the discovery of 
the best solution(s) to the reader. In every case, I invite the reader to find a better solution or to 
prove the optimality of my solution. 
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Abstract 

The research work presented in this paper is geared towards analysis of variance 
balanced [VB] block designs in the presence of both-sided neighbour effects. There is a vast 
literature on VB designs of which the BIBDs are simplest examples. We shall take up two 
such designs and examine their behaviours in respect of (i) estimates of treatment contrasts, 
(ii) estimates of block contrasts, and (iii) linear error functions - in the presence of both-sided 
neighbour-effects. We shall assume a circular model. Estimability issues regarding treatment 
effects contrasts and block effects contrasts point towards discouraging notes. 

Key words: Block designs; Variance balance; Neighbour-effects; Estimability issues; Linear 
model; ANOVA. 

1. Introduction 

Variance balance and efficiency balance are two choice-based criteria for selection of 
designs in many contexts. Block designs, row-column designs and higher dimensional 
designs have been extensively studied with respect to these two criteria. Combinatorial 
designs have been characterized utilizing these requirements and this, undoubtedly, forms a 
fascinating area of research. Some of the works are Hedayat and Stufken (1989), Mishra 
(2016), Morgan and Uddin (1995), Khatri(1982), Raghavarao (1971), Sinha, Jones and 
Kageyama (1997). 
 

On the other hand, neighbour-designs, incorporating neighbour-effects, have been 
studied at length and the concept of balancing has also been introduced. However, though 
combinatorial balance has been introduced and studied, it seems that there is a gap in this 
kind of study. From data analysis point of view, no serious attention seems to have been paid 
for understanding the nature of (i) error functions, (ii) estimable treatment- and block- 
contrasts, in the presence of NEffects [both Left-sided and Right-sided]. We attempt to fill up 
this gap. We shall take up two variance-balanced block designs and carefully examine their 
status with respect to the above - mentioned features. 
 
2.  BIBD(7, 7, 3, 3, 1) and Neighbour-Effects 

 
The blocks of the design are obtained by starting with the initial block (1, 2,4) and 

expanding it, modulo (7). The blocks are (1,2,4); (2,3,5); (3,4,6); (4,5,7); (5,6,1); (6,7,2); 
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(7,1,3). Equivalently, the blocks can be represented in the form of a 7 × 3 matrix as shown in 
Table 1 below: 

Table 1 

Block Col1 Col2 Col3 
1 1 2 4 
2 2 3 5 
3 3 4 6 
4 4 5 7 
5 5 6 1 
6 6 7 2 
7 7 1 3 

 
In the absence of any Neighbour Effects [NEs], a complete set of all the eight linearly 
independent error functions is easily identifiable and each one is shown as difference of two 
Terms in Table 2 below: 

Table 2: Error functions : Term 1 and Term 2 

Error Function 1: Term 1(=Column Sum 1) – Term 2(=Column Sum 2) 
Error Function 2: Term 1(=Column Sum 1) – Term 2 (=Column Sum 3) 
Error Function 3: Term 1 = y(1,1) – y(1,2); Term 2 = [y(7,2) – y(7,3)] + [y(2,2) – y(2,1)] 
Error Function 4: Term 1 = y(7,2) – y(7,3); Term 2 = [y(1,1) – y(1,3)] + [y(3,2) – y(3,1)] 
Error Function 5: Term 1 = y(1,1) – y(1,3); Term 2 = [y(5,3) – y(5,1)] + [y(4,2) – y(4,1)] 
Error Function 6: Term 1 = y(5,3) – y(5,1); Term 2 = [y(7,2) – y(7,3)] + [y(2,2) – y(2,3)] 
Error Function7: Term 1 = y(5,3) – y(5,2);Term 2 = [y(7,2) – y(7,3)] + [y(3,1) – y(3,3)] 
Error Function 8: Term 1 = y(7,2) – y(7,1); Term 2 = [y(5,3) – y(5,1)] + [y(4,2) – y(4,3)] 

 
It is further verified that the 8 × 21 matrix of the coefficients in these error functions, which is 
shown below in Table 3, has rank 8. 
Remark 1: Thus far we have found out a set of 8 linearly independent error functions which 
correspond to the error df in the model. This holds under the assumption that there are no 
neighbour-effects of the plots in the blocks. Below we embark on the problem of examining 
the status of these error functions in the presence of both the left-and right-sided neighbour 
effects [LNEs and RNEs]. 
 
 Table 3: Matrix L of coefficients in linear error functions 
 
EF1 1 −1 0 1 −1 0 1 −1 0 1 −1 0 1 −1 0 1 −1 0 1 −1 0 
EF 2 1 0 −1 1 0 −1 1 0 −1 1 0 −1 1 0 −1 1 0 −1 1 0 −1 

EF 3 1 −1 0 1 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 1 

EF 4 −1 0 1 0 0 0 1 −1 0 0 0 0 0 0 0 0 0 0 0 1 −1 

EF 5 1 0 −1 0 0 0 0 0 0 1 −1 0 1 0 −1 0 0 0 0 0 0 

EF 6 0 0 0 0 −1 1 0 0 0 0 0 0 −1 0 1 0 0 0 0 −1 1 

EF 7 0 0 0 0 0 0 −1 0 1 0 0 0 0 −1 1 0 0 0 0 −1 1 

EF 8 0 0 0 0 0 0 0 0 0 0 −1 1 1 0 −1 0 0 0 −1 1 0 

Note: EF – Error Function 
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2.1. Nature of error functions in the presence of LN Effects and RN Effects 

Towards understanding the status of error functions in the presence of LN- and RN-
Effects,  it is almost immediate to realize that error functions 1 and 2 are free from these 
effects. For the rest, we need to carry out the exercises. These are shown below in terms of 
their expectations under the model with NEs : 
Error 3= Term1 – Term 2  
Term 1 = y(1,1) – y(1,2)  
=(𝜏%+ LN4 + RN2) − (𝜏&+ LN1 + RN4) = 𝜏% − 𝜏& + LN4 − LN1 + RN2 − RN4 
Term 2 = [y(7,2) – y(7,3)] + [y(2,2) – y(2,1)]  
=(𝜏% + LN7 + RN3) − (𝜏' + LN1 + RN7) + (𝜏' + LN2 + RN5) − (𝜏& + LN5 + RN3) 
= 𝜏% − 𝜏& + (LN7 + LN2 − LN1 − LN5) + (RN3 + RN5 − RN7 − RN3) 

Error 3 = Term1 –Term 2 = (LN4 + LN5 – LN7 – LN2) + (RN2 + RN7 – RN4 – RN5) 
Error 4 = Term 1 – Term2  
Term 1 = y(7,2) – y(7,3) 
= (𝜏% + LN7 + RN3) − (𝜏' + LN1 + RN7)  
= 𝜏% − 𝜏' + LN7 − LN1 + RN3 − RN7 
Term 2 = [y(1,1) – y(1,3)] + [y(3,2) – y(3,1)]  
= (𝜏% + LN4 + RN2) − (𝜏( + LN2 + RN1) + (𝜏(+ LN3 + RN6) − (𝜏'+ LN6 + RN4)  
= 𝜏% − 𝜏' + LN4 − LN2 + LN3 − LN6 + RN2 − RN1 + RN6 − RN4  
Error 4 = Term 1 – Term2 

= (LN2 + LN6 + LN7 – LN1 – LN3 – LN4) + (RN1 + RN3 + RN4 – RN2 – RN6 – RN7) 
Error 5 = Term1 –Term 2 
Term 1 = y(1,1) – y(1,3)  
= (𝜏% + LN4 + RN2) − (𝜏( + LN2 + RN1)  
= 𝜏% − 𝜏( + LN4 − LN2 + RN2 − RN1 
Term 2 = [y(5,3) – y(5,1)] + [y(4,2) – y(4,1)] 
= (𝜏% + LN6 + RN5) − (𝜏* + LN1 + RN6) + (𝜏* + LN4 + RN7) − (𝜏( + LN7 + RN5)  
= 𝜏% − 𝜏( + (LN6 + LN4) − (LN1 + LN7) + (RN7 − RN6) 
Error 5 = Term1 – Term 2 = (LN1 + LN7 – LN2 – LN6) + (RN2 + RN6 – RN1 – RN7) 

Error 6 = Term1 – Term 2  
Term 1 = y(5,3) – y(5,1)  

= (𝜏% + LN6 + RN5) − (𝜏* + LN1 + RN6) = 𝜏% − 𝜏* + LN6 − LN1 + RN5 − RN6 
Term 2 = [y(7,2) – y(7,3)] + [y(2,2) – y(2,3)]  
= (𝜏% + LN7 + RN3) − (𝜏' + LN1 + RN7) + (𝜏' + LN2 + RN5) − (𝜏* + LN3 + RN2) 
 = 𝜏% − 𝜏* + LN7 + LN2 − LN1 − LN3 + RN3 + RN5 − RN2 − RN7 

Error 6 = Term1 – Term 2 = (LN3 + LN6 – LN2 – LN7) + (RN2 + RN7 – RN3 – RN6) 
Error 7 = Term1 – Term 2  
Term 1 = y(5,3) – y(5,2) 
= (𝜏% + LN6 + RN5) − (𝜏+ + LN5 + RN1)  
= 𝜏% − 𝜏+ + LN6 − LN5 + RN5 − RN1 
Term 2 = [y(7,2) – y(7,3)] + [y(3,1) – y(3,3)] 
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= (𝜏% + LN7 + RN3) − (𝜏' + LN1 + RN7) + (𝜏' + LN6 + RN4) − (𝜏+ + LN4 + RN3)  

= 𝜏% − 𝜏+ + LN7 + LN6 − LN1 − LN4 + RN3 + RN4 − RN7 − RN3 
Error 7 = Term1 – Term 2 = (LN1 + LN4 – LN5 – LN7) + (RN5 + RN7 – RN1 – RN4) 

Error 8 = Term1 – Term 2  
Term 1 = y(7,2) – y(7,1)  

= (𝜏% + LN7 + RN3) − (𝜏, + LN3 + RN1) = 𝜏% − 𝜏, + LN7 − LN3 + RN3 − RN1 
Term 2 = [y(5,3) – y(5,1)] + [y(4,2) – y(4,3)]  
= (𝜏% + LN6 + RN5) − (𝜏* + LN1 + RN6) + (𝜏* + LN4 + RN7) − (𝜏, + LN5 + RN4)  
= 𝜏% − 𝜏, + LN6 − LN1 + LN4 − LN5 + RN5 − RN6 + RN7 − RN4) 

Error 8 = Term1 – Term 2 

= (LN1 + LN5 + LN7 – LN3 – LN4 – LN6) + ( RN3 + RN4 + RN6 – RN1 – RN5 – RN7) 

Now we consider the LN effects only and develop all these 6 equations, that is, from Error 3 
to Error 8 into a matrix. Further, we append the row vector (1,1,...,1)′ to make it a square 
matrix of order 7. This is shown in Table 4 below: 
 
Table 4: Coefficients of LN Effects in expectations of observational contrasts for errors 

 

 

 

 

 

 

It follows that this matrix is of full rank. Moreover, the matrix underlying R-sided NEs is 
obtainable from the above by simply changing the signs of elements in each row. 
Consequently, error df will remain intact at 8 df if and only if all the Left-sided NEs are equal 
and at the same time all the Right-sided NEs are also equal. Unless this is satisfied, we cannot 
go for the usual ANOVA Table-based data analysis. Once this is satisfied, we see no effect 
whatsoever of these LN and RN effects on the analysis of data. Further to this, we also find 
that there are 2 df for error - no matter what happens to the NEs. Thus ANOVA F-tests can be 
carried out for estimable treatment contrasts and estimable block contrasts - even in the 
presence of NEs - provided such estimable treatment/block contrasts are available. 
 
2.2. Estimable treatment contrasts in the BIBD with NEffects 

 
We list below in Table 5 simple-minded unbiased estimators of a set of elementary 

treatment contrasts based on the observations underlying the BIBD - in the absence of LNEs 
and RNEs. For later use, we have also indicated model expectations of these observational 
contrasts in the table - assuming the presence of NEs - both Left-sided and Right-sided. 
Suppose now that Error 3 is a valid error i.e., E[Error3] = 0. That means 
LN4 + LN5 = LN2 + LN7.....(LNC1) 

Error Sl. No. Co-efficient of  LNE 
Special row 1 1 1 1 1 1 1 

3 0 –1 0 1 1 0 –1 
4 –1 1 –1 –1 0 1 1 
5 1 –1 0 0 0 –1 1 
6 0 –1 1 0 0 1 –1 
7 1 0 0 1 –1 0 –1 
8 1 0 –1 –1 1 –1 1 
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and, at the same time, 
RN4 + RN5 = RN2 + RN7.....(RNC1) 
We now demonstrate that under the condition (LNC1), there is an observational contrast 
whose expectation is free from LNEs and at the same time, it involves one treatment contrast. 
We re-write (LNC1) as : 

Table 5: Expectations of observational contrasts in terms of treatment contrasts 

 
 

 
 

 
 

 
LN4 – LN2 = LN7 – LN5 

or, LN4 – LN2 = (LN7 – LN1) + (LN1 – LN6) + (LN6 – LN5). 

We now examine both sides of the expression, which are expressed in terms of LNEffects 
contrasts. We refer to the Table 5 of treatment contrasts. This yields:  

(𝜏% − 𝜏() = (𝜏% − 𝜏') + (𝜏* −	𝜏%) + (𝜏% − 𝜏+). 
This leads to 

(𝜏' − 𝜏( − 𝜏*	+ 𝜏+).............(TC1). 
The message is clear. Under the condition that Error 3 is a valid error, there is an 
observational contrast, viz., 
[y(1,1) − y(1,3)] − [y(7,2) − y(7,3)] + [y(5,3) − y(5,1)] − [y(5,3) − y(5,2)] 
whose expectation is free from LNEs and, moreover, it involves the treatment contrast (TC1). 
We have yet to verify the status of this observational contrast in the presence of the RN 
Effects. It is easy to check that the RN Effects contrast [RN2 + RN7 – RN3 – RN6] remains 
present along with the treatment contrast. The condition (RNC1) is different from this and 
hence, E[Error 3] = 0 alone does not provide any positive result towards estimability of any 
treatment contrast. The condition 

RN2 + RN7 = RN3 + RN6.......................(RNC2) 
is also needed. That means: (LNC1), (RNC1) and (RNC2) together ensure estimability of 
(TC1) along with existence of a valid error viz., Error 3 [This holds, besides the errors: Error 
1 and Error 2]. 
We now analyse (RNC2) and readily observe that E[Error 6] = 0 whenever (RNC2) holds in 
addition to LN2 + LN7 = LN3 + LN6..........(LNC2). 

Further to this, 

𝜏' + 𝜏+ − 𝜏& − 𝜏,.............................(TC2) 

becomes estimable and an unbiased estimator is given by 

E[y(1,1) − y(1,2)] = 𝜏% − 𝜏&+ LN4 − LN1 + RN2 − RN4 

E[y(7,2) − y(7,3)] = 𝜏% − 𝜏' + LN7 − LN1 + RN3 − RN7 

E[y(1,1) − y(1,3)] = 𝜏% − 𝜏( + LN4 − LN2 + RN2 − RN1 

E[y(5,3) − y(5,1)] = 𝜏% − 𝜏*+ LN6 − LN1 + RN5 − RN6 

E[y(5,3) − y(5,2)] = 𝜏% − 𝜏+ + LN6 − LN5 + RN5 − RN1 

E[y(7,2) − y(7,1)] = 𝜏% − 𝜏, + LN7 − LN3 + RN3 − RN1 
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[y(1,1) − y(1,2)] + [y(7,3) − y(7,1)] + [y(5,2) − y(5,3)]. 
Combining the results, we have the following:  
Based on the assumptions (LNC1), (LNC2), (RNC1) and (RNC2), there are two valid errors 
[Error 3 and Error 6] and also there are two estimable treatment contrasts (TC1) and (TC2). 
Likewise, we made an attempt to identify a pair of error functions, which together would 
produce similar result on a different pair of treatment contrasts. However, we are partially 
successful. Assuming E[Error 4] = E[Error 7] = 0, we end up with the conditions: 

(a) LN2 + LN6 = LN3 + LN5 and RN2 + RN6 = RN3 + RN5, 
(b)  LN1 + LN4 = LN5 + LN7 and RN1 + RN4 = RN5 + RN7.  

In view of (a) and (b), it turns out that 
E[[y(7,2) − y(7,3)] − [y(1,1) − y(1,2)] + [y(5,3) − y(5,1)] − [y(5,3) − y(5,2)]] 

     = 𝜏&	+	𝜏+	−	𝜏'	− 𝜏*.  
We failed to find out another estimable treatment contrast based on (a) and (b). At this stage, 
we did not make any further attempt with the last two error functions viz., Error 5 and Error 
8. 
Remark 2: It is interesting to observe that the errors [Error 3 to Error 8]remain as valid errors 
even in the presence of RNEs and LNEs provided RNE of every treatment is the same as the 
corresponding LNE. However, this does not ensure estimability of treatment contrasts / block 
contrasts without further unusual conditions, as indicated above [for treatment contrasts]. 
 
2.3. Estimable block contrasts in the BIBD with NEffects 

 
It is well-known that a treatment-connected block design is also automatically block-

connected. However, when the NEs are present, we have to analyse the block contrasts 
separately. At first, we display in Table 6 elementary block contrasts and their simple-minded 
estimates under the assumption of absence of LNEs and RNEs. These are shown in columns 
1 and 2. Further, assuming that the LNEs and RNEs are present, we show in columns 3 and 4 
of the same table their effects on the chosen observational contrasts. We start with Error 3 
which is a valid error whenever (LNC1) and (RNC1) both hold simultaneously. Upon re-
writing (LNC1) as: LN4 − LN7 = LN2 − LN5, we find that the LHS corresponds to 𝛽% − 𝛽,. 
To find a ‘matching’ for the RHS, we re-write it as (LN2 − LN7) + (LN7 − LN1) + (LN1 − 
LN5) which is again expressed as (𝛽% − 𝛽() + (𝛽+ − 𝛽%) + (𝛽% − 𝛽&) and this simplifies to (𝛽% 
+ 𝛽+ − 𝛽& − 𝛽(). Therefore, combining the two, we infer that for the block contrast given by 
𝛽&+ 𝛽( − 𝛽+ − 𝛽,, there is an observational contrast viz., 
[y(1,1) − y(7,2)] − [y(1,3) − y(4,1)] + y(1,2) − y(6,3)] − [y(1,2) − y(2,1)] 
 

Table 6: Expectations of observational contrasts in terms of block contrasts 
 

Block contrast Observational 
contrasts 

LNE(+)(−) RNE(+)(−) 

𝛽% − 𝛽& y(1,2) − y(2,1) 1,5 4,3 

𝛽% − 𝛽' y(1,3) − y(3,2) 2,3 1,6 
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𝛽% − 𝛽( y(1,3) − y(4,1) 2,7 1,5 

𝛽% − 𝛽* y(1,1) − y(5,3) 4,6 2,5 

𝛽% − 𝛽+ y(1,2) − y(6,3) 1,7 4,6 

𝛽% − 𝛽, y(1,1) − y(7,2) 4,7 2,3 

 

which eliminates the LN Effects in expectation. This is so far as LN Effects are concerned. 
We now examine the nature of involvement of RN Effects. An analysis similar to the case of 
estimation of treatment contrasts suggests: 
Under the conditions required for the validity of Error 3 i.e., under (LNC1) and (RNC1): 

There is a block contrast viz., β2 + β4 − β6 − β7, which is estimable provided further that 
RN1 − RN6 = RN2 − RN5.............(RNC3) 

holds. When this holds, another condition 
LN2 − LN4 = LN3 − LN6.............................(LNC3) 
ensures estimation of a second block contrast viz., β3 − β5 and an estimator is given by [y(1,1) 
− y(5,3)] − [y(1,3) − y(3,2)]. These are uninteresting conditions on the LN Effects and RN 
Effects. We do not pursue the matter anymore. To summarize, in the presence of LN Effects 
and RN Effects, only under certain conditions [like (LNC1) and (RNC1)], we can identify 
error function(s) on the top of the basic two errors [Error 1 and Error 2]. However, we need 
further conditions on the LN Effects and RN Effects to provide estimable treatment contrasts 
and estimable block contrasts - that too - only 1 or 2. There is no substantial promise for the 
analysis of VB Designs (also possibly for EB Designs) - in the presence of LN Effects and 
RN Effects. 
 

3. VB Design With Unequal Replications 
 
Mishra and Sarvate (2019, Private Communication) studied a block design which is 

variance-balanced but based on unequal replication numbers. The blocks of the design are 
given as:  

 
B1 = (1,1,2,3); B2 = (1,1,4,5); B3 = (1,1,6,7); B4 = (1,2,4,6); B5 = (1,3,5,7); B6 = (2,3,5,6); 
B7 = (2,3,4,7); B8 = (2,4,5,7); B9 = (2,5,6,7); B10 = (3,4,5,6); B11 = (3,4,6,7).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         

Here, the total df = 44−1= 43 is decomposed as: 10 df for blocks, 6 df for treatments 
and 27 df for error. Below in Table 7 we present a full set of 27 linearly independent error 
functions. Errors 1 to 3 are readily derived as observational contrasts within blocks whereas 
Errors 4 to 27 are identified as differences of two terms based on observational contrasts. 

 

Table 7: Error functions: Term 1 and Term 2 
 

Error Function 1 : [y(1,1) − y(1,2)] 

Error Function 2 : [y(2,1) − y(2,2)] 

Error Function 3 : [y(3,1) − y(3,2)] 
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Error Function 4 : Term 1 = [y(1,2) − y(1,3)]; Term 2 = [y(4,1) − y(4,2)] 

Error Function 5 : Term 1 = [y(1,2) −  y(1,4)]; Term 2 = [y(5,1) − y(5,2)] 

Error Function 6 : Term 1 = [y(2,2) − y(2,3)]; Term 2 = [y(4,1) − y(4,3)] 

Error Function 7 : Term 1 = [y(2,1) − y(2,4)]; Term 2 = [y(5,1) − y(5,3)] 

Error Function 8 : Term 1 = [y(3,2) − y(3,3)]; Term 2 = [y(4,1) − y(4,4)] 

Error Function 9 : Term 1 = [y(3,1) − y(3,4)]; Term 2 = [y(5,1) − y(5,4)] 

Error Function 10 : Term 1 = [y(1,3) − y(1,4)]; Term 2 = [y(6,1) − y(6,2)] 

Error Function 11 : Term 1 = [y(6,1) − y(6,2)]; Term 2 = [y(7,1) − y(7,2)] 

Error Function 12 : Term 1 = [y(4,2) − y(4,3)]; Term 2 = [y(7,1) − y(7,3)] 

Error Function 13 : Term 1 = [y(4,2) − y(4,3)]; Term 2 = [y(8,1) − y(8,2)] 

Error Function 14 : Term 1 = [y(6,1) − y(6,3)]; Term 2 = [y(8,1) − y(8,3)] 

Error Function 15 : Term 1 = [y(6,1) − y(6,3)]; Term 2 = [y(9,1) − y(9,2)] 

Error Function 16 : Term 1 = [y(4,2) − y(4,4)]; Term 2 = [y(6,1) − y(6,4)] 

Error Function 17 : Term 1 = [y(4,2) − y(4,4)]; Term 2 = [y(9,1) − y(9,3)] 

Error Function 18 : Term 1 = [y(7,1) −	y(7,4)]; Term 2 = [y(8,1) − y(8,4)] 

Error Function 19 : Term 1 = [y(7,1) − y(7,4)]; Term 2 = [y(9,1) − y(9,4)] 

Error Function 20: Term 1 = [y(7,2) − y(7,3)]; Term 2 = [y(10,1) − y(10,2)] 

Error Function 21: Term 1 = [y(7,2) − y(7,3)]; Term 2 = [y(11,1) − y(11,2)] 

Error Function 22: Term 1 = [y(5,2) − y(5,3)]; Term 2 = [y(6,2) − y(6,3)] 

Error Function 23: Term 1= [y(5,2) − y(5,3)]; Term 2=[y(10,1) − y(10,3)] 

Error Function 24: Term 1 = [y(6,2) − y(6,4)]; Term 2 = [y(10,1) − y(10,4)] 

Error Function 25: Term 1 = [y(6,2) − y(6,4)]; Term 2 = [y(11,1) − y(11,3)] 

Error Function 26 : Term 1 = [y(7,2) − y(7,4)]; Term 2= [y(5,2) − y(5,4)] 

Error Function 27 : Term 1 = [y(7,2) − y(7,4)]; Term 2 = [y(11,1) − y(11,4)] 

 

It is further verified that the 27×44 matrix of the coefficients of error functions has rank 27. 
This holds under the assumption that there are no NEffects. 
 
3.1. Nature of error functions in the presence of LN and RN Effects 
 

Now we work out expectations of all the 27 Error functions in the presence of left-and 
right sided neighbor effects in the plots of the blocks, under the assumption that the blocks 
are circular. 

 
Error 1 = [y(1,1) − y(1,2)]  

E[Error 1] = 𝜏%+ LN3 + RN1 − 𝜏% − LN1 − RN2 = LN3 − LN1 + RN1 − RN2 
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Error 2 = [y(2,1) − y(2,2)]  

E[Error 2] = 𝜏% + LN5 + RN1 − 𝜏% − LN1 − RN4 = LN5 − LN1 + RN1 − RN4 

Error 3 = [y(3,1) − y(3,2)]  

E[Error 3] = 𝜏% + LN7 + RN1 − 𝜏% − LN1 − RN6 = LN7 − LN1 + RN1 − RN6 
Error 4 = Term 1 − Term 2 

Term 1 = [y(1,2) − y(1,3)]  

E[Term 1] = 𝜏% + LN1 + RN2 − 𝜏&− LN1 − RN3 =	𝜏% − 𝜏& + RN2 − RN3 

Term 2 = [y(4,1) − y(4,2)] 

E[Term 2] = 𝜏% + LN6 + RN2 − 𝜏& − LN1 − RN4 =	𝜏% − 𝜏& + LN6 − LN1 + RN2 − RN4 

E[Error 4] = LN1 −	LN6 + RN4 −	RN3 

Error 5 = Term 1 − Term 2 
Term 1 = [y(1,2) − y(1,4)] 

E[Term 1] = 𝜏%+ LN1 + RN2 − 𝜏' − LN2 − RN1 = 𝜏% − 𝜏' + LN1 − LN2 + RN2 − RN1 
Term 2 = [y(5,1) − y(5,2)] 

E[Term 2] = 𝜏% + LN7 + RN3 − 𝜏' − LN1 − RN5 = 𝜏% − 𝜏' + LN7 − LN1 + RN3 − RN5 
E[Error 5] = 2LN1 − LN2 − LN7 + RN2 + RN5 − RN1 − RN3 

Error 6 = Term 1 − Term 2 
Term 1 = [y(2,2) − y(2,3)]  

E[Term 1] = 𝜏% + LN1 + RN4 − 𝜏( − LN1 − RN5 =	𝜏%− 𝜏( + RN4 − RN5 
Term 2 = [y(4,1) − y(4,3)] 

E[Term 2] = 𝜏% + LN6 + RN2 −𝜏(− LN2 − RN6 = 𝜏% −	𝜏(+ LN6 − LN2 + RN2 − RN6 

E[Error 6] = LN2 − LN6 + RN4 + RN6 − RN2 − RN5 
Error 7 = Term 1− Term 2 
Term 1 = [y(2,1) − y(2,4)] 

E[Term 1] = 𝜏% + LN5 + RN1 − 𝜏*	− LN4 − RN1 = 𝜏% − 𝜏* + LN5 − LN4 

Term 2 = [y(5,1) − y(5,3)] 

E[Term 2] = 𝜏% + LN7 + RN3 − 𝜏*− LN3 − RN7 = 𝜏% − 𝜏* + LN7 − LN3 + RN3 − RN7 

E[Error 7] = LN5 + LN3 − LN4 − LN7 + RN7 − RN3 
Error 8 = Term 1 − Term 2 

Term 1 = [y(3,2) − y(3,3)]  

E[Term 1] = 𝜏% + LN1 + RN6 − 𝜏+ − LN1 − RN7 = 𝜏%− 𝜏+ + RN6 − RN7 

Term 2 = [y(4,1) − y(4,4)]  

E[Term 2] =	𝜏%+ LN6 + RN2 −	𝜏+− LN4 − RN1 = 𝜏%− 𝜏+ + LN6 − LN4 + RN2 − RN1 

E[Error 8] = LN4 − LN6 + RN6 + RN1 − RN2 − RN7 
Error 9 = Term 1− Term 2 
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Term 1 = [y(3,1) − y(3,4)]  

E[Term 1] = 𝜏% + LN7 + RN1 − 𝜏, − LN6 − RN1 =	𝜏%− 𝜏, + LN7 − LN6 

Term 2 = [y(5,1) − y(5,4)]  

E[Term 2] = 𝜏% + LN7 + RN3 −𝜏,− LN5 − RN1 = 𝜏% − 𝜏, + LN7 − LN5 + RN3 − RN1 
E[Error 9] = LN5 − LN6 + RN1 − RN3 

Error 10 = Term 1 − Term 2 
Term 1 = [y(1,3) − y(1,4)]  

E[Term 1] = 𝜏&+ LN1 + RN3 − 𝜏' − LN2 − RN1 = 𝜏& − 𝜏' + LN1 − LN2 + RN3 − RN1 
Term 2 = [y(6,1) − y(6,2)] 

E[Term 2] = 𝜏& + LN6 + RN3 − 𝜏' − LN2 − RN5 = 𝜏& − 𝜏' + LN6 − LN2 + RN3 − RN5 
E[Error 10] = LN1 − LN6 + RN5 − RN1 

Error 11 = Term 1− Term 2 
Term 1 = [y(6,1) − y(6,2)]  

E[Term 1] = 𝜏& + LN6 + RN3 − 𝜏' − LN2 − RN5 = 𝜏& − 𝜏' + LN6 − LN2 + RN3 − RN5 

Term 2 = [y(7,1) − y(7,2)]  

E[Term 2] = 𝜏& + LN7 + RN3 − 𝜏' − LN2 − RN4 = 𝜏& − 𝜏' + LN7 − LN2 + RN3 − RN4 

E[Error 11] = LN6 − LN7 + RN4 − RN5 
Error 12 = Term 1 − Term 2 

Term 1 = [y(4,2) − y(4,3)] 

E[Term 1] = 𝜏& + LN1 + RN4 − 𝜏( − LN2 − RN6 = 𝜏& − 𝜏( + LN1 − LN2 + RN4 − RN6 

Term 2 = [y(7,1) − y(7,3)] 

E[Term 2] = 𝜏& + LN7 + RN3 − 𝜏( − LN3 − RN7 = 𝜏& − 𝜏( + LN7 − LN3 + RN3 − RN7 

E[Error 12] = LN1 + LN3 − LN2	−	LN7 + RN4 + RN7 − RN3 −	RN6 
Error 13 = Term 1 − Term 2 

Term 1 = [y(4,2) − y(4,3)]  

E[Term 1] = 𝜏& + LN1 + RN4 − 𝜏( − LN2 − RN6 = 𝜏& − 𝜏( + LN1 − LN2 + RN4 − RN6 

Term 2 = [y(8,1) − y(8,2)]  

E[Term 2] =	𝜏&	+ LN7 + RN4 − 𝜏(− LN2 − RN5 = 𝜏& − 𝜏( + LN7 − LN2 + RN4 − RN5 
E[Error 13] = LN1 − LN7 + RN5 − RN6 

Error 14 = Term 1 − Term 2 
Term 1 = [y(6,1) − y(6,3)]  

E[Term 1] = 𝜏& + LN6 + RN3 − 𝜏* − LN3 − RN6 = 𝜏&− 𝜏* + LN6 − LN3 + RN3 − RN6 
Term 2 = [y(8,1) − y(8,3)] 

E[Term 2] = 𝜏& + LN7 + RN4 − τ5 − LN4 − RN7 = 𝜏& − 𝜏* + LN7 − LN4 + RN4 − RN7 
E[Error 14] = LN6 + LN4 − LN3 − LN7 + RN3 + RN7 − RN4 − RN6 
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Error 15 = Term 1− Term 2 
Term 1 = [y(6,1) − y(6,3)]  

E[Term 1] = 𝜏& + LN6 + RN3 − 𝜏*− LN3 − RN6 = 𝜏&− 𝜏* + LN6 − LN3 + RN3 − RN6 

Term 2 = [y(9,1) − y(9,2)] 

E[Term 2] = 𝜏& + LN7 + RN5 − 𝜏* − LN2 − RN6 = 𝜏& − 𝜏* + LN7 − LN2 + RN5 − RN6 

E[Error 15] = LN6 + LN2 − LN3	−	LN7 + RN3 − RN5 
Error 16 = Term 1 − Term 2 

Term 1 = [y(4,2) − y(4,4)]  

E[Term 1] = 𝜏& + LN1 + RN4 − 𝜏+− LN4 − RN1 = 𝜏& − 𝜏+ + LN1 − LN4 + RN4 − RN1 

Term 2 = [y(6,1) − y(6,4)]  

E[Term 2] = 𝜏& + LN6 + RN3 − 𝜏+ − LN5 − RN2 = 𝜏& − 𝜏++ LN6 − LN5 + RN3 − RN2 

E[Error 16] = LN1 + LN5 −	LN4 −	LN6 + RN4 + RN2 −	RN1 − RN3 

Error 17 = Term 1 − Term 2 

Term 1 = [y(4,2) − y(4,4)]  

E[Term 1] = 𝜏&+ LN1 + RN4 − 𝜏+ − LN4 − RN1 = 𝜏&− 𝜏+ + LN1 − LN4 + RN4 − RN1 

Term 2 = [y(9,1) − y(9,3)]  

E[Term 2] = 𝜏& + LN7 + RN5 − 𝜏+ − LN5 − RN7 =	𝜏&− 𝜏++ LN7 − LN5 + RN5 − RN7 

E[Error 17] = LN1 + LN5 −	LN4 −	LN7 + RN4 + RN7 −	RN1 −	RN5 

Error 18 = Term 1 − Term 2 

Term 1 = [y(7,1) −	y(7,4)]  

E[Term 1] = 𝜏& + LN7 + RN3 − 𝜏,− LN4 − RN2 = 𝜏& − 𝜏, + LN7 − LN4 + RN3 − RN2 

Term 2 = [y(8,1) − y(8,4)] 

E[Term 2] = 𝜏& + LN7 + RN4 − 𝜏, − LN5 − RN2 = 𝜏& − 𝜏, + LN7 − LN5 + RN4 − RN2 

E[Error 18] = LN5 −	LN4 −	RN3 −	RN4 

Error 19 = Term 1 −	Term 2 

Term 1 = [y(7,1)	− y(7,4)] 

E[Term 1] = 𝜏& + LN7 + RN3 − 𝜏, − LN4 − RN2 = 𝜏& − 𝜏, + LN7 − LN4 + RN3 − RN2 

Term 2 = [y(9,1)	− y(9,4)]  

E[Term 2] = 𝜏& + LN7 + RN5 − 𝜏, − LN6 − RN2 = 𝜏&− 𝜏, + LN7 − LN6 + RN5 − RN2 

E[Error 19] = LN6 −	LN4 + RN3 −	RN5 

Error 20 = Term 1 −	Term 2 

Term 1 = [y(7,2) − y(7,3)]  

E[Term 1] = 𝜏' + LN2 + RN4 − 𝜏( − LN3 − RN7 = 𝜏' − 𝜏(+ LN2 − LN3 + RN4 − RN7 

Term 2 = [y(10,1) − y(10,2)]  

E[Term 2] = 𝜏' + LN6 + RN4 − 𝜏( − LN3 − RN5 =	𝜏'− 𝜏( + LN6 − LN3 + RN4 − RN5 
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E[Error 20] = LN2 −	LN6 + RN5 −	RN7 

Error 21 = Term 1 − Term 2 

Term 1 = [y(7,2) − y(7,3)]  

E[Term 1] =	𝜏'+ LN2 + RN4 − 𝜏( − LN3 − RN7 = 𝜏' −	𝜏( + LN2 − LN3 + RN4 − RN7 
Term 2 = [y(11,1) − y(11,2)] 

E[Term 2]  =	𝜏'+ LN7 + RN4 − 𝜏( − LN3 − RN6 = 𝜏' − 𝜏( + LN7 − LN3 + RN4 − RN6 

E[Error 21] = LN2 − LN7 + RN6 − RN7 
Error 22 = Term 1− Term 2 

Term 1 = [y(5,2) − y(5,3)]  

E[Term 1] = 𝜏' + LN1 + RN5 − 𝜏* − LN3 − RN7 = 𝜏' − 𝜏*+ LN1 − LN3 + RN5 − RN7 

Term 2 = [y(6,2) − y(6,3)] 

E[Term 2] = 𝜏' + LN2 + RN5 − 𝜏* − LN3 − RN6 = 𝜏'− 𝜏* + LN2 − LN3 + RN5 − RN6 

E[Error 22] = LN1 − LN2 + RN6 − RN7 
Error 23 = Term 1 − Term 2 

Term 1 = [y(5,2) − y(5,3)] 

E[Term 1] = 𝜏' + LN1 + RN5 − 𝜏* − LN3 − RN7 = 𝜏'− 𝜏* + LN1 − LN3 + RN5 − RN7 

Term 2 = [y(10,1) − y(10,3)]  

E[Term 2] = 𝜏' + LN6 + RN4 − 𝜏* − LN4 − RN6 = 𝜏'− 𝜏* + LN6 − LN4 + RN4 − RN6 

E[Error 23] = LN1 + LN4 − LN3 − LN6 + RN5 + RN6 − RN4 − RN7 

Error 24 = Term 1 − Term 2 
Term 1 = [y(6,2) − y(6,4)]  

E[Term 1] = 𝜏'+ LN2 + RN5 − 𝜏+ − LN5 − RN7 = 𝜏'− 𝜏+ + LN2 − LN5 + RN5 − RN2 
Term 2 = [y(10,1) − y(10,4)]  

E[Term 2] = 𝜏'+ LN6 + RN4 − 𝜏+ − LN5 − RN3 = 𝜏'− 𝜏++ LN6 − LN5 + RN4 − RN3 
E[Error 24] = LN2 − LN6 + RN5 + RN3 − RN2 − RN4 

Error 25 = Term 1 − Term 2 
Term 1 = [y(6,2) − y(6,4)] 

E[Term 1] = 𝜏'+ LN2 + RN5 − 𝜏+ − LN5 − RN2 = 𝜏'− 𝜏+ + LN2 − LN5 + RN5 − RN2 
Term 2 = [y(11,1) − y(11,3)] 

E[Term 2] = 𝜏'+ LN7 + RN4 − 𝜏+ − LN4 − RN7 =	𝜏'− 𝜏++ LN7 − LN4 + RN4 − RN7 
E[Error 25] = LN2 + LN4 − LN5 − LN7 + RN5 + RN7 − RN2 − RN4 

Error 26 = Term 1 − Term 2 
Term 1 = [y(7,2) − y(7,4)]  

E[Term 1] = 𝜏'+ LN2 + RN4 − 𝜏, − LN4 − RN2 =	𝜏'−	𝜏,+ LN2 − LN4 + RN4 − RN2 

Term 2 = [y(5,2) − y(5,4)]  
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E[Term 2] = 𝜏'+ LN1 + RN5 − 𝜏, − LN5 − RN1 =	𝜏'− 𝜏, + LN1 − LN5 + RN5 − RN1 

E[Error 26] = LN2 + LN5 − LN1 − LN4 + RN4 + RN1− RN2 − RN5 
Error 27 = Term 1− Term 2 

Term 1 = [y(7,2) − y(7,4)]  

E[Term 1] = 𝜏' + LN2 + RN4 − 𝜏, − LN4 − RN2 = 𝜏'− 𝜏, + LN2 − LN4 + RN4 − RN2 

Term 2 = [y(11,1) − y(11,4)]  

E[Term 2] = 𝜏' + LN7 + RN4 − 𝜏, − LN6 − RN3 = 𝜏'−𝜏,+ LN7 − LN6 + RN4 − RN3 

E[Error 27] = LN2 + LN6 − LN4 − LN7 + RN3 − RN2 
 

For further analysis, in the above, we consider only the LN Effects and develop the 
underlying matrix. This is shown in Table 8 below. 
 
Table 8: Coefficients of LN Effects in expectations of observational contrasts for errors 
 

Error 
Sl. No. 

 

1 −1 0 1 0 0 0 0 
2 −1 0 0 0 1 0 0 
3 −1 0 0 0 0 0 1 
4 1 0 0 0 0 −1 0 
5 1 −1 1 0 0 0 −1 
6 0 1 0 0 0 −1 0 
7 0 0 1 −1 1 0 −1 
8 0 0 0 1 0 −1 0 
9 0 0 0 0 1 −1 0 
10 1 0 0 0 0 −1 0 
11 0 0 0 0 0 1 −1 
12 1 −1 1 0 0 0 −1 
13 1 0 0 0 0 0 −1 
14 0 0 −1 1 0 1 −1 
15 0 1 −1 0 0 1 −1 
16 1 0 0 −1 1 −1 0 
17 1 0 0 −1 1 0 −1 
18 0 0 0 −1 1 0 0 
19 0 0 0 −1 0 1 0 
20 0 1 0 0 0 −1 0 
21 0 1 0 0 0 0 −1 
22 1 −1 0 0 0 0 0 
23 1 0 −1 1 0 −1 0 
24 0 1 0 0 0 −1 0 
25 0 1 0 1 −1 0 −1 
26 −1 1 0 −1 1 0 0 
27 0 1 0 −1 0 1 −1 

 



 SOBITA SAPAM AND BIKAS KUMAR SINHA [Vol. 18, No.2 

 
 

28 

Similarly, we may consider the RN effects only and develop the corresponding matrix of 
coefficients. This is shown in the Table 9 below. 
 

3.2. Estimability of treatment contrasts in the presence of both-sided neighbor effects 
 
Suppose Error 1 is a valid error, that is, E[Error 1] = 0. Then LN3 −  LN1 = 0. Now we 

can rewrite it as (LN3 − LN7) + (LN7 − LN1) = 0. Using the Table 10 on expectations of 
some treatment contrasts, it yields 𝜏* − 𝜏% + 𝜏% − 𝜏' = 0. This leads to estimability of the 
treatment contrast (𝜏' − 𝜏*), provided there are no RN Effects. For this we need the condition 
 

Table 9: Coefficients of RN Effects in expectations of observational contrasts for errors 
 

Error Sl. No.  

1 1 −1 0 0 0 0 0 
2 1 0 0 −1 0 0 0 
3 1 0 0 0 0 −1 0 
4 0 0 −1 1 0 0 0 
5 0 0 −1 0 1 0 0 
6 0 −1 0 1 −1 1 0 
7 0 0 −1 0 0 0 1 
8 1 −1 0 0 0 1 −1 
9 1 0 −1 0 0 0 0 
10 −1 0 0 0 1 0 0 
11 0 0 0 1 −1 0 0 
12 0 0 −1 1 0 −1 1 
13 0 0 0 0 1 −1 0 
14 0 0 1 −1 0 −1 1 
15 0 0 1 0 −1 0 0 
16 −1 1 −1 1 0 0 0 
17 −1 0 0 1 −1 0 1 
18 0 0 1 −1 0 0 0 
19 0 0 1 0 0 −1 0 
20 0 0 0 0 1 0 −1 
21 0 0 0 0 0 1 −1 
22 0 0 0 0 0 1 −1 
23 0 0 0 −1 1 1 −1 
24 0 −1 1 −1 1 0 0 
25 0 −1 0 −1 1 0 1 
26 1 −1 0 1 −1 0 0 
27 0 −1 1 0 0 0 0 

 
RN5 = RN7. When this happens, we identify Error 20 as a valid error when, in addition, we 
also require: LN2 = LN6. Under this LN-related condition, we find that 𝜏	%− 𝜏	( becomes 
estimable if, again, we have: RN2 = RN6. The conditions are not encouraging at all. We stop 
the analysis and observe that presence of LN and RN Effects really poses estimability 
problem for treatment effects contrasts and similarly, for block effects contrasts as well. 
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Table 10: Expectations of observational contrasts in terms of basic treatment contrasts 
 

E[y(4,1) − y(4,2)] = τ% − τ&	+ LN6 – LN1 + RN2 – RN4 

E[y(5,1) − y(5,2)] = 𝜏% − 𝜏'	+ LN7 − LN1 + RN3 − RN5  

E[y(4,1) − y(4,3)] = 𝜏% − 𝜏(	+ LN6 − LN2 + RN2 − RN6  

E[y(5,1) − y(5,3)] = 𝜏%− 𝜏*	+ LN7 − LN3 + RN3 − RN7  

E[y(4,1) − y(4,4)] = 𝜏%− 𝜏+	+ LN6 − LN4 + RN2 − RN1  

E[y(5,1) − y(5,4)] = 𝜏% − 𝜏,	+ LN7 − LN5 + RN3 − RN1 

 
4. Concluding Remarks 

 
These simple examples illustrate the difficulties in carrying out ANOVA Tests in the 

presence of LNEs and / or RNEs. We should be careful in handling the data analyses issues. 
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Abstract
The existence of resolvable and affine resolvable block designs has been discussed in the

literature (cf. Clatworthy (1973), Raghavarao (1988)). Recently, a necessary condition for
the existence of a certain resolvable pairwise balanced design is provided by Kadowaki and
Kageyama (2020). In this paper, through the necessary condition, we can provide a simple
proof of the non-existence result of some affine resolvable SRGD design, rather than by the
usual methods in combinatorics.

Key words: Affine resolvability; Resolvability; PB design;SRGD design.

1. Introduction

A block design BD(v, b, r, k) with v treatments is said to be resolvable if the b blocks
of size k each can be grouped into r resolution sets of b/r blocks each such that in each
resolution set every treatment occurs exactly once. A resolvable BD is said to be affine
resolvable if every two blocks belonging to different resolution sets intersect in the same
number of treatments (cf. Raghavarao (1988)).

A BD(v, b, r, k) is called a group divisible (GD) design with parameters v = mn, b, r, k,
λ1, λ2 if the mn treatments are divided into m groups of n treatments each such that any
two treatments in the same group occur together in exactly λ1 blocks, whereas any two
treatments from different groups occur together in exactly λ2 blocks. The GD designs are
further classified into three subclasses: Singular if r−λ1 = 0; Semi-Regular (SR) if r−λ1 > 0
and rk − vλ2 = 0; Regular if r − λ1 > 0 and rk − vλ2 > 0.

A pairwise balanced (PB) design with parameters v, b, r,K, λ is a collection of b subsets
(blocks) of a set of v treatments such that the size of each block is an element of a set K,
each treatment occurs in exactly r different blocks and any two treatments occur in exactly
λ blocks (cf. Colbourn and Dinitz (2007)).

Kadowaki and Kageyama (2009, 2010) produced comprehensive combinatorial findings
on affine resolvable partially balanced incomplete block designs including SRGD designs.
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Recently, Kadowaki and Kageyama (2020) derived a necessary condition for the existence
of a certain resolvable PB design. In this paper, through the necessary condition, we can
simply prove the non-existence of certain affine resolvable SRGD designs, rather than by
using the other usual methods in combinatorics.

2. Statements

Kadowaki and Kageyama (2020) have presented a necessary condition for the existence
of a resolvable PB design, as the following shows.

Theorem 1: When v ≥ 3 and b = 2r, if there exists a resolvable PB design with parameters
v, b, r,K, λ, then r − λ is even.

By use of Theorem 1, the following can be provided.

Theorem 2: In a resolvable GD design with parameters v = mn, b = 2r, r, k, λ1, λ2, it holds
that

(1) when n ≥ 3, r − λ1 is even;

(2) when m ≥ 3, r − λ2 is even.

Proof: For the resolvable GD design, by taking n treatments of the first associates in a group
of the GD association scheme as new treatments, a resolvable PB design with parameters
v∗ = n, b∗ = 2r∗, r∗ = r, k∗

j , λ
∗ = λ1 can be obtained. Then Theorem 1 implies (1), because

r∗−λ∗ = r−λ1. Similarly, by taking m treatments of the second associates in different groups
of the GD association scheme as new treatments, a resolvable PB design with parameters
v∗ = m, b∗ = 2r∗, r∗ = r, k∗

j , λ
∗ = λ2 can be obtained. Hence (2) is proved by Theorem 1.

It should be remarked that the presentation of Theorem 2 is simply in terms of design
parameters.

Now we look at affine resolvable SRGD designs. Since an affine resolvable design is also
a resolvable design, Theorem 2 will be utilized to discuss the existence of affine resolvable
SRGD designs.

More refinement of Theorem 2 is given.

Corollary 2.1: In an affine resolvable SRGD design with parameters v = mn, b = 2r, r, k, λ1, λ2,
it holds that

(3) m and n are both even;

(4) for even m (≥ 2), the necessary condition (1) is always satisfied;

(5) for even n (≥ 2), the necessary condition (2) is satisfied if and only if m ≡ 0 (mod 4).
Then when m ≡ 2 (mod 4), the corresponding affine resolvable SRGD design does not
exist. In particular, when n = 2, the parameters are expressed by v = b = 2m, r =
k = m,λ1 = 0, λ2 = m/2 for m ≡ 0 (mod 4).
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Proof: In an affine resolvable SRGD design with v = mn and b = 2r, it is known that
b = v−m+r, rk = vλ2 and r(k−1) = (n−1)λ1 +n(m−1)λ2, which imply that v = mn, b =
2m(n− 1), r = m(n− 1), k = mn/2, λ1 = k −m and λ2 = k − k/n. In an SRGD design, it
is known that k is divisible by m. By use of these relations, Corollary 2.1 is proved. In fact,
since k/m and k/n with k = mn/2 are integers, (3) is obtained. (4) For m = 2l1(l1 ≥ 1),
since k/m = k/(2l1) is an integer, k is even. Then r − λ1 = m(n− 1)− k +m = 2l1n− k is
even, i.e., (1) of Theorem 2. (5) For n = 2l2(l2 ≥ 1), we have v = 2l2m, r = m(2l2 − 1), k =
l2m. Then λ2 = k − k/n = l2m − m/2 which implies that m is even (=2l3, say). Now
r− λ2 = m(2l2 − 1)− l2m+m/2 = l2m−m/2 = l3(2l2 − 1) is even if and only if l3 is even,
i.e., (2) of Theorem 2. Hence m ≡ 0 (mod 4).

Remark 1: In general, an affine resolvable SRGD design with b = 2r and λ1 = 0 has the
parameters as v = mn, b = 2m(n− 1), r = m(n− 1), k = m,λ1 = 0, λ2 = m−m/n.

Some existence on affine resolvable SRGD designs with admissible parameters within
the scope of v = mn ≤ 100 and r, k ≤ 20 has been investigated and tabulated by Kadowaki
and Kageyama (2009, 2010). They showed the non-existence of 10 designs of Nos. 14, 16,
17, 18, 25, 27, 32, 34, 35, 38 in their Table 3.4. Such results are given by use of calculation
of the Hilbert norm residue symbol (as in Theorem 12.6.2 of Raghavarao (1988)) and the
application of existence on some Hadamard matrix and difference matrix (as in Remark 3.3.1
and Corollary 3.3.4 of Kadowaki and Kageyama (2009)). The derivation of these results is
slightly complicated.

Among such 10 non-existence results in the Table 3.4, another proof of the non-existence
on designs of Nos. 14, 16, 25, 32, 38 can be given by simply applying Theorem 2 or Corollary
2.1 as follows.

No m n v b r k λ1 λ2 non-existence
14 6 2 12 12 6 6 0 3 Corollary 2.1
16 6 4 24 36 18 12 6 9 Theorem 2
25 10 2 20 20 10 10 0 5 Corollary 2.1
32 14 2 28 28 14 14 0 7 Corollary 2.1
38 18 2 36 36 18 18 0 9 Corollary 2.1

If we extend the investigation of affine resolvable SRGD designs of b = 2r over the
scope of v ≤ 200 and k ≤ 100, then a large number of admissible parameters of the design
are found. Some are constructed and some are unknown on existence. Also some are non-
existent.

Among such non-existent designs, the following parameters as

v = 136,m = 34, n = 4, b = 204, r = 102, k = 68, λ1 = 34, λ2 = 51

cannot be applied for Remark 3.3.1 and Corollary 3.3.4 of Kadowaki and Kageyama (2009),
and also for Theorem 12.6.2 of Raghavarao (1988). The present Corollary 2.1 (5) can be
only applied to show the non-existence.
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The above observation reveals that Theorem 2 or Corollary 2.1 is powerful to show the
non-existence of designs, rather than by the usual methods in combinatorics.
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Abstract
When more repeated measurements than independent observations are available the

classical Growth Curve model cannot produce maximum likelihood estimators. In this article
we are interested in the estimation of the mean parameters whereas the dispersion parameters
are considered to be nuisance parameters. It is possible to produce an unbiased estimator
of the mean parameters which is a function of the Moore-Penrose generalized inverse of a
singular Wishart matrix. However, its dispersion seems very hard to derive. Therefore, upper
and lower bounds of the dispersion are derived. Based on the bounds a general conclusion is
that the proposed estimator will work better when the number of repeated measurements is
much larger than the number of independent observations than when the number of repeated
measurements and the number of independent observations are of similar size.

Key words: Growth curve model; High-dimensional setting; Moore-Penrose generalized in-
verse.

AMS2020 Subject Classifications: 62H12, 62H99

1. Introduction

High-dimensional statistics (more variables than independent observations) has been
considered for many years and it is clear that many problems still are challenging to statistics.
Kollo et al. (2011) published an article where the classical Growth Curve model (Potthoff &
Roy, 1964) was treated and simulations indicated that the proposed ideas were reasonable.
One overall conclusion was that problems with the Growth Curve model is more likely to
occur when the number of variables is close to the number of independent observations but
that the approach of Kollo et al. (2011) works when there are many more variables (repeated
measurements) than independent observations. Unfortunately, the technical treatment was
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not completely correct since it was utilized that A(A>VA)+A> = V+ for any non-singular
matrix A, V is positive semi-definite and + denotes the Moore-Penrose generalized inverse
(for a definition of the inverse see e.g., Kollo and von Rosen, 2005; Definition 1.1.5). This
relation does however not hold unless A is an orthogonal matrix. In the paper by Kollo et
al. (2011) there was a need to calculate moments of expressions involving the Moore-Penrose
inverse of a singular Wishart matrix and this took place via the incorrect relation and
some invariance arguments. In this article upper and lower bounds of the above mentioned
moments will be derived which will support the overall conclusions in Kollo et al. (2011),
although an exact expression for the dispersion matrix of the mean estimator seems very
difficult to obtain.

Throughout the article bold upper cases will denote real matrices, X ∼ Np,n(0,Σ, In)
means that X of size p × n is matrix normally distributed with n independent columns
which are multivariate normally distributed with mean equal to 0 and dispersion Σ which
is supposed to be positive definite and In is the identity matrix of size n× n. Note that the
dispersion of X is given by D[X] = In ⊗Σ, where ⊗ denotes the Kronecker product. More-
over, V ∼ Wp(Σ, n) denotes that V is Wishart distributed with n degrees of freedom, which
holds if V can be factored as V = XX> (equality in distribution), where X ∼ Np,n(0,Σ, In)
and > denotes the transpose. The rank of a matrix A is denoted r(A).

2. Preparation

In this section three definitions and two useful lemmas are presented. Let A ≥ 0
(A > 0) denote that A is positive semi-definite (positive definite) and let A ≥ B mean that
A−B ≥ 0, where both A and B are supposed to be positive semi-definite.

Definition 1:

(i) (Löwner ordering) Let U and V be positive semi-definite matrices. If for all vectors α
of proper size α>Uα ≤ α>Vα then V ≥ U.

(ii) Let U and V be positive semi-definite matrices. If for all vectors α of proper size
α>E[U]α ≤ α>E[V]α then E[V] ≥ E[U].

(iii) If for all vectors α and β of proper size

(α⊗ β)>D[X](α⊗ β) ≤ (α⊗ β)>D[Y](α⊗ β)

then it is written D[X] � D[Y], i.e., D[β>Xα] ≤ D[β>Yα].

The first lemma is presenting a known result of an explicit expression of a Moore-
Penrose inverse of a singular Wishart matrix which can easily be verified via the four defining
conditions of the Moore-Penrose inverse.

Lemma 1: Let V ∼ Wp(Σ,m), p > m. Then

V+ = U(U>U)−1(U>U)−1U>,
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where V = UU> and U ∼ Np,m(0,Σ, Im).

Now a moment relation is presented which will be fundamental for the main results.

Lemma 2: Let Q: p× q, q < p, P: p× p be of full rank and V ∼ Wp(Ip, n), p < n. Then

E[(Q>V−1Q)−1Q>V−1PV−1Q(Q>V−1Q)−1

= (Q>Q)−1Q>PQ(Q>Q)−1 + c1tr{P(I−Q(Q>Q)−1Q>)}(Q>Q)−1,

where c1 = (n− (p− q)− 1)−1. Proof: Factor Q as Q> = H(Iq : 0)Γ, where H: q × q is a
non-singular matrix and Γ: p× p is an orthogonal matrix. Then,

(Q>V−1Q)−1Q>V−1PV−1Q(Q>V−1Q)−1

= (H>)−1((Iq : 0)ΓV−1Γ>(Iq : 0)>)−1(Iq : 0)ΓV−1PV−1Γ>(Iq : 0)>

×((Iq : 0)ΓV−1Γ>(Iq : 0)>)−1H−1. (1)

Moreover, ΓV−1Γ> = (ΓVΓ>)−1 follows the same distribution as V−1. Thus, the right hand
side of (1) follows the same distribution as

(H>)−1(V11)−1(V11 : V12)ΓPΓ>(V11 : V12)>(V11)−1H−1 (2)

where V11 and V12 are defined via

V−1 =
(

V11 V12

V21 V22

)
,

q × q q × (p− q)
(p− q)× q (p− q)× (p− q)

and similarly V12 and V22 are defined through

V =
(

V11 V12
V21 V22

)
,

q × q q × (p− q)
(p− q)× q (p− q)× (p− q) .

The submatrices satisfy (see e.g. Kollo and von Rosen, 2005; Proposition 1.3.4 (i)) (V11)−1V12 =
−V12V−1

22 . Let Γ1 and Γ2 be defined through Γ> = (Γ>1 : Γ>2 ): (p× q : p× (p− q)) and note
that Γ1Γ>1 = Iq. Then (2) equals

(H>)−1(Γ1 −V12V−1
22 Γ2)P(Γ>1 − Γ>2 V−1

22 V12)H−1

= (H>)−1(Γ1PΓ>1 −V12V−1
22 Γ2PΓ>1 − Γ1PΓ>2 V−1

22 V21

+V12V−1
22 Γ2PΓ>2 V−1

22 V21)H−1. (3)

It will be utilized that V12V−1/2
22 ∼ Nq,p−q(0, Iq, Ip−q) which is independent of V22 (see e.g.,

Kollo and von Rosen, 2005; Theorem 2.4.12). The expectation of the expression in the right
hand side of (3) is to be derived. Since E[V12V−1

22 ] = 0 it follows from (3) that the next
expression should be calculated:

(H>)−1Γ1PΓ1H−1 + (H>)−1E[V12V−1
22 Γ2PΓ>2 V−1

22 V21]H−1. (4)

Moreover, applying an expectation result for quadratic forms in normally distributed vari-
ables (e.g., see Kollo and von Rosen, 2005, Theorem 2.2.9 (i)) implies that the expectation
in (4) equals

E[V12V−1
22 Γ2PΓ>2 V−1

22 V21] = E[tr{V−1
22 Γ2PΓ>2 }]Iq (5)
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which since V22 ∼ Wp−q(I, n) (see e.g., Kollo and von Rosen, 2005, Theorem 2.4.14 (iii))

E[V−1
22 ] = c1Ip−q, c1 = 1

n−(p−q)−1

and the right hand side of (5) is identical to c1E[tr{Γ2PΓ>2 }]Iq. In order to arrive to the
statements of the theorem Γ>2 Γ2, (HH>)−1 and Γ>1 H−1 have to be expressed in the original
matrices. From the definition of Γ and H it follows that

Q> = HΓ1, (HH>)−1 = (Q>Q)−1, Γ>1 H−1 = Q(Q>Q)−1

and

Γ>1 Γ1 = Q(Q>Q)−1Q>, Γ>2 Γ2 = I− Γ>1 Γ1 = I−Q(Q>Q)−1Q>.

These relations establish the lemma. Throughout the article let
λ1(A) ≥ λ2(A) ≥ · · · ≥ λn(A) be the ordered eigen values of a symmetric matrix A: n× n.

3. The Growth Curve Model When p > n

The classical Growth Curve model (Potthoff and Roy, 1964) has been applied in many
areas and is a natural extension of the MANOVA model. Therefore the model is also called
GMANOVA model. The model and generalizations of the model together with an almost
complete list of references can be found in von Rosen (2018).

Definitiion 2: Let X: p×n, p ≥ n− r(C), A: p× q, q ≤ p, B: q× k, C: k×n, and Σ > 0:
p× p. Then

X = ABC + E

defines the Growth Curve model, where E ∼ Np,n(0,Σ, I), A and C are known matrices,
and B and Σ are unknown parameter matrices.

Since p ≥ n − r(C) we assume a high-dimensional setting. The main purpose of this
article is to discuss a specific estimator of B. Note that the size of B, i.e., q × k, does not
depend on n and p, and that Σ is thought of being a nuisance parameter. For some details of
how to treat the Growth Curve model in a high-dimensional setting see Kollo et al. (2011).
Alternatively, we can suppose that Σ is known and then from linear models theory it follows
that under the assumption r(A) = q, r(C) = k which will be supposed to hold throughout
the article, an estimator of B equals

B̃ = (A>Σ−1A)−1A>Σ−1XC>(CC>)−1.

However, Σ−1 has to be estimated. One can use the sums of squares matrix S = X(I −
C>(CC>)−1C)X> as an estimator of nΣ but if p > n− r(C) the inverse S−1 does not exist
and cannot be used to estimate Σ−1. Therefore, instead of S−1 the Moore-Penrose inverse
S+ can be used and then the same estimator as in Kollo et al. (2011) is obtained:

B̂ = (A>S+A)−1A>S+XC>(CC>)−1, (6)
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where it has to be assumed that the column vector space relation C(A) ∩ C(S) = {0} is
satisfied which implies that (A>S+A)−1 holds.

4. E[B̂] and Bounds For D[B̂]

In order to derive the expectation and bounds for the dispersion for B̂ in (6) it will be
utilized that XC> and S are independently distributed.

Theorem 1: Let B̂ be defined in (6). Then E[B̂] = B.

Proof:
E[B̂] = E[(A>S+A)−1A>S+]E[XC>(CC>)−1] = E[(A>S+A)−1A>S+AB] = B.

Turning to a discussion of the dispersion matrix for B̂ it follows that the dispersion
matrix for B̂ in (6) can be presented as
D[B̂] = E[vec(B̂−B)vec>(B̂−B)]

= E[((CC>)−1C⊗ (A>S+A)−1A>S+)D[X](C>(CC>)−1 ⊗ S+A(A>S+A)−1)]
= (CC>)−1 ⊗ E[(A>S+A)−1A>S+ΣS+A(A>S+A)−1]. (7)

From Lemma 1 it follows that the expectation in (7) is complicated to express. We will show
some calculations but the aim will be to find upper and lower bounds for the expectation
similarly to the approach for obtaining bounds for the expectation and dispersion of the
Moore-Penrose inverse of a singular Wishart matrix (see Imori and von Rosen, 2020).

When deriving the bounds a number of transformations will take place: S = UU>,
where U ∼ Np,n−r(C)(0,Σ, In−r(C)), Y = Σ−1/2U, where Σ−1/2 is a symmetric square root;
Y> = TL where T: (n−r(C))×(n−r(C)) is a lower triangular matrix and L: (n−r(C))×p
is a semi-orthogonal matrix, i.e. LL> = In−r(C); V = T>T. Firstly it is noted that the
expectation in (7) can be expressed as (see Lemma 1 )

E[(A>S+A)−1A>S+ΣS+A(A>S+A)−1]
= E[(A>U(U>U)−1(U>U)−1U>A)−1A>U(U>U)−1(U>U)−1U>Σ
×U(U>U)−1(U>U)−1U>A(A>U(U>U)−1(U>U)−1U>A)−1].

Now the first transformation is applied to this relation and it yields
E[(A>Σ1/2Y(Y>ΣY)−1(Y>ΣY)−1Y>Σ1/2A)−1

×A>Σ1/2Y(Y>ΣY)−1(Y>ΣY)−1Y>Σ
×ΣY(Y>ΣY)−1(Y>ΣY)−1Y>Σ1/2A
×(A>Σ1/2Y(Y>ΣY)−1(Y>ΣY)−1Y>Σ1/2A)−1].

Moreover, the second transformation implies that one should consider
E[(A>Σ1/2L>(LΣL>)−1T−1(T>)−1(LΣL>)−1LΣ1/2A)−1

×A>Σ1/2L>(LΣL>)−1T−1(T>)−1(LΣL>)−1LΣ
×ΣL>(LΣL>)−1T−1(T>)−1(LΣL>)−1LΣ1/2A
×(A>Σ1/2L>(LΣL>)−1T−1(T>)−1(LΣL>)−1LΣ1/2A)−1]
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and then the third transformation implies an expression which will be studied in detail:

E[(A>Σ1/2L>(LΣL>)−1V−1(LΣL>)−1LΣ1/2A)−1

×A>Σ1/2L>(LΣL>)−1V−1(LΣL>)−1LΣ
×ΣL>(LΣL>)−1V−1(LΣL>)−1LΣ1/2A
×(A>Σ1/2L>(LΣL>)−1V−1(LΣL>)−1LΣ1/2A)−1], (8)

where it can be shown that V ∼ Wn−r(C)(In−r(C), p) which for example follows from the
derivation of the Wishart density in Srivastava and Khatri (1979; Theorem 3.2.1) or Imori
and von Rosen (2020; Section 3.1). Put

Q = (LΣL>)−1LΣ1/2A, (9)
P = (LΣL>)−1LΣΣL>(LΣL>)−1. (10)

Then (8) is identical to

E[(Q>V−1Q)−1Q>V−1PV−1Q(Q>V−1Q)−1]

which, since V ∼ Wn−r(C)(In−r(C), p), according to Lemma 2

E[(Q>Q)−1Q>PQ(Q>Q)−1] + c1E[tr{P(I−Q(Q>Q)−1Q>)}(Q>Q)−1], (11)

where c−1
1 = p − (n − r(C) − q) − 1 and the expectation in (11) is taken over the semi-

orthogonal matrix L. Note that it has to be assumed that c1 > 0, i.e., p > n− r(C)− q + 1
but later we need that p ≥ n− r(C)) . However, it is difficult to perform the integration in
(11) and therefore we first focus on finding upper and lower bounds of

(Q>Q)−1Q>PQ(Q>Q)−1, tr{P(I−Q(Q>Q)−1Q>)}

which are either functionally independent of L or are so simplified that only E[(Q>Q)−1]
has to be derived.

Lemma 3: Let P be given by (10). Then

λp(Σ)λp(Σ−1)In−r(C) ≤ P ≤ λ1(Σ)λ1(Σ−1)In−r(C).

Proof: The proof is based on a spectral decomposition of Σ which yields λp(Σ)Ip ≤
Σ ≤ λ1(Σ)Ip. Note that λp(Σ)Σ ≤ ΣΣ ≤ λ1(Σ)Σ and therefore λ1(LΣL>) ≤ λ1(Σ),
λn(LΣL>) ≥ λp(Σ) which jointly establish the lemma. Applying Lemma 3 yields that
upper and lower bounds for (11) are given by

λp(Σ)λp(Σ−1)(1 + c1(n− r(C)− q))E[(QQ>)−1]
≤ E[(Q>Q)−1Q>PQ(Q>Q)−1] + c1E[tr{P(I−Q(Q>Q)−1Q>)}(Q>Q)−1]
≤ λ1(Σ)λ1(Σ−1)(1 + c1(n− r(C)− q))E[(QQ>)−1]. (12)

Note that 1 + c1(n − r(C) − q) = (p − 1)/(n − r(C) − q). Moreover, (12) implies that we
now need to find bounds for E[(QQ>)−1].
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Lemma 4: Let Q be defined in (9). Then

λp(ΣΣ)(A>Σ1/2L>LΣ1/2A)−1 ≤ (Q>Q)−1

≤ λ1(ΣΣ)(A>Σ1/2L>LΣ1/2A)−1.

Proof: It is enough to show upper and lower limits for (LΣL>)−1(LΣL>)−1 which should be
independent of L and proportional to In−r(C). By pre- and post-multiplying by A>Σ1/2L>
and then taking the inverse establish the lemma. Now

λn((LΣL>)−1(LΣL>)−1) = (λ1(LΣL>))−2 ≥ (λ1(ΣΣ))−1

and

λ1((LΣL>)−1(LΣL>)−1) = (λn(LΣL>))−2 ≤ (λp(ΣΣ))−1

which yield the inequalities of the lemma. From Lemma 4 it follows that we need to
calculate E[(A>Σ1/2L>LΣ1/2A)−1], where LL> = In−r(C). The result is stated in the next
lemma.

Lemma 5: Let all matrices be as in Lemma 4. Then, if p ≥ n− r(C) > q − 1,

E[(A>Σ1/2L>LΣ1/2A)−1] = p− q − 1
n− r(C)− q − 1(A>ΣA)−1.

Proof: The same transformations as when deriving (8) will now be applied. Let Y ∼
Np,n−r(C)(0, Ip, In−r(C)), p ≥ n − r(C). Then A>Σ1/2YY>Σ1/2A ∼ Wq(A>ΣA, n − r(C))
and (expectation of an inverse Wishart matrix is applied; e.g., see Kollo and von Rosen,
2005, Theorem 2.4.14 (iii))

E[(A>Σ1/2YY>Σ1/2A)−1] = 1
n− r(C)− q − 1(A>ΣA)−1. (13)

Next the variable substitution Y> = TL is made, where T: (n−r(C))× (n−r(C)), is lower
triangular with positive diagonal elements and L is semi-orthogonal, i.e., LL> = In−r(C). The
matrices T and L are independently distributed. Moreover, V = T>T ∼ Wn−r(C)(In−r(C), p)
and given L

A>Σ1/2L>VLΣ1/2A ∼ Wq(A>Σ1/2L>LΣ1/2A, p).

Thus,

E[(A>Σ1/2YY>Σ1/2A)−1] = E[(A>Σ1/2L>T>TLΣ1/2A)−1]

= E[(A>Σ1/2L>VLΣ1/2A)−1] = 1
p− q − 1E[(A>Σ1/2L>LΣ1/2A)−1]

and combining this result with (13) establishes the lemma From Lemma 3 and Lemma
5 it follows that

λp(Σ)λp(Σ−1)λp(ΣΣ)(1 + c1(n− r(C)− q) p−q−1
n−r(C)−q−1)(A>ΣA)−1

≤ E[(A>S+A)−1A>S+ΣS+A(A>S+A)−1]
≤ λ1(Σ)λ1(Σ−1)λ1(ΣΣ)(1 + c1(n− r(C)− q) p−q−1

n−r(C)−q−1)(A>ΣA)−1.

(14)
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Now all preparations are finished and the main result can immediately be presented:

Theorem 2: Let B̂ be defined in (6) and assume p ≥ n − r(C) > q − 1. Then, (� was
introduced in Definition 1 (iii))

(i) D[B̂] � (CC>)−1 ⊗ λp(Σ)3λp(Σ−1) p−1
p−(n−r(C)−q)−1

p−q−1
n−r(C)−q−1(A>ΣA)−1;

(ii) D[B̂] � (CC>)−1 ⊗ λ1(Σ)3λ1(Σ−1) p−1
p−(n−r(C)−q)−1

p−q−1
n−r(C)−q−1(A>ΣA)−1.

Remark 1: If p−1 is close to n−r(C)−q or n−r(C) is close to q−1 the dispersion for B̂
becomes large because the lower bound becomes large. In this case an alternative estimator
for B should be used, e.g., the ”unweighted” estimator (A>A)−1A>XC>(CC>)−1.

If all eigen values of Σ are equal, e.g., Σ = I, the lower and upper bound of Theorem
2 are equal, i.e.,

D[B̂] = λ1(Σ) p−1
p−(n−r(C)−q)−1

p−q−1
n−r(C)−q−1(CC>)−1 ⊗ (A>A)−1

which however is larger than the variance for the unweighted estimator, as it should be
according to least squares theory.

5. Simulation Study

In this section a small simulation study is conducted to illustrate Theorem 1. In
Remark 1 it was noted that when p is close to n both the upper and lower bounds, for given
(CC>)−1 ⊗ (A>ΣA)−1, depend on

λ•(Σ)3λ•(Σ−1) p−1
p−(n−r(C)−q)−1

p−q−1
n−r(C)−q−1 , p ≥ n− r(C),

where λ•(Σ) denotes either λ1(Σ) or λp(Σ) and the same holds for λ•(Σ−1). If p = n− r(C)
this expression reduces to

λ•(Σ)3λ•(Σ−1)p−1
q−1 . (15)

Thus, if the largest and smallest eigenvalues of Σ are stable with respect to p (15) increases
linearly with p but at the same time (A>ΣA)−1 becomes ”smaller”. Note also that (CC>)−1

becomes ”smaller” when n increases.

Instead of studying Theorem 1 we will study (14) since (CC>)−1 is of no interest. In
the simulations the following matrices are used: A = (a1, a2, a3), where

a1 = 1p, a>2 = 0.7 · (1, 2, . . . , p), a>3 = 0.01 · (1, 4, . . . , p2)

and

C =
(

1>20 0
0 1>20

)
, B =

1 2
3 7
2 2

 .
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Table 1: The table summarizes the conducted simulation study: (EST)ii, i ∈
{1, 2, 3} is the ith diagonal element of EST defined in (16), (LB)ii and (UB)ii, i ∈
{1, 2, 3}, are the ith diagonal element of the lower and upper bounds respectively
defined in (18) and (19). Moreover, p is the number of repeated measurements
and the data has been generated according to the description in Section 5. In
particular n = 40, q = 3 and r(C) = 2.

p (LB)11 (EST)11 (UB)11 (LB)22 (EST)22 (UB)22 (LB)33 (EST)33 (UB)33

38 5.1 11.8 26.3 0.14 0.36 0.7 1.8 4.3 9.4

39 3.6 8.2 18.8 0.10 0.22 0.50 1.1 2.7 5.9

40 2.8 6.5 14.5 0.073 0.16 0.37 0.84 1.8 4.3

50 0.95 2.3 5.2 0.016 0.040 0.085 0.11 0.29 0.62

60 0.66 1.7 3.6 0.0077 0.020 0.042 0.040 0.10 0.22

80 0.49 1.2 2.7 0.0032 0.0080 0.017 0.0093 0.023 0.051

100 0.44 1.1 2.4 0.0018 0.0045 0.010 0.0034 0.0085 0.019

150 0.35 0.88 2.0 0.00069 0.0017 0.0039 0.00058 0.0014 0.0033

200 0.33 0.84 1.8 0.00035 0.00091 0.0020 0.00016 0.00043 0.00094

Concerning Σ we randomly generated eigenvectors Γ via another covariance matrix and also
randomly generated eigenvalues {λk} uniformly on the interval [2, 3.1]. The eigenvalues build
up a diagonal matrix D = (λk) and then the Σ which has been used in the simulations equals
Σ = ΓDΓ>. Note that in the simulations n = 40, r(C) = 2 and q = 3. The simulations
were carried out for p ∈ {38, 39, 40, 50, 60, 80, 100, 150, 200}. According to Theorem 1 we
have to assume that p ≥ 38 and it can be shown that the theorem is not true for p = 37 and
if p < 37 our bounds do not even exist. In (14) we have

E[(A>S+A)−1A>S+ΣS+A(A>S+A)−1] (16)

which has to be estimated. The simulation data is generated according to the model Xi ∼
Np,n(ABC,Σ, In), i = 1, 2, . . . , 500, i.e., there are 500 replicates performed in the simulation
study. Let S+

i denote the S+ from the ith simulation and we have

EST = 1
n

n∑
i=1

E[(A>S+
i A)−1A>S+

i ΣS+
i A(A>S+

i A)−1] (17)

as an unbiased estimator of the expectation in (16). The results of the simulation study are
presented in Table 1. In our case EST is of size 3 × 3. Moreover, we calculated the lower
bound, LB, and the upper bound, UB, as

LB = λ3
p(Σ)λp(Σ−1) p− 1

p− 34
p− 4

35 (A>ΣA)−1, (18)

UB = λ3
1(Σ)λ1(Σ−1) p− 1

p− 34
p− 4

35 (A>ΣA)−1 (19)

which according to the theory should give upper and lower bounds of the expectation in
(16). In Table 1 the diagonal elements of EST, LB and UB are presented. The results
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follow the theory, i.e., (LB)ii < (EST)ii < (UB)ii, i ∈ {1, 2, 3}. Moreover, when p increases
(EST)ii becomes smaller and the difference (UB)ii − (LB)ii is largest when p = 38. Thus,
the results of Theorem 1 are in full agreement with the simulation study.
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Abstract
The selection of priors in the presence of nuisance parameters is an important topic in

Bayesian statistics. Bernardo (1979) proposed a stepwise procedure for handling nuisance
parameters. He obtained the prior by maximizing the expected Kullback-Leibler divergence
between the prior of parameters of interest and the corresponding posterior. His procedure
turns out to be very efficient and has been applied to many examples. In this paper, we
consider selection of priors in the presence of nuisance parameters under a general divergence
criterion, originally introduced by Renyi (1961), later followed by a host of researchers, most
notably by Amari (1982) and Cressie and Read (1984). This general divergence measure
includes the Kullback-Leibler, Bhattacharyya-Hellinger and Chi-square divergence. It turns
out that Bernardo’s prior maximizes this divergence in the interior of this class of divergence
measures. On the boundary, the Chi-square divergence, the prior turns out to be different
from Bernardo’s prior for some common families of distributions. Also, outside the boundary,
Bernardo’s prior turns out to be the minimizer rather than maximizer of the divergence, and
there does not exist any prior which maximizes the divergence between the prior and the
posterior.

Key words: General divergence; Nuisance parameters; Optimal prior; Characterisation of
optimal priors.

1. Introduction

The most important component in Bayesian statistics is the prior for the unknown
parameters. The selection of prior has always been a popular topic since the birth of Bayesian
statistics.

Ideally, if one has enough historical data, it is possible to elicit an appropriate prior
which reflects one’s belief about unknown parameters. This is a subjective prior. But
the choice of subjective priors is difficult, especially when there is not enough historical
information available. In practice, it is common to use the so-called ‘objective’ priors which
are also referred to as ‘non-informative priors’ or ‘default priors’. Those priors are determined
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by some objective or structural criterion. For decades, many statisticians worked on this
topic. Consequently, numerous criteria for selecting objective priors have been proposed.

One major criterion was proposed by Bernardo (1979). There are two innovations in
his paper. First, he introduced the notion of missing information. He used the expected
Kullback-Leibler divergence as the measure of the missing information provided by the data
and then found the prior which maximizes this divergence. In the absence of nuisance param-
eters, he found that the desired prior is Jeffreys’ general rule prior (Jeffreys 1961) which is
proportional to the square root of the determinant of the Fisher information matrix. Second,
he used a stepwise procedure to find the prior in the presence of nuisance parameters. His
procedure is as follows. First, he assigns a conditional density of nuisance parameters given
parameters of interest. Then he obtains the prior for parameters of interest by maximizing
the expected Kullback-Leibler divergence between the prior for parameters of interest and
the corresponding posterior.

In many cases, Bernardo’s procedure produced priors different from Jeffreys’ general
rule prior. It turns out that his stepwise procedure often yields more reasonable priors
than Jeffreys’ general rule prior. One good example to show the advantage of Bernardo’s
stepwise procedure is the Neyman-Scott problem (1948) considered by Berger and Bernardo
(1992b), Datta and Ghosh (1995a). The data consist of n pairs of observations: Xij ∼
N(µi, σ2), i = 1, · · · , n, j = 1, 2. Consider all the parameters to be of equal importance.
Then, one gets Jeffreys’ general rule prior π(µ1, · · · , µn, σ2) ∝ (σ2)−n/2−1. So the posterior
mean is s2/(2n − 2), where s2 = ∑n

i=1
∑2
j=1(xij − x̄i)2 and x̄i = (xi1 + xi2)/2. This is an

inconsistent estimator of σ2. On the contrary, by treating σ as the parameter of interest,
using Bernardo’s procedure, one gets the prior π(µ1, · · · , µn, σ2) ∝ σ−2. This gives a posterior
mean of s2/(n− 2) which is consistent.

Bernardo’s procedure has been applied to many examples. For example, exponential
regression (Ye and Berger 1991), multinomial models (Berger and Bernardo 1992a) and
AR(1) models (Berger and Yang 1994).

In both cases, with or without nuisance parameters, Bernardo used the expected
Kullback-Leibler divergence to develop priors. One may ask questions like: What will hap-
pen if we use another divergence? Will we get the same priors as Berdardo did? If not, what
do the new priors look like?

Instead of the Kullback-Leibler divergence, Clarke and Sun (1997) considered the ex-
pected Chi-square divergence motivated by the classical Chi-square goodness-of-fit statistic.
They showed that, for the one-parameter exponential family of distributions with the canon-
ical parameter, maximization of the Chi-square divergence led to a prior different from
Jeffreys’ prior. For multi-parameter exponential family of distributions, they conjectured
that the prior should also be of the same form as they got in one-parameter case. For the
case where nuisance parameters are present, they gave brief discussion and left it as an open
question.

Recently, for regular one-parameter family of distributions, Ghosh, Mergel and Liu
(2011) considered a general divergence between prior and posterior which has been considered
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in other contexts by several authors (for example, Renyi, 1961; Amari, 1982; Cressie and
Read, 1984). It is a family of divergence measures including the Kullback-Leibler divergence,
the Bhattacharyya-Hellinger divergence (Bhattacharyya, 1943; Hellinger, 1909), and the Chi-
square divergence. They showed that Jeffreys’ general prior is the desired prior under each
divergence measure that is in the interior in this class of divergence measures. On the
boundary, namely for the Chi-square divergence, the prior turns out to be different from
Jefferys’ prior for some common families of distributions but still maintains the invariance
property. Also, outside the boundary, Jeffreys’ prior turns out to be the minimizer rather
than maximizer of the divergence, and there does not exist any prior which maximizes the
distance between the posterior and the prior. A more comprehensive set of results were later
obtained by Liu, Chakrabarty, Samanta, Ghosh and Ghosh (2014) for one parameter family
of distributions.

In this paper, we consider prior selection in the presence of nuisance parameters under
the general divergence used by Ghosh, Mergel and Liu (2011). This is a generalization of
previous work of Bernardo (1979). We characterize optimal priors for every member in
this family of divergence measures by using the two-step procedure proposed by Bernardo
(1979). Explicit expressions for the optimal priors under every divergence measure (except
for the Chi-square divergence) are given. Specifically, for the Kullback-Leibler divergence, we
get the same prior as found by Bernardo (1979). Under the Chi-square divergence, we have
shown that the objective prior should be the solution to a set of partial differential equations.
We also consider a special case when the parameter of interest is one dimensional. In this
case, a closed form expression for the optimal prior is provided also under the Chi-square
divergence.

The outline of the remaining sections is as follows. In Section 2 of this paper, we have
provided a general scheme of deriving the asymptotic expansion of the expected general
divergence. Section 3 is devoted to the derivation of optimal prior in the interior of the
divergence class and non-existence of optimal priors outside the boundary of this class.
Section 4 provides a characterization of optimal priors under the Chi-square divergence class
followed by some examples. Some remarks are made in Section 5. The proof of the main
result in Section 4 is deferred to the Appendix.

2. Derivation of Priors

Let Xn = (X1, . . . , Xn), where the Xi are independent and identically distributed with
common pdf f(x |θ). Parameter vector θ can be partitioned as,

θT = (θ1, · · · , θd1 , θd1+1, · · · , θd) = (θT1 ,θT2 ) ∈ Rd,

where θ1 are d1−dimensional nuisance parameters and θ2 are d2−dimensional parameters of
interest. Here, we assume the parameter space is a compact set in Rd and consider a prior
p(θ2) which puts all its mass on a compact set in Rd2 . One passes on to the limit eventually
in many of the actual examples considered in the literature.

We apply the following two step procedure proposed by Bernardo (1979) to find the
divergence priors for the parameters of interest.
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First, for fixed θ2, one assigns a conditional density π(θ1|θ2) to the nuisance parameters
θ1.

Second, let p(θ2) denote the marginal density function of θ2. Then the divergence
prior p(θ2) for the parameter of interest θ2 is chosen by maximizing the asymptotic expected
general divergence Rβ(p(θ2)) between the prior p(θ2) and the corresponding posterior, that
is

Rβ(p(θ2)) =
1−

∫ [∫
pβ(θ2)p1−β(θ2|xn) dθ2

]
m(xn)µ(dxn)

β(1− β) ,

where µ(dxn) is a dominating measure and m(xn) is the marginal density of xn

Note 1. The expected general divergence criterion as introduced by Renyi (1961), Amari
(1982) and Cressie and Read (1984) is a family of divergences with index parameter β.
When β = 1/2, this is the Bhattacharyya-Hellinger distance, and β = −1 amounts to the
Chi-square distance. For β = 0 or 1, we need to interpret Rβ(p(θ)) as its limiting value
(when it exists). In particular,

R0(p(θ)) =
∫∫ {

log p(θ |xn)
p(θ)

}
p(θ |xn)m(xn) dθµ(dxn), (1)

which is the KL divergence between the prior and the posterior considered in Bernardo
(1979).

Note 2. In Step 1, for π(θ1|θ2), Bernardo recommends using the conditional Jeffreys’ general
rule prior which is proportional to

√
|I11(θ)|, where I11(θ) is the part of Fisher information

matrix I(θ) corresponding to the nuisance parametes.

Note 3. In Step 2, with the choice of π(θ1|θ2), we first find an asymptotic expansion of
Rβ(p(θ2)) and then obtain the priors by maximizing that expansion.

Derivation of divergence priors in the presence of nuisance parameters is complicated.
First, we give a general scheme of deriving the asymptotic expansion of the expected general
divergence. Then, in Sections (3) and (4), by using the asymptotic expansion with different
order of the remainder terms, we consider the prior selection for two cases when β 6= −1 and
β = −1 separately.

By the relation fn(xn|θ2)p(θ2) = p(θ2|xn)m(xn), one can rewrite Rβ(p(θ2)) as

Rβ(p(θ2)) = 1−
∫∫
pβ+1(θ2)p−β(θ2 |xn)fn(xn|θ2)µ(dxn) dθ2

β(1− β)

=
1−

∫
pβ+1(θ2)E

[
p−β(θ2 |Xn)

∣∣∣θ2
]
dθ2

β(1− β) , (2)

where fn(xn|θ2) is the joint density function of xn = (x1, · · · , xn) given θ2.

By using the shrinkage argument proposed by Ghosh (1994), one can find the asymp-
totic expansion to E

[
p−β(θ2 |Xn)

∣∣∣θ2
]

and then find the asymptotic expansion to Rβ(p(θ2)).
The shrinkage argument is discussed in details in Datta and Mukerjee (2004).
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Here is the general scheme of deriving the asymptotic expansion:

• Step 0: Given the choice of π(θ1|θ2), for prior p(θ2), find posterior density p(θ2|xn) of
θ2 given xn:

p(θ2|xn) =
∫
θ1
π(θ|xn)dθ1,

where π(θ|xn) ∝ p(θ2)π(θ1|θ2)∏n
i=1 f(xi|θ).

• Step 1: Consider a proper prior density p̄(θ2), such that the support of p̄(θ2) is a compact
rectangle in the parameter space and p̄(θ2) vanishes on the boundary of the support while
remaining positive in the interior. Consider the posterior density of θ2 under p̄(θ2), and
obtain

G(xn) =
∫
p−β(θ2|xn)p̄(θ2|xn)dθ2.

• Step 2: For θ2 in the interior of the support of p̄(θ2), compute λ(θ2) defined as

λ(θ2) =
∫
G(xn)fn(xn|θ2)dxn

=
∫
G(xn)

[∫ n∏
i=1

f(xi|θ)π(θ1|θ2)dθ1

]
dxn

=
∫
λ0(θ)π(θ1|θ2)dθ1,

where λ0(θ) =
∫
G(xn)∏n

i=1 f(xi|θ)dxn.

• Step 3: Integrate λ(θ2) with respect to p̄(θ2) and then allow p̄(θ2) to converge weakly
to the degenerate prior at the true θ2, supposing that the true θ2 is an interior point of the
support of p̄(θ2). This yields E

[
p−β(θ2 |Xn)

∣∣∣θ2
]
.

By using the above procedure and equation (2), one can get an asymptotic approxi-
mation to Rβ(p(θ2)). Furthermore, the divergence priors are obtained by maximizing the
approximation.

In the next two sections, according to different values of β, we derive two approx-
imations to Rβ(p(θ2)) and call them the first order approximation and the second order
approximation respectively. For most of values of β, the derivation of divergence prior only
requires the first order approximation and it will be addressed in section (3). In section (4),
we will discuss the derivation of divergence prior when β = −1; that is the only case which
needs the second order approximation.

3. Divergence Priors for β 6= −1

In this section, we consider the prior selection for general expected divergence with
β 6= −1. To begin with, we derive the first order approximation to E

[
p−β(θ2 |Xn)

∣∣∣θ2
]
.

Then, in view of (2), we get the first order approximation to Rβ(p(θ2)). Finally, we discuss
the divergence priors according to different values of β such that β 6= −1.
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First, by assuming the same regularity conditions as in Johnson (1970) and Bhat-
tacharya and Ghosh (1978), one gets the following theorem which gives the first order ex-
pansion E

[
p−β(θ2 |Xn)

∣∣∣θ2
]
.

Theorem 1: For β < 1 and β 6= −1, E
[
p−β(θ2 |Xn)|θ2

]
can be expressed as:

E
[
p−β(θ2 |Xn)

∣∣∣θ2
]

= n−
d2β

2

 ∫ K(θ)π(θ1|θ2)dθ1 + o(n−1)
, (3)

where
K(θ) =

∣∣∣I22
∣∣∣β/2

(2π)d2β/2(1− β)−d2/2,

I−1(θ) =
(
I11 I12

I21 I22

)
.

Proof of Theorem 1:
The proof uses the shrinkage argument as mentioned before.

Let hT = (h1, · · · , hd1 , hd1+1, · · ·hd) = (hT1 ,hT2 ) =
√
n(θT1 − θ̂

T

1 ,θ
T
2 − θ̂

T

2 ), where
θ̂
T = (θ̂T1 , θ̂

T

2 ) is MLE of θ. For prior p(θ), from Datta and Mukerjee (1994), one gets
the corresponding posterior density

p(h|xn) =φd(h, C−1)
[
1 + n−

1
2

{
R1(h) + 1

6R3(h)
}]

+ o(n−1), (4)

where C is the observed Fisher information matrix, φd(h, C−1) is the d−variate normal
density with the null mean vector and dispersion matrix C−1,

R1(h) =
d∑
j=1

p̂jhj/p̂, R3(h) =
d∑
j=1

d∑
r=1

d∑
s=1

ajrshjhrhs,

ajrs = 1
n

d∑
u=1

∂ log f(Xu|θ)
∂θjθrθs

and p̂ = p(θ̂), p̂j = ∂p(θ)
∂θj

∣∣∣∣∣
θ=θ̂

.

Let Nd2(h2|µ,Σ) denote the density function of multivariate normal distribution with mean
vector µ and dispersion matrix Σ. Also, corresponding to the partition of the parameter
vector θT = (θT1 ,θT2 ), we partition the matrix C−1 as:

C−1 =
(
C11 C12

C21 C22

)
.

It is easy to establish the relation

φd(h, C−1) = Nd2(h2|0, C22)× fd1(θ1|θ2),

where fd1(θ1|θ2) = Nd1(h1|C12[C22]−1h2, C
11 − C12[C22]−1C21).
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In Step 0, for prior p(θ2), one gets

p(h2|xn) =Nd2(h2|0, C22)
[
1 + n−

1
2

{
L1(h2) + 1

6L3(h2)
}]

+ o(n−1), (5)

where
L1(h2) =

∫
R1(h)fd1(θ1|θ2)dθ1, L3(h2) =

∫
R3(h)fd1(θ1|θ2)dθ1.

Step 1. We find an asymptotic expansion for

G(xn) =
∫
p−β(θ2|xn)p̄(θ2|xn)dθ2.

With the general expansion
 1
b1 + b2√

n
+ b3

n
+ o(n−1)

β = b−β1

(
1− β b2

b1
√
n

+ β

n

(
β + 1

2
b2

2
b2

1
− b3

b1

))
+ o(n−1),

one gets

p−β(h|xn) = N−βd2 (h2|0, C22)
[
1− βn− 1

2

{
L1(h2) + 1

6L3(h2)
}]

+ o(n−1). (6)

Using (5) and (6), for any arbitrary thrice differentiable prior p̄(θ2) vanishing outside a
compact set, one gets

p−β(h2|xn)p̄(h2|xn) = N1−β
d2 (h2|0, C22)

[
1 + n−

1
2

{
L̄1(h2) + 1

6L3(h2)

− βL1(h2)− β

6L3(h2)
}]

+ o(n−1),
(7)

where
L̄1(h2) =

∫
R̄1(h)fd1(θ1|θ2)dθ1.

Here are some observations: (i) N1−β
d2 (h2|0, C22) = K(θ̂)×Nd2(h2|0, C

22

1−β ),
(ii) fd1(h1|h2)×Nd2(h2|0, C

22

1−β ) = Nd(h|0, Q), where

K(θ̂) = (2π)
d2β

2 |C22|
β
2 (1− β)−

d2
2 ,

Q = (qjr)d×d =
(
C11 + β

1−βC
12[C22]−1C21 C12/(1− β)

C21/(1− β) C22/(1− β)

)
.

With the above observations and the relation θ = h/
√
n+ θ̂, and noting that∫

L̄1(h2)dh2 =
∫
L1(h2)dh2 =

∫
L3(h2)dh2 = 0,
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one gets

G(xn) =
∫
p−β(θ2|xn)p̄(θ2|xn)dθ2

= n−
d2β

2

∫
p−β(h2|xn)p̄(h2|xn)dh2 = n−

d2β
2

[
K(θ̂) + oP (n−1)

] (8)

As shown above, G(xn) can be written as a function of θ̂. Also θ̂n − θ = op(n−1) (Pθ).
Therefore, by using Taylor expansion, one gets

λ0(θ) =
∫
G(xn)

n∏
i=1

f(xi|θ)dxn = n−
d2β

2

[
K(θ) + o(n−1)

]
, (9)

where K(θ) = (2π)
d2β

2 |I22|β2 (1− β)−
d2
2 . Moreover, at the end of Step 2, one gets

λ(θ2) =
∫
λ0(θ)π(θ1|θ2)dθ1

= n−
d2β

2

[ ∫
K(θ)π(θ1|θ2)dθ1 + o(n−1)

]
.

(10)

In Step 3, integrating λ(θ2) with respect to p̄(θ2) and allowing p̄(θ2) weakly converge to the
degenerate density of true θ2, we obtain the final asymptotic expansion for E

[
p−β(θ2 |Xn)

∣∣∣θ2
]

as

Eθ2

[
p−β(θ2 |Xn)

]
= n−

d2β
2

[ ∫
K(θ)π(θ1|θ2)dθ1 + o(n−1)

]

= n−
d2β

2

[
(2π)

d2β
2 (1− β)−

d2
2

∫
|I22|

β
2 π(θ1|θ2)dθ1 + o(n−1)

]
.

(11)

This proves the theorem.

When β < −1 and β 6= −1, we can obtain the divergence priors by maximizing the
first order approximation to the general expected divergence Rβ(p(θ2)). The approximation
is derived by neglecting the o(n−1) term in Theorem 1. That is:

Rβ(p(θ2)) ≈ 1
β(1− β)

1−
(2π
n

) d2β
2

(1− β)−
d2
2

∫ [
φ(θ2)
p(θ2)

]−β
p(θ2)dθ2

 , (12)

where

φ(θ2) =
[∫ ∣∣∣I22(θ)

∣∣∣β2 π(θ1|θ2)dθ1

]− 1
β

.

One may think that the divergence priors should be different as β takes on different
values. Amazingly, it turns out that, in most cases, one gets the same prior. Here are the
results for different values of β (β 6= −1).
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CASE I. First consider the case 0 < β < 1. Since then β(1− β) > 0, the problem of prior
selection reduces to minimization of

∫ [
φ(θ2)
p(θ2)

]−β
p(θ2)dθ2.

Noting that u−β is a convex function of u(> 0) when β(1 − β) > 0, by Jensen’s inequality,
one gets

∫ [
φ(θ2)
p(θ2)

]−β
p(θ2)dθ2

≥
{∫ [

φ(θ2)
p(θ2)

]
p(θ2)dθ2

}−β
=
{∫

φ(θ2)dθ2

}−β

with equality if and only if p(θ2) ∝ φ(θ2).

CASE II. Similarly, when −1 < β < 0, β(1 − β) < 0 and now the problem reduces to
maximization of ∫ [

φ(θ2)
p(θ2)

]−β
p(θ2)dθ2.

Noting that u−β is a concave function of u(> 0) when −1 < β < 0, again by Jensen’s
inequality, one gets

∫ [
φ(θ2)
p(θ2)

]−β
p(θ2)dθ2

≤
{∫ [

φ(θ2)
p(θ2)

]
p(θ2)dθ2

}−β
=
{∫

φ(θ2)dθ2

}−β

with equality if and only if p(θ2) ∝ φ(θ2) which is the same prior developed in the previous
case.

CASE III. When β −→ 0, using either Theorem 1 or alternatively from Bernardo, one gets
the first order approximation of the general expected divergence R0(p(θ2)) :

R0(p(θ2)) ≈ Kn +
∫
p(θ2) log φ(θ2)

p(θ2)dθ2,

where Kn is a constant depending on n. Then, from the property of the Kullback-Leibler
distance, R0(p(θ2)) is maximized up to first order of approximation by p(θ2) ∝ φ(θ2).

From the above three cases, we can easily draw the conclusion that when |β| < 1, the desired
divergence prior is proportional to φ(θ2).

CASE IV. Next for β < −1, writing β = −λ, one can rewrite the first order approximation
of the general divergence Rβ(p(θ2)) as :
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Rβ(p(θ2)) =

(
2π
n

)−d2λ/2
(1 + λ)−

d2
2
∫ (φ(θ2)

p(θ2)

)λ
p(θ2) dθ2 − 1

λ(1 + λ) , λ > 1. (13)

Hence it suffices to maximize

∫
{φ(θ2)/p(θ2)}λ p(θ2) dθ2

subject to
∫
p(θ2) dθ2 = 1. Again, by Jensen’s inequality,

∫
{φ(θ2)/p(θ2)}λ p(θ2) dθ2 ≥

[∫
{φ(θ2)/p(θ2)} p(θ2) dθ2

]λ
=
(∫

φ(θ2) dθ2

)−β

since λ > 1, equality holding if and only if

p(θ2) ∝ φ(θ2).

Thus in this case the prior p(θ2) ∝ φ(θ2) is the minimizer rather then the maximizer of
Rβ(p(θ2)). Also there is no maximizing prior in this case. In fact, one can use similar
argument in the previous section to show that

sup
p

∫
φ(θ2)λp1−λ(θ2)dθ2 = +∞

3. Divergence Priors for β = −1

It remains to consider the case β = −1, the Chi-square distance as considered in
Clarke and Sun (1997) for the one parameter exponential family and in Ghosh, Mergel and
Liu (2011) for the general one-parameter family of distributions. Here pβ+1(θ2) = 1 so that
the first order term appearing in Theorem 1 will not suffice in finding the prior p(θ2). We
can mimic Theorem 1 to get the second order expansion to E [p(θ2 |Xn)|θ2]. Here is the
new Theorem:
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Theorem 2: For β = −1, E [p(θ2 |Xn)|θ2] can be expressed as:

E [p(θ2 |Xn)|θ2] = n
d2
2

 ∫ K(θ)π(θ1|θ2)dθ1+

1
n

{
d∑

j=d1+1

d∑
r=1

[ ∫ (
qojr − 1

2I
jr
)
K(θ)πr(θ1|θ2)dθ1

]
pj(θ2)
p(θ2)

− 1
2

d∑
j=d1+1

d∑
r=1

∂

∂θr

( ∫
IjrK(θ)π(θ1|θ2)dθ1

)
pj(θ2)
p(θ2)

+ 1
6

∑
1≤j,r,s≤d

d∑
u=d1+1

[ ∫
Ajrs(qojrqosu + qojuqors + qojsqoru)K(θ)π(θ1|θ2)dθ1

]
pu(θ2)
p(θ2)

− 1
6

∑
1≤j,r,s≤d

d∑
u=d1+1

[ ∫
Ajrs(IjrIsu + IjuIrs + IjsIru)K(θ)π(θ1|θ2)dθ1

]
pu(θ2)
p(θ2)

+ 1
6

∑
1≤j,r,s≤d

d∑
u=d1+1

[ ∫
Ajrskjrsu(θ)K(θ)π(θ1|θ2)dθ1

]
pu(θ2)
p(θ2)

−
d∑

j=d1+1

d∑
r=d1+1

[ ∫ {
Ijr − qojr

2

}
K(θ)π(θ1|θ2)dθ1

]
pjr(θ2)
p(θ2)

+ 1
2

d∑
j=d1+1

d∑
r=d1+1

[ ∫
IjrK(θ)π(θ1|θ2)dθ1

]
pj(θ2)pr(θ2)

p2(θ2)

+ S(θ2)
}

+ o(n−1)
,

(14)

where

K(θ) =
∣∣∣I22

∣∣∣−1/2
(2π)−d2/22−d2/2, Ajrs = E

[
∂3 log f(X|θ)
∂θj∂θr∂θs

]

(qojr)d×d =
(
I11 − 1

2I
12[I22]−1I21 I12/2
I21/2 I22/2

)
,

Ijr is the jrth element of the Fisher information matrix, kjrsu(θ) involves p(θ2) and its
derivatives, but S(θ2) is only a function of θ2.

The proof of Theorem 2 is long and involved, and is omitted. The details are available
from the authors.

Since β = −1 so that β(1 − β) = −2, neglecting all terms which do not involve p(θ2)
or its derivatives and using the relation pjr(θ2)

p(θ2)
= ∂

∂θr

(
pj(θ2)
p(θ2)

)
+ pj(θ2)pr(θ2)

p2(θ2)
, it suffices to
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maximize up to the second order approximation,

R(−1)(p(θ2)) ≈ 1
2n

d2
2

∫  ∫ K(θ)π(θ1|θ2)dθ1+

1
n

{
d∑

j=d1+1

d∑
r=1

[ ∫ (
qojr − Ijr

2

)
K(θ)πr(θ1|θ2)dθ1

]
pj(θ2)
p(θ2)

− 1
2

d∑
j=d1+1

d∑
r=1

∂

∂θr

( ∫
IjrK(θ)π(θ1|θ2)dθ1

)
pj(θ2)
p(θ2)

+ 1
6

∑
1≤j,r,s≤d

d∑
u=d1+1

[ ∫
Ajrs(qojrqosu + qojuqors + qojsqoru)K(θ)π(θ1|θ2)dθ1

]
pu(θ2)
p(θ2)

− 1
6

∑
1≤j,r,s≤d

d∑
u=d1+1

[ ∫
Ajrs(IjrIsu + IjuIrs + IjsIru)K(θ)π(θ1|θ2)dθ1

]
pu(θ2)
p(θ2)

+ 1
6

∑
1≤j,r,s≤d

d∑
u=d1+1

[ ∫
Ajrskjrsu(θ)K(θ)π(θ1|θ2)dθ1

]
pu(θ2)
p(θ2)

+
d∑

j=d1+1

d∑
r=d1+1

[ ∫ {(qojr − Ijr)
2 − Ijr

2

}
K(θ)π(θ1|θ2)dθ1

]
∂pj(θ2)/p(θ2)

∂θr

+
d∑

j=d1+1

d∑
r=d1+1

[ ∫ {1
2(qojr − Ijr)

}
K(θ)π(θ1|θ2)dθ1

]
pj(θ2)pr(θ2)

p2(θ2)

}dθ2.

(15)

Let

y(θ2) = (yd1+1(θ2), · · · ,yd(θ2)) =
(
pd1+1(θ)
p(θ2) , · · · , pd(θ2)

p(θ2)

)

∇y(θ2) =
(
∂yd1+1(θ2)
∂θd1+1

, · · · ,
∂yd1+1(θ2)

∂θd
, · · · , ∂yd(θ2)

∂θd1+1
, · · · , ∂yd(θ2)

∂θd

)
.

Note that (15) can be expressed as

∫
F (θ2,y(θ2),∇y(θ2))dθ2, (16)

so we need find y(θ2) to maximize the above integral. From Giaquinta (1983), the maximizer
should satisfy the Euler-Lagrange equations:

∂F

∂yi(θ2) −
d∑

j=d1+1

∂

∂θj

(
∂F

∂(∂yi/∂θj)

)
= 0 i = d1 + 1, · · · , d. (17)
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Equivalently, the Euler-Lagrange equations are:
d∑

r=d1+1

[∫
I irK(θ)π(θ1|θ2)dθ1

]
pr(θ2)
p(θ2)

=− 1
2

∑
1≤j,r,s≤d

∫
Ajrsm

ojrIsiK(θ)π(θ1|θ2)dθ1

+ 1
2

d∑
r=d1+1

∂

∂θr

∫
I irK(θ)π(θ1|θ2)dθ1, i = d1 + 1, · · · , d.

(18)

Here
mojr =

{
nojr when j, r ∈ H1
Ijr other ,

where nojr is the jrth element of I12(I22)−1I21. H1 is the set of indexes of nuisance parameters.

By solving these partial differential equations, one gets the divergence priors. Usually, with
multi-dimensional parameters of interest, these equations are so complicated that it is im-
possible to give a general solution and sometimes, there is no solution to these equations.

In the following, we focus on a special case when the parameter of interest is one-dimensional.
In this case, instead of several partial differential equations, we only need to solve one
differential equation and easily get a general form of the divergence priors.

When the parameter of interest θ2 is one dimensional, that is θ2 = θd, then the Euler-
Lagrange equation becomes:[∫

(Idd) 1
2π(θ1|θd)dθ1

]
p′(θd)
p(θd)

=− 1
2

∑
1≤j,r,s≤d

∫
Ajrsm

ojrIsd(Idd)− 1
2π(θ1|θd)dθ1

+ 1
2
∂

∂θd

∫
(Idd) 1

2π(θ1|θd)dθ1.

(19)

By solving (19), one gets the divergence prior p(θd) which is proportional to

Q(θd)
1
2 × exp

[∫
−T (θd)dθd

]
, (20)

where

Q(θd) =
∫

(Idd) 1
2π(θ1|θd)dθ1, T (θd) =

1
2
∑

1≤j,r,s≤d
∫
Ajrsm

ojrIsd(Idd)− 1
2π(θ1|θd)dθ1∫

(Idd) 1
2π(θ1|θd)dθ1

. (21)

Here are several examples to illustrate how to find divergence priors for one dimensional
parameter of interest.
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Example 1: Consider general symmetric location-scale family of distributions with prob-
ability density function f(x|µ, σ) = 1

σ
p(x−µ

σ
) where p(x) = p(−x). Writing h(x) = log p(x)

and noting that h′(x) = −h′(−x), h′′(x) = h′′(−x) and h′′′(x) = −h′′′(−x), one gets

E

[
∂2 log f
∂µ2

∣∣∣∣∣µ, σ
]

= −σ−2
∫
h′′(x)p(x)dx, E

[
∂2 log f
∂µ∂σ

∣∣∣∣∣µ, σ
]

= 0,

E

[
∂2 log f
∂σ2

∣∣∣∣∣µ, σ
]

= −σ−2
[
1 + 2

∫
xh′(x)p(x)dx+

∫
x2h′′(x)p(x)dx

]
,

E

[
∂3 log f
∂µ3

∣∣∣∣∣µ, σ
]

= E

[
∂3 log f
∂µ∂σ2

∣∣∣∣∣µ, σ
]

= 0,

E

[
∂3 log f
∂µ2∂σ

∣∣∣∣∣µ, σ
]

= −σ−3
[
2
∫
h′′(x)p(x)dx+

∫
xh′′′(x)p(x)dx

]
and

E

[
∂3 log f
∂σ3

∣∣∣∣∣µ, σ
]

= −σ−3
[
2 + 6

∫
xh′(x)p(x)dx+ 6

∫
x2h′′(x)p(x)dx+

∫
x3h′′′(x)p(x)dx

]
.

• If µ is parameter of interest, from (20), the prior should have the following form:

p(µ) ∝
[∫

σπ(σ|µ)dσ
] 1

2
.

• If σ is parameter of interest, from (20), the prior should have the following form:

p(σ) ∝ σ
1
2 +

1+3
∫
xh′(x)p(x)dx+3

∫
x2h′′(x)p(x)dx+ 1

2
∫
x3h′′′(x)p(x)dx

1+2
∫
xh′(x)p(x)dx+

∫
x2h′′(x)p(x)dx .

As special case, recall that for the N(µ, σ2) distribution, h′(x) = −x, h′′(x) = −1 and
h′′′(x) = 0. Hence p(σ) ∝ σ3.

Example 2: Consider the proper dispersion model introduced by Jorgensen (1997). The
probability density function of this model is given by

f(x|µ, λ) = a(λ)c(x) exp[λt(x, µ)],

where µ and λ are two parameters. Now observe that

∂ log f
∂µ

= λ
∂t

∂µ
,

∂ log f
∂λ

= u(λ) + t(x, µ),

where u(λ) = a′(λ)/a(λ). Accordingly,

∂2 log f
∂µ2 = λ

∂2t

∂µ2 ,
∂2 log f
∂µ∂λ

= ∂t

∂µ
,
∂2 log f
∂λ2 = u′(λ).
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Since E
(
∂t
∂µ
|µ, λ

)
= 0, the Fisher information matrix is

I(µ, λ) = Diag [Iµµ(µ, λ),−u′(λ)],

where Iµµ(µ, λ) = −λE
[
∂2t
∂µ2 |µ, λ

]
. Thus µ and λ are orthogonal in the sense of Cox and

Reid (1987). Further, ∂3 log f
∂µ3 = λ ∂3t

∂µ3 ,
∂3 log f
∂µ2∂λ

= ∂2t
∂µ2 ,

∂3 log f
∂µ∂λ2 = 0, ∂3 log f

∂λ3 = u′′(λ).

• When µ is the parameter of interest, it is easy to get that Idd = I−1
µµ (µ, λ), Addd =

E
[
∂3 log f
∂µ3 |µ, λ

]
= λE

[
∂3t
∂µ3 |µ, λ

]
and all the mjr = 0 except mdd = Idd. Hence, by using (21),

one gets

Q(µ) =
∫
I−1/2
µµ (µ, λ)π(λ|µ)dλ, T (µ) =

∫
λE

[
∂3t
∂µ3 |µ, λ

]
I−3/2
µµ (µ, λ)

2Q(µ) (22)

Then, by using (20), we can get the prior for µ.

• When λ is the parameter of interest, one gets that Idd = − 1
u′(λ) , Addd = E

[
∂3 log f
∂λ3 |µ, λ

]
=

u′′(λ) and all the mjr = 0 except mdd = Idd. By using (21), it is easy to check that

Q(λ) =
(
− 1
u′(λ)

)1/2

, T (λ) = − u
′′(λ)

2u′(λ) . (23)

Therefore, the prior for λ is proportional to(
− 1
u′(λ)

)1/4

× exp
[∫ u′′(λ)

2u′(λ)dλ
]

= (−u′(λ))1/4 (24)

Now, we consider several special cases of the above general result.

Example 3: Consider the two-parameter Gamma probability density function

f(x|µ, λ) = exp
(
−λ
µ
x

)
λλxλ−1

µλ
1

Γ(λ) .

Here,

a(λ) = λλ

Γ(λ) , t(x, µ) = −x
µ

+ log x
µ
.

• When µ is the parameter of interest, it is easy to get that

Iµµ = −λE
[
∂2t

∂µ2 |µ, λ
]

= − 1
µ2 , E

[
∂3t

∂µ3 |µ, λ
]

= 4
µ3 .

Then, by using (22), one gets

Q(µ) = µ
∫
λ−

1
2π(λ|µ)dλ, T (µ) = 2

µ
.



60 RUITAO LIU AND MALAY GHOSH [Vol. 18, No. 2

Therefore, from (20), the prior should have the following form:

p(µ) ∝ µ−
3
2

[∫
λ−

1
2π(λ|µ)dλ

]1/2
.

When π(λ|µ) is independent of µ (for example, conditional Jeffreys’ general rule prior sug-
gested by Bernardo), the divergence prior for µ is proportional to µ− 3

2 .

• When λ is the parameter of interest, one gets that u(λ) = 1 + log λ− d
dλ

log Γ(λ). Then,
from (24), the prior should have the following form:

p(λ) ∝ [−u′(λ)] 1
4 .

Example 4: Consider the Inverse Gaussian distribution with probability density function

f(x|µ, λ) =
(

λ

2πx3

) 1
2

exp
[
−λ(x− µ)2

2µ2x

]
.

Here,

a(λ) = λ1/2, t(x, µ) = −(x− µ)2

2µ2x
.

• When µ is the parameter of interest, it is easy to get that

Iµµ = −λE
[
∂2t

∂µ2 |µ, λ
]

= λ

µ3 , E

[
∂3t

∂µ3 |µ, λ
]

= 6
µ4 .

Then, by using (22), one gets

Q(µ) = µ3/2
∫
λ−

1
2π(λ|µ)dλ, T (µ) = 3

µ
.

Therefore, from (20), the prior should have the following form:

p(µ) ∝ µ−
9
4

[∫
λ−

1
2π(λ|µ)dλ

]1/2
.

Similar to Example 3, when π(λ|µ) is independent of µ, the divergence prior is proportional
to µ− 21

4 .

• When λ is the parameter of interest, one gets that u(λ) = 1
2λ . Then, from (24), the prior

should have the following form:
p(λ) ∝ λ−

1
2 .

Example 5: (Fisher von-Mises) The probability density function

f(x|µ, λ) = exp[λ cos(x− µ)]
2πI0(λ) , where I0(λ) = 1

2π

∫
exp(λ cosx)dx.
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Then t(x, µ) = cos(x − µ), a(λ) = I−1
0 (λ). Hence, ∂t

∂µ
= sin(x − µ), ∂2t

∂µ2 = − cos(x − µ),
∂3t
∂µ3 = sin(x − µ), so that E

(
∂3t
∂µ3 |µ, λ

)
= E

(
∂t
∂µ
|µ, λ

)
= 0. Further u(λ) = − I′

0(λ)
I0(λ) and

u′(λ) = − d
dλ

[
I′

0(λ)
I0(λ)

]
. • When µ is the parameter of interest, it is easy to get that

Iµµ = −λE
[
∂2t

∂µ2 |µ, λ
]

= λ
I1(λ)
I0(λ) , E

[
∂3t

∂µ3 |µ, λ
]

= 0.

Then, by using (22), one gets

Q(µ) =
∫
λ−

1
2

[
I0(λ)
I1(λ)

]1/2

π(λ|µ)dλ (which is a constant), T (µ) = 0.

Therefore, from (20), the prior for µ is uniform distribution.

• When λ is the parameter of interest, one gets that u(λ) = − I′
0(λ)
I0(λ) . Then, from (24), the

prior should have the following form:

p(λ) ∝
[
d

dλ

(
I0(λ)
I0(λ)

)]1/4

.

Example 6: Let’s consider the selection of priors for the famous Neyman-Scott problem
(Berger and Bernardo 1992a, 1992b). This problem can be formalized as a fixed effects
one-way balanced ANOVA model.

Let Xi1, · · · , Xik|µi be mutually independent N(µi, σ2), i = 1, · · · , n, k ≥ 2. Here, k, the
number of observations within each treatment i is fixed, while the number of treatments, n,
can grow to infinity. The Fisher Information matrix is

I(µ1, · · · , µn, σ2) = k Diag(σ−2, · · · , σ−2,
nσ−4

n
).

If we consider all the parameters of equal importance, then one gets Jeffreys’ general rule
prior

πJ(µ1, · · · , µn, σ2) ∝ (σ2)−n/2−1.

The corresponding marginal posterior distribution of σ2 is an Inverse Gamma distribution
with two parameters equaling to nk

2 ,
n(k−1)S

2 respectively. Here S = 1
n(k−1)

∑n
i=1

∑k
j=1(Xij −

X̄i)2. Then the posterior mean of σ2 is given by n(k−1)S/(nk−2), while the posterior mode
is n(k − 1)S/(nk + 2). Both are inconsistent estimators of σ2.

Now we use the expression (20) to construct prior for this problem and show that the cor-
responding Bayes estimators of σ2 are consistent.

Here, σ2 is the parameter of interest, while µ1, · · · , µn are nuisance parameters. By (21),
one gets

Q(σ2) =
√

2
nk
σ2, T (σ2) = 2

σ2 .



62 RUITAO LIU AND MALAY GHOSH [Vol. 18, No. 2

Therefore, the desired prior for σ2 obtained by (20) is proportional to (σ2)−3/2.

Letting the conditional prior for (µ1, · · · , µn) given σ2 equal to the conditional Jeffreys’
general rule prior suggested by Bernardo (1979) (in this case, it is the uniform distribution),
one gets the two-stage reference prior πR(µ1, · · · , µn, σ2) ∝ (σ2)−3/2.

The corresponding marginal posterior of σ2 is an Inverse Gamma distribution with two
parameters equaling to n(k−1)+1

2 , n(k−1)S
2 respectively. Then the posterior mean of σ2 is given

by n(k − 1)S/(nk − n − 1), while the posterior mode is n(k − 1)S/(nk − n + 3). Both are
consistent estimators of σ2.

Note. Datta and Ghosh (1995a) studied the same problem and developed their two-stage
reference prior based on the Kullback-Leibler divergence. Their prior is proportional to
(σ2)−1 which is slightly different from ours and also leads to consistent Bayes estimators of
σ2.

Example 7: One-way random effects model has been studied by many people through
Bayesian approach. Now, we revisit this model and only consider the balanced model.

Let Yij = µ + αi + eij, i = 1, . . . , k, j = 1, . . . , n. Here the common mean µ is an
unknown parameter, while αi’s and eij are mutually independent with αi’s i.i.d N(0, σ2

α) and
eij i.i.d N(0, σ2).

Berger and Bernardo (1992c) first found two-stage reference priors for variance components
in this problem. Later Ye (1994) and Datta and Ghosh (1995a, 1995b) found reference priors
under different parametrizations. Here, we follow the parametrization used in Ye (1994). Let
φ = nσ2

α

σ2 . So parameters are µ, σ2 and φ. The likelihood function L(µ, σ2, φ) can be written
as

L(µ, σ2, φ) ∝ σ−kn(1 + φ)−k/2 exp
{
− 1

2σ2

[
S2 + S1 + kn(Ȳ − µ)2

1 + φ

]}
,

where
Ȳi = 1

n

n∑
j=1

Yij, Ȳ = 1
kn

k∑
i=1

n∑
j=1

Yij,

S1 = n
k∑
i=1

(Ȳi − Ȳ )2, S2 =
k∑
i=1

n∑
j=1

(Yij − Ȳi)2.

Then the Fisher information matrix simplifies to

I(µ, σ2, φ) =


kn

(1+φ)σ2 0 0
0 kn

2σ4
k

2(1+φ)σ2

0 k
2(1+φ)σ2

k
2(1+φ)2

 .
The inverse matrix is

I−1(µ, σ2, φ) =


σ2(1+φ)
kn

0 0
0 2σ4

k(n−1) −2(1+φ)σ2

k(n−1)

0 −2(1+φ)σ2

k(n−1)
2n(1+φ)2

k(n−1)

 .
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To illustrate our method, we consider the following two cases.

1. µ is the parameter of interest. The common mean µ is of great relevance in meta analysis
(Morris and Normand 1992).

By (21), one gets

Q(µ) =
∫ (

(1 + φ)σ2

kn

)1/2

π(σ2, φ|µ)dσ2dφ (which is just a constant), T (µ) = 0.

Therefore, by using (20), the prior for µ is uniform distribution. If we take π(σ2, φ|µ) as the
conditional Jeffreys’ general prior which is proportional to (1 + φ)−1σ−2 in this case, then
the two-stage reference prior is

π(µ, σ2, φ) ∝ (1 + φ)−1σ−2.

2. φ is the parameter of interest. As pointed out by Ye (1994), the variance ratio σ2
α/σ

2 is
of great interest in genetic studies.

By (21), one gets

Q(φ) =
∫ (

2n(1 + φ)2

k(n− 1)

)1/2

π(µ, σ2|φ)dσ2dφ =
√

2n
k(n− 1)(1 + φ), T (φ) = 2− 1/n

1 + φ
.

Therefore, by using (20), the prior for φ is proportional to (1+φ)− 3
2 + 1

n . If we take π(µ, σ2|φ)
as the conditional Jeffreys’ general prior which is proportional to (1 +φ)−1/2σ−3 in this case,
then the two-stage reference prior is

π(µ, σ2, φ) ∝ (1 + φ)−2+1/nσ−3.

4. Summary

In this paper, We generalize the idea from Bernardo (1979) to handle the problem of
selection of priors in the presence of nuisance parameters. Instead of using Kullback-Leibler
divergence which is studied by Bernardo (1979), we use a general divergence criterion to
develop objective priors. This general divergence criterion is a family of divergence measures
between prior and corresponding posterior including the Kullback-Leibler, Bhattacharyya-
Hellinger and the Chi-square divergence. An interesting finding is that with one exception
(the Chi-square divergence), for every divergence measure in the general divergence family,
the desired divergence prior is the same prior as Bernardo found. Under the Chi-square
divergence, we have shown that the objective prior should be the solution to a set of partial
differential equations. We also consider a special case when the parameter of interest is one
dimensional. In this case, the closed forms of the optimal priors are provided and also several
examples are given.
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Abstract
For binary factors, a design is supersaturated for the main effects model if the number

of runs is smaller than the number of factors. Supersaturated designs (SSDs) cannot have all
orthogonal columns, and so, the traditional notions of D-, A-, E-optimality are not applicable
here. SSDs are studied under criteria such as E(s2) or UE(s2) which are near-orthogonality
measures. In this work, following some of the latest works, we provide algorithms to construct
better UE(s2)-optimal designs. We also provide a few design examples to demonstrate the
proposed algorithms.

Key words: Constructions; Hadamard matrices; Superior designs; UE(s2)-optimal designs.

1. Introduction

Factor-screening experiments are performed in situations when a large number of fac-
tors could potentially be affecting the response but only a limited number of runs can be
performed. The main goal of these studies is to screen (or, identify) the most important
factors. Supersaturated designs are useful in factor-screening experiments and they work
under the effect sparsity assumption that only a small number of factors are active. For m
binary factors and n runs, under a main-effects model, supersaturated designs require n to
be smaller than m + 1.

An n-run supersaturated design d for m two-level factors is represented by an n ×m
matrix Xd of 1’s and -1’s, where the ith column of Xd corresponds to the ith factor. Let
Zd = [1 Xd] be the model matrix of the main-effects model for d. Since n < m + 1, it
is not possible to have Zd with mutually orthogonal columns, even though orthogonality is
a desirable property. To assess non-orthogonality of supersaturated designs, the available
literature on the topic involves finding lower bounds to the popular E(s2)-criterion and
constructing designs satisfying these lower bounds. Designs that have an equal number of
±1s in each column of Xd for even n are called level-balanced designs. An E(s2)-optimal

Corresponding Author: John Stufken
Email: j stufke@uncg.edu
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design is a level-balanced design that minimizes the sum of the squares of the inner products
of columns of Xd among all level-balanced designs. A review paper by Georgiou (2014)
and the references therein are a good source for the available literature on E(s2)-optimal
supersaturated designs.

Jones and Majumdar (2014) extended the class of available designs by removing the
imposition of level-balance from the designs. To keep the definition of E(s2) sensible in the
broader class of designs, they included the sums of squares of the inner product of columns
of Xd with the column of all 1s in the existing definition and called it unrestricted E(s2), or
UE(s2). For a design d, the

UEd(s2) = 1(
m+1

2

)
 m∑

i=1
(1T xi)2 +

∑
1≤i<j≤m

(xT
i xj)2

 , (1)

where xi is the ith column of Xd. The E(s2)-criterion minimizes the second quantity in (1)
among all level balanced designs (the first quantity is 0 for level-balanced designs), whereas
the UE(s2)-criterion minimizes (1) among all possible designs with±1s. Jones and Majumdar
(2014) obtained lower bounds to UEd(s2) and provided constructions of UE(s2)-optimal
supersaturated designs. UE(s2)-optimal supersaturated designs are easy to construct and
are available for any parameter sets, whereas E(s2)-optimal designs are difficult to construct
and are available only for selected parameter sets.

Since many UE(s2)-optimal designs exist, Jones and Majumdar (2014) and Cheng et al.
(2018) suggested various criteria to choose the better design among all available designs.
Using the same notations as in Cheng et al. (2018), following are a few definitions:

• SS = ∑m
i=1(1T xi)2 = 1T XdXT

d 1;
• LB = the number of level-balanced factors for n even;
• OF = the number of orthogonal pairs of factors among the

(
m
2

)
pairs for n even;

• Q = LB + OF.

For odd n, these definitions are easily generalized. For example, when n is odd, LB is the
number of nearly-level-balanced factors, that is the number of factors with the corresponding
column sums of Xd equal to ±1. Similarly, OF is the number of nearly orthogonal pairs of
factors among the

(
m
2

)
pairs, that is, the number of pairs of factors having an inner product

equal to ±1. For even n, Q is half the number of zeros in the matrix ZT
d Zd, whereas for odd

n, Q is half the number of ±1s in the matrix ZT
d Zd.

Cheng et al. (2018) defined a UE(s2)-optimal design to be a superior UE(s2)-optimal de-
sign if it additionally minimizes SS among the class of UE(s2)-optimal designs constructed in
a restricted class. Singh et al. (2020) then extended the definition of superior UE(s2)-optimal
designs in a global class of all UE(s2)-optimal designs, also providing the constructions of
the superior UE(s2)-optimal designs in a global class. In this work, we restrict ourselves to
the superior UE(s2)-optimal designs constructed in Cheng et al. (2018). Since the class of
superior UE(s2)-optimal designs is still very large, Cheng et al. (2018) further proposed that
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Q should be minimized to find a better design among superior UE(s2)-optimal designs. This
minimization reduces the spread among the off-diagonal elements of ZT

d Zd, and because the
minimization is restricted to superior UE(s2)-optimal designs it favors such designs with uni-
formly relatively small correlations between the columns of Zd. The superior UE(s2)-optimal
designs with small Q tend to perform very well on the projection-based measures such as
average D-efficiency when only a small number of factors are active.

In this paper, we propose algorithms to find designs with minimum Q among the class
of superior UE(s2)-optimal designs constructed by Cheng et al. (2018). These algorithms
differ based on whether m = 4t, 4t + 1, 4t + 2, or 4t + 3 and are provided in Section 2 along
with an example each.

2. Algorithms for Constructing Q-superior UE(s2)-optimal Designs

Constructions of superior UE(s2)-optimal designs (Cheng et al. (2018)) differ based on
the type of values that m has. Let H be a 4t × 4t normalized Hadamard matrix with all
the entries in the first row and first column equal to 1. If m = 4t − 1, then any UE(s2)-
optimal design is superior and these designs are constructed by deleting any 4t−n rows and
the first column of a normalized Hadamard matrix H. If m = 4t, adding a level-balanced
column to the UE(s2)-optimal design with m = 4t−1 gives a superior UE(s2)-optimal design.
If m = 4t − 2, deleting a column having maximum absolute column sum from a UE(s2)-
optimal design with m = 4t − 1 gives a superior UE(s2)-optimal design. If m = 4t + 1,
two columns are added to a UE(s2)-optimal design with m = 4t− 1 so that the pairs (1, 1),
(−1,−1), (1,−1) and (−1, 1) appear in these columns as close to equal as possible; moreover,
if n ≡ 2 (mod 4), the two columns must be orthogonal. Note that superior UE(s2)-optimal
designs can be constructed using other methods which do not necessarily add or delete one or
two columns to a Hadamard matrix; some of such construction methods have been studied
in Singh et al. (2020). We restrict ourselves to superior UE(s2)-optimal designs constructed
by Cheng et al. (2018).

We provide algorithms to find the designs with minimum Q among the superior UE(s2)-
optimal designs. Before we do that, we need the following result due to Singh et al. (2020).
This result gives the values of SS for superior UE(s2)-optimal designs in a restricted class,
that is, the class of designs constructed using the methods of Cheng et al. (2018).

Theorem 1 (Theorem 1 of Singh et al. (2020)): The values of SS for a superior UE(s2)-
optimal design d in restricted class are

C(m, n) =


n(m− n + 1) for m = 4t− 1
n(m− n) + x for m = 4t
n(m− n− 1) + z for m = 4t + 1
n(m− 2n + 2) + 4s(n− s) for m = 4t− 2 and s = min(n, 2t)

(2)

where x = 0 for n even and x = 1 for n odd, and z = 0 for n ≡ 0 (mod 4), z = 4 for
n ≡ 2 (mod 4), z = 2 for m 6= n ≡ 1 or 3 (mod 4), and z = 4n− 10 for n = m.

We now consider four cases depending on whether m is of the form 4t− 1, 4t− 2, 4t,
or 4t + 1, where t is a positive integer.
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(A) Construction for m = 4t − 1. Let Xb be a matrix obtained by deleting the first
column of all 1s and 4t − n rows of H. Irrespective of the Hadmard matrix used, and
irrespective of the rows deleted, each Xb has SS = C(n, 4t−1) as in Theorem 1, and hence is
a superior UE(s2)-optimal design (Cheng et al., 2018; Singh et al., 2020). We call Xb the base
matrix. All such Xb’s form the set of base design matrices for the other three cases. For Xb,
with m = 4t − 1 = mb (say), we denote the parameters SS, LB, OF, Q by SSb, LBb, OFb, Qb

respectively. To find a superior UE(s2)-optimal supersaturated design with minimum Q, the
following steps are proposed:

(i) Find the parameter values for all the
(

4t
n

)
superior UE(s2)-optimal designs obtained

from every available non-isomorphic Hadamard matrix H of order 4t. Collect designs
with the same parameters in the same class, thereby forming I classes of designs with
distinct parameters (SSb, LBb

i , OFb
i , Qb

i), i = 1, . . . , I.

(ii) Without loss of generality, let parameters satisfy Qb
1 ≤ Qb

2 ≤ · · · ≤ Qb
I . Any superior

UE(s2)-optimal design with Qb = Qb
1 is, therefore, a design as proposed.

For a large m, many non-isomorphic Hadamard matrices exist and it is not possible to
do (i) for all non-isomorphic Hadamard matrices. One could then do step (i) for as many
non-isomorphic Hadamard matrices as possible. Then, there is a possibility of a design with
smaller Q than the proposed design.

Example 1: For m = 15, n = 12, there are 5 non-isomorphic Hadamard matrices of order 16,
the total number of possible superior UE(s2)-optimal designs are

(
16
12

)
×5 = 1820×5 = 9100.

Among these 9100 possibilities of Xb’s, we get only four distinct parameter sets given in
Table 1. In Table 1, we also provide the respective number of designs in these classes under
the ‘Count’ column.

Table 1: Four sets of parameters for m = 15, n = 12

i SSb LBb
i OFb

i Qb
i Count

1 48 6 42 48 7248
2 48 3 57 60 384
3 48 9 51 60 1152
4 48 12 84 96 316

Total 9100

Any superior UE(s2)-optimal designs corresponding to the first row in Table 1, that
is, designs with Qb

1 = 48 are the proposed designs. One such example of a superior UE(s2)-
optimal design with Q = 48 is given below.
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-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1

-1 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 1
1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 1 -1

-1 -1 -1 1 1 1 1 -1 -1 -1 -1 1 1 1 1
1 -1 1 1 -1 1 -1 -1 1 -1 1 1 -1 1 -1

-1 1 1 1 1 -1 -1 -1 -1 1 1 1 1 -1 -1
1 1 -1 1 -1 -1 1 -1 1 1 -1 1 -1 -1 1

-1 -1 -1 -1 -1 -1 -1 1 1 1 1 1 1 1 1
-1 -1 -1 1 1 1 1 1 1 1 1 -1 -1 -1 -1
-1 1 1 -1 1 -1 1 1 1 -1 -1 1 -1 1 -1
1 -1 1 1 -1 -1 1 1 -1 1 -1 -1 1 1 -1

(B) Construction for m = 4t−2. For m = 4t−2, a column with the maximum absolute
column sum is deleted from Xb to get a superior UE(s2)-optimal design. Starting from Xb

with mb = 4t − 1, we construct a superior UE(s2)-optimal design with m = 4t − 2 and
minimum Q as follows.

(i) For the i-th set, there are m−LBb
i number of columns in the corresponding Xb’s which

are not (nearly) level-balanced. Let xu be the number of columns for a design in the
i-th class with the column sums equal to ±2u (for n even) and equal to ±(2u + 1) (for
n odd), u = 1, . . . , k. Then, for all designs in the i-th class, i = 1, . . . , I, we check
whether

4∑k
u=1 u2xu = C(4t− 2, n) for n even, and∑k

u=1(2u + 1)2xu = C(4t− 2, n)− LBb
i for n odd.

Assume that the conditions are true for I1 ≤ I sets of parameters. Only keep these I1
sets and number the sets as i = 1, . . . , I1 such that Qb

1 ≤ Qb
2 ≤ · · · ≤ Qb

I1 .

(ii) Starting from i = 1, for the designs in the i-th class, we delete a column with column
sum as ±n for n ≤ 2t or as ±(4t−n) for n > 2t (note that this can always be done, see,
Singh et al. (2020)). Then for each i, designs could have Ji possible sets of parameters
(C(4t− 2, n), LBi = LBb

i , OFi(j), Qi(j)), where OFb
i −m ≤ OFi(j) ≤ OFb

i , j = 1, . . . , Ji.
Without loss of generality, let Qi(1) ≤ Qi(2) ≤ · · · ≤ Qi(Ji). Define qi = min{Qi(1), qi−1}
for i = 2, . . . , I and q1 = Qi(1).

(iii) If qi ≤ Qb
i+1 −m, then a superior UE(s2)-optimal design with Q = qi is the proposed

design, otherwise the steps (ii)-(iii) are sequentially repeated for i = 2, . . . , I1. If we
reach i = I1, then a superior UE(s2)-optimal design with Q = qI1 is the proposed
design.

Example 2: For constructing a superior UE(s2)-optimal design, with m = 14, n = 12
having minimum Q, from Table 1, the base design with mb = 15, n = 12 has I = 4 sets of
parameters. With C(14, 12) = 32, the condition in step (i) of the algorithm is not met for
i = 2. This allows us to reduce the number of sets of parameters to I1 = 3. Now, for the
designs in the set i = 1, deleting a column with the desired property gives superior UE(s2)-
optimal designs with J1 = 1 parameters (SS = 32, LB1 = 6, OF1(1) = 36, Q1(1) = 42). Since,
q = 42 < 60 − 14 = 46, the design with Q = q = 42 is the proposed design and is given
below.
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1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 -1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1

-1 -1 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1
-1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1 1 1
-1 -1 -1 -1 1 1 -1 -1 1 1 1 1 -1 -1
-1 -1 1 1 -1 -1 -1 -1 1 1 -1 -1 1 1
1 1 -1 -1 -1 -1 -1 -1 -1 -1 1 1 1 1
1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1
1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1
1 -1 -1 1 -1 1 1 -1 1 -1 -1 1 -1 1

-1 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1
-1 1 -1 1 1 -1 -1 1 1 -1 1 -1 -1 1

(C) Construction for m = 4t. For m = 4t, a level-balanced column should be added to
Xb to get a superior UE(s2)-optimal design. Our algorithm to construct a superior UE(s2)-
optimal design with m = 4t, having the minimum value of Q is as follows. We start with
Xb’s as in Construction (A) corresponding to mb = 4t− 1. Then, the ith set of parameters
corresponding to the base matrices is (SSb, LBb

i , OFb
i , Qb

i), i = 1, . . . , I. Note that these i
sets are such that Qb

1 ≤ Qb
2 ≤ · · · ≤ Qb

I .

(i) Starting from i = 1, for each design in the i-th class (that is, a design with minimum
Q), we add all possible balanced columns to the existing 4t−1 columns. Then for each
i, designs could have Ji resultant possible parameters (C(4t, n), LBi = LBb

i + 1, OFi(j),
Qi(j)), where OFb

i ≤ OFi(j) ≤ OFb
i + m − 1, j = 1, . . . , Ji. Without loss of generality,

let Qi(1) ≤ Qi(2) ≤ · · · ≤ Qi(Ji). Define qi = min{Qi(1), qi−1} for i ≥ 2 and q1 = Qi(1).

(ii) If qi ≤ Qb
i+1, then a superior UE(s2)-optimal design with Q = qi is the final design.

Otherwise steps (i)-(ii) are repeated sequentially for i = 2, . . . , I. If we reach i = I,
then a superior UE(s2)-optimal design with Q = qI is the proposed design.

Example 3: For constructing a superior UE(s2)-optimal design with m = 16, n = 12 having
minimum Q, we make use of Table 1. For the designs in the set i = 1 in Table 1, adding
level-balanced columns gives J1 = 7 parameter sets of which the one with the minimum
Q1(j) is (SS = 48, LB1 = 7, OF1(1) = 42, Q1(1) = 49). Since, q = 49 < 60, the design with
Q = q = 49, given below, is a proposed superior UE(s2)-optimal design with minimum Q.

-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 1

-1 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 1 -1
1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1

-1 -1 -1 1 1 1 1 -1 -1 -1 -1 1 1 1 1 1
1 -1 1 1 -1 1 -1 -1 1 -1 1 1 -1 1 -1 -1

-1 1 1 1 1 -1 -1 -1 -1 1 1 1 1 -1 -1 1
-1 -1 -1 -1 -1 -1 -1 1 1 1 1 1 1 1 1 -1
-1 -1 1 -1 1 1 1 1 1 1 -1 1 -1 -1 -1 1
-1 1 -1 1 1 1 -1 1 1 -1 1 -1 -1 -1 1 1
-1 1 1 1 -1 -1 1 1 1 -1 -1 -1 1 1 -1 1
1 -1 -1 1 -1 1 1 1 -1 1 1 -1 1 -1 -1 -1

(D) Construction for m = 4t + 1. For m = 4t + 1, to get a superior UE(s2)-optimal
design, two columns should be added to Xb so that the pairs (1, 1), (−1,−1), (1,−1) and
(−1, 1) appear in these columns as close to equal as possible; moreover, if n ≡ 2 (mod 4),
the two columns must be orthogonal. Our algorithm to construct a superior UE(s2)-optimal
design with m = 4t, having the minimum value of Q is an adaptation of the algorithm in
Construction (C) in this paper. We again start with Xb’s as in Construction (A) correspond-
ing to mb = 4t − 1. Then, the ith set of parameters corresponding to the base matrices is
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(SSb, LBb
i , OFb

i , Qb
i), i = 1, . . . , I with i = 1 corresponding to the set with the minimum

value of Q.

(i) Starting from i = 1, for the designs in the i-th class, we add all possible sets of
two level-balanced columns with 0 inner product. For each i, designs now have Ji

resultant sets of possible parameters (C(4t + 1, n), LBi = LBb
i + 2, OFi(j), Qi(j)),

where OFb
i ≤ OFi(j) ≤ OFb

i + 2m − 3, j = 1, . . . , Ji. Without loss of generality, let
Qi(1) ≤ Qi(2) ≤ · · · ≤ Qi(Ji). Define qi = min{Qi(1), qi−1} for i ≥ 2 and q1 = Qi(1).

(ii) If qi ≤ Qb
i+1, then a superior UE(s2)-optimal design with Q = qi is the proposed design.

Otherwise steps (i)-(ii) are sequentially repeated for i = 2, . . . , I. If we reach i = I,
then a superior UE(s2)-optimal design with Q = qI is the proposed design.

Example 4: For constructing a superior UE(s2)-optimal design with m = 17, n = 12 having
minimum Q, we can again make use of the sets listed in Table 1. Now, for the designs in
the set i = 1, adding two columns with required properties gives a large number of Ji.
However, the set with the minimum Q1(j) is (SS = 48, LB1 = 8, OF1(1) = 43, Q1(1) = 51).
Since, q = 51 < 60, the design with Q = q = 51, given below, is a proposed superior
UE(s2)-optimal design with minimum Q.

-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
1 -1 1 -1 1 -1 1 -1 -1 -1 -1 1 1 1 1 -1 1

-1 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 1 1 -1
1 1 -1 -1 1 1 -1 -1 1 -1 1 -1 1 -1 1 -1 1

-1 -1 -1 1 1 1 1 -1 -1 1 1 1 1 -1 -1 1 -1
1 -1 1 1 -1 1 -1 -1 1 1 -1 -1 1 1 -1 1 1

-1 1 1 1 1 -1 -1 -1 1 1 -1 1 -1 -1 1 -1 -1
1 1 -1 1 -1 -1 1 -1 1 -1 1 1 -1 1 -1 -1 -1

-1 -1 -1 -1 -1 -1 -1 1 1 1 1 1 1 1 1 1 1
1 -1 1 -1 1 -1 1 1 1 1 1 -1 -1 -1 -1 1 -1

-1 1 1 -1 -1 1 1 1 1 -1 -1 1 1 -1 -1 1 1
1 -1 1 1 -1 1 -1 1 -1 -1 1 1 -1 -1 1 -1 1

3. Concluding Remarks

In this paper, we have provided algorithms for constructing superior UE(s2)-optimal
designs with minimum Q starting from the class of designs in Cheng et al. (2018). If it is
not feasible to identify the I sets of parameters for all non-isomorphic Hadamard matrices,
we propose to run the algorithms on only a selected set of the available Hadamard matrices;
however, then there is no guarantee that the designs proposed here would have the minimum
value of Q. As mentioned previously, superior UE(s2)-optimal designs also exist outside the
class of designs used here (Singh et al., 2020). A future direction is to identify the best de-
signs using better algorithms (or, analytically) to identify superior UE(s2)-optimal designs
with minimum Q among a broader class of all superior UE(s2)-optimal designs.

Acknowledgments

The research of F. S. Chai was supported by the grant MOST 109-2118-M-001-004-
MY2 from the Ministry of Science and Technology of Taiwan. The research by J. Stufken
was partially supported through NSF grant DMS-1935729.



74 F.S. CHAI, A. DAS, R. SINGH AND J. STUFKEN [Vol. 18, No. 2

References

Cheng, C. S., Das, A., Singh, R., and Tsai, P. W. (2018). E(s2)- and UE(s2)-optimal
supersaturated designs. Journal of Statistical Planning and Inference, 196, 105–114.

Georgiou, S. D. (2014). Supersaturated designs: a review of their construction and analysis.
Journal of Statistical Planning and Inference, 144, 92–109.

Jones, B. and Majumdar, D. (2014). Optimal supersaturated designs. Journal of the Amer-
ican Statistical Association, 109(508), 1592–1600.

Singh, R., Das, A., and Horsley, D. (2020). SUE(s2)-optimal supersaturated designs. Statis-
tics and Probability Letters, 158,1–5.



Statistics and Applications {ISSN 2452-7395(online)}
Volume 18, No. 2, 2020 (New Series), pp 75-84

A New Family of Probability Density Functions With
Deflated Tails

Avinash D. Dharmadhikari1, Sanjeev V. Sabnis2 and Bikas K. Sinha3

1 (Ex-GM, Tata Motors, Pune) B2/203, Prisam Society, Aundh, Pune, India.
2 Department of Mathematics, Indian Institute of Technology Bombay, Mumbai, India.

3 Ex-Professor, Indian Statistical Institute, Kolkata, India.

Received: 30 March 2020; Revised: 17 May 2020; Accepted: 20 May 2020

Abstract
The objective of this study is to introduce a new family of probability density functions

using a given probability density function and analyze some of its important theoretical
properties involving quantiles and failure rate. As an offshoot of this new family of probability
density functions, a two-component mixture density that behaves differently at the tail-ends
viz., the two densities tend to be negligible to the left / right of two designated tail-end values,
respectively, is proposed. This is important as mixture probability distributions have been
extensively studied in the literature and their applications in real life are also well-known.

Key words: Mixture distribution; Failure rate; Quantiles; Stochastic ordering.

AMS Subject Classifications: 62E15, 60E15, 62N05

1. Introduction

The subject of mixture distributions is important from theoretical as well as practical
points of view. Three major references that deal with this topic are Everittt and Hand (1981),
Titterington, Smith and Makov (1985), and McLachlan and Basford (1988). Theoretical
aspects are concerned with (i) obtaining parameter estimates within models and those of
mixing distributions, (ii) identification of the number of components in a finite mixture, (iii)
imputation of the missing indicators of component membership for mixture data, whereas
practical aspects deal with areas such as fisheries research, economics, medicine, biology,
psychology, palaeontology, geology, botany, agriculture, zoology, reliability and many other
fields.

Mathematically, mixture distributions are typically formalized as follows.
Consider a pair Y = (X,Z) of random variables with g(y) as its joint probability density
and suppose that

g(y) = g(x, z) = f(x|z)π(z)

Correponding Author: S. V. Sabnis
Email: svs@math.iitb.ac.in
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where f and π are, respectively, a conditional and marginal density. Then, in terms of this
factorization, the marginal density for X, p(x), is

p(x) =
∫
f(x|z)π(z)dz.

If the support of π is finite and concentrated on c1, c2, . . . , ck, say, then we get

p(x) =
k∑
i=1

πif(xi)

where
fi(x) = f(x|Z = ci)

and
πi = P (Z = ci)

for i = 1, 2, . . . , k.

In this case, X is said to have a finite mixture distribution, the fi are called the
component densities and the probabilities {πi} are called mixing weights.

In this paper, a new family of probability density functions using the given probability
density function has been proposed and some of its important theoretical properties involving
quantiles and failure rate have been analyzed. As an offshoot of this new family of probability
density functions, a two-component mixture density that behaves differently at the tail-ends
viz., the two densities tend to be negligible to the left / right of two designated tail-end
values, respectively, is proposed. The applications for this version of mixture model are
understood to arise in car industries.

The organization of this paper is as follows. Section 2 discusses new models and as-
sociated theoretical results. Section 3 contains simulation results, while Section 4 presents
conclusions.

2. General Model

This section presents a new class of probability density functions and the same is given
in Definition 1 below.

Definition 1: Let X be an absolutely continuous random variable having f(x) as its
probability density function and F (x) as its cumulative density function. Then for every pair
of real numbers s and t, s < t, we may define an induced random variable X∗(s, t) having
probability density function f ∗(x|(s, t)) given by

f ∗(x|(s, t)) =


λf(x) x < s
(λ+ δ)f(x) s ≤ x < t
δf(x) x ≥ t
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with p ∈ (0, 1), λ = (1− p)
D1

, δ = p

D1
, and D1 = (1− p)F (t) + p(1− F (s)).

The corresponding Cumulative Distribution Function (CDF) is given by

F ∗(x|(s, t)) =


λF (x) x < s

(λ+ δ)F (x)− δF (s) s ≤ x < t

λF (t)− δF (s) + δF (x) x ≥ t.

Remark 1: It may be noted that the probability density function f ∗(x|(s, t)) defined
above in Definition 1 is discontinuous at s and t where s, t, and p are assumed to be fixed.
However, further, it may be noted that the corresponding CDF F ∗(x|(s, t)) is continuous at
s and t.

Remark 2: It may be noted that {X∗(s, t), s < t} is a family of random variables
induced by the given absolutely continuous random variable X and it is such that it is
deflated in both the tails and inflated in the middle.

Remark 3: A special case of interest is when s and t, s < t, are chosen such that
F (s) = F (t), where F (t) is the survival function of the original absolutely continuous random
variable X which gives rise to a new random variable X∗(s, t). In this case, F (s) = F (t) = D1
and for any 0 < p < 1,

f ∗(x) =


(1−p)
F (s) f(x) x < s
1

F (s)f(x) s ≤ x < t
p

F (s)f(x) x ≥ t.

Further to this, we may also note the following:
(a) For p = 1,

f ∗(x) =
{ 0 x < s

f(x)
F (s) x ≥ s.

Note that f ∗(x) is a probability density function of a random variable X∗(s, .) which
is truncated to the left of s.
(b) For p = 0,

f ∗(x) =
{

f(x)
F (t) x < t

0 x ≥ t.

Note that f ∗(x) is a probability density function of a random variable X∗(., t) which
is truncated to the right of t.
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Remark 4: It is easy to verify for selected values of s, t that

λ ≤ 1⇔ p ≥ F (t)
F (t) + F (s)

and
δ ≤ 1⇔ p ≤ F (t)

F (t) + F (s) .

Here is an interesting result one that makes connection between percentile points of
the original probability density function f and those of the new probability density function
f ∗. We state it in the form of properties of f ∗ in relation to f.

Let F ∗(x∗q) = q and F (xq) = q, and ηq be such that F ∗(xq) = q + ηq where the sign of
ηq is positive (negative) when f ∗ is positively skewed (negatively skewed). Then
Property A: For x < s, x∗q = F−1

(
qD1

(1− p)

)
.

Property B: For s ≤ x < t, x∗q = F−1
(
q +D1ηq

)
.

Property C: For x ≥ t, x∗q = F−1
(
q + D1

p
ηq

)
.

We provide the proofs of these properties in the Appendix A.

A question regarding stochastic comparison between X∗ and X is in order. The fol-
lowing result is geared towards that. The concept of a random variable being stochastically
larger than another random variable and the concept of failure rate can be found in Barlow
and Proschan (1975).

Theorem 1: The random variable X∗ having f ∗ as its pdf is stochastically larger than
the random variable X with pdf f if and only if p ≥ F (t)

F (t)+F (s) .

Proof: Not to obscure the essential steps of reasoning, we will go through the following
Lemmas.

Lemma 1: For x < s, the random variable X∗ having f ∗ as its pdf is stochastically
larger than the random variable X with pdf f if and only if p ≥ F (t)

F (t)+F (s) .

Proof: For x < s,

F ∗(x) = λF (x) < F (x)⇔ λ = (1− p)
D1

≤ 1⇔ p ≥ F (t)
F (s) + F (t)

.

Lemma 2: For s ≤ x < t, the random variable X∗ having f ∗ as its pdf is stochastically
larger than the random variable X with pdf f if and only if p ≥ F (x)F (t)

F (x)F (s)+F (x)F (t) .

Proof: For s ≤ x < t,

F ∗(x) = (λ+ δ)F (x)− δF (s) < F (x)⇔ F (x)
D1
− F (x) < δF (s) as λ+ δ = 1

D1

⇔ (1−D1)
D1

F (x) < p

D1
F (s)⇔ p ≥ F (x)F (t)

F (x)F (s) + F (x)F (t)
.
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Lemma 3: For x > t, the random variable X∗ having f ∗ as its pdf is stochastically
larger than the random variable X with pdf f if and only if p ≥ F (t)

F (t)+F (s) .

Proof: For x > t,

F ∗(x) = λF (t) + δF (x)− δF (s) ≤ F (x)⇔ (1− p)
D1

F (t) + p

D1
F (x)− p

D1
F (s) ≤ F (x)

⇔ p ≥ F (t)F (x)
[F (t)F (x) + F (s)F (x)]

= F (t)
F (t) + F (s) .

Proof of Theorem 1: The property of F ∗ being stochastically larger than F implies
that simultaneously last inequalities involving p in the proofs of Lemma 1, Lemma 2, and
Lemma 3 have to necessarily hold good. This amounts to saying that

p ≥ max
{ F (t)
F (t) + F (s)

, sup
x∈[s,t)

F (x)F (t)
F (x)F (s) + F (x)F (t)

,
F (t)

F (t) + F (s)
}
.

We establish that this is equivalent to the condition stipulated in the statement of this
Theorem.

To this end, we make two claims and prove them.
Claim 1:

F (t)
F (t) + F (s)

≤ F (t)
F (t) + F (s)

⇔ F (t)(F (t) + F (s)) ≤ F (t)(F (s) + F (t))

⇔ F (t)F (t) + F (t)F (s) ≤ F (s)F (t) + F (t)F (t)

⇔ F (s) ≤ F (t) always holds as s < t.

Thus, Claim 1 proved.
Claim 2:

sup
x∈[s,t)

F (x)F (t)
F (x)F (s) + F (t)F (x)

≤ F (t)
F (t) + F (s) .

Consider
F (x)F (t)

F (x)F (s) + F (t)F (x)
≤ F (t)
F (t) + F (s)

⇔ F (x)F (t)F (t) + F (x)F (t)F (s) ≤ F (t)F (x)F (s) + F (t)F (t)F (x)

⇔ F (x)F (t) ≤ F (t)F (x)

⇔ F (x) ≤ F (t) which is valid for x ∈ [s, t).

Thus, Claim 2 is proved and the proof is complete.

The following Theorem attempts to make connection between the failure rate of f ∗ and
that of f .
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Theorem 2: The probability density function f ∗ corresponding to the random variable
X∗ has increasing (decreasing) failure rate η∗ over the set C iff for x ∈ C

max [(η(x)− d(ln η(x))
dx

), 0] < (>) min
[

δf(x)
[1− λF (t)− δF (x) + δF (s)] ,

δf(x)
[1− λF (x)]

]

where η(x) is the failure rate of the random variable X with f as its probability density
function and the set C is such that C ⊆ R+, and, further, for x ∈ C x 6= s, t.

Proof: The proof of this Theorem is rather long and a bit complicated. We provide
details of this proof in the Appendix B.

It is interesting to note that the family of probability distribution functions given in
Definition 1 results from the following tweaked version of a mixture of two probability distri-
bution functions having an appealing feature that this mixture density behaves differently at
the tail-ends viz., the two densities tend to be negligible to the left / right of two designated
tail-end values, respectively.

Definition 2: Let Xi be an absolutely continuous random variable with fi(x) as its
probability density function and Fi(x) as its cumulative density function for i = 1, 2. For
every p ∈ (0, 1) and every pair of real numbers s, t (s < t),

h2(u|(s, t)) =


(1−p)
D2

f1(u) u < s
1
D2

((1− p)f1(u) + pf2(u)) s ≤ u < t
p
D2
f2(u) u ≥ t

defines a probability density function of a random variable U(s, t), say, for fixed values of s
and t. Here D2 = (1− p)F1(t) + pF 2(s).

The corresponding Cumulative Distribution Function (CDF) is given by

H2(u|(s, t)) =


(1−p)
D2

F1(u) u < s
1
D2

((1− p)F1(u) + p(F2(u)− F2(s)) s ≤ u < t
1
D2

(1− p)F1(t) + p(F2(u)− F2(s)) u ≥ t.

Remark 5: It may be noted that Definition 2 reduces to Definition 1 if X1 and X2
are identically distributed random variables.

Remark 6: The applications for this version of mixture model are understood to arise
in car industries.

Conclusions: In this paper, a new family of probability density functions from a given
probability density function is generated, and the relationships of the former to the latter
in terms quantiles and failure rate are studied. This family of probability density function
results from the tweaked version of a mixture of two probability density functions.
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APPENDIX A

Proof of Property A: For x < s, F ∗(x) = λF (x).
Let x∗q be such that F ∗(x∗q) = q and xq be such that F (xq) = q.
Thus, we have, F ∗(x∗q) = λF (x∗q) = q.

This implies that F (x∗q) = q
λ

with λ = (1−p)
D1

and D1 = (1− p)F (t) + pF (s).

i.e. x∗q = F−1( q
λ
) = F−1

(
qD1

(1− p)

)
.

Proof of Property B: For s ≤ x < t,

F ∗(x) = λF (x) + δF (x)− δF (s)
= (λ+ δ)F (x)− δF (s)

= 1
D1

F (x)− δF (s).

With x∗q and xq as defined above, we have

F ∗(x∗q) = 1
D1

F (x∗q)− δF (s)

= q (1)

F ∗(xq) = 1
D
F (xq)− δF (s)

= 1
D1

q − δF (s)

= q + |ηq| (2)
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where |ηq| is such that (i) it will be positive if F ∗ is positively skewed and (ii) it will be
negative if F ∗ is negatively skewed. From (1) and (2) we have

|F ∗(x∗q)− F ∗(xq)| =
∣∣∣ 1
D1

F (x∗q)− δF (s)− 1
D1

F (xq)− δF (s)
∣∣∣

=
∣∣∣ 1
D1

F (x∗q)−
1
D1

F (xq)
∣∣∣

= |ηq|.

This implies that 1
D1
F (x∗q) − 1

D1
F (xq) = ηq i.e. 1

D1
F (x∗q) = 1

D1
F (xq) + ηq This, in turn,

implies that x∗q = F−1
(
q +D1ηq

)
.

Proof of Property C: For x ≥ t, F ∗(x) = λF (t)− δF (s) + δF (x). Thus, for x∗q and xq as
defined above, we have

F ∗(x∗q) = λF (t)− δF (s) + δF (x∗q)
= q (3)

F ∗(xq) = λF (t)− δF (s) + δF (xq)
= q + |ηq|. (4)

From (3) and (4) we have

|F ∗(x∗q)− F ∗(xq)| = |δF (x∗q)− δF (xq)|
= |δF (x∗q)− δq|
= |ηq|.

This yields x∗q = F−1
(
q + D1

p
ηq

)
.

APPENDIX B

From the expressions of f ∗(x) and F ∗(x), it follows that the corresponding failure rate η∗ is
given by

η∗(x) =



λF (x)η(x)
1− λF (x) x < s

(λ+ δ)F (x)η(x)
1− (λ+ δ)F (x) + δF (s) s ≤ x < t

δF (x)η(x)
1− λF (t)− δF (x) + δF (s) x ≥ t

where η(x) denotes the hazard rate of f(x), while η∗(x) denotes the hazard rate of f ∗(x).
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First, let x < s. Then η∗(x) is increasing in x if and only if its derivative dη∗(x)
dx

is greater
than 0. Note that

dη∗(x)
dx

=
d[λF (x)(η(x))

1−λF (x) ]
dx

=
(1− λF (x))(−λf(x)η(x) + λF (x)dη(x)

dx
)

(1− λF (x))2 + (λ)2F (x)f(x)η(x)
(1− λF (x))2 .

Thus dη∗(x)
dx

> 0 iff (1− λF (x))(−λf(x)η(x) + λF (x)dη(x)
dx

) + (λ)2F (x)f(x)η(x) > 0
i.e., dη∗(x)

dx
> 0 iff (λ)2F (x)f(x)η(x) > λF (x)[1− λF (x)][(η(x))2 − dη(x)

dx
]

i.e., dη∗(x)
dx

> 0 iff (λ)f(x)η(x) > [1− λF (x)][(η(x))2 − dη(x)
dx

].
Next, whenever s ≤ x < t, we have

η∗(x) = (λ+ δ)F (x)η(x)
1− (λ+ δ)F (x) + δF (s) .

Then η∗(x) is increasing in x iff its derivative dη∗(x)
dx

is greater than 0.
Note that

dη∗(x)
dx

=
d[ (λ+δ)F (x)η(x)

1−(λ+δ)F (x)+δF (s) ]
dx

=
[1− (λ+ δ)F (x) + δF (s)][−(λ+ δ)f(x)η(x) + (λ+ δ)F (x)dη(x)

dx
]

[1− (λ+ δ)F (x) + δF (s)]2

+ (λ+ δ)2F (x)f(x)η(x)
[1− (λ+ δ)F (x) + δF (s)]2 .

Thus, dη∗(x)
dx

> 0 iff

[1− (λ+ δ)F (x) + δF (s)][−(λ+ δ)f(x)η(x) + (λ+ δ)F (x)dη(x)
dx

] + (λ+ δ)2F (x)f(x)η(x) > 0

dη∗(x)
dx

> 0 iff (λ+ δ)2F (x)f(x)η(x) > (λ+ δ)F (x)[1− (λ+ δ)F (x) + δF (s)][(η(x))2 − dη(x)
dx

]
d(η∗(x))
dx

> 0 iff (λ+ δ)f(x)η(x) > [1− (λ+ δ)F (x) + δF (s)][(η(x))2 − dη(x)
dx

].
Lastly, for x ≥ t we have

η∗(x) = δF (x)η(x)
1− λF (t)− δF (x) + δF (s) .

Then η∗(x) is increasing in x iff its derivative dη∗(x)
dx

is greater than 0.
Here

dη∗(x)
dx

=
d[ δF (x)η(x)

1−λF (t)−δF (x)+δF (s) ]
dx

=
[1− λF (t)− δF (x) + δF (s)][−δf(x)η(x) + δF (x)dη(x)

dx
]

[1− λF (t)− δF (x) + δF (s)]2

+ (δ)2f(x)F (x)η(x)
[1− λF (t)− δF (x) + δF (s)]2
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dη∗(x)
dx

> 0 iff [1−λF (t)− δF (x) + δF (s)][−δf(x)η(x) + δF (x)d(η(x))
dx

] + (δ)2f(x)F (x)η(x) > 0
i.e., dη∗(x)

dx
> 0 iff (δ)2f(x)F (x)η(x) > δF (x)[1−λF (t)− δF (x) + δF (s)][(η(x))2− d(η(x))

dx
] i.e.,

dη∗(x)
dx

> 0 iff (δ)f(x)η(x) > [1− λF (t)− δF (x) + δF (s)][(η(x))2 − dη(x)
dx

].
Thus η(x) is increasing in x in the respective intervals iff

(λf(x)η(x) > [1− λF (x)][(η(x))2 − dη(x)
dx

]

(λ+ δ)f(x)η(x) > [1− (λ+ δ)F (x) + δF (s)][(η(x))2 − dη(x)
dx

]

(δ)f(x)η(x) > [1− λF (t)− δF (x) + δF (s)][(η(x))2 − dη(x)
dx

].

Note that in the above, if the first and the third inequalities hold then the second inequality
automatically holds.

In view of this, η(x) is increasing (decreasing) in respective intervals iff

max[((η(x))2 − dη(x)
dx

), 0] < (>) min[ δf(x)η(x)
1− λF (t)− δF (x) + δF (s) ,

λf(x)η(x)
1− λF (x) ]

that is,

max[(η(x)− (d ln η(x)
dx

)), 0] < (>) min[ δf(x)
1− λF (t)− δF (x) + δF (s) ,

λf(x)
1− λF (x) ].

The proof is complete.
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Abstract
The issue of eliciting truthful answers from survey respondents on sensitive questions

has always been a challenge. Survey statisticians have developed various techniques to ad-
dress this issue. Randomized response technique (RRT), originating in 1965 due to Warner,
is a popular method in this area.

Block total response technique (BTRT), due to Raghavrao and Federer in 1979, is a
method that incorporates experimental design features into RRT with the goal of increas-
ing respondents’ anonymity, in addition to producing unbiased estimators of parameters
involving sensitive features. In this paper, we have developed an innovative estimator of
the population mean of a sensitive feature using a permutation mechanism in the BTRT
framework. This enables us also to compute an unbiased estimate of the variance of the
proposed estimator.

Key words: Sensitive qualitative feature(s); Sensitive quantitative feature(s); Randomized
response; Block total response technique; Random permutations.

1. Measuring Sensitive Characteristics Through Surveys: A Brief Review

Eliciting truthful responses on sensitive issues/characteristics from survey respondents
has always been a challenge. During the latter half of the twentieth century, survey statis-
ticians have proposed various methods of conducting surveys that provide anonymity to
respondents and encourage them to answer truthfully to such sensitive issues. This enables
gauging the level of the sensitive issue in the population, overcoming the biases that arise
from false reporting. At the head of these survey methods is the popular randomized re-
sponse technique (RRT) of interviewing, proposed by Warner in 1965. At the heart of this
technique is a randomizing device, which is used to direct the respondent to provide answer
to either a random (non-sensitive) question or to the sensitive question. It is of paramount
importance that only the respondent knows how the randomization device directed him to
respond and he provides only his answer to the interviewer without letting on how the device
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directed him to respond. The underlying assumption is that since the respondent provides
an answer to the interviewer without exposing his personal situation, any stigma associated
with the sensitive question will be abated and the respondent will feel encouraged to respond
truthfully. Warner showed that the responses obtained from this process will enable obtain-
ing reliable estimates of the population parameter without direct knowledge of the responses
obtained from individual respondents.

The RRT literature has focused on developing innovative randomization devices for
both qualitative and quantitative characteristics. Examples of sensitive qualitative charac-
teristics, particularly in the realm of public health, are use of contraceptive methods during
sexual activity (yes/no), illicit substance use (yes/no), ever had an induced abortion (yes/no),
ever had suicidal thoughts (yes/no) etc. Examples of sensitive quantitative features are the
number of sexual partners one has, the number of times a person used illicit substance in the
last month, the amount of time spent in a correctional facility etc. In addition to Warner’s
seminal work, we refer to a few book chapters and journal publications on RRT for details:
Chaudhuri and Mukerjee (1987, 1988), Hedayat and Sinha (1991), Chaudhuri (2011) and
Chaudhuri and Christofides (2013). Fifty years since it was first introduced, a celebratory
Golden Jubilee Volume on RRT was compiled by Chaudhuri et al. in 2016 in a volume of
the Handbook of Statistics.

In this paper, we are interested in quantitative sensitive characteristics; so we will focus
our discussion henceforth for such sensitive characteristics only.

Greensberg et al. (1971) presented the first work involving RRT for continuous sensi-
tive characteristics. Several others followed since, such as Eriksson (1973), Pollock and Bek
(1976), Anderson (1977), etc. In recent years, Diana and Perri (2011) showcased the use of
auxiliary information for estimating the mean of quantitative sensitive data and compared
different models from both the perspectives of gaining efficient estimators as well as protect-
ing respondents’ anonymity. In 2015, Bose’s work dealt with estimating the population mean
of a sensitive feature wherein it is assumed that the true population values are captured by
possibly a superset of M known quantities [T1, T2, . . . , TM ].

In the various approaches to extracting truthful responses on sensitive issues in surveys,
an alternative method was proposed by Raghavarao and Federer (1979) where the idea was
to incorporate basic experimental design elements in this framework. Block total response
technique (BTRT) was suggested, based on the use of supplemented block designs / balanced
incomplete block designs / spring balance weighing designs. In the context of a survey design,
a “block” may be thought of as a questionnaire, containing a subset of the total number of
questions, selected from a pool of questions which includes the sensitive question(s) as well.
Of course, a given block may or may not contain the sensitive question(s).

Henceforth, we will closely follow the methodology suggested by Raghavarao and Fed-
erer (1979) and adopted in Nandy et al. (2016) and elsewhere. We shall use the BTRT
framework to develop an estimator of the population mean for a quantitative sensitive char-
acteristic. The entire exercise of sampling and estimation is geared towards unbiased esti-
mation of the parameter under consideration. Layout of the rest of the paper is as follow. In
section 2, we present some of the BTRT literature on quantitative sensitive characteristics.
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In section 3, we introduce a BTRT version for estimating the mean for a sensitive quantita-
tive item, similar to the methodology presented in Nandy et al. (2016) for qualitative items.
In section 4, we provide an extension of our methodology that may potentially provide in-
creased protection of respondents’ privacy. Finally in section 5, we present some concluding
remarks.

2. Methods to Obtain Truthful Responses for Sensitive Quantitative Items
Through Survey

2.1. The development of BTRTS for sensitive quantitative items

As mentioned in the introduction, the BTRT method was suggested by Raghavarao
and Federer (1979) as an alternative to the RRT. What stands out about this method is the
increased protection of respondents’ privacy when answering to sensitive questions. In fact,
Coutts and Jann (2011) compared various RRT methods to BTR and showed that BTR
outperformed the RRTs in terms of increased respondents’ trust, better understanding of
the interview instructions, lesser time to answer as well as lower non-response rates.

After its introduction, subsequent works in BTR focused on how to incorporate multiple
sensitive questions into the design as well as development of various scoring mechanisms, i.e.,
how to score questions, other than in a binary fashion, so as to further increase respondents’
privacy. The latter is rooted in the idea that a total score could be incriminating if that score
could only be achieved by answering “yes” to at least one sensitive question. The works of
Smith and Street (2003) and Smith (2005) are some examples of these. In 2016, we undertook
various meaningful versions/generalizations of the BTRT and introduced empirical Bayes
estimators.

All advancements in this area, however, have been for qualitative sensitive character-
istics. In this work, we propose to present BTRT for quantitative sensitive characteristics.
For this, our starting points are our own work in Nandy et al. (2016), Bose (2015) and
Mukherjee et al. (2018). We present some details related to the latter two in the following
subsection.

2.2. Study of a sensitive quantitative item under general sampling scheme

According to Bose (2015), we assume that truthful unknown responses [Y1, Y2, . . . , YN ]
are captured by possibly a superset of M known quantities [T1, T2, . . . , TM ]. Therefore,
quantitative nature of the sensitive feature is only to the extent of being discrete-valued.
In effect, therefore, a finite population Y -distribution refers to a frequency distribution of
the T ’s such as [N1, N2, . . . , NM ; ∑

i Ni = N ] or, in other words, it refers to a probability
distribution [w1, w2, . . . , wM ] where wi = Ni/N ; i = 1, 2, . . . ,M. An RRT is now geared
towards unbiased estimation of the w’s - using a suitable randomization device as described
below.

Choose a fraction δ and a total of R chips such that R0 = δR chips [among the R chips]
read as “Report T” in case the respondent happens to choose any of these R0 chips. Further
to this, a set of Ri = (1− δ)R/M chips reads as “Report Ti”, if the respondent happens to
choose any one of these Ri chips (i = 1, 2, . . . ,M). It is now clear that each respondent is
supposed to select at random one chip and act accordingly by responding truthfully - without
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divulging the type of chip selected. The chosen chip is returned back to the collection each
time. That is how we generate the data under RRT.

The observed proportions of the T s, say p1, p2, . . . , pM are random and it turns out
that

E(pi) = δwi + (1− δ)/M ; i = 1, 2, . . . ,M.

This suggests that we can unbiasedly estimate wi as [pi − (1− δ)/M ]/δ for i = 1, 2, . . . ,M .
Therefore, the population mean [=∑

i wiTi] is unbiasedly estimated. It can be seen that
SRSWR sampling of respondents entails us to regard the responses as being independently
and identically distributed (iid). This simplifies the data analysis significantly.

Bose also gave an expression for variance of the estimate of the population mean.
Variance estimation is not considered there. It follows that this method has an inherent
limitation in that it does not address the estimation problem in case the sampling design is
fixed size (N, n) sampling design such as SRSWOR (N, n) or any arbitrary sampling design.
The iid nature of the responses is highly restrictive to do away with.

Next, Mukherjee et al.. (2018) undertook this study in its most general form. They
provided formulae for mean estimation, expression for variance of the estimate and a method
for variance estimation as well.

The idea is to provide an unbiased estimate of Y ∗
i - the true Y -value on the sensitive

feature, associated with the i-th respondent - for every selected respondent i in the sample.
Once the respondent i has been selected and has been asked to provide RR [Ri] by making
a random choice of one chip and acting accordingly, it turns out that

E(Ri) = δY ∗
i + (1− δ)

∑
i

Ti/M.

Therefore,
Ŷ ∗

i = [Ri − (1− δ)
∑

i

Ti/M ]/δ.

It is now simple to obtain the Horvitz Thomson Estimator (HTE) ∑
i Ŷ

∗
i /Nπi for the popu-

lation mean for any arbitrary fixed size (N, n) sampling design - the choice of the sampling
design being subject to providing positive first and second order inclusion probabilities etc.
For the proof of unbiasedness, deduction of the expression for variance as well as estimated
variance, we may refer to Mukherjee et al. (2018).

It must, however, be noted that the discrete nature of the quantitative feature is still
maintained. That is a major limitation of the study so far described.

3. Introducing Block Total Response Technique for Quantitative Sensitive
Feature

We now proceed to discuss BTR Technique for unbiased estimation of the population
mean for a sensitive quantitative feature Q∗ with true values Y (Q∗), apriori known to the
respondents. Also are apriori known values of each of a set of v other quantitative ordinary
[non-sensitive] features Q1, Q2, . . . , Qv to the respondents. We draw a random sample of n
respondents, following SRSWOR(N, n) sampling. We no longer require that the Y-values be
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discrete. At best, it may be convenient to make a choice of the ordinary features Qs such
that their ranges broadly cover the range of values of the sentitive feature Q∗.

We employ BTR technique in the following manner. We start with a Binary Proper
Equireplicate Block Design [BPEBD] involving b blocks, each of size k, with equal replication
number r of each of the v non-sensitive Qs. We then supplement each such block with one
additional question, viz., the sensitive question Q∗. Thus each of the b blocks of size k
is ‘extended’ to one of size (k + 1). We also introduce an additional block B0 of size v -
incorporating all the v non-sensitive Qs.

The respondents in the sample are randomly split into (b+1) sets of sizes n∗, n∗, . . . , n∗, n0.
We assume that the sample size n has a convenient integer decomposition n = (bn∗ + n0)
for suitably chosen integers n∗, n0. The b blocks each receive n∗ respondents and each re-
spondent provides only the sum total of responses to (k + 1) questions, the k non-sensitive
questions included in the specific block in which the respondent belongs, along with the
sensitive feature Q∗. The same is also true of the last block B0 - although all the v features
in this block are non-sensitive in nature. Our goal is to obtain an estimate of Ȳ (Q∗).

In this context, we are tempted to quote Raghavarao and Federer (1979): ”One early
anonymous-direct-question method that was used successfully (e.g. by A. J. King and others
at Iowa State University) was to have the respondent complete an unmarked questionnaire in
secret and to deposit the questionnaire in a large locked box in which other questionnaires had
been deposited; then, the respondent observed that the contents of the box were thoroughly
mixed. We shall call this method the ‘black box’ (BB) method.”

In our context, we may refer to (b+ 1) such black boxes in a meaningful manner.

3.1. Estimation of Ȳ (Q∗)

At this stage, let us consider an illustrative example with b = 5, v = 10, r = 2, k =
4, n = 350, n∗ = 50, n0 = 100. Let further the blocks of the BPEBD be formed as seen in
Table 1 below.

Table 1: Blocks in the BPEBD

Block Non-sensitive Features Sensitive Feature
B1 Q1, Q2, Q3, Q4 Q∗

B2 Q5, Q6, Q7, Q8 Q∗

B3 Q9, Q10, Q1, Q2 Q∗

B4 Q3, Q4, Q5, Q6 Q∗

B5 Q7, Q8, Q9, Q10 Q∗

In the first block, let us now compute the average of Block Total Responses - averaged
over all the n∗ respondents’ BTR scores. Let us denote it by ¯BTR(B1). It follows that its
expectation is given by E[ ¯BTR(B1)] = Ȳ (Q1) + Ȳ (Q2) + Ȳ (Q3) + Ȳ (Q4) + Ȳ (Q∗) where
Ȳ (Q) refers to the population average of true values for the feature identified through Q.
Likewise, we carry out the same for all blocks B1 to B5. Additionally, we work it out for the
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last block B0 as well.

Adding the results for the first 5 blocks, we obtain

E[
∑

i

¯BTR(Bi)] = 2[Ȳ (Q1) + Ȳ (Q2) + . . .+ Ȳ (Q10)] + 5Ȳ (Q∗)

while
E[ ¯BTR(B0)] = Ȳ (Q1) + Ȳ (Q2) + . . .+ Ȳ (Q10).

From the above, we deduce

ˆ̄Y (Q∗) = [∑i
¯BTR(Bi)]− 2[ ¯BTR(B0)]

5 .

3.2. Estimation of V ( ˆ̄Y ))

In order to work out variance estimate of this estimate of the population average of
the sensitive feature Q∗, we propose to develop an important representation of the estimate
derived above. For this, we assume that the respondents’ responses are not associated with
others’ responses and that, to most extent, the respondents behave independently - so far as
the responses are concerned.

We provide below an extensive use of permutation groups. Let P1 denote a random
permutation of size n∗ of the integers 1, 2, . . . , n∗ associated with the labels of the respondents
in Block 1. Likewise, we develop independently all other permutations P2 to Pb and lastly,
P0 of size n0 for the block B0.

Now we group the responses across the b + 1 blocks in sets of b + 1 - taking one from
each of the b blocks and 2 from the last block B0. Once more we illustrate this feature by
referring to the above example. We choose, for example, n∗ = 50 and n0 = 100 so that
n = 350.

P1 =[44 18 17 14 26 38 19 34 30 37 7 1 20 39 11 3 31 22 46 23 9 28 10 8 12
4 16 27 32 40 29 49 21 48 5 13 15 43 50 2 41 25 35 45 33 36 47 42 6 24];

P2 =[4 30 16 14 38 46 21 39 32 13 49 19 20 2 48 47 17 31 9 50 27 44 35 6 40
3 10 12 37 11 8 29 1 22 26 24 33 7 34 18 45 23 42 36 43 5 28 15 25 41];

P3 =[7 8 44 21 39 38 4 43 19 11 45 48 26 3 10 31 15 49 30 25 16 17 46 14 2
5 28 32 1 41 47 40 20 34 27 18 9 13 24 50 36 37 23 33 42 22 12 29 35 6];

P4 =[13 29 41 11 36 40 46 31 3 48 50 30 7 14 23 21 25 8 9 32 2 37 28 1 42 33
20 45 49 19 12 16 44 43 38 15 39 24 26 4 22 10 17 27 34 6 18 35 5 47];

P5 =[2 37 13 47 27 21 32 1 22 43 20 33 36 24 28 16 9 35 19 15 31 44 23 41
30 29 5 14 4 49 34 42 48 12 18 6 10 46 17 26 39 7 3 45 25 38 50 11 8 40];
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P0 =[9 10 95 26 18 61 21 60 57 8 67 70 73 2 46 54 100 80 17 40 5 4 77 19 87 52
76 25 81 35 55 14 50 37 29 69 38 89 98 90 59 12 68 7 53 16 75 39 94 48 42
32 56 36 41 96 82 65 78 62 74 93 86 3 97 13 47 49 63 88 85 43 51 30 91 15
58 22 64 71 33 1 27 45 28 20 84 11 23 44 99 34 24 6 31 66 79 92 72 83];

According to the above permutations applied to different blocks, Set 1 comprises of
responses of 7 respondents labeled (1) 44 in B1, (2) 4 in B2, (3) 7 in B3, (4) 13 in B4, (5) 2
in B5 and (6,7) 9, 10 in B0. An estimator for Ȳ (Q∗) based on this data Set 1 is given by

1/5× [{Y (44;Q1) + Y (44;Q2) + Y (44;Q3) + Y (44;Q4)}
+ {Y (4;Q5) + Y (4;Q6) + Y (4;Q7) + Y (4;Q8)}
+ {Y (7;Q9) + Y (7;Q10) + Y (7;Q1) + Y (7;Q2)}
+ {Y (13;Q3) + Y (13;Q4) + Y (13;Q5) + Y (13;Q6)}
+ {Y (2;Q7) + Y (2;Q8) + Y (2;Q9) + Y (2;Q10)}
− {Y (9;Q1) + Y (9;Q2) + . . .+ Y (9;Q10)}
− {Y (10;Q1) + Y (10;Q2) + . . .+ Y (10;Q10)}].

We proceed in this manner and obtain 50 estimates of Ȳ (Q∗) based on the 50 sets as defined
above. Because of the underlying permutation principle, these estimates are also exchange-
able in nature. This characterization of the individual estimates lends itself to easy com-
putation of their average, which is the estimate of the population mean. Further, variance
estimation becomes a trivial task: ∑

i(ei − ē)2/n(n− 1) is an unbiased variance estimate of
ē based on iid estimates es.

Even though the respondents are selected according to SRSWOR(N, n), use of permut-
ations within blocks enables us to justify the assumption of iid nature of the estimates based
on different sets of data. It is not however clear if the same holds true for any arbitrary fixed
size (n) sampling design.

In the above, we assumed the condition: n = bn∗ + n0 for suitably chosen integers
n∗, n0. It is possible to relax this condition and instead work with another representation.
We reconsider the above example to illustrate this point.

Once again, we start with n = 350 but assume the representation: 350 = 30+40+50+
60 + 70 + 100. Note that there is a common divisor of 10 among all the respondent group
sizes. This time we can assemble the sets so that we have 10 iid estimates of the parameter
of interest, e.g., mean of the sensitive feature Q∗. Once these formations are done, the rest
is routine in terms of computation of mean and variance of iid estimates.

We describe the essential step below with reference to the first of the 10 sets of esti-
mates. The sizes of the blocks will be the highest common factor, which is 10 in this case.
This suggests (i) deriving random permutations of the respondent labels within each block;
(ii) forming 10 subsets of equal size within each block. Note that subset sizes will vary across
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the blocks; (iii) forming unbiased estimates for the mean of the sensitive feature [Q∗] from
subsets collected serially across all the blocks; (iv) using iid sample estimates to arrive at
the over-all average etc.

We carry out the exercise below. The subsets within each block, after random permu-
tation, are shown within parenthesis. Also the block sizes are indicated in parenthesis.
P1(1− 30) =[(30 7 1 ); (20 11 3); (22 23 9); (28 10 8); (12 4 16);

(27 29 21); (5 13 15); (2 25 6); (24 18 17); (14 26 19)];
P2(1− 40) =[(13 19 20 2); (17 31 9 27); (35 6 40 3); (10 12 37 11); (8 29 1 22);

(26 24 33 7); (34 18 23 36); (5 28 15 25); (4 30 16 14); (38 21 39 32)];
P3(1− 50) =[(7 8 44 21 39); (38 4 43 19 11); (45 48 26 3 10); (31 15 49 30 25);

(16 17 46 14 2); (5 28 32 1 41); (47 40 20 34 27); (18 9 13 24 50);
(36 37 23 33 42); (22 12 29 35 6)];

P4(1− 60) =[(16 39 48 42 32 56); (36 41 3 13 47 49); (43 51 30 15 58 22);
(33 1 27 45 28 20); (11 23 44 34 24 6 31); (35 55 14 50 37 29);
(38 59 12 7 53 9); (10 26 18 21 60 57); (8 2 46 54 17 40); (5 4 77 19 52 25)]

P5(1− 70) =[(3 13 47 49 63 43 51); (30 15 58 22 64 35 55); (14 50 37 29 69 38 59);
(12 68 7 53 33 1 27); (45 28 20 11 23 44 34); (24 6 31 66 9 10 26);
(18 61 21 60 57 8 67); (70 2 46 54 17 40 5); (4 62 19 52 25 16 39);
(48 42 32 56 36 41 65)].

P0(1− 100) is the 10 subsets formed taking 10 permutations at a time and serially - starting
from the left corner.

We display the result based on data analysis for Set 1 across all the 6 blocks. For
B1, we consider the first set of 3 respondents labeled (1, 7, 30) and average out the BTRs
collected from them. So,

E(Set1) = Ȳ (Q1) + Ȳ (Q2) + Ȳ (Q3) + Ȳ (Q4) + Ȳ (Q∗).

Likewise, we have similar results from the first set of all other blocks. We denote these
averaged responses by R(B1;S1), R(B2 : S1), . . . , R(B6;S1). It now follows that

ˆ̄Y (Q∗;S1) = [R(B1;S1) +R(B2;S1) + . . .+R(B5;S1)− 2R(B6;S1)]/5.

We will be referring to 10 such sample estimates and proceed to compute the combined
estimate of the population mean of Q∗ and its estimated standard error.

So,
ˆ̄Y (Q∗;S2) = [R(B1;S2) +R(B2;S2) + . . .+R(B5;S2)− 2R(B6;S2)]/5,
ˆ̄Y (Q∗;Si) = . . . .

ˆ̄Y (Q∗;S10) = [R(B1;S10) +R(B2;S10) + . . .+R(B5;S10)− 2R(B6;S10)]/5.
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Therefore,

ˆ̄Y (Q∗) = 1/10[ ˆ̄Y (Q∗;S1) + ˆ̄Y (Q∗;S2) + . . .+ ˆ̄Y (Q∗;S10)].

Further, estimated standard error is computed as usual by taking square root of
∑

( ˆ̄Y (Q∗;Si)− ˆ̄Y (Q∗))2/10× 9.

4. An Extention of the BTRT Method

In the technique presented above, in every block [B1 to Bb], we are utilizing some k of
the v Qs - leaving the rest unutilized. When k is small, respondents may not feel comfortable
responding truthfully since responding to Q∗ is mandatory. In this section, we provide an
extension of the above technique, as follows.

For every block out of B1 to Bb, we bring a variation in the block composition as: 1. List
of k “must respond” Q’s - these are kept in Part A. This is the same as before. 2. Remaining
(v−k) Q’s and Q∗ are kept in Part B. From Part B, a respondent is to make a random choice
of exactly one question from the total (v − k + 1) questions; next the respondent will blend
the selected question with those in Part A and provide BTR - without divulging the nature
of the question selected from Part B. To simplify the data analysis, it may be assumed that
selection from Part B is governed by the rule: Select Q∗ with probability δ and any one
of the remaining Q’s with probability (1 − δ)/(v − k). Further, we use the same selection
mechanism in each such block.

Once more, we can study the formation of estimates based on the sets separately and
then combine them. We display the result for Set 1 below for the example considered above
and with the choice δ = 0.4. Accrued Block Totals provide for the first 5 blocks, the following
expressions for their expectations under random choice of the question selected from Part B:

[{Y (44; Q1)+Y (44; Q2)+Y (44; Q3)+Y (44; Q4)}+0.1{Y (44; Q5)+. . .+Y (44; Q10)}+0.4Y (44; Q∗);

{Y (4; Q5) + Y (4; Q6) + Y (4; Q7) + Y (4; Q8)}+ 0.1{Y (4; Q9) + . . . + Y (4; Q4)}+ 0.4Y (4; Q∗);

{Y (7; Q9) + Y (7; Q10) + Y (7; Q1) + Y (7; Q2)}+ 0.1{Y (7; Q3) + . . . + Y (7, Q8)}+ 0.4Y (7; Q∗);

{Y (13; Q3)+Y (13; Q4)+Y (13; Q5)+Y (13; Q6)}+0.1{Y (13; Q7)+ . . .+Y (13; Q2)}+0.4Y (13; Q∗);

{Y (2; Q7) + Y (2; Q8) + Y (2; Q9) + Y (2; Q10)}] + 0.1{Y (2; Q1) + . . . + Y (2; Q6)}+ 0.4Y (2; Q∗)

As for block B0, we obtain [Y (9;Q1) + Y (9;Q2) + . . .+ Y (9;Q10) + Y (10;Q1) + Y (10;Q2) +
. . .+ Y (10;Q10)].

From the above, it is routine to obtain an estimate for the average Y (Q∗). Once such
estimates are computed from each set, they may be treated as iid sample estimates and
hence mean estimation and variance estimation are immediate.
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5. Concluding Remarks

In the context of sensitive quantitative features, we have proposed a version of block
total response technique which has flexibility in terms of implementation. We expect that
the scheme in section 4 will likely provide increased privacy protection to respondents, com-
pared to the BPEBD scheme in Section 3 which involves only the sensitive item Q∗ in the
supplementary part. We plan to quantify this increase in future work. It may be noted that
in most practical surveys, collection of data is on several variables, which are then used to
estimate not just marginal distributions but also joint distributions, correlations, regressions
etc. Deriving joint inferences from data gathered using BTRT would be interesting. We
plan to explore this in future study. The innovativeness of the method studied here lies
in procuring an estimate as well as estimated standard error by exploiting a permutation
method to generate exchangable observations. The results have been deduced under SR-
SWOR sampling. For a general fixed size sampling design, we have yet to develop a version
of BTRT. This is true for both qualitative and quantitative sensitive features.
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Abstract
The article investigates the simultaneous assessment of normality and homoscedasticity

in a one-way random effects model. Test procedures are developed assuming a smooth
alternative to the normal distribution, specified using Legendre polynomials and Hermite
polynomials. Score statistics are derived under both classes of alternatives, and a data
driven approach is used to determine the order of the polynomials. Numerical results are
reported in order to assess the accuracy of the chisquare distribution as the null distribution
of the score statistics. Estimated powers are reported in order to compare the score tests
derived under the alternatives based on Legendre polynomials and Hermite polynomials. An
example and the corresponding data analysis are reported in order to illustrate the results.
Possible extensions to other models involving random effects are briefly indicated.

Key words: Hermite polynomials; Legendre polynomials; Score test; Smooth alternative.
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1. Introduction

Mixed and random effects models are among the most widely used tools in applied
work. While analyzing data using such models, the standard assumptions include normal-
ity of the random effects and the experimental error terms, as well as homoscedasticity
of the error distribution. The present work is focused on testing these assumptions under
the simplest random effects model, namely, the one-way random effects model. The usual
practice is to test these assumptions separately. For example, if normality can be assumed,
homoscedasticity can be assessed using a formal test such as Bartlett’s test. One can also
use a test that is less sensitive to the normality assumption, for example the Levene test
and the modified Levene test; see the article by Chang, Pal, and Lin (2017), and Section 3.4
in the book by Montgomery (2020). On the other hand, normality is often assessed using
formal tests or using a graphical method such as the normal probability plot, after assuming
homoscedasticity. It is certainly desirable to have test procedures that will permit us to
simultaneously assess homoscedasticity and normality. The present work aims to develop
such test procedures.
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In order to formally introduce the relevant hypothesis, consider data falling into a
groups (for example, corresponding to a treatments in a designed experiment). Suppose we
have nl observations available from the lth group, with ylj denoting the jth observation; j
= 1, 2, · · · , nl, l = 1, 2, · · · , a. We are allowing the nl’s to be unequal, so that we can
have unbalanced data. The one-way random model for the ylj, along with the normality
assumptions, is given by

ylj = µ+ αl + εlj, αl ∼ N(0, σ2
α), εlj ∼ N(0, σ2

l ), (1)

where all the random variables are assumed to be independent. Note that the error terms
(i.e., the εlj’s) have variance σ2

l , which could differ across the a groups. The αl’s in (1)
denote the random effects, l = 1, 2, · · · , a. If we write yl = (yl1, yl2, · · · , ylnl)′, then the
above assumptions imply

yl ∼ N
(
µ1nl , σ

2
l Inl + σ2

α1nl1
′
nl

)
, (2)

where 1r is an r×1 vector of ones. We note that the yl’s are independent for l = 1, 2, · · · , a.
Clearly, data analysis based on the one-way random model under the standard assumptions
of normality and homoscedasticity amounts to analyzing the data under the multivariate
normal model (2), having the structured covariance matrix as specified, and having σ2

l s all
equal. Thus testing homoscedasticity and normality under the one-way random effects model
is equivalent to testing the equality of the σ2

l along with the multivariate normality of the yl,
l = 1, 2, · · · , a, where the covariance matrix has the structure specified in (2). Consequently,
our normality assessment is for the multivariate normality of the yl, l = 1, 2, · · · , a, and
not for the univariate normality of the random effects and the error terms, even though the
latter implies the multivariate normal distribution in (2).

Our development relies on the specification of alternatives to normality to be the class
of smooth alternatives proposed by Neyman (1937). In general, suppose the problem is
to test if a continuous random variable Y follows a specified distribution having density,
say f(y,β), depending on an unknown parameter vector β. The alternative hypothesis is
specified in terms of a smooth alternative involving orthonormal polynomials, say {pi(y;β)},
i = 1, 2, · · · , that are orthonormal with respect to f(y;β). An order k smooth alternative,
say gk(y;θ,β), is given by

gk(y;θ,β) = C(θ,β) exp
{ k∑
i=1

θipi(y;β)
}
f(y;β). (3)

In (3), θ = (θ1, · · · , θk)′ is a vector of unknown parameters, and C(θ,β) is a normalizing
constant. As already noted, the {pi(y;β)} are orthonormal polynomials, orthonormal with
respect to the null density f(y;β). It should be clear that if θ is the null vector, then
gk(y;θ,β) in (3) reduces to the null density f(y;β). In other words, the null density is
embedded in the class of alternatives specified in (3), and testing for the goodness-of-fit of
the null density is equivalent to testing if the k−dimensional vector θ is the null vector. That
is, the goodness-of-fit problem is now reduced to that of testing a hypothesis concerning a
finite number of parameters.
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Several authors have derived score tests for testing goodness-of-fit under the Neyman
(1937) framework, and have investigated the theoretical properties of such tests for a vari-
ety of goodness-of-fit problems: see Ledwina (1994), Kallenberg and Ledwina (1995, 1997a,
1997b), Inglot and Ledwina (1996), Inglot, Kallenberg and Ledwina (1997), Kallenberg, Led-
wina and Rafajlowicz (1997) and Janic and Ledwina (2009). Most of these articles address
testing only the goodness of fit of a particular distribution; however, Kallenberg, Ledwina
and Rafajlowicz (1997) address the simultaneous testing of normality and independence in
a bivariate scenario. The simultaneous assessment of the various assumptions in a standard
linear model set up is taken up in Peña and Slate (2006), and the authors consider the Ney-
man (1937) framework in order to specify alternatives to normality. More recently, Yang and
Mathew (2018) have addressed the simultaneous testing of normality and homoscedasticity
in a fixed effects model when we have grouped data, similar to those in an ANOVA context
with fixed effects. A book-length discussion of smooth tests is available in Rayner, Thas and
Best (2009).

In the next section, we shall derive score tests for testing normality and homoscedas-
ticity in the set up of the model (2), assuming smooth alternatives of the type (3). We shall
consider two specifications for the smooth alternative based on two choices for the orthonor-
mal polynomials {pi(y;β)} in (3), namely, Legendre polynomials and Hermite polynomials.
Thus we have two score tests corresponding to the two specifications for the alternatives.
While specifying the alternatives, there is obvious arbitrariness in the choice of the order
of the Legendre polynomials and Hermite polynomials, i.e., the quantity k in (3). We shall
follow a data driven approach for choosing the order; an idea developed in Inglot, Kallenberg
and Ledwina (1994), and pursued in some of the later papers by the authors, cited earlier.
Our tests being based on score statistics, we can think of approximating the null distribution
with a chisquare distribution. Thus we shall report numerical results in order to assess the
accuracy of the chisquare distribution as the null distribution. The tests will be compared
using estimated powers. Data analysis based on an example will be reported in order to
illustrate the results.

2. Smooth Alternatives and Score Tests

Before we formally specify the alternative hypothesis, we shall consider an orthogonal
transformation of each of the data vectors yl in (2), l = 1, 2, · · · , a. Let Ql =

(
1√
nl

1nl , Q∗l
)

be an nl × nl Helmert matrix, and consider the transformation

vl = Q′lyl, l = 1, 2, · · · , a, (4)

so that E(vl) = (µ√nl, 0, · · · , 0)′ , V (vl) = σ2
l Inl + σ2

αdiag(nl, 0, 0, · · · , 0).
Clearly, testing multivariate normality of the yl’s is equivalent to testing the same for the
vl’s. Writing vl = (vl1, vl2, · · · , vlnl)′, we note that multivariate normality for the yl’s implies

vl1 ∼ N(µ√nl, σ2
l + nlσ

2
α), vlj ∼ N(0, σ2

l ), j = 2, 3, · · · , nl, (5)

l = 1, 2, · · · , a, where the vlj’s for j = 1, 2, · · · , nl, are also independent (in view of the
diagonal covariance matrix of vl, noted above). We also note that the vlj’s for j = 1, 2, · · · ,
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nl, are uncorrelated random variables, even if multivariate normality of the yl’s does not
hold.

In the remainder of this section we shall test the equality of the σ2
l ’s and the univari-

ate normality of the vlj’s against smooth alternatives defined through Legendre polynomials
and Hermite polynomials. We shall do so assuming that the vlj’s for j = 1, 2, · · · , nl,
are all independent. That is, we are testing if the the vlj’s for j = 1, 2, · · · , nl, are all
independent normally distributed against the alternative that they are independent having
a non-normal distribution defined through a smooth alternative. In other words, the class
of smooth alternatives that we are considering is somewhat restricted in view of the inde-
pendence assumption of the vlj’s under the alternative. The advantage of the independence
assumption is that the normality testing is now reduced to testing the univariate normality
specified in (5). It should be noted that in an article on normality testing in a two-way ran-
dom model with and without interaction, Xu, Li and Song (2013) reduced the problem to
that of testing univariate normality, after transforming the data to uncorrelated components
based on a transformation that depends on the unknown variance components. The authors
then replaced the unknown variance components with estimates, and applied standard uni-
variate normality tests, proceeding under the assumption that the transformed univariate
components are independent even under the alternative. The transformation that we have
used, based on the Helmert matrices Ql, is of course parameter free.

2.1. Smooth alternatives based on Legendre polynomials

Let

zl1 = vl1 − µ
√
nl√

σ2
l + nlσ2

α

, ul1 = Φ (zl1) , zlj = vlj/σl, and ulj = Φ (zlj) , j = 2, 3, · · · , nl, (6)

where the zlj’s are independent standard normal random variables for j = 1, 2, · · · , nl and l
= 1, 2, · · · , a, and Φ(.) denotes the standard normal cdf. In this subsection, we shall specify
smooth alternatives based on Legendre polynomials; we recall that these are polynomials
that are orthonormal with respect to the uniform distribution in the interval (0, 1). Let
bi(.), i = 1, 2, · · · , denote the system of Legendre polynomials. It is easily verified that if
y ∼ N(µ, σ2), then a system of orthonormal polynomials with respect to the N(µ, σ2) density
is obtained as bi

(
Φ
(
y−µ
σ

))
, i = 1, 2, 3, · · · . In view of this, we conclude that for each fixed

l and j, bi(ulj) = bi (Φ(zlj)), i = 1, 2, · · · , form a system of orthonormal polynomials with
respect to the standard normal distribution, where ulj = Φ (zlj), as defined in (6). While
specifying the smooth alternative, we will consider the case of only a common alternative
across the a different groups. It is certainly possible to have different alternatives across the
different groups, but we shall not consider this case.

In order to specify the likelihood function under a Legendre polynomial based smooth
alternative, we note that the smooth alternative in (3) is specified in terms of a parameter
vector θ = (θ1, · · · , θk)′, and the null density corresponds to θ being the null vector. Since
we need to specify smooth alternatives for vl1, l = 1, 2, · · · , a, and for vlj, j = 2, 3, · · · ,
nl, l = 1, 2, · · · , a, where these quantities are defined in (4) and (5), we shall use two
parameter vectors similar to θ. Thus let θ1 = (θ11, θ12, · · · , θ1k1)′, θ2 = (θ21, θ22, · · · , θ2k2)′,
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and θ = (θ′1,θ′2)′. The vector θ1 will be used to specify the smooth alternative for vl1, l =
1, 2, · · · , a, and the vector θ2 will be used to specify the smooth alternative for vlj, j = 2,
3, · · · , nl, l = 1, 2, · · · , a. Recall that we are assuming the independence of all the the vlj’s,
within and across the groups. The likelihood function under the assumption of a common
alternative across the groups can be specified as

L =
a∏
l=1

C(θ, µ,σ, σα) exp
{ k1∑
r=1

θ1rbr(ul1) +
nl∑
j=2

k2∑
s=1

θ2sbs(ulj)
}
fl1(vl1, µ, σl, σα)

nl∏
j=2

fl2(vlj, σl)
 ,

(7)
where σ = (σ1, σ2, · · · , σa)′, and for l = 1, 2, · · · , a, fl1(vl1, µ, σl, σα) and fl2(vlj, σl), respec-
tively, denote the normal density functions of vl1 and vlj (j=2, 3, · · · , nl), when normality
holds. The smooth alternatives that represent the departure from the normal distribution
have the order k1 for vl1 (l = 1, 2, · · · , a), and order k2 for vlj (l = 1, 2, · · · , a, j=2, 3, · · · ,
nl). The null hypothesis to be tested is that of normality and homoscedasticity. In terms of
the parameters in (7) the hypothesis can be stated as

H0 : θ = (θ′1,θ′2)′ = 0, and σ2
1 = σ2

2 = · · · = σ2
a. (8)

We shall find it convenient to transform the vector σ = (σ1, σ2, · · · ., σa)′ using an a×a
Helmert matrix Q = ((qlc)) having the first column equal to 1√

a
1a, as done in Yang and

Mathew (2018). We shall denote the transformed vector by η. That is,

η = Q′σ = (η1, η2, · · · , ηa)′. (9)

It is easy to see that σ2
1 = σ2

2 = · · · = σ2
a is equivalent to η2 = η3 = · · · = ηa = 0. The

log-likelihood function has the expression

lnL =
a∑
l=1

ln{C(θ, µ,σ, σα)}+
k1∑
r=1

θ1rbr(ul1) +
nl∑
j=2

k2∑
s=1

θ2sbs(ulj) + ln{fl1(vl1, µ, σl, σα)}

+
nl∑
j=2

ln{fl2(vlj, σl)}
 . (10)

In order to obtain the score statistic for testing the hypothesis in (8), we need the
elements of the score vector and its variance-covariance matrix, evaluated under the null
hypothesis. Explicit expressions can be obtained for these, and are given in the appendix.
We note that some of the covariances are zeros. In the case of balanced data (ie., all the
nl, l = 1, 2, · · · , a, are equal having a common value, say n), some additional covariances
become zeros. These are also noted in the appendix.

While computing the score statistic, the unknown parameters are obviously replaced
with their ML estimates under the null hypothesis. Thus we need the MLEs of µ, σ2 and σ2

α,
where σ2 is the common value of the σ2

l ’s, under the null hypothesis. In the case of balanced
data, we shall use the MLEs computed without imposing the nonnegativity constraint on the
σ2
α. If ȳ.. denotes the average of all the yljs, and SSe and SSα, respectively, denote the sums
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of squares due to error and due to the αi’s under the model (1), the MLEs in the balanced
case are given by

µ̂ = ȳ.., σ̂
2 = SSe

a(n− 1) and σ̂2
α = 1

n

[
SSα
a
− SSe
a(n− 1)

]
, (11)

where σ2 denotes the common value of the σ2
l s and n denotes the common value of the nls.

As we shall see, the lack of the nonnegativity of σ̂2
α will not present any problems for us,

since the estimator required in our application will be σ̂2 +nσ̂2
α, which is always nonnegative

(being equal to SSα/a). Similar explicit estimates can also be obtained in the unbalanced
case as follows. Define

ȳl =
nl∑
j=1

ylj/nl, ¯̄y = 1
a

a∑
l=1

ȳl, SSe =
a∑
l=1

nl∑
j=1

(ylj − ȳl)2,

ñ = a×
{ 1
n1

+ 1
n2

+ · · ·+ 1
na

}−1
, SSα = ñ

a∑
l=1

(ȳl. − ¯̄y)2, (12)

where we note that ñ is the harmonic mean of the nl’s. Such a formulation is due to Thomas
and Hultquist (1978); see also Krishnamoorthy and Mathew (2009, Chapter 4). It can be
verified that E(¯̄y) = µ, E(SSe) = (N − a)σ2 and E(SSα) = (a − 1)(ñσ2

α + σ2), where
N = ∑a

l=1 nl. The estimates of µ, σ2 and σ2
α that we shall use are given by

µ̂ = ¯̄y, σ̂2 = SSe/(N − a) and σ̂2
α = 1

ñ

[
SSα
a
− SSe
N − a

]
. (13)

It should be noted that the estimates in (13) are not the MLEs. In fact the MLEs have no
explicit expression and have to be numerically obtained in the unbalanced case. Nevertheless,
for convenience we shall use the estimates in (13).

In order to give an expression for the score statistic, let us write the parameters in the
order (θ′,η∗′

, η1, σα, µ)′, where η∗ = (η2, η3, · · · , ηa)′ (see (9)) and we recall the partitioning
of θ into the two components θ1 and θ2 of dimensions k1 × 1 and k2 × 1, respectively. Thus
the null hypothesis in (8) is equivalent to

H0 : θ = (θ′1,θ′2)′ = 0, and η∗ = 0. (14)

The null hypothesis involves (k1 +k2 +a−1) parameters; in addition, we have three nuisance
parameters, namely η1, σα and µ. Now the the score vector has dimension k1 + k2 + a + 2,
which is the total number of parameters under the model (7). Consequently, if V denotes
the variance-covariance matrix of the score vector, whose elements are arranged according
to the parameter order (θ′,η∗′

, η1, σα, µ)′, then clearly V has dimension (k1 + k2 + a+ 2)×
(k1 +k2 +a+2). The elements of the score vector, and those of V are given in the appendix,
where the expressions have been simplified assuming the null hypothesis (14).

Let us consider a partitioning of V as

V =
(
V11 V12
V21 V22

)
,
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where the dimension of V11 is (k1 + k2 + a − 1) × (k1 + k2 + a − 1), corresponding to the
parameters θ and η∗ in the null hypothesis (14), and the dimensions of the remaining blocks
of V should be clear. Let u denote the score vector and u1 denote the first (k1 + k2 + a− 1)
elements of u corresponding to the parameters θ and η∗, and define V11.2 = V11−V12V

−1
22 V21.

Recall that u1 and V11.2 are functions of the nuisance parameters η1, σα and µ; equivalently
σ, σα and µ (since, in view of (9), η1 =

√
a×σ under the null hypothesis). The score statistic

for testing the hypothesis (8), or equivalently (14), is given by
Ŝ = û′1V̂

−1
11.2û1, (15)

where we have used the notations û1 and V̂11.2 to emphasize that the unknown nuisance
parameters σ, σα and µ have been replaced by estimates computed assuming the null hy-
pothesis; we shall use the estimates of σ2, σ2

α and µ, exhibited earlier in this section. For
fixed k1 and k2, the score statistic Ŝ in (15) has an approximate chisquare distribution with
df = (k1 + k2 + a− 1) under the null hypothesis.

In order to implement the test based on the score statistic given in (15), it is necessary
to choose the orders k1 and k2 in the likelihood function (7). For this, we shall follow a data-
driven approach; i.e., estimate the orders based on the data, as done in Inglot, Kallenberg and
Ledwina (1994). Such an approach was also adopted in Yang and Mathew (2018) in a fixed
effects linear model. Here we shall only present the relevant expressions that will facilitate
the numerical computation of k1 and k2, referring to the original articles for details of the
methodology and the associated theoretical results. A brief explanation of the methodology
is also given in Yang (2016).

Referring to the quantities defined in (6), let

ẑl1 = vl1 − µ̂
√
nl√

σ̂2 + nlσ̂2
α

, ûl1 = Φ (ẑl1) , ẑlj = v̂lj/σ̂, and ûlj = Φ (ẑlj) , j = 2, 3, · · · , nl, (16)

where σ̂, σ̂α and µ̂ are the estimates obtained under the null hypothesis, and used in the
computation of the score statistic Ŝ in (15). Let Ĥ1,k1(σ̂, σ̂α, µ̂) and Ĥ2,k2(σ̂) be defined as

Ĥ1,k1(σ̂, σ̂α, µ̂) = 1
a

k1∑
i=1

{
a∑
l=1

bi (ûl1)
}2

Ĥ2,k2(σ̂) = 1
N − a

k2∑
i=1


a∑
l=1

nl∑
j=2

bi (ûlj)


2

, (17)

where N =
a∑
l=1

nl, the bi(.)’s are Legendre polynomials and the remaining quantities are

defined earlier in this section. We note that the divisor a in the expression for Ĥ1,k1 is the
number of ẑl1s, l = 1, 2, · · · , a, and the divisor N − a in the expression for Ĥ2,k2 is the
number of ẑljs, j = 2, 3, · · · , nl, l = 1, 2, · · · , a. Assuming upper bounds d1 for k1 and d2

for k2, the orders k1 and k2, say k̂1 and k̂2, are determined as follows:
k̂1 = min{k1 : 1 ≤ k1 ≤ d1, Ĥ1,k1(σ̂, σ̂α, µ̂)− k1 ln(a) ≥ Ĥ1,r(σ̂, σ̂α, µ̂)− r ln(a), r = 1, · · · , d1}
k̂2 = min{k2 : 1 ≤ k2 ≤ d2, Ĥ2,k2(σ̂)− k2 ln(N − a) ≥ Ĥ2,s(σ̂)− s ln(N − a), s = 1, · · · , d2}.

(18)
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In order to determine k̂1 and k̂2 according to the expressions in (18), we need to select
the bounds d1 and d2. For this, we shall make use of a result mentioned in Kallenberg and
Ledwina (1997b), citing Inglot, Kallenberg and Ledwina (1994), which states that the data
driven order converges to the value 1 in probability. Even though our set up is different
from that under which this result is proved, we proceed under the assumption that the data
driven approach is unlikely to yield values of k̂1 and k̂2 that are far removed from the value
1. In our simulations, we chose d1 = d2 = 6.

Algorithm 1 given below gives a summary of the steps necessary to implement our
proposed test for testing the null hypothesis in (8) against a Legendre polynomial based
smooth alternative.

Algorithm 1

1. Compute the estimates of µ̂, σ̂2 and σ̂2
α given in (13).

2. Compute the nl × 1 vectors vl = (vl1, vl2, · · · , vlnl)′ given in (7).

3. Compute the ûlj given in (16), which requires the quantities computed in the previous
two steps.

4. Compute k̂1 and k̂2 in (18) where Ĥ1,k1(σ̂, σ̂α, µ̂) and Ĥ2,k2(σ̂) are given in (17). For
the quantities d1 and d2 in (18), we recommend the values d1 = d2 = 6.

5. Compute the score vector and its variance-covariance matrix using the expressions
given in the appendix, and replace µ, σ2 and σ2

α with µ̂, σ̂2 and σ̂2
α, respectively. Let

the quantities so obtained be denoted by û and V̂ , respectively.

6. Partition û and V̂ as

û =
(
û′1, û

′
2

)′
and V̂ =

(
V̂11 V̂12

V̂21 V̂22

)
,

where û1 is a (k̂1 + k̂2 +a−1)×1 vector, and V̂11 is a (k̂1 + k̂2 +a−1)× (k̂1 + k̂2 +a−1)
matrix.

7. Compute V̂11.2 = V̂11 − V̂12V̂
−1

22 V̂21 and the score statistic Ŝ = û′1V̂
−1

11.2û1. Reject H0 in
(8) if the value of the score statistic exceeds the appropriate percentile of the chisquare
distribution with df = (k̂1 + k̂2 + a− 1).

For the case of balanced data, the nl’s have to be replaced with their common value,
say n, in all the expressions. As a result, some of the covariances will become zeros, and these
are noted in the appendix. It can then be verified that in the balanced case the matrix V̂11.2
is a block-diagonal matrix, with three diagonal blocks having dimensions k̂1× k̂1, k̂2× k̂2 and
(a− 1)× (a− 1), corresponding to θ1, θ2 and η∗, where η∗ = (η2, η3, · · · , ηa)′. Accordingly,
the score statistic splits into three components. Thus when the null hypothesis is rejected, it
is possible to draw conclusions on which component/components contributed to the rejection:
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the non-normality of vl1’s (l = 1, 2, · · · , a), the non-normality of vlj’s (j = 2, 3, · · · , nl, l =
1, 2, · · · , a), or the heteroscedasticity.

It turns out that the distributions of the score vector û1 and the submatrix of V̂11.2
corresponding to η∗ depend on σ and σα. However, in the balanced case we have

Var
(
∂ lnL
∂ηc

)
= 2

[
σ2

(σ2 + nσ2
α)2 + (n− 1)

σ2

]
= 2

[
1

σ2(1 + nλ)2 + (n− 1)
σ2

]
,

c = 1, 2, · · · , a, where λ=σ2
α

σ2 . We note that the above variance varies between (n − 1)/σ2

and n/σ2, as λ varies between 0 and ∞. Thus the impact of σ2
α on the score test appears to

be fairly small in the balanced case, and we may anticipate this to be so in the unbalanced
case as well. Later we shall examine this further through numerical results.

2.2. Smooth alternatives based on Hermite polynomials

We shall now consider the likelihood function under a smooth alternative based on
Hermite polynomials. The likelihood is similar to (7) except that Hermite polynomials are
used instead of Legendre polynomials. Thus let hi(z), i = 1, 2, · · · , denote the system of
Hermite polynomials. The log-likelihood is now given by

lnL =
a∑
l=1

ln{C(θ, µ,σ, σα)}+
k1∑
r=1

θ1rhr(zl1) +
nl∑
j=2

k2∑
s=1

θ2shs(zlj) + ln{fl1(vl1, µ, σl, σα)}

+
nl∑
j=2

ln{fl2(vlj, σl)}
 , (19)

where the zl1 and zlj are defined in (6). The components of the score vector (under the null
hypothesis) can be derived similar to the Legendre case, and are given in the appendix. The
elements of the variance covariance matrix of the score vector are also given in the appendix.
The score statistic can be worked out similar to (15). It can also be verified that the matrix
analogous to V11.2 is a block diagonal matrix, having three diagonal blocks. Furthermore,
in the balanced case, V11.2 will reduce to a completely diagonal matrix. Recall that under
the Legendre polynomial based alternative, V11.2 simplified to a block diagonal matrix only
under balanced data.

We can compute data driven choices of the orders k1 and k2 under the Hermite poly-
nomial based smooth alternative also. For this we need to define quantities analogous to
those in (17), with the Legendre polynomial terms replaced by the corresponding Hermite
polynomial based terms. The orders can then be determined proceeding as in (18). How-
ever, when we define the analogous quantities in (17) for the Hermite polynomial case, the
summations will be from i = 3 to k1 and i = 3 to k2 (instead of i = 1 to k1 and i = 1 to
k2). For this, we need to show that the terms corresponding to i = 1 and i = 2 are zeros.
Actually they are exactly zeros in the balanced case, and we shall choose to ignore them in
the unbalanced case since they are likely to be quite small. Such zero-terms in the context
of the Hermite polynomial based alternative have been noted, for example, in Rayner, Thas
and Best (2009) in the context of testing univariate normality.
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Similar to (17), let’s define H̃1,k1(σ̂, σ̂α, µ̂) and H̃2,k2(σ̂) as

H̃1,k1(σ̂, σ̂α, µ̂) = 1
a

k1∑
i=3

{
a∑
l=1

hi (ẑl1)
}2

H̃2,k2(σ̂) = 1
N − a

k2∑
i=3


a∑
l=1

nl∑
j=2

hi (ẑlj)


2

, (20)

where the hi(.)’s are Hermite polynomials and ẑlj’s are defined in (16). Assuming upper
bounds d1 for k1 and d2 for k2, the orders k1 and k2, say k̃1 and k̃2, are determined as follows:

k̃1 = min{k1 : 3 ≤ k1 ≤ d1, H̃1,k1(σ̂, σ̂α, µ̂)− k1 ln(a) ≥ H̃1,r(σ̂, σ̂α, µ̂)− r ln(a), r = 3, · · · , d1}
k̃2 = min{k2 : 3 ≤ k2 ≤ d2, H̃2,k2(σ̂)− k2 ln(N − a) ≥ H̃2,s(σ̂)− s ln(N − a), s = 3, · · · , d2}.

(21)

Let’s now consider the case of balanced data and show that the terms corresponding
to i = 1 and i = 2 are zeros in H̃1,k1(σ̂, σ̂α, µ̂) and H̃2,k2(σ̂) in (20), so that in the definition
of these quantities the summation can start from i = 3, as done in (20). Using (4), (6) and
(16), and recalling that the Helmert matrix is an orthogonal matrix with first column being
a multiple of a vector of ones, we have the following simplifications in the balanced case,
under the null hypothesis,

vl1 =
√
nȳl, ẑl1 =

√
n(ȳl − ȳ..)√
aSSα

,
a∑
l=1

ẑ2
l1 = 1

a
n∑
j=1

y2
lj =

n∑
j=1

v2
lj = nȳ2

l +
n∑
j=2

v2
lj,

n∑
j=2

v2
lj =

n∑
j=1

y2
lj − nȳ2

l

a∑
l=1

n∑
j=2

v2
lj =

a∑
l=1

 n∑
j=1

y2
lj − nȳ2

l

 = SSe

a∑
l=1

n∑
j=2

ẑ2
lj = 1

a(n− 1) , (22)

where we have used the expression SSα = n
∑a
l=1(ȳl−ȳ..)2. The first two Hermite polynomials

are given by
h1(z) = z, and h2(z) = 1√

2
(z2 − 1).

From the observations in (22), it now follows that for balanced data, ∑a
l=1 hi(zl1) = 0, i =

1, 2, and ∑a
l=1

∑n
j=2 hi(zlj) = 0, i = 1, 2. It should be noted that this conclusion holds only

for the case of balanced data. For unbalanced data, we anticipate that these terms will be
small even though they may not be exactly equal to zero.

Once k̃1 and k̃2 are determined as in (21), we note that the number of Hermite polyno-
mial terms in H̃1,k̃1

(σ̂, σ̂α, µ̂) and H̃2,k̃2
(σ̂) are k̃1−2 and k̃2−2, respectively. Hence the score

statistic will have an approximate chisquare distribution with df = (k̃1−2)+(k̃2−2)+(a−1).
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3. Numerical Results

We shall now report some numerical results to assess the behavior of the score tests
we have proposed in the previous sections. Our purpose here is several: to assess the
dependence of the score tests on σ2

α, to examine the accuracy of the asymptotic chisquare
distribution (under the null), and to compare the powers of the score tests based on the
Legendre polynomial alternative and based on the Hermite polynomial alternative.

In order to the examine the dependence of the tests on σ2
α, we first estimated the

95th percentiles of the score statistic in the case of balanced data, for various values of a
and n, and for σ2

α = 0.1, 2 and 10. We also chose µ = 0 and σ2 = 1, where σ2 denotes
the common value of the σ2

l ’s. The data driven approach explained in the previous section
was used to obtain the order of the polynomials. Most of the time, the data driven choices
k̂1 and k̂2 were equal to one in the Legendre polynomial case, and k̃1 and k̃2 were equal
to three in the Hermite polynomial case, so that the score statistic has an approximate
chisquare distribution with df = a+1 under the null hypothesis. Table 1 gives the estimated
percentiles based on 104 simulated samples. We have also included the 95th percentile of
the chisquare distribution with df = a+ 1. We can draw the following conclusions from the
numerical results in Table 1: (i) the chisquare distribution approximates the null distribution
of the score statistic reasonable well; however, the actual percentiles are slightly larger than
that of the chisquare distribution, and (ii) the null distribution is not sensitive to the value
of σ2

α. It appears that in order to have a more accurate test, one can use a Monte Carlo
estimate of the corresponding percentile (instead of using the chisquare percentile) after
simply assuming σ2

α = 1, regardless of the true value of σ2
α.

In order to further see the insensitivity of the null distribution with respect to the
value of σ2

α, we estimated the type I error probabilities of the score test when σ2
α = 0.1

and 10, when the test is carried out using the estimated critical value (i.e., 95th percentile)
corresponding to σ2

α = 2. The rest of the simulation set up is the same as that used to obtain
the results in Table 1. The type I error probabilities are given in Table 2. The insensitivity
of the type I error probabilities with respect to the value of σ2

α should be clear.

In addition, we looked at Type I error probabilities for unbalanced cases, using critical
values estimated from the balanced case with a common value chosen as ñ, which is the
harmonic mean of the nl’s; see (13). For this we used a= 10, 20, 30 and 50 groups. We also
made three choices in terms of severity of the unbalancedness: mild, moderate and severe.
For a = 10, our choice of the nl’s to represent mild unbalancedness is (4,4,5,5,5,5,5,5,5,10),
which gives the harmonic mean ñ=5. For moderate unbalancedness, we chose the nl’s to be
(2,3,4,5,6,7,8,9,10,14), resulting in ñ=4.999008 (we shall take ñ = 5 in this case). For the
severe unbalanced case, we made the choice (3,3,4,4,5,5,5,5,40,120) for the nl’s, which also
yields ñ=5. For a = 20, we adopted the above choices except that each nl value was repeated
twice. For a = 30 and 50, the same strategy was followed; i.e., each nl value chosen for a =
10 was repeated three times and five times each.

The choices of the nls just described all resulted in ñ = 5, as already noted. We shall
also consider choices that will give ñ = 10, 30 and 50. For this, we multiplied each of the
nls in the earlier choices with 2, 6 and 10, so as to result in ñ = 10, 30 and 50, respectively.
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Table 1: Monte Carlo estimates of the 95th percentiles of the score statistic for σ2
α=

0.1, 2, 10; χ2
(a+1,0.95) denotes the 95th percentile of the chisquare distribution

with a+ 1 df

Legendre Hermite
a n σ2

α=0.1 σ2
α=2 σ2

α=10 σ2
α=0.1 σ2

α=2 σ2
α=10 χ2

(a+1,0.95)
10 5 21.71 21.70 21.20 19.57 20.05 20.17 19.68
10 10 21.02 20.99 20.70 20.09 20.52 20.49 19.68
10 30 20.51 20.49 20.43 20.16 20.33 20.39 19.68
10 50 20.80 20.80 20.79 20.56 20.49 20.49 19.68
20 5 35.25 35.16 34.32 34.56 35.97 35.96 32.67
20 10 33.34 33.34 33.35 35.11 35.42 35.31 32.67
20 30 33.29 33.30 33.25 34.22 34.40 34.46 32.67
20 50 33.25 33.24 33.20 33.95 34.08 34.13 32.67
30 5 47.87 47.78 46.83 48.58 49.45 49.48 44.99
30 10 46.82 46.84 46.83 48.16 48.15 48.23 44.99
30 30 45.51 45.52 45.53 47.43 47.18 47.14 44.99
30 50 45.72 45.72 45.71 46.79 46.63 46.64 44.99
50 5 72.99 72.69 71.64 75.35 76.03 75.88 68.67
50 10 70.67 70.70 70.88 73.54 73.86 73.90 68.67
50 30 69.34 69.34 69.34 71.35 71.39 71.35 68.67
50 50 69.63 69.65 69.64 70.61 70.72 70.56 68.67

Table 2: Estimated type I error probabilities of the score test carried out using the
estimated critical value corresponding to σ2

α = 2, for a 5% significance level

Legendre Hermite
a n σ2

α=0.1 σ2
α=10 σ2

α=0.1 σ2
α=10

10 5 0.053 0.050 0.046 0.051
10 10 0.050 0.050 0.046 0.050
10 30 0.049 0.050 0.049 0.051
10 50 0.052 0.050 0.051 0.050
20 5 0.058 0.051 0.044 0.050
20 10 0.045 0.050 0.048 0.050
20 30 0.049 0.050 0.049 0.051
20 50 0.051 0.050 0.049 0.051
30 5 0.051 0.051 0.046 0.050
30 10 0.055 0.050 0.050 0.050
30 30 0.048 0.050 0.052 0.050
30 50 0.053 0.050 0.051 0.050
50 5 0.051 0.051 0.048 0.050
50 10 0.047 0.050 0.049 0.050
50 30 0.049 0.050 0.050 0.050
50 50 0.055 0.050 0.050 0.049
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We used the value σ2
α=2 to estimate the type I error probabilities, and considered both

Legendre polynomial-based and Hermite polynomial-based alternatives. The estimated type
I error probabilities are given in Table 3 (under Legendre polynomial-based alternatives)
and in Table 4 (under Hermite polynomial-based alternatives). The following conclusions
can be drawn from the numerical results. Under the Legendre polynomial-based alternative,
there is no Type I error inflation for the mild unbalanceness cases; we notice a somewhat
mild type I error inflation in the case of moderate unbalancedness when ñ is small, and a
more pronounced type I error inflation in the case of severe unbalancedness when ñ is small.
However, when ñ is 30 or more, the type I error probabilities are all close to the nominal
level of 5%. Under the Hermite polynomial-based alternative, the type I error inflation
appears to be a bit more severe, especially in the case of severe unbalancedness and small ñ.
However, the results are once again quite satisfactory when ñ is 30 or more. Overall, using
the balanced set up critical value based on ñ appears to be a satisfactory option, except in
the severe unbalanced case and a small ñ.

Table 3: Type I error probabilities for unbalanced data under Legendre polynomial-
based alternatives and using the balanced data critical value with n = ñ, for
a 5% significance level

Estimated
Unbalancedness critical value Chisquare

a ñ Severe Moderate Mild when σ2
α = 2 critical value

10 5 0.065 0.047 0.042 21.702 19.675
10 10 0.060 0.052 0.048 20.987 19.675
10 30 0.056 0.048 0.049 20.490 19.675
10 50 0.043 0.045 0.044 20.803 19.675
20 5 0.069 0.054 0.047 35.165 32.671
20 10 0.065 0.055 0.055 33.336 32.671
20 30 0.048 0.052 0.047 33.299 32.671
20 50 0.044 0.049 0.049 33.244 32.671
30 5 0.076 0.062 0.049 47.776 44.985
30 10 0.064 0.051 0.046 46.841 44.985
30 30 0.053 0.048 0.052 45.516 44.985
30 50 0.048 0.041 0.044 45.723 44.985
50 5 0.077 0.061 0.053 72.693 68.669
50 10 0.064 0.057 0.047 70.697 68.669
50 30 0.052 0.050 0.050 69.338 68.669
50 50 0.042 0.046 0.043 69.645 68.669

The type I error probabilities reported in Table 3 and Table 4 were computed when the
test was carried out using the estimated critical value corresponding to σ2

α = 2; these critical
values are also given in the tables. The tables also give the chisquare critical values. We
note that the chisquare critical values are smaller than the estimated critical values, as was
noted in Table 1. Thus if the test is carried out using the asymptotic chisquare distribution,
one should expect an inflated type I error probability.
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Table 4: Type I error probabilities for unbalanced data under Hermite polynomial-
based alternatives and using the balanced data critical value with n = ñ, for
a 5% significance level

Estimated
Unbalancedness critical value Chisquare

a ñ Severe Moderate Mild when σ2
α = 2 critical value

10 5 0.093 0.063 0.053 20.052 19.675
10 10 0.066 0.059 0.052 20.516 19.675
10 30 0.058 0.053 0.052 20.327 19.675
10 50 0.046 0.049 0.049 20.495 19.675
20 5 0.082 0.060 0.051 35.972 32.671
20 10 0.065 0.053 0.051 35.420 32.671
20 30 0.051 0.054 0.050 34.400 32.671
20 50 0.046 0.052 0.052 34.080 32.671
30 5 0.080 0.066 0.052 49.451 44.985
30 10 0.066 0.059 0.054 48.149 44.985
30 30 0.054 0.049 0.054 47.175 44.985
30 50 0.050 0.051 0.051 46.626 44.985
50 5 0.075 0.062 0.053 76.031 68.669
50 10 0.058 0.056 0.048 73.862 68.669
50 30 0.053 0.051 0.054 71.387 68.669
50 50 0.046 0.056 0.051 70.715 68.669

Some limited numerical results on the power are reported in Table 5 in the case of
balanced data for a = 10 and n = 5 and a = 30 and n = 5. We note that the null hypothesis
can be violated by having a non-normal distribution for the errors and/or random effects,
and/or by having heteroscedasticity of the error distribution. In Table 5, the powers are
first reported when random effects are normally distributed and the error terms alone are
non-normal and/or heteroscedastic (the first few rows of the table). The last few rows of the
table correspond to the alternative scenario where the error terms are normally distributed
and could be heteroscedastic, but the random effects are non-normal. The very last row
of the table corresponds to the alternative where both the error terms and the random
effects follow non-normal distributions, but the errors are homoscedastic. A 5% significance
level and estimated critical values are used while computing the power. For introducing
heteroscedasticity into the alternative, we proceeded as follows. We split the a groups into
two sets, having a/2 groups in each set (we have chosen only an even value of a in our
simulations). Data are generated from the same alternative error distribution, except that
for the data in the second set, the randomly generated error term was multiplied by

√
2,

which will result in twice the error variance for the data in the second set, compared to
those in the first set. The results on the power show that most of the powers are comparable
when the tests are derived using a Legendre polynomial-based alternative or a Hermite
polynomial-based alternatives. However, the test derived under the Hermite polynomial-
based alternatives appears to have a slight edge in terms of power. Perhaps more extensive
simulation are necessary before we can draw firm conclusions.
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Table 5: Estimated powers of the Legendre polynomial based and Hermite polynomial
based tests using estimated critical values for a 5% significance level

a=10, n=5 a=30, n=5
Alternative Legendre Hermite Legendre Hermite
Error N(0,1) 0.04 0.05 0.05 0.05

N(0,1)* 0.11 0.13 0.22 0.21
t(5) 0.24 0.29 0.56 0.57
t(5)* 0.30 0.36 0.70 0.70
Gamma (2,1) 0.28 0.35 0.65 0.68
Gamma (2,1)* 0.36 0.44 0.78 0.80

Random Effect t(2) 0.17 0.14 0.41 0.48
t(2)* 0.23 0.21 0.54 0.59
Gamma (2,1) 0.09 0.07 0.16 0.18
Gamma (2,1)* 0.15 0.15 0.36 0.35

Error + Random Effect Gamma (2,1) + t(2) 0.40 0.43 0.79 0.84
*Heteroscedasticity

4. An Example

We use a quality control data set from clinical chemistry on serum sodium measure-
ments. The data are taken from Andrews and Herzberg (1985), and serum sodium mea-
surements are given for 10 specimens tested by 100 labs. The specimens are from a large
homogeneous pool of serum, and one specimen is sent to the labs every two weeks. Here
we shall use only a subset of the data, and these data are from 24 labs that used the same
analysis method (Method 5 mentioned in Andrews and Herzberg (1985)), and had all 10
specimens tested, so that we have balanced data with a=10 and n=24; the data we used are
given in Yang (2016). The results of the data analysis are presented in Table 6. Data driven
choices were made for the orders k1 and k2. For a 5% significance level, the estimated critical
values necessary to carry out the test are given in Table 6. The data driven choices of the
orders are also given in the table. The upper bounds d1 and d2 were chosen as d1 = d2=6. We
noted earlier that that for one-way random model with balanced data, the matrix V11.2 used
to compute the score statistic is a block-diagonal matrix consisting of 3 blocks; if the null hy-
pothesis of normality and homoscedasticity is rejected, it is possible to draw conclusions on
which component/components contributed to the rejection: normality or homoscedasticity
of the error distribution, or the normality of the random effect. We note from Table 6 that
the null hypothesis is rejected by the tests based on both Legendre polynomial-based and
Hermite-polynomial-based alternatives. In the table, we have also given the decomposition
of the score statistic into the three components; the first component corresponds to nor-
mality of the random effects, the second and third components correspond, respectively, to
normality and heteroscedasticity of the error distribution. The results indicate that there is
evidence for both non-normality and heteroscedasticity for the error distribution, but there
is no evidence of non-normality of the random effects.
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Table 6: Analysis of the serum sodium data using a 5% significance level

Estimated
Polynomial Orders critical value Score statistic Decision
Legendre k̂1 = 1, k̂2 = 2 20.584 55.505 = 0.066 + 32.776 + 22.663 Reject H0
Hermite k̃1 = 3, k̃2 = 6 20.388 251.439 = 0.024 + 228.752 + 22.663 Reject H0

5. Discussion: Possible Extensions and Limitations

Data analysis in a linear model framework relies on several assumptions: normality,
homoscedasticity (especially when the data fall into different groups), independence, and the
assumption that the mean vector belongs to a specified subspace. Simultaneous assessment
of these assumptions is clearly of interest. An attempt in this direction has been made by
Peña and Slate (2006). Their assessment of normality assumes a smooth alternative. The
assessment of homoscedasticity assumes that departure from this assumption can be modeled
as a function of the mean. However, the violation of the homoscedasticity need not imply
that the variance changes with the mean, even though this is a possibility. In our work,
we have explored the simultaneous assessment of both normality and homoscedasticity. It
should be noted that the smooth tests available in the literature address only the problem
of testing the adequacy of a parametric distribution, specified in terms of appropriate or-
thogonal polynomials. However, Kallenberg, Ledwina and Rafajlowicz (1997) did address
the problem of simultaneously testing normality and independence for bivariate data. Such
simultaneous testing has been facilitated by having a parametric form under the smooth
alternative.

We want to point out several limitations, and some possible generalizations, of the work
reported here. In the context of models that involve random effects, if we want to go beyond
the one-way random model, difficulties do arise for the simultaenous assessment of normality
of the random effects, normality of the error terms, and homoscedasticity. Unbalancd data
will add further complications. However, we feel that our methodology in the context of the
one-way random model can be generalized to general mixed or random effects models for the
simultaneous assessment of normality of the random effects and the error terms, assuming
that homoscedasticity holds, provided we have balanced data. We shall now illustrate this
in the context of the two-way random effects model and the two-way mixed effects models,
when the model includes interactions.

5.1. Testing normality in a two-way random model with balanced data

Consider two factors having a and b levels, randomly selected, and suppose we have n
observations one each level combination; thus we have balanced data. Let yijm denote the
mth observation corresponding to the ith and jth levels of the two factors; m = 1, 2, · · · ,
n. The two-way model with interaction is given by

yijm = µ+ αi + βj + γij + εijm,

i = 1, · · · , a, j = 1, · · · , b and m = 1, · · · , n. We assume that all the effects are random and
the random variables αis, βjs, γijs and the error terms εijms are all independent. The usual
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normality assumptions state that

αi ∼ N(0, σ2
α), βj ∼ N(0, σ2

β), γij ∼ N(0, σ2
γ), and εijm ∼ N(0, σ2).

Note that we are now assuming homoscedasticity. The above normality assumptions imply
a multivariate normal distribution with a structured variance-covariance matrix for the data
vector consisting of all the yijm; the mean vector is simply µ1abn. Our goal is to test if such
a multivariate normality assumption holds, by using an appropriate smooth alternative. We
recall that in the one-way random model, this was accomplished by transforming the data
vector into two uncorrelated components, and simultaneously testing univariate normality
for each component assuming independent smooth alternatives. We shall do the same under
the two-way random model as well. However, now four sets of independent random variables
are involved in the model (αi’s, βj’s, γij’s and the εijm’s). Consequently, we will suitably
transform the data vector, and end up with four uncorrelated components. We can then
simultaneously test univariate normality of the four components against the assumption of
smooth alternatives that are also independent.

Consider the vector yij = (yij1, yij2, · · · , yijn)′, and let Qn =
(

1√
n
1n, Q∗n

)
be an n × n

Helmert matrix. Consider the transformation

vij = Q′nyij,

i = 1, 2, · · · , a, and j = 1, 2, · · · , b. Let vij = (vij1,v′ij0)′, so that vij0 is an (n − 1) × 1
vector. It follows that vij0 has the mean vector and covariance matrix given by

E(vij0) = 0, V ar(vij0) = σ2In−1.

Here we have used the facts that E(yij) = µ1n and Qn is an n× n orthogonal matrix with
the first column given by 1√

n
1n. Denote by v0 the ab(n − 1) × 1 vector consisting of the

v′ij0s, ∀i = 1, · · · , a and j = 1, · · · , b. Then

E(v0) = 0, V ar(v0) = σ2Iab(n−1). (23)

It should be clear that the components of v0 are the ab(n− 1) error contrasts; we recall that
under the two-way model with interaction and balanced data, the error sum of squares has
df = ab(n− 1).

Now let’s consider vij1, the first element of the vector v′ijs. The model for the yijm’s
imply the following model for vij1:

vij1 =
√
nµ+

√
n(αi + βj + γij) +

√
n ε̄ij,

where ε̄ij = 1
n

∑n
m=1 εijm. Denote by v1 the vector consisting of the vij1’s, j = 1, · · · , b and

i = 1, · · · , a. Note that v1 is an ab× 1 vector. We then we have the model

v1 =
√
n[µ1ab + (Ia ⊗ 1b)α+ (1a ⊗ Ib)β + γ + ε̄],

where α, β, γ and ε̄ are vectors consisting of the αi, βj, γij and ε̄ij, respectively. Thus

E(v1) =
√
nµ1ab
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V (v1) = nσ2
α(Ia ⊗ 1b1′b) + nσ2

β(1a1′a ⊗ Ib) + nσ2
γIab + σ2Iab.

We now make further transformations of the vector v1. Let Qa =
(

1√
a
1a, Q∗a

)
and

Qb =
(

1√
b
1b, Q∗b

)
be defined similar to Qn, but with dimensions a× a and b× b, respectively.

Define

w0 =
(

1√
a

1′a ⊗
1√
b
1′b
)
v1, w1 =

(
Q∗

′

a ⊗
1√
b
1′b
)
v1,

w2 =
(

1√
a

1′a ⊗Q∗
′

b

)
v1, and w3 =

(
Q∗

′

a ⊗Q∗
′

b

)
v1. (24)

We note that w0 is a scalar, and the vectorsw1, w2 andw3 are of dimensions (a−1)×1,
(b − 1) × 1, and (a − 1)(b − 1) × 1, respectively. It is readily verified that w0, w1, w2 and
w3 are all uncorrelated. We shall denote the elements of the vectors w1, w2 and w3 as w1i′ ,
w2j′ and w3i′j′ , respectively, for i′ = 1, 2, · · · , a− 1, and j′ = 1, 2, · · · , b− 1, and we have the
following means and variances:

E(w0) =
√
abnµ, V ar(w0) = σ2

0 = bnσ2
α + anσ2

β + nσ2
γ + σ2,

E(w1i′) = 0, V ar(w1i′) = σ2
1 = bnσ2

α + nσ2
γ + σ2, i′ = 1, 2, ..., a− 1,

E(w2j′) = 0, V ar(w2j′) = σ2
2 = anσ2

β + nσ2
γ + σ2, j′ = 1, 2, ..., b− 1,

E(w3i′j′) = 0, V ar(w3i′j′) = σ2
3 = nσ2

γ + σ2, i′ = 1, 2, ..., a− 1, j′ = 1, 2, · · · , b− 1.

Let v0m′ denote the m′th element of the vector v0 defined in (23), so that E(v0m′) = 0 and
V ar(v0m′) = σ2, m′ = 1, 2, · · · , ab(n − 1). Furthermore, the v0m′s are uncorrelated. If the
normality assumption holds for all the random effects and the error terms in the two-way
random model, then the following four sets of random variables follow independent normal
distributions with means all equal to zero, and variances as specified above: (i) v0m′ , m′ =
1, 2, · · · , ab(n − 1), (ii) w1i′ , i′ = 1, 2, · · · , a − 1, (iii) w2j′ , j′ = 1, 2, · · · , b − 1, and (iv)
w3i′j′ , i′ = 1, 2, · · · , a − 1, j′ = 1, 2, · · · , b − 1. In other words, under the assumption of
normality, the random variables given in (i), (ii), (iii) and (iv) can be treated as samples of
sizes ab(n − 1), a − 1, b − 1 and (a − 1)(b − 1) from four independent normal distributions
with zero means. Independent smooth alternatives to normality can now be specified for
each of the four sets (i), (ii), (iii) and (iv), and score tests can be derived for simultaneously
testing normality of the error term and the normality of the random effects.

5.2. Testing normality in a two-way mixed model with balanced data

Now consider the two-way mixed effect model with interaction and balanced data:

yijm = µ+ αi + βj + γij + εijm,

where the αi, i = 1, 2, · · · , a, are assumed to be the fixed effects, and the rest of the effects are
random effects. Here we make the usual assumption: ∑a

i=1 αi = 0. The standard normality
assumptions that are imposed on the random effects and the error terms are the same as
those given in the previous section: βj ∼ N(0, σ2

β), γij ∼ N(0, σ2
γ), and εijm ∼ N(0, σ2),

i = 1, · · · , a, j = 1, · · · , b and m = 1, · · · , n.
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Starting with the transformation based on the Helmert matrix Qn, we can arrive at the
ab(n − 1) error contrast vector v0 given in the previous section, having zero mean and the
variance-covariance matrix σ2Iab(n−1); see (23). Let’s now consider the quantities w0, w1, w2
and w3, defind in (24), and denote the elements of w2 and w3 as w2j′ and w3i′j′ , respectively,
for i′ = 1, 2, · · · , a − 1, and j′ = 1, 2, · · · , b − 1. It can once again be verified that w0 , w1,
w2, and w3 are all uncorrelated, and we have the following means and variances:

E(w0) =
√
abnµ, V ar(w0) = anσ2

β + nσ2
γ + σ2,

E(w1) =
√
bQ∗

′

a α, V ar(w1) = (nσ2
γ + σ2)Ia−1,

E(w2j′) = 0, V ar(w2j′) = anσ2
β + nσ2

γ + σ2, j′ = 1, 2, · · · , b− 1,
E(w3i′j′) = 0, V ar(w3i′j′) = nσ2

γ + σ2, i′ = 1, 2, · · · , a− 1, j′ = 1, 2, · · · , b− 1.

The vectors v0, w2 and w3 are also uncorrelated, have mean zeros, and covariance matrices
σ2Iab(n−1), (anσ2

β +nσ2
γ +σ2)Ib−1 and (nσ2

γ +σ2)I(a−1)(b−1), respectively. Three independent
smooth alternatives to normality can now be defined, as noted in the previous section, and
smooth tests can be derived. Note that the scalar quantity w0, and the vector w1 have means√
abnµ and

√
bQ∗

′
a α, respctively, which are unknown nuisance parameters to be estimated.

Thus these components will not contribute to the test for normality. In this section and in
the previous section, we have not brought up the issue of testing homoscedasticity.

We believe that the approach outlined in this section and the previous section can
be adopted to any mixed or random effects model with balanced data. However, the same
approach will not go through when we have unbalanced data. Let’s briefly indicate why this
is so. Consider the case of the random effects model. A key step in the derivations is the
transformation in (24) leading to the uncorrelated quantities w0, w1, w2 and w3. It is not
difficult to note that such a transformation leading to uncorrelated quantities is not possible
when we have unbalanced data. In short, when we have a linear model with a structured
covariance matrix, which is the case for any mixed or random effects model, it is not clear
how we can define a smooth alternative by taking the structure into account.
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APPENDIX

The Score Vector and its Variance-Covariance Matrix

Here we shall give only the expressions for the score vector and its variance-covariance
matrix (without providing their derivations) under both the Legendre polynomial based
and Hermite polynomial based alternatives. In order to derive these, it is necessary to use
expressions for the derivatives of ln{C(θ, µ,σ, σα)}. General results on such derivatives are
given in Rayner, Thas and Best (2009, Section 6.1).

A. The score vector, variances and covariances under the Legendre polynomial
based alternative

Recall that the elements of the score vector and those of the variance-covariance matrix
are to be evaluated under the null hypothesis. For the log-likelihood function given in (10),
the components of the score vector (under the null hypothesis) are as follows:

∂ lnL
∂θ1r

=
a∑
l=1

br(ul1), ∂ lnL
∂θ2s

=
a∑
l=1

nl∑
j=2

bs(ulj), r = 1, 2, · · · , k1, s = 1, 2, · · · , k2

∂ lnL
∂ηc

=
a∑
l=1

(z2
l1 − 1) σqlc

σ2 + nlσ2
α

+
a∑
l=1

nl∑
j=2

(z2
lj − 1)qlc

σ
, c = 1, 2, · · · , a,

∂ lnL
∂σα

=
a∑
l=1

(z2
l1 − 1) nlσα

σ2 + nlσ2
α

,
∂ lnL
∂µ

=
a∑
l=1

√
nlzl1√

σ2 + nlσ2
α

where σ2 is the common variance under the null hypothesis, and qlc’s are the elements of the
a× a Helmert matrix Q defined in Section 2, and η = Q′σ; see (9).

The expressions for the variances and covariances among the components of the score
vector involve certain constants ci and ei, i = 1, 2, · · · . We shall first give these before
giving the variance and covariance terms. Let f(z) denote the density of a standard normal
random variable Z. The required constants ci and ei are given by

ci = Cov[bi(Φ(Z)), Z] =
∫ ∞
−∞

bi(Φ(z))zf(z)dz,

ei = Cov[bi(Φ(Z)), Z2] =
∫ ∞
−∞

bi(Φ(z))z2f(z)dz,

i = 1, 2, 3, · · · . By using the expressions for the Legendre polynomials, it can be verified
that ci = 0 for i even, and ei = 0 for i odd. When ci’s and ei’s are non-zero, they can be
computed numerically. A few such values are given below; see Bogdan (1996, 1999).

c1 = 0.977205023801135, c3 = 0.1830082402700861, c5 = 0.0816989764273946,
c7 = 0.04772936798473241, c9 = 0.031880431223894;
e2 = 1.232808888123174, e4 = 0.5211245854593028, e6 = 0.3045144697203598,
e8 = 0.2055889833015625, e10 = 0.150770690085310.
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The variances and covariances among the components of the score vector are as follows
(under the null hypothesis):

Var
(
∂ lnL
∂θ1r

)
= a, and Cov

(
∂ lnL
∂θ1r

,
∂ lnL
∂θ1r′

)
= 0, r 6= r′; r, r′ = 1, 2, · · · , k1,

Var
(
∂ lnL
∂θ2s

)
= N − a, where N =

a∑
l=1

nl, and Cov
(
∂ lnL
∂θ2s

,
∂ lnL
∂θ2s′

)
= 0,

s 6= s′; s, s′ = 1, 2, · · · , k2,

Cov
(
∂ lnL
∂θ1r

,
∂ lnL
∂θ2s

)
= 0, r = 1, 2, · · · , k1, s = 1, 2, · · · , k2,

Var
(
∂ lnL
∂ηc

)
= 2

a∑
l=1

(
σ2

(σ2 + nlσ2
α)2 + (nl − 1)

σ2

)
q2
lc, c = 1, 2, · · · , a,

Cov
(
∂ lnL
∂ηc

,
∂ lnL
∂ηc′

)
= 2

a∑
l=1

(
σ2

(σ2 + nlσ2
α)2 + (nl − 1)

σ2

)
qlcqlc′ , c 6= c′; c, c′ = 1, 2, · · · , a,

Cov
(
∂ lnL
∂θ1r

,
∂ lnL
∂ηc

)
= er

a∑
l=1

σ

σ2 + nlσ2
α

qlc for r even, and 0 for r odd, c = 1, · · · , a,

Cov
(
∂ lnL
∂θ2s

,
∂ lnL
∂ηc

)
= (er/σ)

a∑
l=1

(nl − 1)qlc for s even, and 0 for s odd, c = 1, · · · , a,

Var
(
∂ lnL
∂σα

)
= 2

a∑
l=1

n2
l σ

2
α

(σ2 + nlσ2
α)2 ,

Cov
(
∂ lnL
∂θ1r

,
∂ lnL
∂σα

)
= er

a∑
l=1

nlσα
σ2 + nlσ2

α

for r even, and 0 for r odd,

Cov
(
∂ lnL
∂θ2s

,
∂ lnL
∂σα

)
= 0, s = 1, · · · , k2,

Cov
(
∂ lnL
∂ηc

,
∂ lnL
∂σα

)
= 2

a∑
l=1

σσα
(σ2 + nlσ2

α)2nlqlc, c = 1, · · · , a,

Var
(
∂ lnL
∂µ

)
=

a∑
l=1

nl
σ2 + nlσ2

α

,

Cov
(
∂ lnL
∂θ1r

,
∂ lnL
∂µ

)
= cr

a∑
l=1

√
nl√

σ2 + nlσ2
α

for r odd, and 0 for r even,

Cov
(
∂ lnL
∂θ2s

,
∂ lnL
∂µ

)
= 0, s = 1, · · · , k2,

Cov
(
∂ lnL
∂ηc

,
∂logL

∂µ

)
= 0, c = 1, · · · , a, Cov

(
∂ lnL
∂σα

,
∂ lnL
∂µ

)
= 0.

A.1. The case of balanced data

For balanced data, the nl’s have to be replaced with their common value n in all the
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expressions. As a result, some of the covariances will become 0, these are:

Cov
(
∂ lnL
∂ηc

,
∂ lnL
∂ηc′

)
= 0, c, c′ = 1, 2, · · · , a

Cov
(
∂ lnL
∂θ1r

,
∂ lnL
∂ηc

)
= 0, r = 1, 2, · · · , k1, c = 2, ..., a

Cov
(
∂ lnL
∂θ2s

,
∂ lnL
∂ηc

)
= 0, s = 1, 2, · · · , k2, c = 2, ..., a

Cov
(
∂ lnL
∂ηc

,
∂logL

∂σα

)
= 0, c = 2, · · · , a

B. The score vector, variances and covariances under the Hermite polynomial
based alternative

The components of the score vector (under the null hypothesis) can be derived similar
to those obtained under the Legendre polynomial case. The scores with respect to θ1r and
θ2s are given below, and those with respect ηc, σα, and µ are not given since they are the
same as in the Legendre case. The scores corresponding to θ1r and θ2s can be shown to be
equal to zero for r = 1, 2 and for s = 1, 2.

∂ lnL
∂θ1r

=
a∑
l=1

hr(zl1), ∂ lnL
∂θ2s

=
a∑
l=1

nl∑
j=2

hs(zlj), r = 3, 4, · · · , k1, s = 3, 4, · · · , k2.

Several of the variance and covariance terms are the same as those for the Legendre polyno-
mial case. The terms that are different from the Legendre case are given below, and are in
fact zeros.

Cov
(
∂ lnL
∂θ1r

,
∂ lnL
∂ηc

)
= 0, c = 2, · · · ., a

Cov
(
∂ lnL
∂θ2r

,
∂ lnL
∂ηc

)
= 0

Cov
(
∂ lnL
∂θ2s

,
∂ lnL
∂ηc

)
= 0, c = 2, · · · , a.
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Abstract
Typically survey data have responses with gaps, outliers and ties, which we call GOT

data, and the distributions of the responses might be skewed. Our application is on body
mass index (BMI) data, which have these features, and inference is required about the 85th
and 95th finite population percentiles. Because the data are collected using a two-stage
sample design, usually predictive inference is done using a two-level Bayesian model with
normality at both levels (responses and random effects). This is the Scott-Smith (S-S)
model and it might not be robust against these GOT features. We use a two-level non-
parametric Bayesian model, called the Dirichlet process Gaussian (DPG) model, with several
independent Dirichlet processes at the first stage and a normal distribution on the random
effects to accommodate the GOT data. The DPG model is different from the more popular
two-level Dirichlet process mixture (DPM) model that has a single Dirichlet process on the
random effects and independent normal distributions at the first level. Clearly, this DPM
model has a shortcoming for survey data because the first stage has a normal distribution.
We use our application on BMI GOT data and a very limited simulation study to compare
the three models (S-S, DPM, DPG), which show, with the appropriate data, that the DPG
model is preferred.

Key words: Bayesian computation; DPM model; GOT data; Predictive inference; Robust
model; Survey data.

1. Introduction

When samples are selected from a finite population, the most commonly used method
for making inferences in current statistical literature is design-based. This method is non-
parametric and it requires large sample sizes for reliable inference. Model-based inference for
finite populations has been proposed as an alternative to the design-based theory. Typically
survey data have responses with gaps, outliers and ties, and the distributions of the responses
might be skewed. Henceforth, we use the acronym, GOT, to describe these features of
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our data, and here we focus on a nonparametric Bayesian analysis of GOT data. [For
convenience, all acronyms, which are used in the paper, are presented in Table 1.] The
United States’ National Center of Health Statistics has been collecting health data since the
1950’s and one of them, body mass index (BMI) data that we discuss, has these features.
We consider three two-level models with the first level accommodating the responses and
the second level accounting for heterogeneity of groups of data.

We assume that data are obtained from a two-stage sample survey, for example, a
two-stage cluster sampling, stratified or post-stratified sampling that is often seen in small
area problems. The sampled values are observed and the nonsampled values are to be
predicted using the two-level models. To gain robustness, these models start with a simple
idea that uses a random distribution (e.g., a Dirichlet process) in the model instead of some
parametric distributions. Assuming a specific parametric form is typically motivated by
technical convenience rather than by genuine prior beliefs.

In many surveys, we want to estimate quantities not only for the population as a whole,
but also for sub-populations (e.g., to estimate the average income for every county in the
United States in order to allocate funds for needed areas). Once a hierarchical model is
specified, inferences can be drawn from available data for the population quantities at any
level. From a Bayesian perspective, these estimators which can be regarded as posterior
means often have better properties than area-specific direct estimators. This makes two-
level, and more generally hierarchical Bayesian models, useful in the problem of small area
estimation (SAE) (e.g., Rao and Molina 2015). That is, the sample size for a given area or
domain may be too small to provide reliable estimates for themselves and it may be needed
to borrow information from neighboring areas, or from areas with similar characteristics.
Typically, in this two-level model, the first level accommodates the response data and the
second level is used to accommodate random effects or means (i.e., the small areas).

BMI is a person’s weight in kilograms divided by the square of her/his height in meters
and it is used as a screening tool for overweight or obesity. A high BMI can be an indicator
of high body fatness. If your BMI is less than 18.5, it falls within the underweight range. If
your BMI is 18.5 to 24.9, it falls within the normal or healthy weight range. If your BMI
is 25.0 to 29.9, it falls within the overweight range. If your BMI is 30.0 or higher, it falls
within the obese range. A child’s weight status is determined using an age- and sex-specific
percentile for BMI rather than BMI categories used for adults. Overweight is defined as a
BMI at or above the 85th percentile and below the 95th percentile for children and teens
of the same age and sex. Obesity is defined as a BMI at or above the 95th percentile for
children and teens of the same age and sex.

The Expert Committee on Clinical Guidelines for Overweight in Adolescent Prevention
Services published criteria for overweight to be integrated into routine screening of adoles-
cents. BMI should be used routinely to screen for overweight and obesity in children and
adolescents. Several disorders have been linked to overweight in childhood. A potential
increase in type 2 diabetes mellitus is related to the increased prevalence of overweight in
children (Fagot-Campagna 2000), as are cardiovascular risk factors, high cholesterol levels,
and abnormal glucose levels.
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We provide a Bayesian analysis of BMI data from the third National Health and Nutri-
tion Examination Survey (NHANES III), conducted during the period October 1988 through
September 1994. Due to confidentiality reasons, the final data set for this study uses only
the 35 largest counties with population sizes at least 500,000. The sample sizes are less than
0.02% of the population sizes; see also Flegal et al. (2005, 2007) for discussions of other as-
pects of the NHANES III data. Kuczmarski et al. (2002) developed 85th and 95th percentile
growth curves for US boys and girls age 2–20 years. Youths with a BMI in at least the
95th percentile for age and sex, or at least 30 (World Health Organization Consultation of
Obesity 2000) should be considered overweight and referred for in depth medical follow-up
to explore underlying diagnoses. Adolescents with a BMI with at least the 85th percentile
(25) but below the 95th percentile (30) should be considered at risk of overweight and re-
ferred for a second-level screen; these are different for adults. (See Himes and Dietz 1994
for a summary of this discussion.) Dietz (1998) discussed health consequences of obesity in
youth and childhood predictors of adult disease. Currently, obesity is one of the most serious
health problems facing the world.

Nandram and Choi (2005) obtained finite population mean for children and young
adults under a nonignorable nonresponse model for small domains. But the 85th and the
95th percentiles are more important and informative for BMI data. So Nandram and Choi
(2010), using BMI data from NHANES III, showed how to predict these finite population
percentiles of BMI for some US counties, incorporating additional measures to minimize
possible biases. These measures are the inclusion of survey weights into the nonignorable
nonresponse model to reflect the higher probabilities of selection among black, non-Hispanics
and Hispanic-Americans. Here, we perform a Bayesian analysis of BMI data from NHANES
III to obtain the 85th and 95th finite population percentiles for adults older than twenty
years. We do not incorporate survey weights or covariates (age, race, sex) into our analysis.
A related objective might be to estimate the proportion of obese individuals using logistic
regression (e.g., Nandram, Chen, Fu and Manandhar 2018), but this is far from our main
objective in this paper. Here, our main objective is to compare the performance of the three
two-level Bayesian models for the analysis of these data.

In Figure 1, we have shown dot plots of the BMI data by county. We can see that
there are many gaps, ties and outliers in all counties. A gap occurs because no value exists
between two adjacent values. For example, because the BMI values are recorded to one
decimal place, there are no values between 20.0 and 20.1 (gaps), there are several values at
24.0 (ties) and there are extreme values in the right tails of the dot plots (outliers). This is
why we are troubled by GOT data. Other data, such as income, when they are elicited in
surveys, are also GOT data.

However, we often know very little about the specific parametric forms of the distribu-
tions, and it is also difficult to completely validate the parametric assumptions. The para-
metric Bayesian models based on distributional assumptions may be problematic because
inferences are sensitive to such assumptions. It may be more appealing to use a nonpara-
metric Bayesian approach because we are interested in extreme percentiles. For example,
as stated already, for BMI data interest is usually on the 85th and 95th finite population
percentiles. These are in the extreme right tails of the BMI distribution, and because the



124 NONPARAMETRIC BAYESIAN ANALYSIS OF RESPONSE DATA [Vol. 18, No. 2

BMI data have ties, outliers and gaps, it is dubious for normal distribution to represent
them.

Here, we discuss the statistical modeling associated with the analysis of two-level survey
data. Our intention is to propose nonparametric Bayesian alternatives using the Dirichlet
process (DP). This permits robustification of inference by embedding parametric models in
nonparametric models, thereby avoiding critical dependence on parametric assumptions and
to allow for heterogeneity, gaps, outliers, ties, etc.

The existence of the DP was established by Ferguson (1973). It is a distribution over
distributions; each draw from a DP itself is a distribution (i.e., operating on functional
spaces). The DP has gained a lot of attention recently. It has nice properties such as
clustering and borrowing information which is attractive to SAE, and it can be used to
address the nonparametric analysis of GOT data. The Dirichlet process mixture (DPM)
model has normality on the responses (not appropriate for GOT data) and a DP on the
random effects.

The more appropriate model, introduced by Yin and Nandram (2020), has several
Dirichlet processes on the response data and a normal distribution for the random effects;
therefore, we call it the DPG model. The Scott-Smith (Scott and Smith 1969, S-S) model
has normality on both levels. The difference between the DPM model and the DPG model
is that DPM model (normality on the responses) does not accommodate GOT data but its
main strength is its clustering property among the small areas (i.e., random effects). The
DPM model is actually the opposite of the DPG model, and they are both different from
the S-S model that has normality at both levels. In this paper, we compare the analysis of
BMI data using the three models (S-S, DPM and DPG); our contribution is not theoretical
nor methodological. Incorporating the survey weights into the DPM or the DPG needs new
theory and methodology.

In Section 2, we briefly review the Scott-Smith (S-S) model and the DPM model. In
Section 3, we discuss the DPG model. Section 3.1 describes the DPG model and its compu-
tation. Section 3.2 shows how to do prediction of the finite population quantities under the
DPG model. In Section 4, to compare the three models, we present an analysis of BMI GOT
data and in the appendix a limited simulation study. In Section 5, we present our conclusions.

2. Scott-Smith Model and Dirichlet Process Mixture Model

In Section 2.1, we first review the S-S model, a two-level parametric model. It is used
as a baseline model for the other two nonparametric models that we wish to discuss. In
Section 2.2, we present a review of the Dirichlet process mixture (DPM) model. It is worth
noting here that the S-S model is not robust against outliers in the data (e.g., Gershunskaya
and Lahiri 2018). This is also true for the DPM model. In addition, they do not make any
adjustments for gaps and ties in the responses.

We assume that there are ` areas, and within the ith area there are Ni (known) indi-
viduals. A sample of ni individuals is available from the ith area, and the remaining Ni− ni
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values are unknown. Inference is required for extreme percentiles (85th and 95th) of each
area.

It is convenient to momentarily describe some notations. Let yij denote the value
for the jth unit within the ith area, i = 1, . . . , `, j = 1, . . . , Ni. We assume that yij,
i = 1, . . . , `, j = 1, . . . , ni, are observed, and inference is required for the two finite popula-
tion percentiles of the ith area. Let y

˜
= (y

˜
s, y

˜
ns), where y

˜
s = {yij, i = 1, . . . , `, j = 1, . . . , ni}

is the vector of observed values and y
˜
ns = {yij, i = 1, . . . , `, j = ni + 1, . . . , Ni} vector of

unobserved values.

2.1. Two-stage Scott-Smith (S-S) parametric model

We describe the Bayesian version of the model of Scott and Smith (1969). This S-S
model was developed by Nandram, Toto and Choi (2011) for continuous data yij, where i =
1, . . . , `, j = 1, . . . , Ni. Letting δ2 = ρ

1−ρσ
2, our two-level normal model (baseline parametric

model) is then

yij|µi
ind∼ N

(
µi, σ

2
)
, i = 1, . . . , `, j = 1, . . . , Ni, (1)

µi
ind∼ N

(
θ,

ρ

1− ρσ
2
)
, (2)

π(θ, σ2, ρ) = 1
π(1 + θ2)

1
(1 + σ2)2 , −∞ < θ <∞, σ2 > 0, 0 ≤ ρ ≤ 1.

Here, we consider a reparameterization of the S-S model, (1) and (2), together with proper
non-informative priors that can allow computation of marginal likelihood and Bayes fac-
tors. We replace δ2 by ρ

(1−ρ)σ
2 to gain some analytical and computational simplicity. Note

that ρ = δ2/(δ2 + σ2) is a common intra-class correlation; see Toto and Nandram (2010),
Nandram, Toto and Choi (2011) and Molina, Nandram and Rao (2014). We have used the
Cauchy prior centered at 0 for θ; one can use a location-scale Cauchy prior distribution (e.g.,
Gelman, Jakulin, Pittau and Su, 2008), but one would need to specify the location and scale
parameters using the data (double using the data is forbidden in Bayesian statistics). The
prior on σ2 is a standard shrinkage prior (almost noninformative). The sampling impor-
tance resampling (SIR) algorithm is used to draw samples from the posterior distribution
π(µ

˜
, θ, σ2, ρ|y

˜
s); see Yin and Nandram (2020).

2.2. Dirichlet process mixture model

As pointed out by a reviewer, the Dirichlet process (DP) is well known and there is no
need to review it. However, to set the stage, we need a brief description. First, we note that
Binder (1982) was the first to introduce this model to survey sampling; more recently, see
Nandram and Yin (2016 a,b). Let (Θ,B) be a measurable space, with G0 a baseline measure
(nonrandom) on the space; see Ferguson (1973) for a definition of the DP.

A Dirichlet process, DP(α,G0), is defined as the distribution of a random probabil-
ity measure G over (Θ,B) such that, for any finite measurable partition of the measur-
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able space Θ, {Ai}ni=1, {G(A1), . . . , G(An)} ∼ Dirichlet {αG0(A1), . . . , αG0(An)} . We write
G ∼ DP(α,G0), if G is a random probability measure with a distribution given by the DP,
where α is the concentration parameter. Sethuraman (1994) presented an enormously useful
representation of DP in the form of a stick-breaking algorithm.

Another implied representation of the DP is the generalized Polya urn scheme, which
is obtained by integrating out the random measure, G. Now considering the predictive
distribution for θn+1 conditioned on θ1, . . . , θn with G integrated out, we have

θn+1|θ1, . . . , θn ∼
α

α + n
G0(θn+1) + 1

α + n

n∑
i=1

∆θi
(θn+1),

where ∆a(x) is the cdf of a point mass at a. The sequence of predictive distributions for
θ1, θ2, . . . is called the generalized Polya urn scheme (Blackwell and MacQueen 1973). Here,
it is interesting that the probability measure G is discrete with probability one, but the
k distinct values θ∗1, . . . , θ∗k

iid∼ G0, a continuous measure (i.e., the θi are continuous, yet
θi = θj, i 6= j). There is also a slightly more compressed form that we use for prediction.

In many applications, the almost sure discreteness of the DP measure may be inap-
propriate. As we noted, the most popular application of the DP is in clustering data using
mixture models. There is a set of latent variables, {µ1, . . . , µ`}, and as for finite populations,
the model is

yij|µi, φ
ind∼ h(yij;µi, φ), j = 1, . . . , Ni, i = 1, . . . , `, (3)

µi|G ∼ G,

G ∼ DP(α,G0).

This model is referred to as a Dirichlet process mixture (DPM) model; see Lo (1984) where
the DPM was introduced. There are numerous applications of the DPM but see Nandram
and Choi (2004) and Polettini (2017) for applications on SAE. Each µi is a latent parameter
modeling yij, while G is the unknown distribution over parameters modeled using a DP. It
can be seen as a Dirichlet process mixture of h(yij;µi, φ), where yij’s with the same value
of µi belong to the same cluster. The DPM model removes the constraint from discrete
measures. It is worth noting that the DPM model for the response data is usually normal,
and so it will not fit the GOT data very well. The corresponding parametric baseline model
with G0 replacing the random probability measure G is,

yij|µi, φ
ind∼ h(yij;µi, φ), j = 1, . . . , Ni, i = 1, . . . , `,

µi ∼ G0.

Kalli, Griffin and Walker (2011), who suggested slice-efficient samplers, gave an improved
slice sampling scheme to fit the DPM model that we use in our work, and it is based on
the stick-breaking construction (Sethuraman 1994) without truncation error. The idea is to
introduce latent variables that permit sampling a finite number of variables at each iteration.
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In our context, DPM model is

yij|µi, σ2 ind∼ Normal(µi, σ2), j = 1, . . . , Ni, (4)
µi|G ∼ G, i = 1, . . . , `,

G | θ, σ2, γ, ρ ∼ DP
{
γ,Normal(θ, ρ

1− ρσ
2)
}
, (5)

π(θ, σ2, γ, ρ) = 1
π(1 + θ2)

1
(1 + σ2)2

1
(1 + γ)2 , (6)

where −∞ < θ < ∞, σ2 > 0, γ > 0, 0 ≤ ρ ≤ 1, and γ is the concentration
parameter. In this formulation the S-S model is a baseline model; the DPM model is cen-
tered on the S-S model and γ controls how close DPM model gets to the S-S model. Here,
G is a random distribution function, discrete with probability one, with distribution DP (·, ·).

3. Dirichlet Process Gaussian (DPG) Model

Since there are gaps, outliers and ties (GOT) in survey data, it is reasonable to use a
random distribution drawn from the DP for the sampling population. One drawback of the
S-S model is over-shrinkage; the posterior mean of certain areas may be shrunk too much
towards the overall mean. Using the DP allows borrowing information moderately within
some of the areas instead of all. Moreover, since there are gaps, outliers and ties in the sur-
vey data, it is reasonable to use a random distribution drawn from the DP for the sampling
population. Thus, it is important to use a nonparametric procedure.

3.1. Model and computation

We consider a nonparametric hierarchical Bayesian extension of the parametric baseline
model with the uncertainty on the distribution of our sampling population. Using DPs in
the first level and a parametric distribution as prior gives

yij|Gi
ind∼ Gi, i = 1, . . . , `, j = 1, . . . , Ni, (7)

Gi|µi
ind∼ DP{αi, G0(µi)},

µi
iid∼ H0(·),

where G0(µi) and H0(·) can be any parametric distributions. When we have strong beliefs
that the area means are from a normal distribution, we may choose to use the normal
likelihood in the second level. In particular, we consider G0 = N(µi, σ2) and H0(·) =
N(θ, δ2), where δ2 = ρ

1−ρσ
2 in (7) to be consistent with the two-level normal model. A full

Bayesian model can be obtained by adding prior distributions. For example, we can use
proper non-informative priors,

π(αi) = 1
(αi + 1)2 , αi > 0, i = 1, . . . , `, (8)

π(θ, σ2, ρ) = 1
π(1 + θ2)

1
(1 + σ2)2 ,

−∞ < θ <∞, 0 < σ2 <∞, 0 ≤ ρ ≤ 1, (9)
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with independence. Generally, it is not sensible to assume that the αi are identically dis-
tributed because they can be very different. As apparent, we have been calling (7), (8) and
(9) the DPG model.

Inference of the DPG model can be easily performed. We denote (µ
˜
, θ, σ2, ρ) as ψ

˜
and

α
˜

= {α1, . . . , α`}. The posterior density of αi are independent with other parameters ψ
˜

in the
model, conditioning on only the distinct values. Let ki denote the number of distinct values
for each area in the observed data, k

˜
= {ki, i = 1, . . . , `} be the vector of ki, y∗i1, . . . , y∗iki

be
the ki distinct sample values for each i and y

˜
∗ = {y∗i1, . . . , y∗iki

, i = 1, . . . , `} be the vector of
y∗ij. Thus the joint posterior density is

π(α
˜
, ψ
˜
| k

˜
, y
˜
∗) =

[∏̀
i=1

π(αi | ki)
]
π(ψ

˜
| y

˜
∗), (10)

where π(αi|ki) ∝ π(ki | αi)π(αi). For the other parameters ψ
˜

, we have

y∗ij|µi
ind∼ N

(
µi, σ

2
)
, i = 1, . . . , `, j = 1, . . . , ki, (11)

µi
iid∼ N

(
θ,

ρ

1− ρσ
2
)
,

π(θ, σ2, ρ) = 1
π(1 + θ2)

1
(1 + σ2)2 ,−∞ < θ <∞, 0 < σ2 <∞, 0 ≤ ρ ≤ 1.

Therefore, the algorithm for the DPG model is
Step 1 : For each i (i = 1, . . . , `), draw αi from π(αi|ki) ∝ αki Γ(αi)

Γ(αi+ni)
1

(αi+1)2 (Antoniak 1974).
Step 2: Draw ψ

˜
from the parametric model (11) which is easy to fit.

Finally, we highlight how the DPG model takes care of GOT responses; this is apparent
in the sampling process. When we integrate out the random probability measure (Blackwell
and MacQueen, 1973), we get

f(y
˜i
| µi, σ2, αi) = 1

σ
φ(yi1 − µi

σ
)

×
ni∏
k=2

{
k − 1

αi + k − 1

∑k−1
j=1 δyij

(yik)
k − 1 + αi

αi + k − 1
1
σ
φ(yik − µi

σ
)
}
, (12)

where δa(b) means that b is a point mass at a; so ties are accommodated. Therefore, in each
area we are mixing the distributions in (12) using normal mixing distributions in the DPG
model. The DPM is different being a Dirichlet process mixture of normals. The DPM model
actually produces ties among the random effects or area means (clustering), which is its ma-
jor strength. But it does not model gaps, outliers, ties and skewness among the responses.
By putting DPs on the responses in different areas, we are attempting to accommodate the
GOT data.
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3.2. Prediction for the finite population

We have a simple random sample of size ni from a finite population of size Ni, i =
1, . . . , `. Let yi1, . . . , yini

denote the sampled values. We want to predict yini+1, . . . , yiNi
, the

nonsampled values, and obtain the posterior predictive distributions for the 85th and 95th
finite population percentiles for each area. The sampling process is

yij|Gi
ind∼ Gi, i = 1, . . . , `, j = 1, . . . , Ni,

Gi|µi
ind∼ DP{αi, G0(µi)}.

Predictive inference for the DPG model simply uses the generalized Polya urn scheme
(Blackwell and MacQueen 1973) for each area, since all areas are independent (see Nandram
and Yin 2016 a,b). Once we have obtained the nonsampled yij, j = ni+1, . . . , Ni, i = 1, . . . , `,
we can now calculate any finite population quantity of interest. For example, for BMI data,
we are interested in the finite population 85th percentile (overweight individuals) and the
95th percentile (obese individuals). The Ni are assumed known, and they are obtained from
the 1990 census. To obtain the percentiles, one simply sort all the data (sample values and
predicted non-sample values) in increasing order. Then, for the 85th percentile, pick the
value at .85Ni (nearest integer) position, and for the 95th percentile, pick the value at .95Ni

(nearest integer) position. Also, it is more difficult to estimate the two percentiles because
they are in the right tail of the posterior distributions.

Because the Ni are very large (Ni = ni/.0002), it takes relatively more time to compute
the percentiles than other finite population quantities. One needs to sort yi1, . . . , yiNi

at each
iteration, and the observed values can take different positions in the sorting. Prediction is
relatively easier in the S-S and DPM models because it is done under normality, whereas in
the DPG model, it is done under the Polya urn scheme.

4. Application to Body Mass Index Data

We fit the three models (S-S, DPM and DPG) to the BMI data. Our objective is mainly
to compare the three models. As we mentioned in previous sections, survey data tend to
have gaps, outliers and ties. The BMI data set is an example because in practice, BMI is
rounded to one decimal place which creates many ties, and therefore the BMI data are a
prime example of GOT data. We present the dot plots for all thirty-five areas (see Figure
1). The observations are more concentrated and having ties within the range around 25.
It is also clear that the data are clustered and present gaps. Especially outside the normal
weight range, the data become sparse and present bigger gaps.

The Gibbs sampler is needed for only the DPM model; for the S-S model and DPG
model, we use random samplers, and therefore no monitoring is required. For the DPM
model, we ran 10, 000 iterations, used 5, 000 as a “burn in” and thin every 5th to obtain
1, 000 converged posterior samples. We have computed the p values of the Geweke test
and the effective sample sizes for the parameters σ2, θ, δ2 and γ for the DPM model. The
p values are respectively .48, .41, .46, .62 and the effective sample sizes are respectively
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1000, 1000, 698, 1085, thereby showing that the chain is stationary and strongly mixing.
Also, trace plots and auto-correlation plots indicate that the chains converge.

For model assessment, we computed the delete-one cross validation (CV) divergence
measure (Wang et al. 2012). The CV, obtained by predicting yij when it is deleted to obtain
y
˜(ij), is

CV = 1∑`
i=1 ni

∑̀
i

ni∑
j=1
|yij − E(yij|y˜(ij))|,

E(yij|y˜(ij)) = EΩ|y
˜(ij)E(yij | y˜(ij),Ω) =

∫
E(yij | y˜(ij),Ω)f(Ω|y

˜(ij))dΩ.

where Ω is the set of all parameters. A Monte Carlo estimator of E(yij|y˜(ij)) is

̂E(yij|y˜(ij)) =
∑M
h=1{f(yij | y˜(ij),Ω(h))}−1E(yij | y˜(ij),Ω(h))∑M

h=1{f(yij | y˜(ij),Ω(h))}−1 ,

j = 1, . . . , ni, i = 1, . . . , `. Note that this measure is essentially a weighted average of the
E(yij | y˜(ij),Ω(h)) (i.e., a prediction-based measure), it is not based directly on a likelihood
function. For the S-S model, DPM model and DPG model the CVs are respectively 0.765,
0.766 and 0.772. So based on this measure, there is virtually no difference among these
models.

We have studied other likelihood-based measures. However, when a parametric model
is nested in a nonparametric alternative, any likelihood-based diagnostics (e.g., deviance
information criterion, Bayesian predictive p values, log-pseudo-marginal likelihood, Bayes
factor) will be misleading because we are comparing infinite dimensional distributions. One
possible explanation of this fact is that the DP generates discrete distributions with prob-
ability one. This phenomenon can arise, more generally, in different contexts (e.g., using
the DP in goodness of fit testing). Carota and Parmiginani (1996) and Petrone and Raftery
(1997) pointed out that the discreteness of the DP can have a large effect on inferences of
posterior distributions and Bayes factors, when the data are partially exchangeable with an
unknown partition.

We perform the predictive inference of the 85th and 95th finite population percentiles
for each area using the three models (S-S, DPM and DPG). We also use a Bayesian bootstrap
(e.g., Yin and Nandram 2020) to do prediction in each county individually without borrowing
across counties as a comparison (i.e., the assumption of similarity across counties is not used).
Note that for the county level, all sample sizes are roughly 100, about .02% of the population
sizes. We have compared the DPG model to the S-S model, the DPM model and Bayesian
bootstrap.

In Tables 2 and 3, we present summary statistics, posterior mean (PM) and posterior
standard deviation (PSD), of the 85th and 95th finite population percentiles for each county of
BMI data under the three models (S-S, DPM and DPG) and Bayesian bootstrap respectively.
Again, the bootstrap does not allow for pooling.

First, consider the 85th percentile in Table 2. The PMs are roughly the same with
those for the DPG model slightly higher, thereby showing how the DPG model takes care
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of the data in the right tail of the data distribution. The PSDs under bootstrap are always
larger than those under the three models, sometimes as much as two times. This shows that
pooling of information across counties is helpful. However, the PSDs under the three models
are roughly in increasing order: S-S model, DPM model and DPG model; the PSDs under
the DPG model are always the largest, again showing how the DPG model takes care of the
data in the right tail of the data distribution.

Second, we note that there are similar results in Table 3, but the differences are sharper.
For example, the PSDs under the bootstrap are much too large and they are much larger
under the DPG model than under the S-S model and DPM model.

In short, Tables 2 and 3 are very informative. It is not true that because the PSDs
under the DPG model are larger than those under the S-S and DPM model, the DPG is
worse. On the contrary, it is true that the DPG model has higher PSDs because it takes care
of the GOT features of the BMI data. The S-S model and DPM model understate the PSDs
because they do not take care of the gaps, outliers and ties in the data; the DPG model has
a stochastic mechanism that accounts for the gaps, outliers and ties.

In Figures 2 and 3, we present plots of the posterior means with credible bands versus
direct estimates for BMI data. The predictive inferences of the population percentiles are
similar under the S-S model and DPM model. However, the DPG model tends to have higher
predictions of the population percentiles with similar credible bands as compared with the
other models. We suspect that S-S model and DPM model might underestimate the 85th
and 95th finite population percentile when the GOT data are right skewed. In both Figures
2 and 3, we notice that the points under the DPG model are closer to the 45-degree straight
line than those under the S-S model and DPM model. This effect is more intense in Figure
3 than in Figure 2, where the points under the S-S model and the DPM model appear to be
more horizontally spread out. This is an important point because it shows that there is too
much pooling in the S-S model and the DPM model. In particular, it shows that because
the DPG model takes care of the GOT features of the BMI data, it is able to represent the
pooling effect the best, and without the restrictive parametric assumptions in the sampling
process, the DPG model tends to provide less biased estimation.

Finally, in Appendix A, we have performed a limited simulation study. We have gen-
erated data like the BMI data using the DPG model and then we fit all three models (S-S,
DPM, DPG) to it. All we need from the simulation study is to describe when the DPG
model performs better than the S-S model and the DPM model. We have shown that when
posterior inference is performed for the 85th and 95th finite population percentiles, the DPG
model performs much better than the S-S model and the DPM models, as required; see
Appendix A.

Since BMI data are right skewed with gaps, outliers in the right tails and ties, the
estimations given by parametric models may be incorrect. Thus based on a belief that the
parametric model is too restrictive, we prefer the analysis based on the nonparametric DPG
model.
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5. Concluding Remarks

Bayesian nonparametric methods are motivated by the desire to avoid overly restrictive
parametric assumptions. For GOT data (gaps, outliers and ties), we believe that our DPG
model will play an important role for future analysis of “continuous” survey data. The S-S
model and the DPM model have normality assumption on the response data, and hence they
do not address the problem of GOT data. Based on the analyses, we have positive view of
the DPG model.

Our main conclusion is that when data come from the DPG model, it will do much
better than the S-S model and the DPM model. The DPM model, while nonparametric
(good), it has the DP on the wrong level (random effects) for GOT responses. The S-S
model has normality on both levels. Normality on the responses is not appropriate for GOT
data. Hence, neither of these two models can accommodate GOT responses. Based on this
point, we believe that among the three models (S-S, DPM, DPG), it is the DPG model that
is most appropriate to represent the BMI GOT data. The DPG model is more important
when interest is on the 85th and 95th finite population percentiles because there are larger
gaps in the right tails of the data distributions (i.e., outliers). However, the DPM model is
attractive for an important reason; it provides clustering among the small areas but not the
data. This clustering among the small areas can be accommodated in the DPG model; see
Nandram and Yin (2019).

It is important to include survey weights in the DPG model. This can be done using a
standardized composite likelihood. Covariates can also be incorporated into the DPG model.
However, our main contribution in this paper has been to demonstrate the superiority of the
DPG model when it is fitted to the BMI GOT data.
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APPENDIX A: Simulation Study Showing the Strength
of the DPG Model

We conduct a limited simulation study. We have simulated a single data set from the
DPG model and we fitted all three models (S-S, DPM, DPG) to this data set.

We choose ` = 50 and the sample sizes, ni, for 50 areas. The sample sizes are 35 for
each of the first 10 areas, 50 for each of the second 10 areas, 100 for each of the third 10
areas, 200 for each of the fourth 10 areas and 500 for each of the last 10 areas. Then, the
population sizes are selected as Ni = 100ni, i = 1, . . . , `. These are comparable to the BMI
data. For convenience, to simulate the data set, we have taken θ = 0.0, σ2 = 0.01, δ2 = 0.04,
thereby making ρ = 0.8. For the concentration parameters of the Dirichlet processes, we
have selected αi ind∼ 0.5 + Beta(5, 5), i = 1, . . . , `. These choices allow us to have data similar
to the BMI data with some flexibility to get gaps, outliers and ties when data are simulated
from the DPG model.

We use absolute bias (AB) and posterior root mean squared error (PRMSE) to compare
the models. We know the true values of the finite population quantities, denoted by T . Then,
AB =| PM − T | and PRMSE =

√
(PM − T )2 + PSD2. We compute these quantities for

each of the fifty counties for the 85th and 95th finite population percentiles, and respectively
we average them over the fifty counties. We present AB and PRMSE in Table 4 for the
case in which data are generated from the DPG model (i.e., for GOT data). It is nice that
AB and PRMSE are manyfold smaller under the DPG model than the other two models
(S-S, DPM). Therefore, it is clear that the DPG model performs much better than the S-S
model and the DPM model, when inference is made about the 85th and 95th finite population
percentiles. This is exactly what we want to happen.

Table 1: Acronyms used in the Presentation

Acronym Meaning

GOT gaps, outliers and ties
BMI body mass index
SAE small area estimation
S-S Scott-Smith
DP Diriclet process
DPM Dirichlet process mixture
DPG Dirichlet process Gaussian
AB absolute bias
PRMSE posterior root mean squared error
PM posterior mean
PSD posterior standard deviation
CV cross validation
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Table 2: Comparison of posterior mean (PM) and posterior standard deviation
(PSD) of the finite population 85th percentile for each county of body mass index
(BMI) data by te three models (S-S, DPM, DPG) and Bayesian bootstrap

Bootstrap S-S DPM DPG
PM PSD PM PSD PM PSD PM PSD

1 32.14 0.50 32.48 0.35 32.50 0.39 32.46 0.47
2 34.76 1.24 32.93 0.45 32.95 0.43 34.08 0.82
3 30.76 0.78 32.05 0.39 32.00 0.44 31.94 0.63
4 31.57 1.07 31.97 0.43 31.93 0.42 32.48 0.61
5 30.51 0.90 31.75 0.47 31.75 0.45 31.87 0.72
6 33.82 1.22 33.42 0.44 33.35 0.44 33.55 0.67
7 31.59 0.85 32.58 0.36 32.58 0.39 32.45 0.72
8 32.25 0.67 32.46 0.36 32.48 0.42 32.70 0.53
9 32.81 1.18 33.03 0.41 33.01 0.42 33.15 0.75

10 34.01 0.74 33.07 0.39 33.08 0.36 33.73 0.48
11 32.75 0.54 32.78 0.26 32.79 0.27 32.90 0.49
12 30.26 0.80 31.67 0.42 31.67 0.38 31.45 0.53
13 31.91 0.88 32.34 0.36 32.32 0.43 32.64 0.57
14 32.37 0.38 32.80 0.19 32.82 0.20 32.50 0.37
15 33.39 0.50 32.84 0.40 32.85 0.41 33.39 0.42
16 32.21 0.75 32.72 0.37 32.71 0.40 32.73 0.62
17 30.88 0.83 31.95 0.40 31.91 0.42 32.07 0.72
18 31.18 0.80 32.29 0.39 32.28 0.49 32.21 0.85
19 32.03 0.97 32.09 0.38 32.08 0.42 32.77 0.56
20 32.71 0.96 32.50 0.39 32.52 0.42 33.08 0.61
21 33.08 0.98 32.57 0.40 32.58 0.44 33.28 0.56
22 32.06 0.72 32.65 0.36 32.68 0.37 32.57 0.57
23 31.18 0.77 31.85 0.42 31.81 0.42 32.19 0.70
24 32.66 0.66 32.64 0.37 32.68 0.40 32.96 0.52
25 31.63 0.98 32.37 0.39 32.39 0.42 32.47 0.73
26 32.02 0.96 32.34 0.40 32.30 0.45 32.77 0.57
27 31.56 0.44 32.34 0.31 32.36 0.39 32.16 0.50
28 33.51 1.51 32.87 0.39 32.89 0.40 33.33 0.80
29 31.53 0.97 32.30 0.45 32.31 0.49 32.57 0.80
30 30.62 0.94 31.89 0.43 31.83 0.45 32.13 0.71
31 32.36 0.57 33.02 0.38 32.99 0.38 32.72 0.49
32 33.24 0.89 32.96 0.37 32.96 0.37 33.31 0.62
33 30.54 0.51 32.03 0.37 32.01 0.42 31.61 0.57
34 32.48 0.49 32.78 0.31 32.82 0.31 32.71 0.45
35 31.78 1.04 32.40 0.35 32.41 0.42 32.54 0.75
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Table 3: Comparison of posterior mean (PM) and posterior standard deviation
(PSD) of the finite population 95th percentile for each county of body mass index
(BMI) data by the three models (S-S, DPM, DPG) and Bayesian bootstrap

Bootstrap S-S DPM DPG
PM PSD PM PSD PM PSD PM PSD

1 35.52 1.27 35.79 0.42 35.81 0.45 36.21 0.88
2 40.88 2.32 36.45 0.46 36.47 0.45 38.83 1.54
3 34.90 2.58 35.36 0.47 35.32 0.51 36.16 1.43
4 35.59 1.12 35.31 0.45 35.27 0.45 36.26 0.85
5 35.82 1.61 35.19 0.51 35.19 0.50 36.53 0.92
6 39.32 1.58 37.00 0.44 36.94 0.44 38.45 0.74
7 35.93 1.12 35.95 0.40 35.94 0.44 36.50 0.69
8 37.32 1.49 35.90 0.43 35.92 0.48 37.26 0.86
9 38.76 1.54 36.55 0.45 36.53 0.46 38.02 0.84

10 39.82 1.64 36.48 0.41 36.48 0.41 38.32 1.14
11 37.49 0.94 36.19 0.28 36.21 0.29 37.36 0.71
12 35.84 1.50 35.17 0.47 35.18 0.44 36.46 0.89
13 36.13 1.20 35.68 0.40 35.66 0.45 36.65 0.93
14 36.90 0.80 36.16 0.22 36.19 0.23 36.96 0.69
15 36.04 1.47 36.00 0.48 36.03 0.49 36.64 0.89
16 36.44 1.40 36.08 0.41 36.08 0.44 36.79 0.93
17 34.70 0.99 35.27 0.44 35.23 0.45 35.77 0.83
18 35.57 0.81 35.68 0.38 35.65 0.46 36.16 0.78
19 34.88 0.88 35.31 0.40 35.30 0.44 35.85 0.78
20 37.08 1.89 35.82 0.42 35.84 0.46 37.11 1.14
21 35.75 1.03 35.75 0.44 35.77 0.47 36.30 0.84
22 35.56 1.08 35.94 0.43 35.98 0.42 36.12 0.89
23 36.46 1.46 35.29 0.45 35.24 0.46 36.84 0.92
24 37.80 2.17 36.02 0.44 36.06 0.45 37.40 1.33
25 37.29 2.60 35.76 0.43 35.77 0.46 37.23 1.47
26 36.18 1.92 35.67 0.52 35.62 0.55 36.90 1.10
27 36.09 1.30 35.75 0.38 35.77 0.44 36.51 0.78
28 40.33 1.37 36.50 0.44 36.53 0.46 38.84 0.96
29 35.71 1.10 35.66 0.52 35.67 0.52 36.43 0.78
30 34.57 1.11 35.20 0.48 35.15 0.49 35.87 0.83
31 35.43 1.06 36.28 0.39 36.26 0.39 36.01 0.68
32 39.12 1.40 36.43 0.41 36.43 0.40 38.24 1.00
33 34.10 0.83 35.31 0.42 35.30 0.46 35.32 0.88
34 35.98 1.02 36.09 0.36 36.12 0.36 36.36 0.85
35 37.83 1.13 35.92 0.38 35.92 0.44 37.57 0.92
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Table 4: Comparison of absolute bias (AB) and posterior root mean squared
error (PRMSE) of the finite population 85th percentile and 95th percentile for the
simulated data from DPG model averaged over areas

S-S Model DPM Model DPG Model
AB PRMSE AB PRMSE AB PRMSE

85th percentile 379.0 385.9 384.1 394.6 18.05 40.0
95th percentile 550.2 556.3 555.3 563.7 35.5 101.0

NOTE: Data are generated from the DPG model, and all three models (S-S, DPM, DPG)
are fitted to the data. The numbers in the table must be multiplied by 10−4.
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Figure 1: Dot plots of body mass index (BMI) for thirty-five counties
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Figure 2: Comparison for body mass index (BMI) data (posterior means with
credible bands versus direct estimates): the predictive inference of the finite
population 85th percentile for each county under the three models (S-S, DPM,
DPG)
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Figure 3: Comparison for body mass index (BMI) data (posterior means with
credible bands versus direct estimates): the predictive inference of the finite
population 95th percentile for each county under the three models (S-S, DPM,
DPG)
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systems share the problem of approximating virtually continuous weights by distinctly

discrete proportions. We explain the common aspects of the problem, review three high-

lights of the underlying theory, and illustrate the usefulness of the results by examples

relating to electoral systems, sampling plans, and experimental design.

Key words: Apportionment rules; Divisor methods; Coherence theorem; Seat bias the-

orem; Goodness-of-fit theorem.

1. Prologue

The common denominator of Professor Bikas Sinha and Professor Bimal Sinha

and myself is our joint research in the design and analysis of statistical experiments,

dating back to the last millennium. I have fond memories of the discussions with one

or the other of the twin professors when visiting them in Delhi 1988, at UMBC 1991, in

Kolkata 1994 and, conversely, playing host in Augsburg 1993. Our relations culminated

in the joint paper Pukelsheim and Sinha (1995) which merged Bikas’ expertise in exact

block designs with my interest in optimal approximate designs.

The two fields, optimality analysis of approximate designs and combinatorial con-

struction of block designs, exhibit a complementary character. The first forms part

of continuous mathematics, the second, of discrete mathematics. The transition from

the continuous domain to the discrete domain was one of the topics dealt with in

Pukelsheim and Sinha (1995). Beyond the statistical origin, the transition problem

turned out to be quite intriguing by itself. When I stumbled into the problem I did

not know nor preview that it would keep me busy to date. In the sequel I shall review

three highlights that I found particularly intriguing.
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2. Apportionment Rules

Suppose there is a set of experimental conditions, labeled j = 1, . . . , ℓ, for which

a (continuous) experimental design indicates that a share wj of all observations is to

be realized under condition j. That is, the shares w1, . . . , wℓ are nonnegative weights

(i.e. “continuous” real numbers) summing to unity.

Practically, limited funds restrict the experimenter to a finite sample size h, say.

What we seek, then, is an (exact) experimental design x1, . . . , xℓ consisting of frequen-

cies (i.e. “exact” natural numbers) summing to h such that the proportion xj/h of

observations becomes as equal as can be to the optimal weight wj , that is,

x1 ≈ hw1, . . . , xℓ ≈ hwℓ.

If all scaled weights hw1, . . . , hwℓ happen to be natural numbers, the exact solution is

x1 = hw1, . . ., xℓ = hwℓ and the job is done.

However, the quantities hwj generally fail to be natural numbers and cannot

serve as the frequencies sought. Thus, in general, pure proportionality is impossible.

The question arises how to split the sample size h into frequencies x1, . . . , xℓ that are

reasonably – in some sense or other – proportional to the weights w1, . . . , wℓ.

Evidently the terminology is not geared towards the setting of experimental de-

sign. The notation originates from a field that comes with an isomorphic problem, the

study of proportional representation systems in parliamentary democracies.

The typcial setting is the following. At an election of a parliament of house size h,

ℓ political parties finish with vote shares w1, . . . , wℓ. The electoral law stipulates an

apportionment rule allotting the h parliamentary seats to the ℓ parties by way of seat

contingents x1, . . . , xℓ. The apportionment rule should be such that the seat contingent

xj of party j is close to what the party would claim under pure proportionality, xj ≈

wjh. Alas, since seats are assigned to human beings who are indivisible, the seat

contingents xj must be natural numbers and cannot in general become equal to the

fractional shares wjh.

The number of parties contesting an election usually varies from one election

to the other. Hence an apportionment rule is suitable for an electoral law only if its

formulation does not involve the size of the party system, ℓ. To this end a “vote vector”

(v1, v2, . . .) is taken to be an infinite sequence of nonnegative numbers that breaks off

after a last nonzero term vℓ and ends in a tail of zeros. Similarly, a “seat vector”

(x1, x2, . . .) is taken to be a sequence of natural numbers terminating with zeros. This

convention allows an effectual introduction of apportionment rules.

By definition, an “apportionment rule” A maps every house size h and every vote

vector v = (v1, v2, . . .) into a non-empty “solution set” A(h; v) consisting of seat vectors

x = (x1, x2, . . .) that have a component sum equal to the house size h and that inherit

all zeros of the vote vector v: vj = 0 ⇒ xj = 0 for all j.

The notion of an “allotment method” in Hylland (1978, page 5) is quite similar.
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An apportionment rule as defined above is taken to be a set-valued mapping in

order that it may accommodate tied situations. A prototype tie arises when three seats

are apportioned among two equally strong parties, with 5000 votes each say. Either

the first party is allotted one seat and the second two, or the first party two and the

second one. As both solutions are equally justified, the solution set comprises both:

A
(

3; (5000, 5000)
)

= {(1, 2), (2, 1)}. See Table 3 below for another example.

Note that vote vectors and seat vectors, which a minute ago were agreed to be

infinite sequences that terminate with zeros, are jotted down as vectors of finite length

simply by omitting the vanishing tails.

Contemplation of which apportionment rules are practically reasonable or not

leads to a subclass of procedures called apportionment methods.

3. Apportionment Methods

The abstract notion of apportionment rules embraces procedures obviously unfit

for concrete usage. For instance, whatever the vote vector v, all seats could be allocated

to the party listed first, A(h; v) = {(h, 0, 0, . . .)}, a dictatorial rule. The ensemble of all

apportionment rules is reduced to a reasonable subset by imposing a set of desirable

principles.

There are five basic principles. The first four are anonymity, balancedness, con-

cordance, and decency. They suggest themselves as soon as they are formulated. The

fifth principle, exactness, has a more technical flavor.

Anonymity. An apportionment rule A is called “anonymous” when every rear-

rangement of a vote vector induces the same rearrangement of the accompanying seat

vector. Whether a party is listed first or last does not matter, its seat contingent stays

the same.

Balancedness. An apportionment rule A is called “balanced” when any two

parties that are equally strong differ by at most one seat: vi = vj ⇒ |xi − xj | ≤ 1.

It is unrealistic to insist on equality, but a difference of two or more seats will not be

tolerated.

Concordance. An apportionment rule A is called “concordant” when of any

two parties the stronger party is allotted at least as many seats as the weaker party:

vi > vj ⇒ xi ≥ xj . A discordant result, giving the stronger party fewer seats than the

weaker party, is rejected.

Decency. An apportionment rule A is called “decent” when scalings of the vote

vector do not change the solution set: A
(

h; 1

d
v
)

= A(h; v) for all d > 0. Hence absolute

vote counts vj and relative vote shares wj = vj/(v1+v2+ · · ·) yield the same solutions.

Exactness. An apportionment rule A is called “exact” when every sequence of

vote vectors v(n), n ≥ 1, that converges to a seat vector x induces sequences of solution

vectors y(n) ∈ A
(

h; v(n)
)

, n ≥ 1, that converge to x, too, provided xj = 0 ⇒ vj(n) = 0

for all n ≥ 1.
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Persuasive as they are the five principles suffer from a common weakness. They

are insensitive to the house size h and the size of the party system ℓ. They solely

deal with variations in the vote vector v1, . . . , vℓ. Anonymity permutes its compo-

nents, balancedness and concordance compare them by pairs, decency rescales them,

and exactness addresses the case when the vote vector coincides with a seat vector

or converges to a seat vector. Exactness links the continuum character of the input

domain, the space of vote vectors, to the discrete nature of the output range, the grid

of seat vectors.

An apportionment rule that is anonymous, balanced, concordant, descent and

exact is called an “apportionment method”. Almost all procedures that can be found

in electoral laws qualify as apportionment methods.

4. Fairness or Coherence Principle

There is a sixth principle, fairness, also known as coherence. Fairness properly

incorporates the two parameters missed out so far, the house size h and the size of

the party system ℓ. Essentially, given a large house size H and a large party system

1, . . . , L with a solution x1, . . . , xL, every subsystem 1, . . . , ℓ with its induced seat total

h = x1 + · · ·+ xℓ admits the subvector x1, . . . , xℓ as a solution.

Fairness implements the idea that the whole and its parts must fit together in

a coherent way. Balinski and Young (2001, page 141) put it this way: “An inherent

principle of any fair division is that every part of a fair division should be fair.”

Fairness. An apportionment method A is called “fair”, or “coherent”, when it

satisfies (a) coherence of subproblems and (b) coherence of substituted solutions.

(a) “Coherence of subproblems” means that, given a grand seat vector (x1, . . . , xL)

∈ A(H; v1, . . . , vL) for a system of L parties, the subvector (x1, . . . , xℓ) is a member of

the ℓ-subsystem solution set A(h; v1, . . . , vℓ), where h = x1 + · · ·+ xℓ and ℓ < L.

(b) “Coherence of substituted solutions” means that, given a grand seat vector x =

(x1, . . . , xL) ∈ A(H; v1, . . . , vL) and an ℓ-subsystem seat vector y = (y1, . . . , yℓ) ∈ A(h;

v1, . . . , vℓ), substitution of y into x yields a grand solution (y1, . . . , yℓ, xℓ+1, . . . , xL) ∈

A(H; v1, . . . , vL), where h = x1 + · · ·+ xℓ and ℓ < L.

Coherence of subproblems (a) is a top-down concept. It demands that every

subvector that is extracted from a grand solution is a valid solution for the associated

subproblem. Coherence of substituted solutions (b) is a bottom-up idea. Tied solutions

for subproblems, when substituted into the grand solution, yield tied grand solutions.

The above formalization of fairness makes sense only in the presence of anonymity.

With anonymity, the order in which parties are listed is negligible. The system may be

rearranged so that the ℓ-subsystem parties are assembled in the initial section 1, . . . , ℓ.

For this reason the notion of fairness asks for apportionment methods, not just for

apportionment rules.
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5. Divisor Methods

My first highlight of apportionment theory is the Coherence Theorem. It states

that the six principles characterize an important class of apportionment rules, divisor

methods. Divisor methods scale the votes vj into interim quotients vj/d and then round

the quotients to a neighboring integer to obtain the seat numbers xj . The methods differ

by which rounding rule they apply. In turn, the applicable rounding rule determines

which divisors d are feasible to exhaust the preordained house size, x1 + · · ·+ xℓ = h.

Generally, a rounding rule maps an interim quotient vj/d that lies in the integer

interval [n − 1;n] to one of the endpoints. To this end the interval is equipped with

a “signpost” s(n). Below s(n), the quotient is rounded downwards to the singleton

{n − 1}, above, upwards to the singleton {n}. If the quotient is equal to s(n), it is

rounded ambiguously to the two-element set {n − 1, n}. The ambiguous rounding at

the signpost proper turns a “rounding rule” R into a set-valued mapping:

R
(vj
d

)

=



































{n} in case
vj

d
∈
(

s(n); s(n+ 1)
)

,

{n− 1, n} in case
vj

d
= s(n) > 0,

{0} in case
vj

d
= 0.

Hence a rounding rule R is specified by its signposts. A general “signpost se-

quence” s(0), s(1), s(2), . . . needs to fulfill three properties. (a) It starts with s(0) = 0.

(b) For n ≥ 1 the term s(n) is localized in the integer interval [n − 1;n]. (c) If there

is a signpost hitting the left limit of its localization interval, s(m + 1) = m, then all

signposts stay below their right limits, s(n) < n, and if there is a signpost hitting the

right limit, s(m+1) = m+1, then all signposts stay above their left limits, s(n) > n−1.

The “left-right disjunction” (c) becomes instrumental when verifying exactness of the

accompanying divisor method.

By definition, the “divisor method D with rounding rule R” maps a house size h

and a vote vector v1, v2, . . . into the set of seat vectors x = (x1, x2, . . .) given by

D(h; v) =
{

x
∣

∣

∣
x1 ∈ R

(v1
d

)

, x2 ∈ R
(v2
d

)

, ... for some d > 0, and x1 + x2 + · · · = h
}

.

That is, the seat contingent xj of party j is obtained by scaling its vote count vj by a

divisor d and rounding the interim quotient vj/d to an adjacent natural number xj .

The role of the divisor d is to ensure that all h seats are meted out. If d is too

small then the interim quotients vj/d are too large for their roundings to sum to h.

If d is too large then the quotients are too small. Thus the divisor acts as a “sliding

controller” which is adjusted until the desired total is met, x1 + x2 + · · · = h.
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Set-valued mappings again emerge due to the handling of ties. Suppose there

are two parties whose interim quotients hit the (m+ 1)-st and n-th signposts, v1/d =

s(m + 1) and v2/d = s(n), whence R(v1/d) = {m,m + 1} and R(v2/d) = {n − 1, n}.

If the parties’ fair apportionment is m + n seats, the first quotient may be rounded

downwards and the second upwards, or vice versa. It is not up to mathematics to

select one of the two options. The decision is left open by offering two solutions,

D(m+ n; v1, v2) = {(m,n), (m+ 1, n− 1)}.

Coherence Theorem. An apportionment rule A is anonymous, balanced, con-

cordant, decent, exact and fair if and only if A is “compatible” with a divisor method D,

in the sense that the inclusion A(h; v) ⊆ D(h; v) holds true for all house sizes h and

for all vote vectors v.

The significance of the Coherence Theorem is that it provides helpful practical

guidance. If we agree that the six principles are conditions sine qua non, there is no

need to look outside the class of divisor methods.

Compatibility of a method A with a method D implies that they agree whenever

the solution set D(h; v) is a singleton. For, if D(h; v) = {x} then ∅ 6= A(h; v) ⊆ D(h; v)

forces A(h; v) = {x}.

Yet, in the presence of ties, A may differ from D. Then the solution set of D

contains two or more seat vectors. In fact, a divisor method D is “complete” in the

sense that it enumerates all tied solutions possible. However, a fair apportionment

method A may abstain from completeness by implementing a tie resolution strategy.

For example, the electoral law for the Spanish Congreso de los Diputados resolves

ties by following the motto “Stronger Parties First”. If there are two parties whose

interim quotients hit signposts, then the party with more votes is rounded upwards

and the party with fewer votes is rounded downwards. Completeness is lost, yet the

six principles persist.

The direct part of the proof of the Coherence Theorem is challenging. Starting

from an apportionment rule A that satisfies the five basic principles and fairness, a

signpost sequence needs to be constructed so that the induced divisor method D is

such that A is compatible with D. Conversely, it is easy to verify that every divisor

method satisfies the five basic principles and fairness. For details Balinski and Young

(2001, page 141) or Pukelsheim (2017, page 168).

6. Stationary Divisor Methods

The multitude of divisor methods still is huge. There are as many divisor methods

as there are rounding rules, and there are as many rounding rules as there are signpost

sequences. Within this universe there is a one-parameter family, stationary divisor

methods, lining up the three apportionment methods that in many respects serve as

reference procedures: the divisor method with upward rounding, the divisor method

with standard rounding, and the divisor method with downward rounding.



2020] FROM EXPERIMENTAL DESIGN TO PROPORTIONAL REPRESENTATION 149

Stationary divisor methods are indexed by a “split” parameter 0 ≤ r ≤ 1. The

stationary divisor method with split r has signposts sr(n) = n−1+r. As a consequence

the interval [n−1;n] is split into the section [n−1;n−1+r] where numbers are rounded

downwards to n− 1, and the section [n− 1+ r;n] where the rounding is upwards to n.

The proper split point n− 1 + r may be rounded either way. The methods are termed

“stationary” because of the stationary position of the signposts in their localization

intervals. Whatever the interval, the distance from the signpost to the left endpoint

is r, to the right endpoint, 1− r.

Three members of the family of stationary divisor methods stand out to be of

particular importance.

The “divisor method with upward rounding” comes with split r = 0. If an interim

quotient vj/d has a nonzero fractional part, it is rounded upwards. If the quotient

happens to be a whole number, it may stay as is or it may be rounded to the whole

number above.

The “divisor method with standard rounding” belongs to split r = 1/2. An

interim quotient vj/d is rounded downwards or upwards according as its fractional

part is less than one half or greater than one half. If the quotient happens to have a

fractional part equal to one half, it may be rounded either way, downwards or upwards.

The “divisor method with downward rounding” has split r = 1. If a quotient

vj/d has a nonzero fractional part, it is truncated to its integer part. If the quotient

happens to be a whole number, it stays as is or is rounded to the whole number below.

My second highlight of apportionment theory is the Seat Bias Theorem. Par-

liaments typically are hesitant to amend an apportionment method once it has found

its way into the electoral law. When a method is used repeatedly at several elections,

the question arises whether it predictably benefits some participants and disadvantages

others. More pointedly, does a method on average favor stronger parties at the expense

of weaker parties?

To answer this question we rearrange parties by decreasing vote shares. Some

electoral laws stipulate a threshold t lest a party should be dropped from consideration.

For example Germany requires at least five percent of all valid votes for a party to

participate in the seat apportionment process. Thus parties are taken to be ordered

according to w1 ≥ · · · ≥ wℓ ≥ t. The key figure for the k-th strongest party is xk−hwk,

the deviation of the actual seat contingent xk from the proportional seat fraction hwk.

Assuming the vote shares to be uniformly distributed over the probability simplex

Ωℓ = { (w1, . . . , wℓ) ∈ [0; 1]ℓ | w1 + · · · + wℓ = 1 }, the expected value of xk − hwk for

large house sizes and conditional on decreasing vote shares designates the “seat bias”

of the k-th strongest party. This seat bias acquires a telling format.

Seat Bias Theorem. If seats are apportioned using the stationary divisor method

with split r and if the threshold is set at t then the seat bias of the k-th strongest party is

lim
h→∞

E
(

xk − hwk

∣

∣ w1 ≥ · · · ≥ wℓ ≥ t
)

=

(

r −
1

2

)

(

Hℓ
k − 1

)

(

1− ℓt
)

,

where Hℓ
k =

∑ℓ

n=k(1/n) is a partial sum of the harmonic series.
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The seat biases of all parties must sum to zero since x1+· · ·+xℓ−h(w1+· · ·+wℓ) =

h−h = 0. That is, if some parties are advantaged, others are disadvantaged. Conversely,

if some parties are disadvantaged then others are advantaged. One man’s meat is

another man’s poison.

The three factors of the bias formula mirror three distinct aspects of the problem.

The “method factor” (r − 1/2) reflects the influence of the stationary divisor

method under investigation. The factor is positive, zero, or negative according as the

split r is larger than one half, equal to one half, or smaller than one half.

The “party factor” (Hℓ
k − 1) captures the impact of the party’s rank-order k in a

system of ℓ parties. In view of the approximation Hℓ
k ≈ log ℓ− log k the factor changes

sign when k passes ℓ/e ≈ ℓ/3. Hence the party factor is positive for the top third of

stronger parties, and negative for the bottom two thirds of weaker parties.

The “threshold factor” (1 − ℓt) describes the impact of the threshold t when ℓ

parties are contesting the election. It affects the size of the bias, but not its sign. For

seven parties and a five percent threshold, as in Table 1 below, the factor amounts to

0.65 ≈ 2/3.

All in all a method with split r larger than one half favors stronger parties at the

expense of weaker parties. In particular the divisor method with downward rounding

(which has r = 1) is the procedure most widespread in actual electoral laws. It is also

known under the names of D’Hondt, Hagenbach-Bischoff, Jefferson.

A method with split smaller than one half favors weaker participants at the ex-

pense of stronger participants. An example is the divisor method with upward rounding

(which has r = 0). Occasionally the method is used to allocate seats between districts

by population figures.

The divisor method with standard rounding (r = 1/2) has method factor zero.

All seat biases are zero, every party may expect its proportional due. On average no

party is advantaged, nor is any party disadvantaged. The divisor method with standard

rounding is the unique stationary divisor method that is “unbiased”.

The clue to the proof of the Seat Bias Theorem is the identity xk − hwk =

(r − 1/2)(ℓwk − 1) + (xk − yk) + uk(h), where yk ∈ Rr(hrwk) is an auxiliary seat

contingent derived from the deterministic multiplier hr = h + ℓ(r − 1/2), and where

uk(h) = yk−(hrwk−r+1/2) is a rounding residual. It is easy to see that the first term

yields the limit formula. The hard part is to show that the other two terms eventually

average out to zero. For details see Pukelsheim (2017, page 139).

7. A Closer Look at The Assumptions

The assumptions underlying the Seat Bias Theorem raise suspicion as to its prac-

tical usefulness. Nobody would care for parliaments with “large” house sizes h near

infinity. Fortunately, when the convergence behavior is scrutinized, the bias formula is

seen to fit empirical data perfectly well for all practical purposes provided there are at

least twice as many seats as there are parties participating, h ≥ 2ℓ.
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Nor would we claim that uniformly distributed vote shares are a realistic model.

Strong parties know that they are strong, and weak parties know they are weak. A

distribution with pronounced peaks following opinion polls would be more meaningful.

Luckily, essential parts of the proof of the Seat Bias Theorem target the rounding

residuals uk(h) for which there is an invariance principle. Rounding residuals transpire

to be uniformly distributed assuming no more than that the vote share distribution on

the probability simplex Ωℓ is absolutely continuous.

In any case, confrontation of the theoretical seat bias formula with practical seat

bias data confirms the formula to be an excellent and valid predictor.

Unbiasedness of the divisor method with standard rounding offers a cogent ratio-

nale that this is the superior method for use in electoral laws.

Fields other than the political sciences may aim at other features. The many

facets of science afford a welcome opportunity for us to return to statistical topics such

as sampling allocations and experimental designs.

8. Efficient Rounding of Sampling Allocations and Experimental Designs

The Goodness-of-Fit Theorem is my third highlight. Motivated by statistics and

operations research it views the apportionment problem as an approximation task.

Let f denote a goodness-of-fit criterion that assesses the quality of an approximation.

Given a distribution with virtually continuous weights w1, . . . , wℓ summing to unity,

the task is to find a distribution with distinctly discrete weights x1/h, . . . , xℓ/h that

provides an f -optimal approximation. The optimization takes place over the set Nℓ(h)

of integer vectors with ℓ components summing to h. Not surprisingly, the answer

depends on the goodness-of-fit criterion f selected.

Goodness-of-Fit Theorem.

(a) The divisor method with standard rounding yields solutions (x1, . . . , xℓ) ∈

DivStd(h;w1, . . . , wℓ) that minimize the squared statistical distance criterion

fa(x1, . . . , xℓ) =
(x1 − hw1)

2

hw1

+ · · ·+
(xℓ − hwℓ)

2

hwℓ

.

(b) The divisor method with downward rounding yields solutions (x1, . . . , xℓ) ∈

DivDwn(h;w1, . . . , wℓ) that minimize the worst-overrepresentation criterion

fb(x1, . . . , xℓ) = max

{

x1

hw1

, . . . ,
xℓ

hwℓ

}

.

(c) The divisor method with upward rounding yields solutions (x1, . . . , xℓ) ∈

DivUpw(h;w1, . . . , wℓ) that maximize the worst-underrepresentation criterion

fc(x1, . . . , xℓ) = min

{

x1

hw1

, . . . ,
xℓ

hwℓ

}

.



152 FRIEDRICH PUKELSHEIM [Vol. 18, No. 2

The proof of the theorem is straightforward, see Pukelsheim (2017, page 185).

We add a few comments for each of the three parts. The examples in Tables 1–3 are

evaluated with the free Java program Bazi (www.th-rosenheim.de/bazi).

In part (a) the criterion fa resembles the familiar χ2-statistic. However, the lim-

iting distribution of fa is a Lévy-stable distribution, not a χ2-distribution, see Heinrich

et al. (2004). Nevertheless, the criterion is in excellent harmony with the constitu-

tional imperative that all voters should contribute equally to the electoral outcome, see

Pukelsheim (2017, page 186). Hence the divisor method with standard rounding is the

authoritative and unbiased procedure for the apportionment of seats among parties by

vote counts. It meets the ideal of “One Person, One Vote” in a superb manner.

Since 2008 the divisor method with standard rounding has been included in the

election law for the German Bundestag. See Table 1 for an illustration.

Table 1: Divisor method with standard rounding. Apportionment of

709 seats, election to the 19th German Bundestag, 24 September 2017.

Political
Party

Votes
Interim
Quotient

Seats
[DivStd]

“CDU” 12 447 656 199.8 200
“SPD” 9 539 381 153.1 153
“AfD” 5 878 115 94.4 94
“FDP” 4 999 449 80.2 80
“LINKE” 4 297 270 69.0 69

“GRÜNE” 4 158 400 66.7 67
“CSU” 2 869 688 46.1 46

Sum (Divisor) 44 189 959 (62 300) 709

In part (b) the criterion fb pops up when allocating observations in stratified

sampling schemes, as discussed by Pukelsheim (1997). The reciprocal of the crite-

rion provides a lower bound for the variance efficiency. Maximizing the lower bound

is equivalent to minimizing the criterion fb. Hence given a target sample size n

and strata weights w1, . . . , wℓ, the number of observations per stratum is determined

most efficiently by using the divisor method with downward rounding, (n1, . . . , nℓ) ∈

DivDwn(n;w1, . . . wℓ). See Table 2.

Table 2: Divisor method with downward rounding. Efficient propor-

tional sampling plan for 30 observations, see Example 9.5 in Hedayat and

Sinha (1991, page 272).

Stratum Size
Interim
Quotient

No. of Obs.
[DivDwn]

“Stratum 1” 60 9.5 9
“Stratum 2” 90 14.3 14
“Stratum 3” 50 7.9 7

Sum (Divisor) 200 (6.3) 30
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The divisor method with downward rounding is biased in favor of large weights

at the expense of small weights, as noticed above. In sampling schemes, the weight wj

relates to the standard deviation in stratum j. The bias behavior means that overly

many observations are allocated to strata where the variance is large and uncertainty

is high. This rule of conduct appears to be purposive for the allocation of observations.

In part (c) the criterion fc arises in the optimality theory of experimental designs,

see Pukelsheim (2006, page 311). Here, w1, . . . , wℓ are the weights of an optimal design

with ℓ support points. If for a given sample size n the weights are discretized into

frequencies n1, . . . , nℓ, then the smallest term of the likelihood ratios (nj/n)/wj turns

out to be a universal efficiency bound. Universality means that this lower bound is

meaningful for all optimality criteria that are of interest in this context (i.e. for all

information functions). The best lower bound is the one that is largest. According to

part (c) it is obtained using the divisor method with upward rounding.

Hence the divisor method with upward rounding is the recommended procedure to

convert an optimum design into an efficient exact design for sample size n, (n1, . . . , nℓ) ∈

DivUpw(n;w1, . . . wℓ). See Table 3.

Table 3: Divisor method with upward rounding. Two equally justified

(i.e. “tied”) efficient exact designs #1 and #2 for 9 observations that belong

to the A-optimal design for cubic regression on [−1; 1], see Pukelsheim (2006,

page 224).

A-Optimal
Support
Point

A-Optimal
Weight

Interim
Quotient

No. of Obs.
[DivUpw]
#1 #2

“−1” 0.151 1 1 2
“−0.464” 0.349 2.3 3 3
“0.464” 0.349 2.3 3 3
“1” 0.151 1 2 1

Sum (Divisor) 1 (0.151) 9 9

According to the previous section the divisor method with upward rounding is

biased in favor of small weights at the expense of large weights. The consequence is

that small weights are likely to be allocated more observations than pure proportionality

would demand. In particular, even the tiniest weight is rounded upwards to at least one

observation. Hence the discretization process preserves all support points of the optimal

design. Thus the divisor method with upward rounding appears to be a purposive rule

of conduct for the discretization of optimal designs.
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9. Epilogue

In conclusion we realize that although the five apportionment principles and the

notion of fairness were introduced with narratives from the proportional representation

world, these concepts make perfectly good sense also in the contexts of sampling schemes

and experimental designs.

This proves once again that problems that seemingly are far apart actually share

common theoretical underpinnings, just like scientists who live far apart — like Bikas

in Asia, Bimal in North America, and myself in Europe — stay united by standards

common to all fields of science.
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Abstract 
 

Traditional outlier detection methods cannot be directly applied to spatial data because 
of its global nature. Spatial outlier detection methods concentrate on discovering 
neighborhood instabilities (Shekhar et al. 2002). However, most of the traditional detection 
methods may not accurately locate outliers when multiple outliers exist. Robust spatial z test 
proposed by Hadi and Imon (2018) has largely resolved this issue. But lots of unresolved 
issues exist in spatial regression where likewise linear or generalized linear models, the entire 
inferential procedure is generally affected in the presence of unusual observations called 
outliers (y-outliers) and high leverage points (x-outliers) or both. A large body of literature 
are available now for the identification of unusual observations in linear and/or generalized 
linear regression but this is still an unexplored area in spatial regression. In this paper we 
propose a new method for the identification of multiple spatial outliers and spatial high 
leverage points based on robust and clustering algorithms. We also propose a very simple but 
attractive graphical display to locate these two types of outliers in the same graph. 
 
Keywords: Spatial outlier; Differencing; Masking; High leverage points; Clustering; GP-GSR 
plot. 
 
1. Introduction 

 
Conceptually spatial outliers are very different from classical outliers. A commonly 

used definition is that outliers are a minority of observations in a dataset that have different 
patterns from that of the majority of observations in the dataset. The assumption here is that 
there is a core of at least 50% of observations in a dataset that are homogeneous (that is, 
represented by a common pattern) and the remaining observations (hopefully few) have 
patterns that are inconsistent with this common pattern. Spatial outliers are those observations 
whose characteristics are markedly different from their spatial neighbors. The identification 
of spatial outliers is important because it can reveal hidden but valuable knowledge in many 
applications such as identifying aberrant genes or tumor cells, discovering highway traffic 
congestion points, locating extreme meteorological events such as tornadoes, and hurricanes 
etc. 
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Figure 1: Outliers in data clusters 

 
Although outliers could be easily identified in univariate, bivariate, or even trivariate 

data through graphical examination of the data, visual inspection does not usually work for 
more than three dimensions. Not only that automated identification of outliers is tricky even 
for a two dimensional data if the data form clusters as shown in Figure 1. Here the idea of 
majority minority simply does not work, bad clusters are identified as outliers (Hadi et al., 
2009) based on classification techniques. Things could even be cumbersome in regression 
models where outliers can occur along the y-dimension, or along the x-dimension, or both 
and/or among the relationship between x and y. An excellent review of different aspects of 
spatial outliers is available in Shekhar et al. (2002) and Hadi and Imon (2018). Conceptually, 
spatial outliers match with outliers in big data and for this reason outlier detection techniques 
designed for big data are often routinely employed in spatial data. In big data the concept of 
outlier is local, not global so as in spatial data. The distance and/or density based methods 
such as k–nearest neighbourhood, local outlier factor (LOF), spatial outlier factor (SOF) 
methods have become more popular. But all these methods are designed to identify outliers 
along the y-axis and hence are not readily applicable for spatial regression. For example, 
temperatures and amount of rainfall of different regions may vary due to their distances from 
sea or mountain. Once we fit this relationship by regression we may observe not only strange 
temperature or rainfall pattern, the distance factor may also be unusual. Attempts have been 
made to identify outliers based on residuals but it only focuses on the outliers in y, but not in 
x or both and the whole concept is rather global than local. To overcome this problem in this 
paper we propose a method which not only focuses on both x and y dimensions at the same 
time, but also considers classification techniques to identify outliers. 
 
2. Methodology 

 
Let us assume that we have n pairs of spatial observations (𝑢#, 𝑣#), i = 1, 2, …, n. We further 

assume that V depends on U and we are interested to investigate their nature of relationship. In 
order to understand whether spatial observations are stable in their neighborhood, Shekhar et al. 
(2002) suggested considering the first order differences of the spatial observations. For both 
U and V we take the first order differences defined as 
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𝑥# = 𝑢# − 𝑢#*+, 𝑦# = 𝑣# − 𝑣#*+; i = 2, 3, …, n                                                                                  (1) 
 
Based on the differenced observations obtained in (1), let us consider a standard regression model 
    

𝑌 = 𝑋𝛽 + 𝜀                                                                              (2) 
 
where Y is a vector of observed responses of order (n – 1), X is an (n – 1) × 2 matrix of explanatory 
variables including the constant, 𝛽 is a vector of unknown finite parameters of order 2 and 𝜀 is an n-
vector of random disturbances with E (𝜀) = 0 and V(𝜀) = 𝜎3I. The traditionally used ordinary least 
squares (OLS) estimator of 𝛽 is 𝛽4 = (𝑋5𝑋)*+𝑋5𝑌 and the vector of fitted values is 𝑌6 = 𝑋𝛽4 =
𝐻𝑌.The matrix 
 

																						𝐻 = 𝑋(𝑋5𝑋)*+𝑋5                                                                                             (3)    
 
is often referred to as weight or leverage matrix whose diagonal elements ℎ##are termed leverages. 
The OLS residual vector 𝜀̂ is defined as 𝜀̂ = 𝑌 − 𝑌6 . Observations corresponding to exceptionally 
large 𝜀̂ values are termed outliers. However, the question still remains how large is large? For this 
reason we often consider the standardized version of residuals. One very popular choice is deleted 
Studentized residuals (DSR) defined as 
 

																																																	𝑡# =
<=*>=

?@A(B=)

CD(=)E(+*F==)
, i = 2, 3, …, n                                                              (4) 

 
where	𝛽A (*#)and 𝜎G(#)are the OLS estimates of 𝛽 and 𝜎 respectively with the i-th observation deleted. 
We call an observation outlier when its corresponding deleted Studentized residual value exceeds 3 
in absolute value. Observations corresponding to exceptionally large ℎ## values are termed high 
leverage points which are essentially outliers in the X-space. However, since residuals are also 
functions of leverages, it is better if we identify both outliers and high leverage points 
simultaneously rather than separately. Gray (1986) proposed the Leverage-Residual (L-R) plot 
where the leverage value ℎ##for each observation i, is plotted against the square of a normalised 
form of its corresponding residual. The bulk of the cases will be associated with low leverage and 
small residuals so that they cluster near the origin (0, 0). The unusual cases will have either high 
leverages or large residual components and so will tend to be separated from the bulk of the data. 
High leverage cases will be located in the upper area of the plot and observations with large 
residuals will be located in the area to the right. 
 

The L-R plot may be effective in the identification of single outlier but it may be ineffective 
in the presence of multiple outliers unless we remove a group of suspect outliers prior to fitting the 
model. Denote a set of cases ‘remaining’ in the analysis by R and a set of cases ‘deleted’ by D. Also 
suppose that R contains (n – 1 – d) cases after d<(n – 1 – k) cases in D are deleted. Without loss of 
generality, assume that these observations are the last d rows of X and Y so that we can partition the 
matrices as  

 

 𝑋 = H𝑋I𝑋J
K,    𝑌 = H𝑌I𝑌J

K,  𝐻 = H 𝐻I 𝐻IJ
𝐻JI 𝐻J

K                                   (5) 

 
where	𝐻I = 𝑋I(𝑋5𝑋)*+𝑋I5  and 𝐻J = 𝑋J(𝑋5𝑋)*+𝑋J5  are symmetric matrices of order(n – 1 – d) 
and d respectively, and 𝐻IJ = 𝑋I(𝑋5𝑋)*+𝑋J5 is an (n – 1 – d)×d matrix. However, (𝑋I5𝑋I)*+ 
can be expressed as  
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(𝑋I5𝑋I)*+ = (𝑋5𝑋 − 𝑋J5𝑋J)*+ =(𝑋5𝑋)*+ + (𝑋5𝑋)*+𝑋J5(𝐼J − 𝑈J)*+(𝑋5𝑋)*+                      (6) 
 
where	𝐼J is an identity matrix of order d and 𝑈J = 𝑋J(𝑋J5𝑋J)*+𝑋J5. Using (6), Imon (2002) 
defined a group deleted version of high leverage points called generalized potentials defined as   
 

                 𝑝##∗ = P
F==
(BQ)

+*F==
(BQ) 𝑖 ∈ 𝑅

	ℎ##
(*J) 𝑖 ∈ 𝐷

                                                                     (7) 

 
where	ℎ##

(*J) = 𝑥#5(𝑋I5𝑋I)*+𝑥#, i= 2, 3, …, n. In other words,	ℎ##
(*J)is the i-th diagonal element of 

𝑋(𝑋I5𝑋I)*+𝑋5matrix. The vector of estimated parameters after the deletion of d observations, 
denoted by 𝛽4(*J), is obtained using (6) as 
 
          𝛽6(−𝐷) = (𝑋I5𝑋I)*+𝑋I5𝑌I = 𝛽4 − (𝑋5𝑋)*+𝑋J5(𝐼J − 𝑈J)*+𝜀Ĵ                                  (8) 
 
where 𝜀Ĵ = 𝑋J𝛽4. Using (6), (7) and (8), Imon (2005) introduced a group deleted version of 
residuals called generalized Studentized residuals (GSR) defined as 
 

𝑡##∗ =

⎩
⎪
⎨

⎪
⎧ <=*<G=

(BQ)

CD(BQ)Z+*F==
(BQ)

𝑖 ∈ 𝑅

<=*<G=
(BQ)

CD(BQ)Z+*F==
(BQ)

𝑖 ∈ 𝐷
                                            (9) 

 
where𝑦G#

(*J) = 𝑥𝑖𝑇𝛽6
(−𝐷) and 𝜎G(*J) are the fitted values of y and the scale parameter 𝜎 

respectively after the omission of the suspected outlier group indexed by D. Although the 
expression of generalized potentials is available for any arbitrary set of deleted cases, D, the choice 
of such a set is clearly important since the omission of this group determines the weights for the 
whole set. We call an observation outlier when its corresponding generalized Studentized residual 
value exceeds 3 in absolute value. No such value exists for generalized potentials. We follow Hadi 
(1992) to declare an observation as a high leverage point if its corresponding 𝑝##∗ exceeds a threshold 
given as 
 
																																																𝑝##∗ 	>  Median (𝑝##∗ ) + 3MAD (𝑝##∗ ).                                                       (10) 
 
where MAD stands for the median absolute deviation. 
 

These above results enable us to define a simple graphical display of classifying group 
deleted leverages and residuals for possible identification of them. Generalized potentials are used 
as leverages and the generalized Studentized residuals as deletion residuals in a ‘generalized 
potentials –generalized Studentized residuals (GP-GSR)’ plot. Since the high leverage points need 
not to be outliers and outliers may not be points of high leverage we may expect different deletion 
sets D from the computation of these two quantities. Since D is the group of suspected outliers we 
prefer to include all observations considered to be suspect either along the y dimension or along the 
x dimension. We employ the blocked adaptive computationally-efficient outlier nominators 
(BACON) proposed by Billor et al. (2000) as a classifier. Another possibility could be the 
application of support vector regression for the same, especially when the data is big. The 
main advantage of the GP-GSR plot is that it is suitable for the data where masking (false negative) 
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and/or swamping (false positive) make single case diagnostic plots misleading. This plot, unlike the 
L-R plot retains the signs of residuals, which can be very important when their interpretation is 
concerned. Since the bulk of the cases will be associated with low leverage and small residuals, 
most of the pairs (𝑡##∗ , 𝑝##∗ ) will cluster near the origin (0, 0). The unusual cases will have either high 
leverages or large residual components and will tend to be separated from the bulk of the cases. 
High leverage cases will be located at the right corner of the plot and observations with large 
residuals will be located either at the upper or lower corner of the plot depending on their signs; 
large positive outliers will be plotted at the upper corner and large negative outliers will be located 
at the bottom corner of the plot. 
 
3. Results 

 
In this section we would like to present an example to demonstrate how our proposed 

method works in the classification of spatial regression outliers in both x and y dimensions. 
Here we consider a spatial outlier data given by Hadi and Imon (2018) extending the idea of 
Shekhar et al. (2002). Although this data is artificial in nature, the use of this type of data is very 
common in the outlier detection literature (Rousseeuw and Leroy, 1987; Hadi et al., 2009) because 
here we definitely know which observations are genuine outliers. For real data with multiple 
outliers due to masking and swamping there could be always lots of disagreements regarding which 
observations are genuine outliers or not. We present the data in Table 1 and also in Figure 2. 
 

Table 1: Hadi and Imon (2018) spatial outlier data 
 

Index Location Attribute Diff_Location Diff_Attribute 
1 1.0 2.0 * * 
2 2.0 3.0 1.0 1.0 
3 2.1 3.2 0.1 0.2 
4 2.6 7.0 C 0.5 3.8 C 
5 3.0 4.0 0.4 –3.0 C 
6 3.8 5.0 0.8 1.0 
7 3.9 5.6 0.1 0.6 
8 4.0 5.7 0.1 0.1 
9 4.2 1.6 D 0.2 –4.1 D 

10 4.5 6.0 0.3 4.4 D 
11 5.0 6.2 0.5 0.2 
12 6.0 8.0 A 1.0 1.8 
13 6.2 6.3 0.2 –1.7 
14 6.4 6.1 0.2 –0.2 
15 6.7 5.5 0.3 –0.6 
16 7.1 5.0 0.4 –0.5 
17 7.3 4.4 0.2 –0.6 
18 7.5 4.3 0.2 –0.1 
19 7.7 6.9 E 0.2 2.6 E 
20 8.0 2.8 0.3 –4.1 E 
21 8.4 2.1 0.4 –0.7 
22 9.0 1.0 B 0.6 –1.1 
23 9.2 2.1 0.2 1.1 
24 10.0 2.7 0.8 0.6 
25 10.1 3.2 0.1 0.5 
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26 11.0 4.0 0.9 0.8 
27 15.0 F 4.1 4.0 F 0.1 
28 17.0 4.2 2.0 0.1 
29 19.0 4.3 2.0 0.1 
30 20.0 4.4 1.0 0.1 

 
This example gives a clear distinction between classical outlier and spatial outlier. In 

Figure 2(a) attribute values are plotted against their locations. For global outliers, traditional 
statistics will essentially look at the attribute values in the y axis and if we do that we observe 
that the points which are very high such as A or very low such as B. In contrast to that, the 
spatial outliers are like the spikes C, D and E. They look like spatial outliers because they 
violate the law of geography that the nearby things should be very similar. When we take the 
first order difference of the attributes as shown in Figure 2(b) clearly C, D and E look very 
different than their neighbors. It is also interesting to note that the possible global outliers A 
and B do not look like outliers anymore. In general, we do not search for outliers along the x-
axis. But when we carefully look at Figure 2(a), we observe that the point F has a marked 
difference from its neighbors. Points G and H look unusual too. This difference is visible 
more clearly when we look at the first order difference of the locations as shown in Figure 
2(b). Point F now clearly looks like a high leverage point or an outlier along the x-space. 
Points G and H look more extreme as well.  
 

  
2(a). The original data 2(b) The first order differenced data 

 
Figure 2: Scatter plot of the original and the first order differenced data 

 
Now we run a spatial regression of attributes on locations. Since our interest is to 

understand the neighbourhood instability we consider the first order difference of attributes 
and locations as given in columns 4 and 5 of Table 1. We then run a regression of differences 
in attributes on differences in location and the resulting deleted Studentized residuals and 
leverages are given in columns 2 and 3 of Table 2. Although DSR is very popular outlier 
measure it fails to identify even a single observation as an outlier. Here the cut-off for the 
leverage is 0.2 and it can identify F as a high leverage point. We see exactly the same picture 
in the L-R plot as shown in Fig 3(a). Now we compute GSR and GP and the results are 
presented in columns 4 and 5 of Table 2. We use BACON classifier to obtain the D set first 
and then compute GSR and GP as outlined in equations (7) and (8). It is worth mentioning 
that the cut-off value for GP is 0.1 based on equation (10). We also present the GP-GSR plot 
for this data in Figure 3(b). These results clearly show the merit of our proposed method. It 
can successfully identify 3 spatial outliers (C, D and E) and 3 spatial high leverage points(F, 
G, H).     
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Table 2: Residuals and leverages for the spatial outlier data 
 

Index Del St. Residual Leverage GSR GP 
1 * * * * 
2 0.45678 0.040885 1.09925 0.06658 
3 0.11424 0.051079 0.20420 0.06290 
4 2.15139 0.035779 5.31765 C 0.03590 
5 –1.69711 0.037989 –4.20445 C 0.03835 
6 0.47421 0.035612 1.13209 0.04571 
7 0.32834 0.051079 0.72348 0.06290 
8 0.06085 0.051079 0.07645 0.06290 
9 –2.41622 0.045639 –6.03394 D 0.05185 
10 2.61223 0.041275 6.49375 D 0.04367 
11 0.07639 0.035779 0.07645 0.03590 
12 0.89298 0.040885 0.13783 0.06658 
13 –0.92108 0.045639 2.34566 0.05185 
14 –0.10826 0.045639 –2.56908 0.05185 
15 –0.33030 0.041275 –0.32208 0.04367 
16 –0.28573 0.037989 –0.85865 0.03835 
17 –0.32172 0.045639 –0.74085 0.05185 
18 –0.05503 0.045639 –0.84428 0.05185 
19 1.43538 0.045639 3.58453 E 0.05185 
20 –2.42202 0.041275 –6.02091 E 0.04367 
21 –0.39244 0.037989 –1.00843 0.03835 
22 –0.62533 0.034647 –1.61273 0.03631 
23 0.58737 0.045639 1.39415 0.05185 
24 0.26077 0.035612 0.59882 0.04571 
25 0.27470 0.051079 0.59176 0.06290 
26 0.35834 0.037710 0.84471 0.05471 
27 –0.49040 0.636897 F –0.91806 1.75404 F 
28 –0.12121 0.131865 –0.24012 0.34271 G 
29 –0.12121 0.131865 –0.24012 0.34271 H 
30 –0.02276 0.040885 –0.06854 0.06658 

 
 

  
3(a). L-R plot 3(b). GP-GSR plot 

 
Figure 3: Diagnostic plots for the spatial regression data 

 



 A.H.M.R. IMON AND A.S. HADI [Vol. 18, No. 2 162 

4. Discussion and Conclusion 
 

The main objective of our research was to develop a method for the joint identification 
of outliers and high leverage points for spatial regression. In Section 2 we develop a new 
method to identify both of them and propose a new graphical display called GP-GSR plot to 
locate both of them in the same graph. In spatial statistics literature observations with 
neighbourhood instability are diagnosed as outliers. For this reason we employ our method on 
the first order difference of x and y. A numerical example clearly shows the advantage of 
using our proposed method. It clearly shows that the proposed method can successfully 
identify outliers and high leverage points simultaneously while the existing methods fail to do 
so.  
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Abstract
Tree growth rings contain yearly information about climate, extreme weather events,

and other growing conditions. In this analysis, we model the relationship strength between
tree-ring records with respect to location and time. We employ the discrete wavelet trans-
formation on the ring width records in order to de-correlate the observations within each
series while simultaneously retrieving time-scale information. Our model then describes cor-
relations among the resulting wavelet coefficients at different temporal scales by distance.
Statistical inference through a new version of the wild bootstrap indicates that the relation-
ship strength decreases linearly as record pair distance increases, but the slopes differ across
temporal scales.

Key words: Wavelet; Bootstrap; U-Statistics; Tree ring records.

AMS Subject Classifications: 62G05, 62G09

1. Introduction

Because instrumental measurements of temperature, precipitation, and other aspects
of Earth’s climate typically span only the past century or so (Harris et al., 2020), we rely on
surrogate information recovered from natural climate archives to extend our perspective on
recent changes. Fallen snow accumulates on the surface of continental ice sheets or alpine and
arctic glaciers, and builds year-by-year a frozen archive of atmospheric chemistry that can
extend back several hundreds of thousands of years (Steiger et al., 2017; Brook and Buizert,
2018). Sediment that sinks down to the bottom of lakes often traps windblown pollen
and the remains of waterborne organisms, which in turn reflect environmental conditions
across the broader region (Holmes et al., 2016; Sandeep et al., 2017). And the water that
flows underground to form cave deposits leaves behind physical and chemical clues within the
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resulting mineral structures (Arienzo et al., 2017; Affolter et al., 2019). Over the past several
decades, networks of proxy climate records have served as the foundation for quantitative
estimates of past temperature, drought severity, and other key climate metrics at the local,
regional, continental, or global scale (Trouet et al., 2018; Neukom et al., 2019; Cook et al.,
2020).

Within the so-called ‘Common Era’ (the past two thousand years), the growth rings
of trees are, by far, the most dominant source of past climate information (Emile-Geay
et al., 2017). Every year, trees across the world’s temperate and boreal forests form a new
layer of wood about their stem. One of the most obvious signs in nature documenting the
passage of time, those rings also encode information about the tree’s immediate environment
within their physical and chemical structure (St George and Ault, 2014). For trees growing
in cold alpine or arctic forests, the width and wood density of their annual ring can be
excellent surrogates for growing season temperatures (Esper et al., 2018; St George and
Esper, 2019). And for trees in warmer and drier environs, because narrow rings tend to
follow dry weather, tree-ring records can be used to estimate past changes in precipitation
or drought extending back hundreds of years or more (Granato-Souza et al., 2019; Opa la-
Owczarek and Niedźwiedź, 2019).

Because tree rings and other proxies can extend our perspective on climate change
farther back in time than instrumental weather observations, they offer new opportunities
to evaluate the time evolution of the dominant modes of climate variability. Towards that
purpose, the wavelet transform is commonly applied to study multiscale, nonstationary pro-
cesses occurring across space and time within tree-ring records (Fan and Bräuning, 2017;
McKenzie et al., 2018; Kasatkina et al., 2019).

Climate is a multi-scale phenomenon. Some quasi-periodic and oscillatory patterns like
the El Niño Southern Oscillation (ENSO) are sub-decadal in periodicity, while others like
the Atlantic multi-decadal oscillation (AMO) or the Pacific decadal oscillation (PDO) have
longer time scales. In this paper, our primary goal is to verify that at different temporal
scales, the correlation between tree-ring records decay smoothly over space in a climatically
homogeneous region. To that end, in this paper we explore the spatio-temporal patterns
of paleoclimate records, as exhibited by Ponderosa pine (Pinus ponderosa Douglas ex C.
Lawson) tree-ring records from four states of the USA. We restrict to only this subspecies of
trees in order to eliminate differences due to species variation, and restrict regionally so that
we may consider a homogeneous, contiguous region where the climatic patterns are similar.
Additional details are provided later in this paper.

Our principal approach is to consider each three ring record as an individual functional
observation over time, that exhibits quasi-periodic and oscillatory patterns according to the
climatic conditions the tree has experienced in the past. A discrete wavelet transformation
of these records allows us to deconstruct such functional time series into various temporal
scales. We then consider correlations between the wavelet coefficients from two different
trees, at different scales, and study the pattern of such correlations as a function of distance
between the two trees.

Notice that the data that we analyze here has complex dependency patterns, hence
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it is non-trivial to conduct inference on a statistical model for how correlations, across
various wavelet scales, decays over spatial distance. To address this issue, we propose a novel
resampling scheme, that generalizes the well-known wild or external bootstrap scheme.

The rest of the paper is as follows: In Section 2 we provide a detailed description
of the dataset, and then Section 3 provides an overview of the discrete wavelet transform.
Next, we present a new approach to describe spatial relationships among time-series records
in Section 4. Namely, we apply the discrete wavelet transformation on tree-ring records
and calculate three versions of correlation between pairs of wavelet coefficients within each
time-scale. Afterwards, it is necessary to re-format the data for analysis; this is described
in Section 5. With the re-formatted data, we describe a novel approach to modeling rela-
tionship strength across temporal scales in Section 6. The proposed linear model utilizes
time-scale, distance, and elevation information among the records to predict strength of re-
lationship across all record pairs. We also describe differences among obtaining estimates
utilizing least squares, median regression, and Huber’s M estimation techniques. Finally, sta-
tistical inference is performed via an extension of the wild bootstrap in Section 7. The wild
bootstrap is modified to utilize external random variables which are generated per tree-ring
record, instead of for each case within the dataset. The random variables are incorporated
together within the method to help account for dependence among cases utilizing the same
record(s) while simultaneously producing the sampling distributions for the coefficient esti-
mates. An illustrative theoretical insight into the properties of the proposed extension of
the wild bootstrap is presented in Section 9. We collect some concluding remarks and ideas
about future research in Section 10.

2. Tree-Ring Record Description

Tree-ring datasets are typically presented in the structure of a ‘chronology’ — a com-
posite series made by averaging together measurements of tree-ring width, wood density,
isotopic composition, or other anatomical or biogeochemical variables from several dozen or
more trees at the same location (Cook and Peters, 1997). Compared to the initial mea-
surements made on samples taken from individual trees, tree-ring chronologies offer several
advantages (Coulthard et al., 2020). They are easier than sample- or tree-level data to in-
corporate into regional syntheses, they have been pre-processed to remove the confounding
influence of tree size or age (Bunn et al., 2004), and they are often adjusted to minimize or
eliminate biologically-driven persistence (Kannenberg et al., 2019).

The International Tree-Ring Databank (ITRDB), an open-access database maintained
by the National Oceanic and Atmospheric Administration in Boulder, Colorado, is the largest
archive of freely-available tree-ring data worldwide (Zhao et al., 2019). The ITRDB, which
was established in 1974 as a permanent repository for digital tree-ring measurements, in-
cludes more than four thousand tree-ring datasets (each composed of measurements made
on one dozen to more than one hundred trees) from all continents except Antarctica. Here
we use a subset of the St George and Ault (2014) dataset, which used the ITRDB’s hold-
ings as the foundation for their network of more than 2,200 age-corrected, quality-controlled
tree-ring width chronologies from the Northern Hemisphere. Each of these time series, which
have annual resolution but varying start and end dates, reports yearly tree growth across
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an entire forest stand as a unitless index of tree-ring width (RWI). Our analysis focuses
on tree-ring width chronologies derived from Ponderosa pine (Pinus ponderosa Douglas ex
C.Lawson) forests in the Four Corners region of the southwestern United States (Figure 1).
Ponderosa pine (coded as PIPO) is the fourth most common source species for tree-ring
width measurements housed by the ITRDB (St George and Ault, 2014) and a range that
extends from northern Mexico to southern Canada. Across the United States, Ponderosa
pine grow best under high precipitation and low evapotranspirative demand, but through-
out its range there are important regional differences in the species’ sensitivity to climate
(McCullough et al., 2017). For that reason, we restricted our analysis to only include those
tree-ring chronologies from Arizona, New Mexico, Colorado, and Utah (yielding a total of
97 series).

A commonly referenced set of guidelines for investigators creating tree-ring records
may be found in Cook (1987). Generally, at a given location, multiple trees are chosen to
be measured. Within each tree, between 1 and 5 cores (cylinders of heartwood extracted
from the trunk of the tree) are obtained in such a way that the tree is not vitally harmed.
The entire set of growth rings, combining both early and late wood, is measured within
each core. Then, a B-spline is used to remove a growth trend from each individual core.
Finally, all of the de-trended core series are combined into a single ring-width index (RWI)
for the location. Thus, the records of tree-ring widths are unitless and composed of many
trees and cores. It is also common practice to further clean records before analysis, by only
maintaining observations with strong coherence between cores within the record location at
any given time point.

3. Discrete Wavelet Transform

In paleoclimatology and climate science in general, nearly all applications of wavelets
are based on the continuous transform (Lau and Weng, 1995; Torrence and Compo, 1998).
That method does not place any restriction on series length, but in principle should be
applied only to data where the observations are made continuously through time. However,
tree-ring records are discrete time series, with observations that are equally spaced and made
at specific times (either once or twice within the growing season). For that reason, in this
paper, we apply the discrete wavelet transform to a network of tree-ring width chronologies to
test the potential of this other method to problems in climate science and paleoclimatology.

Our model aims to quantify spatial and temporal relationships among RWI records.
However, we cannot ignore the temporal dependencies likely present within each record. We
choose to employ wavelets to address the within record temporal dependency. Wavelets are
an ideal choice since they overcome the limitations with respect to the time and frequency
domains that are present in Fourier and windowed Fourier analyses. Let Z be the set
of integers Z = {. . . ,−2,−1, 0, 1, 2, . . .}. Suppose ψ ∈ L2(R) is a given function whose
properties will be discussed later. Wavelets constitute the family of functions defined by

ψj,k(u) = 2j/2ψ(2ju− k), j, k ∈ Z. (1)

For appropriate choices of ψ(·), these translations and dyadic dilations of ψ(·) constitute an
orthonormal basis of L2(R). The dilation and shrinkage within the function allow a user to
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Figure 1: Ponderosa pine record locations. Locations of the 97 Ponderosa pine
records in the Four Corners states analyzed by our model.

discover signals which change over the time domain. In many situations, a second function,
denoted as φ(·) and also called the scaling function since it may be derived from ψ(·), is
used in conjunction with subsets of the family of wavelet functions {ψj,k(·)} for representing
functions in a relatively simpler and parsimonious way. The very basic overview of wavelets
provided here is necessarily brief; more comprehensive discussions and many additional points
of interest may be found in Daubechies (1992); Hubbard (1998); Ogden (1997); Vidakovic
(1999); Wasserman (2006); Percival and Walden (2006); Nason (2008) and several other
places.

In our case, we are working with discrete time points and are specifically choosing to
employ the discrete wavelet transform (DWT). The DWT is a transformation of a vector of
data, x, which utilizes an orthonormal basis. Assume that the data vector, x = (x1, . . . , xT ),
is of length T = 2J where J ∈ Z+ = {1, 2, . . .}. Consider the collection of functions{

φ(·), ψj,k(·); j = 0, 1, . . . , J − 1, k = 1, 2, . . . , 2j
}
.

We evaluate these T = 2J functions at each of t = 1, 2, . . . , T , and construct the matrix W .
The first row of W is (φ(1), φ(2), . . . , φ(T )). Then, the remainder of the matrix is generated
from the bottom-up. That is, the T th (last) row is given by (ψ0,1(1), ψ0,1(2), . . . , ψ0,1(T )).
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Rows T − 2 and T − 1 are (ψ1,1(1), ψ1,1(2), . . . , ψ1,1(T )) and (ψ2,1(1), ψ2,1(2), . . . , ψ2,1(T )),
respectively. Generally, sets of 2j rows are generated together for evaluations of the wavelet
functions at time-scales, j = 0, 1, . . . , J − 1. A concrete example demonstrating this con-
struction is provided in Section 3.1. With some amount of algebra and exploiting known
properties of wavelets, for appropriate choice of the function ψ(·) it can be seen that the
matrix W is an orthonormal basis system of RT , that further has all the multi-resolution
properties for wavelets as defined in (1).

Based on this, the DWT of the data vector, x is

γ = Wx (2)

where the vector, γ, contains the wavelet coefficients. One important item of note is that the
wavelet coefficients convey coarse and fine level information about the series. Specifically, γ
may be written element-wise as

γ =
(
γ0 γJ−1,1 . . . γJ−1,2J−1 . . . γ1,1 γ1,2 γ0,1

)T
. (3)

Here, γ0 is the coarse level coefficient corresponding to the scaling function φ(·), and γj,k
is the fine level coefficient corresponding to the wavelet function ψj,k(·), for {(j, k) : j =
0, 1, . . . , J − 1, k = 1, 2, . . . , 2j}. A basic example of the DWT is provided in Section 3.1 for
readers who are less familiar with the technique.

The DWT has an additional advantage for use in large datasets. The discrete wavelet
transformation requires less stringent technical assumptions compared to Fourier transfor-
mation since the amplitude corresponding to each frequency does not have to be stable over
time. Computationally, the DWT is faster than the fast Fourier transform (see Percival
and Walden (2006) for details). As we motivate in Section 6, our model describes correla-
tions among the RWI records by incorporating spatial distance and temporal information.
In order to create the correlations between records, we need to begin by de-correlating the
individual series. The DWT tends to produce independent (or slightly correlated, Vannucci
and Corradi (1999)) coefficients from observed data series which are strongly correlated (see
Chapter 10 in Percival and Walden (2006)).

The above framework is based on T = 2J , that is, the length of the observed data is a
power of 2. There are several existing techniques to overcome this limitation, see for example
Gong et al. (2018); Walden and Cristan (1998); Ogden (1997); Nason (2008), however, we
choose not to use such advanced techniques here for clarity and tractability of the results.

3.1. Basic example of the DWT

Here we provide a basic example to demonstrate the time-scale information in wavelet
coefficients that we have discussed and utilize in our analysis. Consider the most basic
wavelet basis, proposed by Haar. The Haar wavelet basis appears as a step function (see
Figure 2).

At the coarsest level, the step function spans across the entire vector of data. At finer
levels, the step function is shrunk and translated across the data vector. Let’s consider the
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Figure 2: Haar wavelet (on a continuous scale)

the Haar basis when n=8, as generated using the GenW() within the wavethresh R package
by Nason (2016).

W =



2−3/2 2−3/2 2−3/2 2−3/2 2−3/2 2−3/2 2−3/2 2−3/2

2−1/2 −2−1/2 0 0 0 0 0 0
0 0 2−1/2 −2−1/2 0 0 0 0
0 0 0 0 2−1/2 −2−1/2 0 0
0 0 0 0 0 0 2−1/2 −2−1/2

2−1 2−1 −2−1 −2−1 0 0 0 0
0 0 0 0 2−1 2−1 −2−1 −2−1

2−3/2 2−3/2 2−3/2 2−3/2 −2−3/2 −2−3/2 −2−3/2 −2−3/2


(4)

Since the vector of wavelet coefficients is found using Wx, we can see that the scaling
coefficient, γ0 is a weighted sum of the vector entries. The coarsest wavelet coefficient, γ0,1
is a difference in weighted sums between the first and second halves of the vector entries.
The coarsest wavelet coefficients capture long-term signals in the data. The finest level
coefficients, γ2,1, γ2,2, γ2,3, γ2,4, are weighted pairwise differences between entries which are
next to each other. These capture signal changes that are close in time.

It is clear with the specific choice of Haar basis that W is an orthonormal matrix.
Most generally, orthonormality is a wavelet basis property. Although it is easier to visu-
alize and discuss, the Haar basis has an obvious discrete nature which creates non-smooth
estimates that are difficult to interpret in practice. Other wavelet bases typically do not
have closed-form solutions, but are more often used in statistical analysis. These include
Daubechies (1992) and Chui and Wang (1992). With the guidance of several existing works
that provide recommendations for selecting wavelet families, including Mandal et al. (1996),
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Strickland and Hahn (1996), and Mojsilovic et al. (2000), the analysis we present here utilizes
Daubechies Least Asymmetric family with 8 vanishing moments. Several software packages
enable automatic implementation wavelet bases for analysis including wavethresh by Nason
(2008), wavelets by Aldrich (2020), waveslim by Whitcher (2020) in R and the Wavelet
Toolbox in Matlab (The MathWorks, 2020).

4. Strength of Relationship Between RWI Records

Once we have attempted to account for the strong dependence within the RWI record
by implementing the DWT, we consider modeling the relationships among records. With-
out assuming a specific type of relationship (for example linear) between two quantitative
variables, there are several ways to compute correlation. We considered three correlation
measures to describe the RWI data.

4.1. Correlation measures

Generally, correlation measures the strength of relationship between two quantitative
variables. Suppose that x =

(
x1 x2 . . . xn

)T
and y =

(
y1 y2 . . . yn

)T
are two vec-

tors containing real-valued observations. Pearson’s correlation (eqn. 5) provides a measure
of the linear association between the vectors.

r =

n∑
i=1

(xi − x̄)(yi − ȳ)√
n∑
i=1

(xi − x̄)2

√
n∑
i=1

(yi − ȳ)2
(5)

Although commonly utilized, Pearson’s correlation is limited to quantifying the linear
relationship. Spearman’s rank correlation (6) provides a bit more flexibility, by describ-
ing the strength of monotonic relationship between two quantitative variables. Spearman’s
correlation is created by utilizing the rank transformation on the observed vectors. In this
transformation, the observations within each vector are ordered from smallest to largest, and
thus, changed to values within Z+ where 1 corresponds to the smallest observation within
each vector. This transformation doesn’t depend on linearity and produces measures less
affected by outliers.

rs =

n∑
i=1

(rank(xi)− rank(x))(rank(yi)− rank(y))√
n∑
i=1

(rank(xi)− rank(x))2

√
n∑
i=1

(rank(yi)− rank(y))2
(6)

Kendall’s tau correlation (7) also provides a measure of the strength of monotonic
relationship between two quantitative variables. It specifically examines the discordance
between pairs of observations, as opposed to the orderings among the individual observations
as in Spearman’s correlation. Discordance is quantified by obtaining the sign, positive or
negative, of the difference between observations through the sgn transformation. Kendall’s
tau correlation has a bit of an advantage to Spearman’s rank correlation with respect to
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interpretability since describing discordant pairs is more straightforward than the sums of
ranks.

τ =

n∑
i=1

n∑
j=1

sgn(xi − xj)sgn(yi − yj)

n(n− 1) (7)

4.2. Creating pairwise correlations of wavelet coefficients

Our model describes correlations between the
(

97
2

)
pairs of PIPO records within the

Four Corners states. The correlations are between the series’ wavelet coefficients, not the
raw observations. This choice allows us to model the relationship strength of relationship
with respect to spatial location, while also accounting for temporal separation. Below is an
outline of the algorithm utilized to compute the correlations.

1. For the records in a given pair of locations, keep the years when both records have
observations.

2. Retain the most recent T observations for each of the series obtained in (1). We require
T = 2J for J ∈ Z+.

3. Perform the DWT on each series obtained in (2) and obtain the resulting wavelet
coefficient vectors.

4. Within the wavelet coefficients, calculate the time-scale correlation for any levels with
8 or more coefficients. For example, a correlation will be computed for the 2J−1 finest
scale coefficients. This would correspond to the same year time-scale relationship.

With the Four Corners data, we had enough observations to calculate up to 16-year
correlation information. Each of Pearson, Spearman, and Kendall correlations were calcu-
lated and considered as candidate responses for the model. The Daubechies least asymmetric
wavelet with 8 vanishing moments (see Daubechies (1992)) was selected for the basis in all
of our DWT computations.

5. Re-formatting the Data for Analysis

For each of the five available time-scales (same-, 2-, 4-, 8-, and 16-year), the algorithm
outlined in subsection 4.2 created

(
97
2

)
correlations. These correlations may be combined to

compose vectors of the form

cj =
(
c1,2,j c1,3,j . . . c96,97,j

)T
(8)

where ci,k,j denotes the correlation of records in the ith and kth locations. Time-scales, same-
year (s), 2-year (2), 4-year (4), 8-year (8), 16-year (16), are denoted by the index j in eqn. 8.
Many of the record pairings did not result in series long enough to compute the 8- or 16-
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year correlations with our constraints. Those entries are missing. To construct the response
in our model, we stack all of the time-scale correlation vectors into one vector

c =
(
cs c2 c4 c8 c16

)T
. (9)

We also construct the set of predictor variables in a similar manner. The structure of
the wavelet coefficients lends to incorporating the time-scale information to the model. A
set of indicator variables for each time scale were created with respect to the response vector

Yi,k,J0 =
{

1, j = J0 in Ci,k,j
0, j 6= J0 in Ci,k,j

. (10)

The indicator variables for each time scale were stacked in a similar fashion as the correlations
in eqn. 9 to create ys, y2, y4, y8, y16 vectors, all of the same length as c.

In addition to the time-scale information, our model also incorporates spatial informa-
tion in the form of the distance between locations in each pair. For each pair of records,
Lambert’s distance, Lambert (1942), in kilometers was calculated. The distance vector for
all pairs may be denoted as

d̃ =
(
d1,2 d1,3 . . . d96,97

)T
. (11)

Five d̃ vectors are stacked as in eqn. 9 to create d of the same length as c. Finally, along
similar lines, the absolute difference in location elevations for each pair is computed and used
to create the h predictor.

6. Model Estimation

Taking the Kendall correlation as an example, the scatterplots in Figure 5 within the
appendix indicate a negative relationship between the locations’ distance and the observed
correlation at each time-scale. Similar results also hold true for the other types of corre-
lations. Therefore, we propose a linear model with an interaction between time-scale and
distance and a linear term in elevation to describe correlation in eqn. 12.

c =β0ys + β1y2 + β3y4 + β4y8 + β5y16+
β6y + β7y2 ◦ d+ β8y4 ◦ d+ β9y8 ◦ d+ β10y16 ◦ d+
β11h+ ε.

(12)

With such a large dataset, it was difficult to pinpoint the best estimation method and
type of correlation. Even with the pairwise correlations plotted on a gradient scale, (as in
Figure 5), it is difficult to determine to see what is happening. Thus, we also considered
different estimation techniques for our model – least squares, median regression, and the
Huber M estimator.
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6.1. Estimation techniques

The three estimation techniques we consider for this analysis are all related through
an objective function, ρ which is maximized in order to obtain the estimates. The model in
eqn. 12 is a linear model. If we combined all of the predictor vectors into a matrix, X, and
all of the parameters into a vector, β, then the model could be written simply as c = Xβ+ε.

Then, the estimates obtained through least squares, median regression, and Huber-M
estimation are all solved by minimizing ρ(y−Xβ). Specifically, the least squares estimate is
obtained through minimizing the squared L2 norm as in eqn. 13 while the median regression
estimate minimizes the L1 norm (eqn. 14).

arg min
β∈Rk+1

||y −Xβ||22 (13)

arg min
β∈Rk+1

||y −Xβ||1 (14)

Huber-M estimate (eqn. 15) utilizes a combination of the L1 and L2 norms in the
minimization problem, dependant on the size of the element within y−Xβ. The Ik within
eqn. 15) is an indicator vector, the elements of which take a value of 1 when the magnitude
of y −Xβ is no larger than a specified k.

arg min
β∈Rk+1

[(
0.5||(y −Xβ) ◦ Ik||22

)
+
(
k||(y −Xβ) ◦ (1− Ik)||1 + k2/2(1− Ik)

)]
(15)

6.2. Resulting estimates

Tables 1, 2, and 3 contain the estimates for the model proposed in eqn. 12 for each of the
correlations and estimation methods. Within each correlation type, estimation method does
not seem to make much difference in the obtained values. We do see differences amongst the
point estimates across correlation type, but this was not surprising from our data exploration.
Generally, we see that each correlation and method contain the same general patterns across
the coefficients.

7. Statistical Inference

Continuing forward, the results examined utilize median regression to predict Kendall
correlation. In this section, we specifically compare the slopes in record pair distance across
time-scales. Figure 3 contains the estimated relationships while the absolute difference in
elevation is held constant at 0 km.

Although the linear model seems to be a straight-forward way to describe the RWI
correlations, the data structure is actually quite complicated. Each correlation, ci,k,j, is
based upon the ith and kth records. Thus, each record appears within 5×96 observations
within the response vector. There is not an intuitive argument to claim that the correlations
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Pearson Spearman Kendall
L.S. Med. Hub. L.S. Med. Hub. L.S. Med. Hub.

β̂0 6.597 6.806 6.663 6.431 6.630 6.480 4.614 4.695 4.623
β̂0 + β̂1 6.002 6.347 6.144 5.843 6.101 5.973 4.249 4.297 4.295
β̂0 + β̂2 5.953 6.493 6.295 5.805 6.360 6.113 4.257 4.538 4.424
β̂0 + β̂3 6.372 7.217 6.940 5.979 6.776 6.557 4.555 4.926 4.855
β̂0 + β̂4 6.511 7.120 6.930 5.744 6.352 6.074 4.497 4.716 4.663

Table 1: Estimated intercepts. Each estimate is multiplied by 1× 10−1 and bold
estimates are associated with the model in which we perform statistical infer-
ence. L.S=least squares regression, Med.=Median regression, Hub.=Huber M
estimator regression.

Pearson Spearman Kendall
L.S. Med. Hub. L.S. Med. Hub. L.S. Med. Hub.

β̂6 6.23 6.41 6.28 6.15 6.33 6.18 4.48 4.56 4.48
β̂6 + β̂7 4.70 4.97 4.79 4.63 4.74 4.73 3.46 3.41 3.48
β̂6 + β̂8 4.36 4.88 4.68 4.48 5.10 4.78 3.32 3.71 3.50
β̂6 + β̂9 5.77 6.53 6.14 5.30 5.88 5.69 4.10 4.35 4.31
β̂6 + β̂10 3.00 3.35 3.28 2.43 2.86 2.58 2.04 2.22 2.16

Table 2: Estimated slopes in distance. Each estimate is multiplied by −1× 10−4

and bold estimates are associated with the model in which we perform statistical
inference. L.S=least squares regression, Med.=Median regression, Hub.=Huber
M estimator regression.

are independent. For example, a certain record could happen to be less correlated with all of
the other records. Perhaps at that location, an external event caused all of the tree species
to have stunted growth.

There are a few existing methods to deal with dependence due to repeated measures.
A common choice is to add an individual effect to the model. That is, add a set of indicator
variables associated with record ID as fixed or random effects to the model fit. In our analysis,
this translates to adding 96 indicator variables to the model. Although possible with the
number of cases in our data, the addition of ID is difficult to interpret and our structure is
more complicated, since each response is associated with two record IDs. Moreover, treating
ID as a random quantity would create a mixed effects model. With few distributional
assumptions placed on the model error structure, inference would still be an open area of
research.

Our analysis actually continues with the model from eqn. 12 and does not over-
complicate it by adding an explicit record ID variable. Although the fits obtained should be
unbiased for a correctly specified model, utilizing the asymptotic normal distribution to esti-
mate parameter error is incorrect with dependent data. To estimate coefficient error, we will
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Pearson Spearman Kendall
L.S. Med. Hub. L.S. Med. Hub. L.S. Med. Hub.

β̂11 8.461 8.781 8.825 8.566 8.867 8.871 6.598 6.358 6.610

Table 3: Estimated slope in Elevation Difference. Each estimate is multiplied by
−1× 10−2 and the bold estimate is associated with the model in which we perform
statistical inference. L.S=least squares regression, Med.=Median regression,
Hub.=Huber M estimator regression.

instead use a version of the wild bootstrap, originally proposed by Wu (1986), which utilizes
random variables indexed by the record ID. We describe how a wild bootstrap response, cb,
is obtained in our framework in the subsequent algorithm.

1. Generate n=number of records, independent random variables, each with mean 0
and variance 1. In our analysis, this translates to generating 97 random variables,
U1, U2, ..., U97. Suppose that the index of these random variables corresponds to a
location ID.

2. Create two vectors, each of the same length as the response, c, containing the random
variables generated in (1). The elements of the first vector correspond to the first
location (i index in the c). The elements of the second vector correspond to the second
location (k index in the c). Call these vectors u1 and u2.

3. Create the wild bootstrap response, cb, as cb = ĉ+ diag(u1)diag(u2)r.

In order to decide whether there was evidence that the linear relationship with record
pair distance differed by time-scale, we implemented the described wild bootstrap to ob-
tain bootstrap distributions of all model coefficients estimated in eqn. 12. These bootstrap
sampling distributions are displayed in figure 6 within the appendix. Each distribution is
centered at the original coefficient estimate (as expected), and all seem to be fairly light-
tailed. Specifically, we explored whether there was evidence of a difference in the slopes in
distance with respect to the same-year time-scale. With B = 10, 000 bootstrap samples and
Bonferroni adjusted significance level of α = 0.05, confidence intervals were created for each
of the parameters: β7, β8, β9, and β10. These intervals are displayed in figure 4. The black
bands in each figure are associated with the bootstrap confidence interval. We can see that
all of the bootstrap confidence intervals are shorter than the typical normal intervals, which
assume independence across observations. These intervals also indicate evidence that the
slopes in distance, across different time-scales, differ from the same-year relationship.

8. Results

The results in Figure 4 imply that the linear relationship between Kendall correlation
and record pair distance differs over time. Examination of the scatterplots within Figure 5,
indicate a lack of data in the 8- and 16-year time scales, compared to the other scales. Our
model inference finds significant relationships at these scales, even though there was little
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Figure 3: Fitted lines with Kendall correlation as the response and median
regression

evidence of a relationship from the exploratory scatterplots. This finding could be due to
a lack of power at the higher time-scales with less data. Interpreting the results at these
time-scales should be done with caution.

This analysis may have significant implications for researchers examining tree-ring
chronologies. First and foremost, this study implies that these Pinus ponderosa records
contain intricate information, not only with respect to climate, as typically studied, but also
with respect to each other. The type information that these records carry also varies over
time. The specific analysis presented here was for a subset of the Pinus ponderosa in the
U.S., and the maximum record length in the set was 551 years, while the shortest record only
contained 63 years of RWIs. If older tree-ring records were available, we would be able to ex-
pand the analysis further, and draw more concrete conclusions about the longer time-scales.
Specifically, if the researcher is interested in studying a 2k time-scale in the RWI records,
then a minimum of 23+k+1 record length in the majority of records would be required. But,
as seen in our analysis, this minimum requirement creates an unwieldy correlation estimate
at the longest allowable time-scale, so the researcher would likely prefer to have records of
length 25+k+1 to seriously study the kth time-scale.
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Figure 4: Bonferroni adjusted 95% confidence intervals for the time-scale slope
parameters in distance. These are differences from the same-year slope. The tra-
ditional normal interval appears as light gray for comparison with our bootstrap
intervals, in color.

9. The Theoretical Framework

We illustrate the main ideas of the underlying theoretical framework in this section, and
omit much of the technical details. Fix a pair of locations. Since the wavelet decomposition
de-correlates the data, we consider independent observations {(Yi,1, Yi,2,xi) ∈ R×R×Rp; i =
1, . . . , n} corresponding to this pair of locations. We assume that EYi,1 = µ1, EYi,2 = µ2,
VYi,1 = σ2

1, VYi,2 = σ2
2 and Cor(Yi,1, Yi,2) = ρ(xi). In other words, our data consists of

bivariate response vectors (Yi,1, Yi,2) related to the pair of locations, and associated covariate
xi ∈ Rp that is taken to be non-random in this paper, and we model the correlation between
the two responses as a function of the covariate. The bivariate response is allowed to be
heteroscedastic, and the two means and two variances may also be functions of the covariate,
but that structure is not relevant for present purposes. We assume that EY 8k

i,j < ∞ for
j = 1, 2 and a sufficiently high positive integer k. We also write ρ ≡ ρ(xi) below, since there
is no cause of confusion here.
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Figure 5: Pairwise Kendall correlations between wavelet coefficients at each
time-scale



2020] MODELING TREE-RING RECORDS 179

Figure 6: Bootstrap sampling distributions of time-scale slopes in distance.
These are estimated differences from the same-year time-scale slope. The orig-
inal estimate is the dashed vertical line.
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Let ε� 0.25 min(σ2
1, σ

2
2) be a small constant, and let A be the event

A =
{ n∑
i=1

(
Yi,1 − n−1

n∑
i=1

Yi,1
)2
> ε, and

n∑
i=1

(
Yi,2 − n−1

n∑
i=1

Yi,2
)2
> ε

}
.

On A we define our estimator of ρ to be the usual sample correlation

ρ̂ =
{ n∑

i=1

(
Yi,1 − n−1

n∑
i=1

Yi,1
)2
}{

n∑
i=1

(
Yi,2 − n−1

n∑
i=1

Yi,2
)2
}1/2

n∑
i=1

(
Yi,1 − n−1

n∑
i=1

Yi,1
)(
Yi,2 − n−1

n∑
i=1

Yi,2
)
.

On it complement of A, we take ρ̂ = 0. We have to separate the cases where the sample
variances are sufficiently high and where they are not using A, since we do not make any
distribution assumptions like Gaussianity in this paper. It can be shown that 1 − P[A] =
O(n−4k), consequently we only discuss ρ̂ under A, the other case is negligible.

Theorem 1: Under the conditions stated above, we have the following results:

(a) For every fixed pair of locations, the correlation estimator ρ̂ is consistent and the dis-
tribution of n1/2(ρ̂− ρ) converges weakly to a Gaussian distribution.

(b) If ρ(x) = βTx for some β ∈ Rp, then the ordinary least squares estimator for β computed
from all pairs of locations is consistent and asymptotically Gaussian.

(c) If ρ(x) = βTx for some β ∈ Rp, and β̂ is the ordinary least squares estimator for β, then
the distribution of n1/2(β̂−β) is consistently approximated by the proposed version of
the wild bootstrap scheme, conditional on the data, for almost all sample paths.

Proof: [Proof of Theorem 1]

Here, we only provide a brief outline of the main arguments for part (a) of Theorem 1,
in order to not overload this paper with algebraic details.

We define the following terms

T1 = n−1σ−2
1

n∑
i=1

(
Yi,1 − n−1

n∑
i=1

Yi,1
)2
,

T2 = n−1σ−2
2

n∑
i=1

(
Yi,2 − n−1

n∑
i=1

Yi,2
)2
,

T3 = n−1σ−1
1 σ−1

2

n∑
i=1

(
Yi,1 − n−1

n∑
i=1

Yi,1
)(
Yi,2 − n−1

n∑
i=1

Yi,2
)
.

In terms of thee notations, we have under A that ρ̂ = (T1T2)−1/2T3.
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In the following, the notation Ra denotes a remainder for all choices of a, with the
property that ER2k <∞. We do not explicitly report the algebra relating to such remainder
terms, those are routine. It can be worked out that on A, we have the following

T3 = ρ+ n−1/2R1 + n−1R2,

T1 = 1 + n−1/2R3 + n−1R4,

T2 = 1 + n−1/2R5 + n−1R6,

consequently we can express (T1T2)−1/2 as(
T1T2

)−1/2
= 1 + n−1/2R7 + n−1R8.

It is in the above expression, the condition dictating A is required, for establishing that R8
is indeed a random variable satisfying ER2k <∞.

Using the above terms, we now have that

ρ̂ =
(
T1T2

)−1/2
T3

= ρ+ n−1/2R9,

where R9 is a smooth function of all of the following terms:

T4 = n1/2
(
n−1

n∑
i=1

Yi,1 − µ1

)
,

T5 = n1/2
(
n−1

n∑
i=1

Yi,2 − µ2

)
,

T6 = n1/2
(
n−1

n∑
i=1

(Yi,1 − µ1)2 − σ2
1

)
,

T7 = n1/2
(
n−1

n∑
i=1

(Yi,2 − µ2)2 − σ2
2

)
,

T8 = n1/2
(
n−1

n∑
i=1

(Yi,2 − µ2)(Yi,2 − µ2)− ρσ1σ2

)
.

The rest of the analysis, along with the justification for the novel resampling scheme
used in this paper, now follows using fairly routine algebra, and the use of Lyapunov’s Central
Limit Theorem.

10. Future Considerations

In the above analysis, we build a model with a response variable containing pairwise
correlations between wavelet coefficients at different time-scales. Then, we perform a modi-
fied version of the wild bootstrap for statistical inference.

We utilized a small subset of the available data within the international tree-ring data-
bank. The analysis could be further modified or generalized in many ways. Multiple species
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within the same area could be included. It could be of interest to correlate records over a
larger land area, or even across contents. Finally, incorporating information, such as temper-
ature and precipitation, may help researchers to better understand past climate. However,
all these come with additional challenges, for example, the distribution of tree-ring records
over the world is patchy and inadequate in many regions, dependence of the data over dif-
ferent tree species and subspecies, between various climatic regions and other features need
to be carefully modeled. Additionally, many data records are incomplete, or are unevenly
spaced over time. The theoretical details behind the new resampling scheme deserves further
study.
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Fan, Z.-X. and Bräuning, A. (2017). Tree-ring evidence for the historical cyclic defoliator
outbreaks on Larix potaninii in the central Hengduan mountains, SW China. Ecological
Indicators, 74, 160–171.

Gong, K., Braverman, A., and Chatterjee, S. (2018). On a technique for evaluating the
quality of earth system models. In Proceedings of the 8th International Workshop on
Climate Informatics: CI 2018, pages 93 – 96.

Granato-Souza, D., Stahle, D. W., Barbosa, A. C., Feng, S., Torbenson, M. C., de As-
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Opa la-Owczarek, M. and Niedźwiedź, T. (2019). Last 1100 yr of precipitation variability
in western central Asia as revealed by tree-ring data from the pamir-alay. Quaternary
Research, 91 (1), 81–95.

Percival, D. B. and Walden, A. T. (2006). Wavelet Methods for Time Series Analysis.
Cambridge University Press, 1st edition.

Sandeep, K., Shankar, R., Warrier, A. K., Yadava, M., Ramesh, R., Jani, R., Weijian, Z.,
and Xuefeng, L. (2017). A multi-proxy lake sediment record of Indian summer monsoon
variability during the holocene in southern india. Palaeogeography, Palaeoclimatology,
Palaeoecology, 476, 1–14.

St George, S. and Ault, T. R. (2014). The imprint of climate within Northern Hemisphere
trees. Quaternary Science Reviews, 89, 1–4.

St George, S. and Esper, J. (2019). Concord and discord among Northern Hemisphere
paleotemperature reconstructions from tree rings. Quaternary Science Reviews, 203,
278–281.

Steiger, N. J., Steig, E. J., Dee, S. G., Roe, G. H., and Hakim, G. J. (2017). Climate
reconstruction using data assimilation of water isotope ratios from ice cores. Journal
of Geophysical Research: Atmospheres, 122 (3), 1545–1568.

Strickland, R. N. and Hahn, H. I. (1996). Wavelet transforms for detecting microcalcifications
in mammograms. IEEE Transactions on Medical Imaging, 15 (2), 218–229.

The MathWorks, I. (2020). Wavelet Toolbox. Natick, Massachusetts, United States.
Torrence, C. and Compo, G. P. (1998). A practical guide to wavelet analysis. Bulletin of

the American Meteorological Society, 79 (1), 61–78.
Trouet, V., Babst, F., and Meko, M. (2018). Recent enhanced high-summer north Atlantic

jet variability emerges from three-century context. Nature Communications, 9 (1),
1–9.

Vannucci, M. and Corradi, F. (1999). Covariance structure of wavelet coefficients: theory
and models in a Bayesian perspective. Journal of the Royal Statistical Society B, 61
(4), 971–986.

Vidakovic, B. (1999). Statistical Modeling by Wavelets. Wiley, New York, NY, 1st edition.



2020] MODELING TREE-RING RECORDS 185

Walden, A. T. and Cristan, A. C. (1998). Matching pursuit by undecimated discrete wavelet
transform for non stationary time series of arbitrary length. Statistics and Computing,
8, 205–219.

Wasserman, L. (2006). All of Nonparametric Statistics. Springer.
Whitcher, B. (2020). waveslim: Basic Wavelet Routines for One-, Two-, and Three-

Dimensional Signal Processing. R package version 1.8.2.
Wu, C. F. J. (1986). Jackknife, Bootstrap and Other Resampling Methods in Regression

Analysis (with discussion). Annals of Statistics, 14, 1295.
Zhao, S., Pederson, N., D’Orangeville, L., HilleRisLambers, J., Boose, E., Penone, C., Bauer,

B., Jiang, Y., and Manzanedo, R. D. (2019). The international tree-ring data bank
(itrdb) revisited: Data availability and global ecological representativity. Journal of
Biogeography, 46 (2), 355–368.





Statistics and Applications {ISSN 2452-7395(online)}
Volume 18, No. 2, 2020 (New Series), pp 187-205

Using Conditionally Specified Joint Distribution to
Simultaneously Model Discrete and Continuous Data

Nadeesri Wijekoon1 and Nagaraj K. Neerchal1,2

1Department of Mathematics and Statistics
University of Maryland, Baltimore County, USA

2Chinmaya Vishwavidyapeeth, India

Received: 29 May 2020; Revised: 21 July 2020; Accepted: 24 July 2020

Abstract
Often, in practice, conditionals are easier to model and interpret while the joint distri-

bution itself is either intractable or not available in a closed form. Conditionally specified
statistical models offer several advantages over joint models. Conditionally specified models
are intuitively appealing and enrich our ability to build interpretable models in practice.
In this paper, we derive the likelihood of a joint distribution obtained from Binomial and
Bivariate Normal conditionals. Properties of maximum likelihood estimates and pseudolike-
lihood estimates are explored using a simulation. A conditionally specified model is obtained
by assuming that closing prices are conditionally normally distributed and that the buy-sell
recommendation by an Analyst follows a logistic regression model given the prices.

Key words: Conditionally specified models; Compatibility; Maximum likelihood; Pseudolike-
lihood; Gibb’s sampling.
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1. Introduction

When solving real-world problems, the main difficulty could be selecting a suitable
model to reflect the reality being observed (Ghosh and Nadarajah, 2017). Especially when
the observed response consists of both continuous and discrete components, it is not very
convenient to directly specify a joint distribution. Often, in practice, conditionals are easier
to model and interpret while the joint distribution itself is either intractable or not available
in a closed form. According to Arnold et al. (1999, 2001), although the joint distribution is
less tractable, availability of easily handled conditionals enables us to consider computation-
ally more efficient estimation methods such as pseudolikelihood. Arnold et al. (1999, 2001)
provide an extensive account of conditionally specified joint distributions. They proved the-
orems describing the conditions for the existence of joint distributions consistent with the
given conditionals and provided general forms of such joint distributions. They also consider
examples of joint distributions determined by discrete-continuous pairs of conditionals. It
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turns out that the joint distributions obtained by following the theoretical developments are
not always tractable. In particular, often the normalizing constant does not lend itself to a
closed form. In this paper, we consider a joint distribution for data consisting of a binary
random variable and bivariate continuous measurements. The model postulates a joint distri-
bution determined by Binomial (in fact by a logistic regression model) and bivariate Normal
conditionals. For this model, we can derive a closed form for the normalizing constant,
however, it turns out that the parameter estimation is numerically intensive. Therefore, we
consider an alternative method using a pseudolikelihood function. The two approaches are
compared in a simulation study.

As an illustrative application, we consider stock price data along with the corresponding
buy-sell recommendation of an analyst. Stock market analysts classify a stock as either
a “buy” or a “sell” based on their own research into the history of the stock as well as
their assessment of other market dynamics which have a bearing on the price of the stock.
Here, the distribution of the stock price on the “buy” days is clearly different from the price
distribution on “sell” days. Thus, our choice of the model parameters would differ if we knew
that the stock has been classified as a buy instead of as a sell. On the other hand, the price
history of the stock will influence the classification (buy or sell) decision of the analyst. Thus,
even though it is cumbersome and inconvenient to think of a joint distribution of the stock
prices (continuous) and the analyst recommendations (binary), it is easier to think of the
conditional distribution of the recommendations given the price history and the conditional
distribution of the stock price given its buy or sell status. Thus, conditionally specified
distribution is a convenient way to model both, expert recommendations and closing prices
simultaneously.

Another motivating example can be found in the area of Gerontology. In health care
studies involving aged subjects, due to progressively deteriorating health conditions over
time, subjects become unable to respond to questions. To avoid the resulting missing data
situation, sometimes the study protocol would allow the investigator to collect a proxy
response from another person who is familiar with the non-responding subject. Thus, for
each subject, we record a pair of responses. One of the variables in the pair is a discrete
random variable (0 or 1 depending upon whether the respondent is either the subject or
the proxy) and the other is a continuous (a composite score from a mental health related
questionnaire) measurement. Note that the ability to respond is usually related to the
overall health condition of the patient. A proxy is needed when a subject is not well enough
to answer the questions of the study. On the other hand, the distributional properties of the
proxy responses and subject responses would be different. Thus, the conditional relationships
between responses and self/proxy indication can be specified using commonly used models
and a single joint distribution can be derived for analyzing both subject data and proxy
data. The reader is referred to Hosseini (2017) for a detailed description of this approach
along with a working code implementing the parameter estimation.

The contents of this paper are organized as follows. In Section 2, we briefly intro-
duce conditionally specified models and present the existing theories of deriving the joint
distribution and some issues like compatibility of conditionals. In Section 3, we consider the
problem of compatibility and present the relevant restrictions on the original problem. In
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Section 4, we propose our new joint distributions. In Section 5, we present an illustrative
example using the stock data. Finally, some concluding remarks are made in Section 6.

All computations are done using the freeware R.

2. Conditionally Specified Distributions in Exponential Family

In a comprehensive review given by Arnold et al.(2001), in Statistical Science, it is
stated that a bivariate density is easy to understand/visualize in the terms of its conditional
densities. In practice, researchers often have better insight into the form of conditional
distributions of experimental variables rather than the joint distribution (See Castillo and
Galambos, 1989). For instance, instead of providing a model for (X, Y ), one can propose
families of conditional distributions of X given values of Y , and of Y given values of X.
Castillo and Galambos (1989) identified the complete class of such bivariate distributions
with given specified conditional distributions. Arnold and Strauss (1988) extended their work
to arbitrary exponential family of conditionals. The key result in this area, which gives the
form of the joint distribution which is consistent with the given specific pair of conditional
distributions is provided in Arnold and Strauss (1988). Below is a brief statement of this
key result, which provides a general form of the joint distribution starting with conditionals
belonging to the exponential family of distributions. We start with the following notations.

Notations: Define an l1-parameter family of densities {f1(x; θ) : θ ∈ Θ} with respect to µ1
(frequently, Lebesgue measure or counting measure) on D1, a subset of Euclidean space of
finite dimension, of the form

f1(x; θ) = r1(x)β1(θ)exp
{

l1∑
i=1

θiq1i(x)
}

(1)

where q1i(x)’s (sufficient statistics) are linearly independent, and θ = (θ1, · · · , θl1)T . Sim-
ilarly, we define, an l2-parameter family of densities {f2(x; τ) : τ ∈} with respect to µ2
(frequently, Lebesgue measure or counting measure) on D2, a subset of Euclidean space of
finite dimension, of the form

f2(y; τ) = r2(y)β2(τ)exp
{

l2∑
j=1

τjq2j(y)
}

(2)

where q2j(y)’s (sufficient statistics) are linearly independent , and τ = (τ1, · · · , τl2)T .

Our goal is to identify the class of bivariate densities f(x, y) with respect to µ1 × µ2
on D1 ×D2, whose conditionals belong to the above families of densities respectively. That
is, we want to find a joint distribution f(x, y) such that f(x|y) = f1(x; θ(y)) and f(y|x) =
f2(y; τ(x)). Arnold et al.(1988) show the existence and provide a general form of the joint
distribution. Their result is stated in the theorem below.

Theorem 1: Let f(x, y) be a bivariate density whose conditional densities satisfy f(x|y) =
f1(x; θ(y)) and f(y|x) = f2(y; τ(x)) for some function θ(y) and τ(x) where f1 and f2 are as
defined in (3) and (4). It follows that f(x, y) is of the form

f(x, y) = r1(x)r2(y)exp
{
q(1)(x)TMq(2)(y)

}
(3)
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where,
q(1)(x) = (q10(x), q11(x), q12(x), ..., q1l1(x))T ,

q(2)(y) = (q20(y), q21(y), q22(y), ..., q2l2(y))T

and where, q10(x) = q20(y) = 1 and M is an (l1 +1)×(l2 +1) matrix of parameters, subject to
the requirement that

∫
D1

∫
D2
f(x, y)dµ1(x)dµ2(y) = 1. The family of these joint distributions

is referred to as conditional exponential family (CEF). Note that the elements of M may be
denoted by mij for i = 0, 1, · · · , (l1 + 1) and j = 0, 1, · · · , (l2 + 1).

To illustrate the application of Theorem 1 we present an example where one of the
conditionals is the Poisson distribution and the other is the Gamma distribution.

Example 1: This example was given in Arnold et al.(1999). Suppose we are seeking a
joint distribution of a random vector (X, Y ) such that, X|Y = y ∼ Poi(y) and assume
Y |X = x ∼ Γ(x + α, λ + 1). Since both conditionals belong to the exponential family of
distributions, we can put them in the notations of Theorem 1 as follows: l1=1 and l2=2.
The M matrix is 2× 3. Further, r1(x) = 1

x! and r2(y) = 1
y
. Similarly, the sufficient statistics

q1i(x)’s and q2j(y)’s can be identified as q(1)(x) = (1, x)T and q(2)(y) = (1,−y, ln(y))T .
Therefore, joint density belongs to CEF and its general form is given by,

f(x, y) = 1
x!yexp

[1 x
]
M

 1
−y
ln(y)


 x = 0, 1, ...; y > 0

where,
m01 > 0,m02 > 0,m11 ≥ 0,m12 ≥ 0.

Note that, when m11 = m12 = 0, X and Y are independent. And when m11 = 0 and m12 = 1,
it can be shown that the marginal of X is given by

f(x) = Γ(x+ α)
Γ(α)x!

(
λ

λ+ 1

)α( 1
λ+ 1

)x
x = 0, 1, 2, ....

Thus, we obtain the familiar compound Poisson distribution.

An interesting point to be noted here is that, for m11 > 0 the joint distribution does
not yield the compound Poisson distribution as the marginal of X. This indicates that, even
though we started with the Poisson and Gamma conditionals, the resulting CEF is a much
larger class than that obtained by combining X|Y = y ∼ Poi(y) and Y ∼ Γ(α, λ+ 1).

It turns out that the candidate functions for the conditional distributions will have
to satisfy certain conditions for the existence of a corresponding proper joint distribution.
This issue is also referred to as the problem of compatibility of conditionals. According to
Chen (2010), the incompatibility of the conditionally specified models may lead to serious
consequences on the statistical inference and interpretation in the data analysis and on the
convergence of the Gibbs sampling. Thus, the compatibility issue is a widely researched
area and there are several computational/theoretical approaches in literature to identify the
possible compatibility of given families of conditional distributions. Besag (1974), Arnold and
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Press (1989), Hobert and Casella (1998), Arnold, Castillo and Serabia (2002) and recently
Ghosh and Nadarajah (2017) studied compatibility extensively. We refer the reader to
theorems introduced by Arnold and Press (1989) which are used in checking the compatibility
of the conditionals in this paper.

Example 2: (Logistic Regression) Suppose X takes values in the set {x1, x2, ..., xk}, and is
real valued. For each x we have Y |X = x ∼ N(θx, σ2

x).

And for each y we have,

P (X = x|Y = y) = exp[−(ax + bxy)]
k∑
x=1

exp[−(ax + bxy)]
.

We apply Theorem 4.1 in the Arnold and Press (1989) paper as follows. The Theorem is
stated in the Appendix (A.2).

Proof of Compatibility: Let,

a(x, y) = f(Y |X = x) ∼ N(θx, σ2
x)

b(x, y) = f(X|Y = y) ∼ exp[−(ax + bxy)]
k∑
x=1

exp[−(ax + bxy)]

In order to show compatibility, we need to prove that the ratio of a(x, y)/b(x, y) factors into
a product such as U(x)× V (y). Consider,

a(x, y)
b(x, y) =

1√
2πσx

exp

{
− (y−θx)2

2σ2
x

}
k∑
x=1

exp[−(ax + bxy)]

exp[−(ax + bxy)]

= 1√
2πσx

exp

{
ax −

θ2
x

2σ2
x

}
exp

{
− 1

2σ2
x

[
y2 − 2(θx + σ2

xbx)y
]}

k∑
x=1

exp[−(ax + bxy)]

If bx = − θx
σ2
x

and σ2
x = σ2 where ax’s are unconstrained,

a(x, y)
b(x, y) = 1√

2πσ
exp

{
ax + θxbx

2

}
exp

{
− y2

2σ2

}
k∑
x=1

exp[−(ax + bxy)]

= exp

{
ax + θxbx

2

}
︸ ︷︷ ︸

U(x)

1√
2πσ

exp

{
− y2

2σ2

}
k∑
x=1

exp[−(ax + bxy)]︸ ︷︷ ︸
V(y)

= U(x)V (y)

where,
∫
y∈R V (y)dy <∞ and

k∑
x=1

U(x) <∞.
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Therefore, according to Arnold and Press (1989) the two distributions are compatible pro-
vided bx = − θx

σ2
x

and σ2
x = σ2 where ax’s are unconstrained.

3. Logistic and Bivariate Conditionals

In this section, we present the derivation of a conditionally specified model starting
with Logistic distribution and Bivariate Normal distribution as conditionals. We consider
the stock price data as the motivating example. We propose a logistic regression model for
the conditional distribution of the binary valued analyst recommendation given the stock
prices from the first and last day of the trading week and the conditional distribution of
the stock prices given the analyst recommendation as a Bivariate Normal. We first set up
the problem in the notations of Theorem 1 and then obtain the form of the joint. It turns
out that the normalizing constant can be obtained in a closed form using some results on
multivariate normal integrals. We discuss some properties of the resulting joint distribution.
We have created a shiny application (an interactive tool in the freeware R) which can be
used to explore the structure of the joint distribution for various parameter values.

3.1. Setting up the problem

Suppose we have the distribution of observed beginning and end price vector (2×1) of a
single trading week (say y) given the analyst recommendation (say r), fY |R(y|R = r) and the
distribution of analyst recommendation given observed data vector of a week, fR|Y (R|Y =
y) ∼ Ber[π(y, α)], where, π(y, α) is a function of y parameterized by α. We assume a logistic
link:

logit[π(y, α)] = log

 π(y, α)
1− π(y, α)

 = α0 + α1y1 + α2y2

Further, R is a binary variable and Y is a continuous variable such that fY |R(y|R = r) ∼
N2(µ(r),Σ(r)). where,

µ(r) =
(
µ

(r)
1

µ
(r)
2

)
and Σ(r) =

(
σ

(r)
1

2 ρσ
(r)
1 σ

(r)
2

ρσ
(r)
1 σ

(r)
2 σ

(r)
2

2

)

Under this model, the conditional distributions of the stock price given its buy/sell
status is assumed to be normal, with different set of parameter values depending upon the
classification. As we shall see in the next section, we will need to assume that the variance-
covariance matrices of the two conditionals must be the same (that is, Σ(0) = Σ(1)) in order
to ensure compatibility.

3.2. Deriving conditionally specified model

Confirming the existence of the joint model given the two conditionals is essential. In
other words, the two conditionals should be compatible. Therefore, for this problem, we will
start by checking whether fR|Y (R|Y = y) and fY |R(y|R = r) are compatible. We will use
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the Arnold and Press (1989) Theorem given in the Appendix (A.2). Assume,

a(r, y) = (2π)−1|Σ(r)|−1/2exp[−1
2(y − µ(r))TΣ(r)−1(y − µ(r))]

and
b(r, y) = π(y)r[1− π(y)].(1−r)

Let us form the ratio,

a(r, y)
b(r, y) =

(2π)−1|Σ(r)|−1/2exp[−1
2(y − µ(r))TΣ(r)−1(y − µ(r))]

π(y)r[1− π(y)](1−r)

Let Σ(r) = Σ, be the common variance-covariance matrix. As in Example 2, letting −Σ−1µ(1)

= (α1, α2)T , and leaving α0 unconstrained we can rewrite the above ratio as follows:

a(r, y)
b(r, y) =

(2π)−1|Σ|−1/2exp[−1
2(yTΣ−1y − 2yTΣ−1µ(r) + µ(r)TΣ−1µ(r)]

exp(rα0).exp(α0 + α1y1 + α2y2)−1

=
(2π)−1|Σ|−1/2exp[−1

2(yTΣ−1y)
exp[α0 + α1y1 + α2y2]−1︸ ︷︷ ︸

U(y)

·
exp[−1

2(µ(r)TΣ−1µ(r))]
exp(rα0)︸ ︷︷ ︸

V(r)

Since ∑1
r=0 V (r) < ∞, compatibility of the given family of conditional densities is as-

sured provided the integrability restriction is also satisfied. That is, the two conditionals
are compatible under common variance-covariance matrix Σ and under the condition that
exp[yTΣ−1y − α1y1 − α2y2] integrates to 1.

Now that the compatibility condition is satisfied, we can apply Theorem 1 to obtain
the form of the joint distribution. Theorem 1 was used to obtain the joint distribution of
f(y, r). Recall that,

ln(f(y, r)) = (1, r)
[
m00 m01 m02 m03 m04 m05
m10 m11 m12 m13 m14 m15

]


1
y1
y2
y2

1
y1y2
y2

2


For simplicity we write,

f(y, r) = exp(m00 + rm10).exp(Q(y, r)); r = 0, 1 and y ∈ R

where, Q(y, r) = (m01 + rm11)y1 + (m02 + rm12)y2 + (m03 + rm13)y2
1 + (m04 + rm14)y1y2 +

(m05 + rm15)y2
2

Obviously, the tiresome part of this derivation is finding the m values. We will now
start by finding the solutions for all the mij values except for m00 which is the normalizing
constant. We will present a solution for m00 at the end of this section. The usual way to
find m values (except m00) is comparing f(Y |R = r) and f(R|Y = y) derived from the joint
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distribution with the original f(Y |R = r) and f(R|Y = y). Thus, by comparing we obtain

f(R = r|Y = y) = exp(r[m10 +m11y1 +m12y2 +m13y
2
1 +m14y1y2 +m15y

2
2])

1 + exp(m10 +m11y1 +m12y2 +m13y2
1 +m14y1y2 +m15y2

2) ; r = 0, 1

By comparing the true density and the density of the desired logistic regression model, we
have that

π(y, α) = exp(m10 +m11y1 +m12y2 +m13y
2
1 +m14y1y2 +m15y

2
2)

1 + exp(m10 +m11y1 +m12y2 +m13y2
1 +m14y1y2 +m15y2

2)

Desired π(y, α) can be obtained by setting the quadratic terms into zero. However, having
quadratic terms in the general setting reveals that the derived joint density represents a
larger class of joint densities. The particular problem that we are interested in is a special
case where the logit link is constructed with a linear function only. Thus, by comparing we
get

m10 = α0 (4)
m11 = α1 (5)
m12 = α2 (6)

m13 = m14 = m15 = 0 (7)
Similarly, to obtain f(Y |R = r), we first derive f(R = r) using f(Y = y,R = r).

f(R = r)

=
∫ ∞
y2=−∞

∫ ∞
y1=−∞

f(y, r)dy1dy2

=
∫ ∞
y2=−∞

∫ ∞
y1=−∞

f(y, r)
f(y|r) × f(y|r)dy1dy2

= exp(m00 + rm10)(2π)|Σ|1/2
∫ ∞
y1,y2=−∞

exp

{
1
2(y − µ(r))TΣ−1(y − µ(r)) +Q(y, r)

}
f(y|r)dy

In order to obtain a closed form expression for the normalizing constant, we will need to
finish the integration. It turns out that an old result involving multivariate normal density
function can be used to accomplish this. The complete result is given in the Appendix (A.1)
for the reader’s convenience. Once the joint distribution becomes available, the marginals
of Y and R can be obtained from the joint distribution. Thus, f(R = r) can be written as
follows:

(R = r)

= exp(m00 + rm10)(2π)|Σ|1/2
∫ ∞
y1,y2=−∞

exp

{
2by + yTAy

}
f(y|r)dy

= exp(m00 + rm10)(2π)|Σ|1/2

|I − 2AΣ|1/2 exp

{
2bTΣ(I − 2AΣ)−1b+ µ(r)T (I − 2AΣ)−1(2b+ Aµ(r))

}
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where,

b=
(

2ρσ1σ2µ
(r)
2 −2σ2

2µ
(r)
1

4(1−ρ2) + m01+rm11
2 ,

2ρσ1σ2µ
(r)
1 −2µ(r)

2 σ2
1

4(1−ρ2)σ2
1σ

2
2

+ m02+rm12
2

)
T

and A=
 1

2(1−ρ2)σ2
1

+m03 + rm13 m04 + rm14
−ρ

(1−ρ2)σ1σ2
1

2(1−ρ2)σ2
2

+m05 + rm15



Let us now obtain the conditional distribution f(Y |R = r).
f(Y |R = r)

= f(Y = y,R = r)
f(R = r)

= |I − 2AΣr|1/2

(2π)|Σr|1/2 exp

{
Q(y, r)− 2bTΣr(I − 2AΣr)−1b− µTr (I − 2AΣr)−1(2b+ Aµr)

}

We compare the conditional distribution f(Y |R = r) expressed in terms of the mij values
to the originally specified form of the same distribution (Y |R = r) expressed in terms of the
parameters

∼
µ(r)’s and Σ’s etc. to obtain the relationships between the two sets of parameters.

These relationships are captured in the following equations.

m01 + rm11 = µ
(r)
1 − ρr(σ11/σ22)µ(r)

2
(1− ρ2)σ2

11

m02 + rm12 = µ
(r)
2 (σ11/σ22)2 − ρ(σ11/σ22)µ(r)

1
(1− ρ2)σ2

11

m03 + rm13 = −1
2(1− ρ2)σ2

11

m04 + rm14 = ρ

(1− ρ2)σ11σ22

m05 + rm15 = −1
2(1− ρ2)σ2

22
(8)

The above equations can be solved for mij values in terms of the µ(r)
1 and µ

(r)
2 values etc.
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Expressions for m01,m02,m03,m04 and m05 are as follows:

m01 = µ
(r)
1 − ρ(σ11/σ22)µ(r)

2
(1− ρ2)σ2

11
− rα1

m02 = µ
(r)
2 (σ11/σ22)2 − ρ(σ11/σ22)µ(r)

1
(1− ρ2)σ2

11
− rα2

m03 = −1
2(1− ρ2)σ2

11

m04 = ρ

(1− ρ2)σ11σ22

m05 = −1
2(1− ρ2)σ2

22

(9)

From (9), one can also obtain the original parameters µ(r)
1 , µ

(r)
2 , ρr, σ

2
11 and σ2

22 in terms of
mij’s. Thus, we have,

ρ = m04
2√m03.m05

, σ2
22 = 2m03

m2
04−4m03.m05

and σ2
11 = 2m05

m2
04−4m03.m05

. (10)

According to (10) it is clear that ρ,σ2
11 and σ2

22 do not depend on the value of R. This implies
a common variance-covariance matrix for the conditional distributions f(Y = y|R = 0) and
f(Y = y|R = 1). Further, µ(r)

1 and µ
(r)
2 as follows.

µ
(r)
2 =

ρ

{
m01+rα1
m03

}
+
{
m02+rα2
m05

}
ρ2

√{
m05
m03

}
−
{
m05
m03

} and µ
(r)
1 = ρ

√
m05
m03
× µ(r)

2 − m01+rα1
m03 (11)

The above solutions are verified using simulation studies.

3.3. Deriving normalizing constant (m00)

In general, obtaining closed form solution to m00 is known to be difficult and sometimes
such a closed form may not even exist. For our problem however, we were able to derive a
closed form expression for m00. Since m00 should be such that

∫∞
y=−∞ f(y, r) = 1, it follows

that
m00 = −ln

[ 1∑
r=0

exp(rm10)
∫ ∞
y1=−∞

∫ ∞
y2=−∞

exp(Q(y, r))dy2dy1

]

As shown in the Appendix A.1, the double integral above is given by,∫ ∞
y1=−∞

∫ ∞
y2=−∞

exp(Q(y, r)) = 2πσ11σ22
√

1− ρ2

exp(C(r)) |I − 2AΣ|−1/2

exp

[
2bTΣ(I − 2AΣ)−1b+ µ(r)T (I − 2AΣ)−1(2b+ Aµ(r))

]
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where,

C(r) = −(σ2
22µ

(r)
1

2 − 2ρσ11σ22µ
(r)
1 µ

(r)
2 + σ2

11µ
(r)
2

2)
2(1− ρ2)σ2

11σ
2
22

b=
(

2ρσ11σ22µ
(r)
2 −2σ2

22µ
(r)
1

4(1−ρ2) + m01+rm11
2 ,

2ρσ11σ22µ
(r)
1 −2µ(r)

2 σ2
11

4(1−ρ2)σ2
11σ

2
22

+ m02+rm12
2

)
T

and A=
 1

2(1−ρ2)σ2
11

+m03 + rm13 m04 + rm14
−ρ

(1−ρ2)σ11σ22
1

2(1−ρ2)σ2
22

+m05 + rm15


.

Therefore, m00 is given by,

m00 = −ln
[
2πσ11σ22

√
1− ρ2

1∑
r=0
|I − 2AΣ|−1/2.

exp

(
rm10 − C(r) + 2bTΣ(I − 2AΣ)−1b+ µ(r)T (I − 2AΣ)−1(2b+ Aµ(r))

)]

4. Data Generation and Estimation

In this section, we discuss how to generate data from the new conditionally specified
joint distribution. We also discuss estimation of the parameters of the joint distribution
using the maximum likelihood estimation (MLE) method and pseudolikelihood estimation
(PLE) method. We will also provide some numerical results to investigate the computational
effort involved in computing MLEs and PLEs.

4.1. Data generation from the model

Although the proposed joint model has a closed form expression, it is very complex
and has a messy normalizing constant. Therefore, generating data directly from the joint
model is immensely difficult and may even not be feasible. However, since the model is
conditionally specified we can apply other numerical algorithms such as Gibb’s Sampling.

Gibbs sampling algorithm, named by Geman and Geman (1984), is a special case of
Metropolis-Hastings algorithm. It is a way to generate data from multivariate distributions
when the univariate conditional densities are fully specified. For more details the reader is
referred to Rizzo(2008). For instance, let us assume that we want to generate data from a
bivariate density fX,Y (x, y) and the conditional distributions of the model are fully specified.
Let fX|Y (x/y) and fY |X(y/x) be conditional densities of x given y and y given x respec-
tively. Suppose simulating data from the bivariate density is complicated, Gibbs sampling
algorithm is an effective method to generate data from the conditional densities despite hav-
ing information about the marginal distributions fX(x) and fY (y). Presented below is the
algorithm which can be used to generate data from the proposed density.
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Gibb’s Sampling Algorithm

1. Initial value : Set R(0) = 1. So, Y (0) ∼ f1(y).

2. Set µ(0),µ(1),Σ and the vector α.

3. Suppose we generated (Y (0), R(0)), (Y (1), R(1)), ..., (Y (t), R(t)).

(a) if R(t) = 0 Generate Y (t+1) ∼ f(y/R = 0) and R(t+1) ∼ f(r/Y = y(t+1))
(b) if R(t) = 1 Generate Y (t+1) ∼ f(y/R = 1) and R(t+1) ∼ f(r/Y = y(t+1))

Contour plots and Surface plots (Figure 1) for f(Y,R = 0) and f(Y,R = 1) suggest that
the joint model is not a unimodal distribution. We have built an interactive tool for explor-
ing the shape of the joint distribution in Shiny. The reader may download this tool from
https://github.com/nadeesriw/ShinyApp.git.

Figure 1: Contour plots and Surface plots of the joint distribution. Top and bottom
left: f(Y,R = 0) and top and bottom right: f(Y,R = 1).

4.2. Estimating parameters

As stated in Arnold et al. (1991, 2001) papers, standard estimation methods are often
difficult to implement when dealing with conditionally specified models. This is mainly
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because of the awkward normalizing constant m00 which is often intractable. And, if an
explicit expression is available for m00, it is usually complicated, as is the case here. Thus,
differentiating the likelihood and deriving the maximum likelihood equations is challenging.
Although in practice MLE is the preferred estimation method for parametric models, in our
case it comes with a heavy computational burden. Therefore, it behooves upon us to explore
other methods such as pseudolikelihood estimation (PLE). In this section, we will compare
MLE and PLE in terms of relative efficiency and computational cost.

The likelihood function of the proposed joint distribution is given by,

L(f(Yi, Ri; ∼̂M)) =
n∏
i=1

exp(rm10 +Q(
∼
y, r))∑1

r=0 exp(rm10)
∫∞
y1=−∞

∫∞
y2=−∞ exp(Q(

∼
y, r))dy2dy1

(12)

where,

Q(
∼
y, r) = (m01 + rm11)y1 + (m02 + rm12)y2 + (m03 + rm13)y2

1 + (m04 + rm14)y1y2 + (m05 + rm15)y2
2

Deriving the score function and obtaining closed form expressions for estimates is not feasible
due to the complexity of the model. Therefore, numerical methods were considered to obtain
the estimates of parameters.

Arnold and Strauss (1991) proposed PLE as an alternative method to maximum likeli-
hood estimation. Further, they proposed the product of the two conditional distributions as
a possible pseudolikelihood function. The advantages of this method are that the function is
far more tractable compared to the original likelihood and the awkward normalizing constant
m00 is absent. The proposed pseudolikelihood function can be written as follows:

PL(µ(0), µ(1),Σ, α0, α1, α2) =
n∏
i=1

f(yi|Ri = ri)f(Ri = ri|yi)

PL(µ(r),Σ, α0, α1, α2)

=
n∏
i=1

1
2π|Σ|1/2×

exp

− 1
2(

∼
yi − µ(1)ri − µ(0)(1− ri))T [Σ]−1(

∼
yi − µ(1)ri − µ(0)(1− ri))

×
[exp{∼α

Ty∗i }]ri
1

1 + exp{∼α
Ty∗i }

where, α = (α0, α1, α2)T and
∼
y∗i = (1,

∼
yi)T . While the computation of PLE is also only

feasible numerically, the computations involved are significantly less complex than the com-
putation of the original likelihood.

We carried out a simulation study for different sample sizes varying from 100 to 1000.
Estimates of the model parameters were obtained using both MLE and PLE methods. Data
were generated using the Gibb’s algorithms. 100 such data sets were used for the study.
Apart from the estimates, we also calculated the variance, bias and time. The entire analysis
was performed using the R 3.5.1 software. The R package called Rsolnp, which performs
constrained optimization, was used to obtain estimates. Results are shown in Table 1 and
Table 2.
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Table 1: Wall times of simulation study with respect to sample size and method used:
TOL 10−3 and 100 data sets

Wall time (in hours)Sample Size
(n) Maximum Likelihood Estimates Pseudolikelihood Estimates

100 0.24876 0.03046
200 0.48388 0.05411
500 1.01297 0.12695
1000 18.74536 13.94225
10000 29.14374 15.74069

In Table 1, the first column shows the wall times for different sample sizes n, when the
maximum likelihood method was used. The second column of Table 1 presents the wall
times for pseudolikelihood method. According to results, we can see that pseudolikelihood
method is superior to maximum likelihood method in terms of computation efficiency. For
n=100, wall time of pseudolikelihood estimation for 100 iterations is 0.0304 hours (1.83 mins)
while the wall time of maximum likelihood estimation for 100 iterations is 0.2488 hours (∼ 15
mins). It is apparent that for small sample sizes such as n = 100, 200 there is no significant
computational cost difference between the two methods. However, for a larger sample size,
the computational advantage of PLE surpasses that of MLE quickly. Further, we note that
even the PLE method shows large wall times when n increases. In that case, paralleling the
code would be more effective. We are planning to explore this in the future.

In Table 2, we present the estimates, the bias and the variances for different sample
sizes. By looking at the bias values it is clear that the MLE method has less bias (and nearly
zero in some cases) than the PLE method. In both methods, the variances of the estimates
decrease as the sample size increases. The MLE of the α vector has less bias compared to
the PLE. Overall, it is evident that the MLE outperforms the PLE in terms of accuracy (less
bias) and efficiency (lower variance). Therefore, we can conclude that choosing PLE over
MLE is a trade off between efficiency and computational cost.

5. Illustrative Example

In this section we provide an illustrative example. We apply the derived joint distri-
bution to a data set with stock prices and a weekly buy/sell recommendation for stocks.
All the data has been downloaded from www.Barchart.com. The dataset consists of closing
prices and recommendations from Monday to Friday for 40 weeks. As the starting step,
we only considered the two closing prices from Monday and Friday of each week and the
recommendation from Monday of the following week. The data structure is given in Table
3.
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Table 2: Maximum likelihood estimates and pseudolikelihood estimates for different
sample sizes (n): TOL 10−3

Maximum Likelihood Pseudolikelihood
Parameters True Values Estimate (std) Bias Estimate (std) Bias

n = 100
σ2

0 1.2000 1.1986(0.0100) -0.0014 1.1836(0.0213) -0.0164
σ01 0.6481 0.6455(0.0100) -0.0026 0.6510(0.0135) 0.0029
σ2

1 1.4000 1.3981(0.0100) -0.0018 1.4273(0.0213) 0.0273
µ

(1)
1 2.0000 2.1828(0.0173) 0.1828 1.9879(0.0176) -0.0120
µ

(1)
2 3.0000 3.2157(0.0141) 0.2157 3.0179(0.0253) 0.0179
µ

(0)
1 0.0000 -0.0104(0.0223) -0.0104 0.0053(0.0182) 0.0053
µ

(0)
2 0.0000 -0.0213(0.0173) -0.0213 -0.0008(0.0218) -0.0008
α0 0.0010 0.0756(0.0012) 0.0746 -2.3291(0.2972) -2.3301
α1 0.0010 0.0009(0.0000)∗ -0.0001 0.5229(0.1117) 0.5219
α2 0.0010 0.0009(0.0000)∗ -0.0001 1.2877(0.1710) 1.2867

n = 200
σ2

0 1.2000 1.1993(0.0001) -0.0007 1.2119(0.0085) 0.0119
σ01 0.6481 0.6458(0.0007) -0.0023 0.6498(0.0053) 0.0017
σ2

1 1.4000 1.3990(0.0017) -0.0009 1.4205(0.0073) 0.0205
µ

(1)
1 2.0000 2.1824(0.0001) 0.1824 1.9785(0.0076) -0.0215
µ

(1)
2 3.0000 3.2145(0.0001) 0.2145 2.9683(0.0115) -0.0317
µ

(0)
1 0.0000 -0.0124(0.0002) -0.0124 -0.0049(0.0073) -0.0049
µ

(0)
2 0.0000 -0.0219(0.0001) -0.0219 0.0013(0.0130) 0.0013
α0 0.0010 0.0736(0.0000)∗ 0.0726 -2.2607(0.1565) -2.2617
α1 0.0010 0.0009(0.0000)∗ -0.0001 0.5220(0.0565) 0.5210
α2 0.0010 0.0009(0.0000)∗ -0.0001 1.1872(0.0994) 1.1862

n = 500
σ2

0 1.2000 1.1996(0.0000)∗ -0.0003 1.2116(0.0009) 0.0116
σ01 0.6481 0.6458(0.0008) -0.0023 0.6434(0.0014) -0.0046
σ2

1 1.4000 1.3995(0.0000)∗ -0.0005 1.4109(0.0010) 0.0109
µ

(1)
1 2.0000 2.1842(0.0078) 0.1842 1.9995(0.0036) -0.0005
µ

(1)
2 3.0000 3.2158(0.0080) 0.2158 3.0081(0.0056) 0.0081
µ

(0)
1 0.0000 -0.0107(0.0112) -0.0107 0.0035(0.0045) 0.0035
µ

(0)
2 0.0000 -0.0210(0.0069) -0.0210 0.0069(0.0047) 0.0069
α0 0.0010 0.0755(0.0037) 0.0745 -2.3054(0.0940) -2.3064
α1 0.0010 0.0009(0.0000)∗ -0.0001 0.4747(0.0171) 0.4737
α2 0.0010 0.0009(0.0000)∗ -0.0001 1.1533(0.0153) 1.1523

n = 1000
σ2

0 1.2000 1.1998(0.0000)∗ -0.0002 1.2039(0.0002) 0.0039
σ01 0.6481 0.6457(0.0009) -0.0024 0.6434(0.0009) -0.0046
σ2

1 1.4000 1.3997(0.0000)∗ -0.0003 1.4085(0.0003) 0.0085
µ

(1)
1 2.0000 2.1814(0.0088) 0.1814 1.9947(0.0019) -0.0053
µ

(1)
2 3.0000 3.2237(0.0107) 0.2237 2.9945(0.0032) -0.0055
µ

(0)
1 0.0000 -0.0250(0.0096) -0.0250 -0.0042(0.0021) -0.0042
µ

(0)
2 0.0000 -0.0241(0.0064) -0.0241 0.0009(0.0019) 0.0009
α0 0.0010 0.0702(0.0035) 0.0692 -2.3886(0.0976) -2.3896
α1 0.0010 0.0009(0.0000)∗ -0.0001 0.4790(0.0096) 0.4780
α2 0.0010 0.0009(0.0000)∗ -0.0001 1.1613(0.0094) 1.1603

∗ : very small non zero values
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Figure 2: Closing prices, recommendations

Table 3: Data structure

Closing Prices
(Mon.price, Fri.price) Recommendation

Stock 1 Week 1 (y(1)
11 , y

(2)
11 ) Buy

Week 2 (y(1)
12 , y

(2)
12 ) Buy

... ... ...
Week 40 (y(1)

1,32, y
(2)
1,40) Sell

Stock 2 Week 1 (y(1)
21 , y

(2)
21 ) Buy

Week 2 (y(1)
22 , y

(2)
22 ) Sell

... ... ...
Week 40 (y(1)

2,32, y
(2)
2,40) Sell

Stocki weekj (y(1)
ij , y

(2)
ij ) rij

Conditional distributions of closing prices of Monday and Friday of each week given the end of
the week recommendation, is assumed to follow a bivariate normal distribution and the end of
the week recommendation given the closing prices of Monday and Friday is assumed to follow
a standard logistic regression model. The normality assumption is crucial. In this example,
we choose stocks where closing prices follow bivariate normal distribution. However, most
of the closing prices of stock data do not follow a bivariate normal distribution and hence
one might need to transform the data using methods such as Box-Cox transformation. The
pseudolikelihood and the maximum likelihood methods are used to estimate the parameters.
Results are given in Table 4. Note that the means, variances and correlation estimates

Table 4: Maximum likelihood and pseudolikelihood estimates for stock price data

Stock Method µ(0) µ(1) σ2
1 σ2

2 ρσ1σ2 α0 α1 α2

CORE Pseudolikelihood (28.80,28.50) (29.14,28.59) 19.92 18.29 18.47 -0.36 0.20 -0.19
Maximum Likelihood (28.80,28.51) (29.14,28.60) 19.55 17.96 18.12 -0.54 0.40 -0.39

UNIT Pseudolikelihood (7.51,7.33) (7.70,7.76) 1.73 1.62 1.54 -2.37 -0.807 1.02
Maximum Likelihood ( 7.51,7.33) (7.70,7.76) 1.72 1.62 1.54 -4.01 -1.64 2.08

obtained by the two methods are very close to each other. However, the estimates of the
parameters of the logistic regression model are not so close. The other important point to
note is that the α2 parameter seems to be significantly different from zero. This implies that
the product of the Monday and Friday prices is significant in the logistic regression model.
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6. Remarks

A researcher can get better insight into the data using conditional specification of
experimental variables rather than a joint distribution. Using conditional specification makes
the visualization easier. Furthermore, it makes it easier to use Gibbs sampling for data
generation. We derived Joint distribution starting from Y |R = r bivariate normal and
R|Y = y logistic regression.

In practice, the maximum likelihood method is a preferred estimation method for
parametric models. However, if the likelihood function is complicated or contains an awk-
ward normalizing constant, the implementation becomes difficult. Among other methods,
pseudolikelihood estimation is intuitively appealing and computationally less burdensome.
According to the simulation study, choosing the pseudolikelihood method over the maximum
likelihood method is a trade off between the efficiency and accuracy of estimates and the
computational cost.
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APPENDIX

1. Moment Generating Function Theorem

This theorem can be used to derive the moment generating function of a linear or a quadratic
form in a normal random vector x or, more generally, of a second degree polynomial in x.

Theorem A.1: Let x ∼ Nn(µ,Σ) and take qi = 2bix + xTAx where bi is an n × 1 non
random vector and Ai is an n× n non random symmetric matrix (i=1,2,...,k). Take Γ to be
any r× n matrix such that Σ = ΓTΓ, where r = rankΣ. The joint m.g.f. of q1, ..., qk is given
by,

mq1,...,qk(t1, ..., tk) = |I − 2
k∑
i=1

tiΓAiΓT |−1/2.exp

{
2
[

k∑
i=1

ti(bi + Aiµ)
]T

ΓT
[
I − 2

k∑
i=1

tiΓAiΓT
]−1

Γ
[

k∑
i=1

ti(bi + Aiµ)
]

+ µT
k∑
i=1

ti(2bi + Aiµ)
}

= |I − 2
k∑
i=1

tiΓAiΓT |−1/2.exp

{
2
[

k∑
i=1

tibi

]T
Σ
[
I − 2

k∑
i=1

tiAiΣ
]−1[ k∑

i=1
tibi

]

+ µT [I − 2
k∑
i=1

tiAiΣ
]−1 k∑

i=1
ti(2bi + Aiµ)

}

where (|ti| < hi; i = 1, ..., k). for sufficiently small positive constants h1, ..., hk.

2. Compatibility Theorem: Arnold and Press (1989)

we have,
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a(x, y) = fX|Y (x|y), x ∈ S(X), y ∈ S(Y ),

b(x, y) = fY |X(y|x), x ∈ S(X), y ∈ S(Y ),

and let, NA = (x, y) : a(x, y) > 0 and NB = (x, y) : b(x, y) > 0

Theorem A.2: A joint density f(x, y), with a(x, y) and b(x, y) as its conditional densities,
will exist if and only if,

1. NA=NB=N

2. ∃ functions u and v such that ∀ x,y,∈ N

a(x, y)/b(x, y) = u(x)v(y)

where ∫
S(X)

u(x)dµ1(x) <∞
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Abstract 

 
Scheffé (1958) first introduced models of different degrees to represent the response 

function in a mixture experiment. He also introduced corresponding designs for the 
estimation of the model parameters. Later, several authors studied the problem of finding 
optimum designs, especially for quadratic and cubic models. In this paper, we consider the 
problem of designing an optimal experiment for the purpose of performing one or more 
hypothesis tests in a first-degree mixture model. The Bayesian decision theoretic approach is 
used for this purpose. 

Key words: Mixture experiments; Hypothesis testing; Bayes optimality; Normal prior; 
Optimum designs. 
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0. Tribute to Professors Sinha 

 
We feel privileged to be able to contribute to this special issue of Statistics and 

Applications. We are fortunate to have come in contact with the highly acclaimed 
statisticians, the Sinha brothers, especially Professor Bikas K. Sinha, with whom we share a 
very close bond. We have been working with Professor Bikas K. Sinha, whom we fondly call 
Bikas Da, for more than a decade. His advice, support, positive attitude and, above all, his 
unbounded energy have been highly inspirational to us.  

The first author had the good fortune of being taught by Bikas Da in the Statistics post-
graduate course of Calcutta University in the mid seventy’s, and, over time, has developed a 
close brotherly bond with him. The second author feels grateful for the constant 
encouragement that she has received from him, and for her enhanced knowledge of DoE 
through her association with him.  

 
1. Introduction 

 
Literature on Bayesian optimal design is generally based on linear models and the loss 

functions are chosen so as to be appropriate for estimation of the unknown parameters, and 
also for prediction purpose. See, for example, Chaloner (1982, 1984), El-Krunz and Studden 
(1991), Chaloner and Verdinelli (1995), Dasgupta (1996). Keeping in mind that the data 
analyst may also be interested in testing hypotheses regarding the parameters, Toman (1996) 
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attempted to find optimum designs for hypotheses testing, using a suitable loss function in the 
discrete set-up. He considered both the cases of single hypothesis and multiple hypotheses 
testing. In the former case, the optimal design minimizes the Bayes risk, while in the latter 
case, where more than one decision is to be made, Toman (1996) suggested two approaches – 
one to minimize a Bayes risk while the other risks are constrained to be less than specified 
values, and the other to minimize the weighted sum of the Bayes risks, the weights being 
suitably selected by the experimenter. No further studies along this line have come to our 
notice. It is also noteworthy that the problem of determining the optimum Bayesian designs 
for hypotheses tests in the mixture set-up has not been addressed so far. 
 

In this paper, we have considered the first-degree homogeneous mixture model due to 
Scheffé (1958). With suitably defined loss function, we have determined the Bayes optimal 
designs for testing both single and multiple hypotheses. The paper has been organized as 
follows. In Section 2 we have discussed the loss function and the Bayes risk for a linear 
model. In Section 3 we have obtained Bayes optimal designs for single hypotheses regarding 
the parameters of the model. Bayes designs for multiple hypotheses are discussed in Section 
4. In Section 5, examples have been cited for multiple tests, and a discussion on the article 
has been given in Section 6. 
  
2. The Loss Function and the Bayes Risk 

 
Consider the linear model  where Y is the vector of observations,

is the design matrixof order p´q and q is the parameter vector of order q´1. Suppose the 
prior distribution of  q  is Nq(t, s2R), where R is a positive definite matrix. 
  

Then, the posterior distribution of q is Nq (µ,  V), where 
 

  

 
and	𝜽# 	is the least squared estimator of q. 
  

Suppose that one is interested to test the following  k hypotheses: 
  

H0i: ci¢q  ³ vi  versus H1i: ci¢q < vi; i = 1, 2, …, k , 
 
where ci and vi, i = 1, 2,…, k are specified. 
  

Let be the decision vector corresponding to a given q, where di 

denotes the decision for the i-th testing problem i = 1, 2, …, k.  Let us denote by ai1 the action 
favoring ci¢q  ³ vi and by ai2 that favoring ci¢q  < vi in the i-th problem. 
  

DeGroot (1970) showed the following loss function to be appropriate for the i-th 
problem in the general set-up:   
 

Li (q, ai1) = 0,           if  ci¢q  ³ vi 
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  = vi - ci¢q,  if ci¢q  < vi, 
and 
 

Li (q, ai2) = ci¢q-vi, if ci¢q  ³ vi 
  =  0,         if ci¢q  < vi,  for i = 1 (1) k. 

  
Let be the Bayes decision rule for the i-th problem. The Bayes risk is obtained by 

averaging the losses over both Y and q. 
  

Given a design with information matrix M, the Bayes risk  for the ith testing 
problem is given as (cf. DeGroot, 1970): 
 

 ri(di, M) =s( ci¢ R ci)1/2 {Y( si) – ( 1-pi)1/2Y( si/(1-pi)1/2)},  (1) 
 
where y(s) = j(s) - s[1-F(s)], j(s) and F(s) are the density and cumulative distribution 
functions respectively of a standard normal variate,  pi = ci¢(R-1+M)-1ci/(ci¢ R ci) is the ratio 
of the posterior variance to the prior variance of ci¢q, and si = (vi - ci¢t)/s(ci¢ R ci)1/2, the 
standardized difference between the constant vi and the prior mean of ci¢q. For the single 
hypothesis case, where the hypotheses are H0: c¢q ³ v against H1: c¢q < v, the optimum design 
is selected so as to minimize the Bayes risk. 
 

Now, = which is positive, whatever 

be s. Hence, for every s, the risk function r(d, M)  is increasing in p. So, minimization of r(d, 
M)  can be achieved through minimization of p, which does not involve s, and hence the prior 
mean. Again, since p = ci¢(R-1+M)-1ci/(ci¢ R ci), and the denominator is free from the design, 
the Bayes y-optimal design will be obtained by minimizing  

 
   Trace [cc¢( )-1].                    (2) 
  

We consider Scheffé’s first order mixture model and work in a continuous design 
setting.  
 

3.  Optimal Mixture Design for a Single Test  
 

Consider the mixture model given below: 

       (3) 

where Y denotes the response and x = (x1, x2, …, xq) the mixing proportions of the 

ingredients. The experimental region is  

Here, one may be interested in single tests of the following form: 
 

(I)  H0: bi  ³ 0 versus H1:  bi  < 0, for some i, 1 £i £q 
(II)  H0:bi – bj ³ 0 versus H1: bi – bj < 0, for some i, j, 1 £i<j £q 
(III)  H0: c¢b ³ 0 versus H1: c¢b < 0, where c is a q´1 real vector. 
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Before proceeding further, we note an important property of f(M), defined in (2). 
 
Property 1: f (M), given by (2), is convex in M. 
 
Proof:  Let us write   
 f (M) = Trace [cc¢( )-1] = [c¢( )-1c]. 
 
We have to show that f (lM1 + (1-l)M2 ) £ lf (M1 ) + (1-l)f (M2). 
Now, f (lM1 + (1-l)M2) = [c¢( ))-1c] 

        = [c¢( l( c].    (4) 
But it is known that 
                   [l(  

 £ l(     (5) 
(cf. Fedorov (1972)). 
 
Hence from (4) and (5), we have  
 
 f (lM1 + (1–l)M2) £ lc¢((  

= lf (M1) + (1–l) f (M2), 
 
 which establishes the convexity of f (M).      � 
  

 For the problem of minimizing f(M), given by (2), a necessary and sufficient 
condition for a design to be Bayes optimal is obtained by applying the generalized 
equivalence theorem (cf. Whittle (1973); Silvey (1980)), which gives: 
 
Theorem1: Any one of the following 3 conditions is necessary and sufficient for a design 
with information matrix M0, to be optimal: 
 

(i) Fj(R-1+M0, R-1+M) ³ 0 for all R-1 + M, for all M Î M 
(ii) Fj(R-1+M0, R-1+xx¢ ³ 0 for all xÎX 
(iii) [Fj(R-1 +M0, R-1 +xx¢)] = [Fj(R-1 +M, R-1 +xx¢ )], 

 
where Fj(M1, M2) is the Fréchet derivative of M1 in the direction M2, M is the class of all 
information matrices, X is the domain of x and S is the class of all non-singular matrices. 
Further, if M0 = åvi xixi¢, where xi Î X is the i-th design point of M0, with mass vi > 0, i = 
1,...,m, such that åvi = 1, then for each i, 
 
  Fj(R-1+M0, R-1+xixi¢) = 0. 
 
The proof of Theorem 1 follows along the lines of the proof in Silvey (1980), pages 19- 23. 
Condition (ii) of Theorem 1 reduces to condition (ii)¢ given below: 

(ii)¢ If be the optimal design with information matrix M0 = xixi¢, where xiÎX is the i-th 

support point of with mass vi ³ 0, i =1, ... ,m,  and åvi=1, then, for any xÎX, 

MR +-1 MR +-1

21
1 ) 1( +  ( M-MR ll+-

1
2

1
1

1 )))(1() --- ++ MR- + MR l 

1
2

1
1

1 )])(1() --- ++ MR- MR l  +
1

2
11

1
1 ))( 1( +) --- ++ MR- MR - l

))()1() 1
2

11
1

1 ccc --- ++ MR' - λ+  MR -

0x

XÎx
min

Sxx Î¢+-1
max

R XÎx
min

0x å
=

m

i
iv

1

0x



2020]                                                               BAYES MIXTURE DESIGN                                                       211 

x¢(R-1+M0)-1y(R-1+M0)-1 x  £ xi¢(R-1+M0 )-1 y (R-1+M0)-1xi ,               (6) 
 

wherey = cc¢. It is obvious that equality in (6) holds at the support points of . 
 

Inequality (6) helps to identify the nature of the support points of the optimum design. 
For single hypothesis testing, the left-hand side of (6) is pseudo-convex in x, that is, it 
behaves like a convex function with respect to finding its local minima, but may not actually 
be convex. As such, the maximum may be attained at the boundary points of X and also at 
some non-boundary points. This is true irrespective of the form of R. 
 
3.1. Consider problem I 
 

For simplicity sake, let us take i = 1 in the above hypothesis testing, so that c¢ = (1, 0, 
0,…,0). Then a Bayes optimal design minimizes f(M) = c¢ (R-1 +M)-1c, for the given c. 
 

To find a closed form solution, let us assume that the prior matrix R is invariant with 
respect tob2, b3, …,bq, so that R-1 can be written  

 

  

 
where R22 =  u1 Iq-1+ u2 Jq-1, for some scalars u1 and u2, is a (q-1)-vector with all elements 
1, and Then, from Property 2 below, the criterion function f will be invariant 
with respect to . 
 
Property2: If M be invariant with respect to the components of x(1) = and x(2) =

and R be invariant with respect to the components of b(1) =  and b(2) 

= , then f is invariant with respect to the components of x(1) and x(2). 
 

Proof: Consider P1 and P2 to be two permutation matrices of orders q1 and q2, respectively 
(q1 + q2 = q). Let, 

  .     

Then, P is a permutation matrix of order q. 

Now, if we take the same permutations of the components of both x(1) and b(1) and 
similarly of the components of x(2) and b(2), then it is clear that, for the new set, the M and R 
matrices will reduce to PMP¢ and PRP¢. Therefore, the criterion function will reduce to 
c¢P¢P(R-1+M)-1P¢Pc, which is same as c¢(R-1+M)-1c. This establishes Property 2. 

Using properties 1 and 2, we get the following theorem: 
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Theorem 2: A Bayes-optimal design is invariant with respect to . 
 
 Let us denote the class of all designs invariant with respect to ( ) by D1.  

For a design xÎD1, M(x) is of the form 
 

        (7) 

 
where M22 = g Iq-1 + h Jq-1, for some scalars g and h.  Then,  
   

 [c¢ (R-1 + M)-1c]-1= (m11 + r11) – (m12 +r12 )2{1¢(M22 + R22)-11}.                    (8)  
 

From the structure of R22, it is clear that will also be of the form  
where  
  

The following theorem indicates the Bayes optimal design under certain restriction. 
 
Theorem 3: The Bayes optimal design is a singular design with only one support point at 
(1,0,0,…,0) for 0 ≤ |r12|  
 
Proof: Let be the singular design with one support point at (1,0,0,…,0). Then, 

 [c¢ (R-1 +M( ))-1c]-1 = ( 1+ r11) - (r12 )2[1¢( R22)-11], 

 1], 
where A = [(1 + r11) – (r12 )2{1¢( R22)-11}]-1, x = X. 
 

For  to be Bayes optimal design, it must satisfy (3.2) for all xÎX, with equality 
holding at the support point of . This is equivalent to satisfying  

 
 1]2 ≤ 1, for all xÎX,                                                  (9) 

 
with equality holding at (1,0,0,…,0). 
 

For r12 = 0, (9) holds trivially. For r12 > 0, by the condition of the theorem, we have  
 
 1 = 1≤ 1, 

since 1 ≤ 1. Hence, (9) is satisfied. 
 
 For r12 < 0, we can write 
 
 l.h.s. of (9) = 1]2 

                                   = [1 1]2, 
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Now,  
 ]1 = 1- 1≤ 1,  
 
as 1 ≤ 1 and from the condition of the theorem. Hence, (9) is satisfied. 
 
Remark: For condition (9) is violated for x with 0 ≤ ≤

when r12> 0, and for all x, when r12 < 0. Hence, the singular design 

with support point (1,0,…,0) will not be optimal. 
 

It is difficult to analytically find the support points of the Bayes optimal design when 
. We, therefore, obtain the same through computation in the following 

example with q = 3: 
 
Example 1: Suppose s = 1 and the prior covariance matrix of the regression coefficients in 
Scheffé’s first order model for q= 3 is 
 

  

 
 

Consider testing of the hypothesis H0: b1 ³ 0 versus H1: b1 < 0. We have      
 

  
 
 R-1 =  
 
 
and 
 
  = 
 
 
Hence,  = 1.07 > 1. 
 

 Using MATLAB, we obtain the Bayes optimal design as having support points 
(1,0,0), (0,1,0) and (0,0,1) with masses 0.94, 0.03 and 0.03, respectively. Thus, even when 

>1, the example gives the optimum support points at (1,0,0), (0,1,0) and 
(0,0,1). 

 
Remark: It is interesting to note that the design with support points (1,0,0) and (0,½,½) 

gives minimum risk for masses 0.94 and 0.06 at (1,0,0) and (0,½,½) respectively, and the risk 
is same as that obtained for the optimum design with support points at (1,0,0), (0,1,0) and 
(0,0,1).  
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3.2.  Consider testing of hypothesis II 
 

For simplicity sake, let us take i = 1 and j = 2in the above hypothesis testing, so that c¢ 
=  
 

We assume that the prior parameter matrix R is invariant with respect tob1 andb2, and 
with respect to b3,b4, …,bq, so that R-1 can be written as  
 

 

 
where 𝑅%%=si I2+ ti J2, for some scalars si and ti, i = 1, 2, are positive definite matrices, R11and 

R22 are of orders 2´2 and (q–2)´(q–2) respectively, and R12 = where r0 is a scalar.  

 
From property 2, we have the following: 

 
Property 3:  f is invariant with respect to (x1, x2) and with respect to  

 
Using properties 1 and 3, we get the following theorem: 

 
Theorem 4: A Bayes-optimal design is invariant with respect to ( ), and with respect to 
(  
 
 Let D2 denote the class of all designs invariant with respect to ( ), and with 
respect to (  
 
 For a design x Î D2, M(x) is of the form 
 

     (10) 

 
where M11 = g1 I2 + h1 J2 and M22 =  g2 Iq-2 + h2 Jq-2, for some scalars g1, g2, h1 and h2.   
 
 Then,  

 R-1 +M =                (11)

  
Theorem 5: The Bayes optimal design is a singular design with two support points at 
(1,0,0,…,0) and (0,1,0,…,0), each with mass ½. 
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Proof: Let x0 be the singular design with two support points at (1,0,0,…,0) and (0,1,0,…,0), 
each with mass ½. Then, 
 

  

 

 
where  and A and B are 2´2 and (q-2)´2 
matrices, respectively given by 
  

 
For to be Bayes optimal design, it must satisfy (6) for all xÎ X, with equality holding 

at the support point of . Writing 0¢)¢, where c(1) = (1-1)¢, and noting that 12¢c(1) = 0, 
we have, after a little algebraic manipulation, that (6) is equivalent to  
 

 ≤ 1, for all xÎX,       (12) 
 
with equality holding at (1,0,0,…,0) and (0,1,0,…,0). 
 

Clearly, (12) holds for all xÎX, with equality at the support points of x0. Thus, x0 is the 
Bayes optimal design with  

  

 
3.3. Consider testing of hypothesis III 
 

The problem of finding optimum design for a general ‘c’ in a closed form seems 
difficult. For this, to find the optimum design, we have considered two specific choices of c, 
namely, (i) c¢ = (1, 1, …, 1),  and (ii) c¢= ( ), where ci = –1 or +1, such that 

 that is, q is even with q/2 of the ci¢s equal to +1 and the rest –1.   . 
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3.3.1. Let c¢ = (1, 1, …, 1). 
 

Since the hypothesis is invariant with respect to the q components, to start with, let us 
assume that R also has the same invariance property, that is, R = a I + b J, for some scalars a, 
b, where I and J stand for an identity matrix and a matrix of 1’s of appropriate order, 
respectively. This means that the prior dispersion matrix of b is invariant with respect to the 
coefficients ¢s. Then it is easy to check the following invariance property of the criterion 
function f{M(x)}.  
 
Property 4: f{M(x)} is invariant with respect to the permutation of the components of the 
mixture. 
 
 Because of the properties (1) and (4), we get the following Theorem: 
 
Theorem 6: A Bayes-optimal design is necessarily invariant. 
 

Thus, in view of Theorem 6, we can confine our search for the Bayes-optimal design 
within the class of invariant designs.  
 

There are three ways out to find the desired design: 
 

(i)  Express M in terms of the two moments = E( ) and = E( ) of the 
design, and then show that f is decreasing in . 

(ii)  Use Lowener Order dominance to find such that for every 
invariant designx  [cf. Draper and Pukelsheim (1999)]. 

(iii)  Use Equivalence Theorem to find the optimal design. 
 

Approaches (i) and (ii) fail as soon as the complete symmetry property of the matrix R 
is violated. In general, it is difficult to find a closed form solution to the problem. However, it 
may be possible to indicate the nature of the support points of the optimal design using (iii). 
The following theorem identifies an optimal design satisfying the Equivalence Theorem. 
 
Theorem 7: The Bayes optimal design is a saturated design with support points at 
(1,0,0,…,0) and its permutations, each with mass 1/q. 
 
Proof: Let x0 be the saturated design with support points at (1,0,0,…,0), (0,1,0,…,0), …, 

(0,0,…,1), each with mass 1/q. Then,  

Since both R and M have the complete symmetry property, is also 
completely symmetric and is of the form , with e + q f   > 0. Then, 

 

1q =      

since Jq = 1q1q¢ and x¢1q = 1. 
 

Thus,  is a constant, independent of x, and therefore (6) is satisfied 
for all x Î X .  
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Hence,  satisfies the Equivalence Theorem, and is, therefore, a Bayes optimal design. 
 

3.1.2. Consider q = 2k, k a positive integer, and c = ( )¢, with k of the ci = –1 and 

remaining 1, so that  

Let R be complete symmetric. Intuitionally, we feel that M will also be complete 
symmetric. 
 
 We start with a saturated design x0 which has support points at the extreme points of 

X, each having mass 1/q. Then, as before,  

As R–1is a complete symmetric and positive definite matrix, will have 
the form , with e > 0, e + q f   > 0. Then, 
 

 

c =      
 
since x¢1q = 1 and 1q¢c = 0. 
 

Hence, for each support point of x0, r.h.s. of (6)  The l.h.s. of (6) is for all x 
Î Ξ, which is clearly  and equality holds at the support points of x0. 
 

Hence, x0 is Bayes optimal. 
 
4.  Optimal Mixture Design for Multiple Tests 
 

For the first-degree mixture model (3), one may be interested in multiple tests of the 
form  
 H0i: bi ³ 0 versus H1i: bi < 0; i = 1,2, …,k,  k ≤  q. 
  

For a given design x or the corresponding moment matrix M(x), let denote 
the Bayes risk for the i-th hypothesis, i = 1, 2,…, k. So, now we have a vector of Bayes risks. 
In order to define a partial ordering of the designs in terms of the moment matrices (cf. 
Kiefer, 1959), we proceed as in Toman (1996), who uses an idea analogous to the classical 
decision theoretic concept of admissibility. Admissibility is defined with respect of the risk 
function in the classical decision theory, and not the Bayes risk. In the present case, the index 
i of the Bayes risk is treated as the parameter in classical risk. 
  

The following definitions are due to Toman (1996). 
 
Definition 1: A design is said to be r-better than design if ≤  
for i = 1,2, …,k, with strict inequality for at least one i. 
 
Definition 2: A design x  is said to be r-admissible if there exists no r-better design. 
  

From the above it is quite clear that r-admissibility is a desired property of any design. 
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Toman (1996) indicated two methods of determining r-admissible design under 
multiple optimality criteria. In the present set-up, they are as follows: 
 

I. Minimize  subject to , i = 1, 2, …, k – 1, where the index 
k and the scalars ai, i = 1,2,.., k–1 are determined by the experimenter. 

II. Define a single risk function by combining the k Bayes risks  i = 1, 2, 
…, k as follows: 

,       (13) 

where the weights {wi} represent a discrete probability measure on the index i so that 

for i = 1, 2, …, k and  The weights represent the relative importance of the 

corresponding decision problems. A design x with moment matrix which minimizes 
(13) will be the r-admissible design (cf. Toman, 1999). 
  
Method I can be equivalently written as: 
 
 Minimize ck¢(R-1+M)-1ck, subject to ci¢(R-1+M)-1ci ≤ bi, i = 1, 2, …, k–1, 
 
where bi is some function of ai. This is because, for each i, , given in (1), is an 

increasing function of and hence of Thus, we have 

a constrained optimization problem, which yields an r-optimal design (cf. Theorem 5 in 
Toman, 1996).  
 

Lemma 1below shows the equivalence of Methods I and II for some set of weights{wi}: 
 
Lemma 1: If M0 minimizes the combined risk , given in (13), then it also minimizes 

, subject to the restrictions  for i = 1, 2, …, k–1, where

 
 

The lemma is a consequence of the following lemma of Cook and Wong (1994): 
 
Lemma 2: (Cook and Wong, 1994): For lÎ(0,1), let xl maximize the functional 

, and let cl = the primary design criterion evaluated at 
. Then maximizes  subject to the constraint  

 
The Bayes risk depends on the design only through the pis, which give the 

ratios of the posterior and prior variances. Further, for any given ci, pi® 0 as the prior 
information matrix R–1® 0, provided M is nonsingular. 
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Approximating the Bayes risks  by a first-order Taylor series 
expansion around pi = 0, we get  

   
 
where j (.) denotes the standard normal density, and  
 

  

 

Then,                         (14) 

where    

 
It seems easier to study the problem of multiple hypotheses testing using the second 

criterion. Some examples are worked out in Section 5. 
 
5.  Examples of Multiple Hypotheses Testing 
 

In this section we find Bayes optimal designs in two examples on multiple hypotheses 
testing. 
 
Example 2: Consider Scheffé’s homogeneous mixture model of first degree for a three-
component mixture: 

   

 Suppose s = 1, and the prior mean and covariance matrix of the regression 
coefficients are 

   

 
(a)  Consider testing of the hypotheses H0i:  against HAi: , for i = 1, 2, 3. 

Using Method 2, we minimize Trace B(M(x) + R-1)-1, given by (14). In the absence of 
any knowledge about the relative importance of the components, it may be assumed that 

component problems are equally important. We, therefore, take, wi = , for i = 1, 2, 3. 

 
From the given data, we obtain,  and . Hence, 

and Diag  
 

We restrict to the class of saturated designs. Within this class, we get min[Trace B(M(x) 
+ R-1)-1 ] = 0.045135, which is obtained for a design with mass 0.0874 at each of the support 
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points (1,0,0) and (0,1,0), and mass 0.8252 at (0,0,1). Comparing this design with an 
alternative one, say a design which puts equal masses at its three design points, we get the 
Bayes risk as 0.064301, which is 14.2% more than the optimum Bayes risk.  
 
(b)  Now, suppose we are interested to test the hypotheses 
 

  H01 : against HA1 :  
  H02 : against HA2 :  
 

Here,s1=s2 =-1.58977, L1=L2= 0.005934. Then, 
  

. 

 
Restricting to the class of saturated designs, the optimum design puts mass 0.272 at 

each of the points (1,0,0) and (0,1,0), and 0.456 at the point (0,0,1), and the Bayes risk is 
0.0205.  
 
6.  Discussion 
  

This paper attempts to find Bayes optimal designs for testing of single and multiple 
hypotheses in Scheffé’s homogeneous first-degree mixture model. Interestingly, under the 
hypotheses considered, the support points of the optimal designs are found to be at one or 
more of the extreme points of the experimental region. The study can be extended to other 
testing situations, and also to the cases of quadratic and cubic mixture models.  
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Abstract

Crucial aspects of applying approximate Bayesian computation (ABC) for Gibbs
point processes are the choice of summary statistic and method of constructing the dis-
crepancy measure. In this paper, we present a comparative study of ABC for Gibbs point
processes based on various summary statistics and different approaches of constructing
the discrepancy measure. We also demonstrate the issue of identifiability of the parame-
ter values for Gibbs point processes and provide a solution for parameter estimation. We
further propose robust choices for the discrepancy measures for different point processes
through an intensive simulation study. The ABC algorithm, with all of the tested dis-
crepancy measures, is also applied to the Swedish pines data and Chicago crime data to
illustrate the feasibility of the proposed approaches.

Key words: Approximate Bayesian computation; Discrepancy measure; Functional char-
acteristic; Gibbs point processes; Informative prior.

1. Introduction

As an important class of spatial point processes, Gibbs point processes have been
intensively studied over the past few decades. Since Gibbs point processes can take into
account interactions between event locations, they have become reasonable choices for
describing this kind of phenomena, i.e., the inhibition and clustering behaviors in point
processes. Here, we refer to point processes with inhibition as repulsive spatial point
processes and to point processes with clustering as attractive spatial point processes. In
the literature, the most well known models for repulsive point processes are the Strauss
process (Strauss, 1975) and hardcore process (Ripley, 1981). For attractive point pro-
cesses, a model that can be used to describe this behavior is the area-interaction process,
proposed by Baddeley and Van Lieshout (1995).

Although Gibbs point processes meet the need for describing the underlying pro-
cess in different fields of science, conducting inference directly using the likelihood of
the point process is challenging, and standard Bayesian analysis based on Markov chain
Monte Carlo (MCMC) is not feasible due to the intractable normalizing constant. Maxi-
mum pseudo-likelihood estimation (MPLE) (Besag, 1975) can be applied to spatial point
processes. However, Huang and Ogata (1999) show that the performance of MPLE is
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poor for repulsive point processes with strong interaction. There are also several estima-
tion methods that have been developed in a Bayesian framework. Geyer (1991) proposed
the Markov chain Monte Carlo maximum likelihood estimate (MCMCMLE) for stochastic
processes with an intractable normalizing constant. One of the issues with MCMCMLE is
that the required computational effort within each MCMC iteration is intensive for Gibbs
point processes. Moreover, the estimation result is sensitive to the auxiliary parameters.
By implementing an auxiliary variable, Møller et al. (2006) proposed an auxiliary vari-
able Markov chain Monte Carlo (AVM) and an exchange algorithm approach, which can
cancel out the intractable normalizing constant in the acceptance probability ratio of the
Metropolis-Hastings algorithm. Extending the exchange algorithm through “bridging”
was proposed by Murray et al. (2012).

In addition, the double Metropolis-Hastings (DMH) and an adaptive exchange
(AEX) algorithm were proposed by Liang (2010) and Liang et al. (2016). Alternatively,
approaches based on likelihood approximation were proposed by Beaumont (2003), An-
drieu et al. (2009), Alquier et al. (2016), and Atchadé et al. (2013). A comparison of
these methods was provided by Park and Haran (2018). The overall conclusion from this
comparison recommends that researchers start with DMH since it is computationally ef-
ficient and does not require perfect sampling. However, the convergence of DMH cannot
be guaranteed, and the auxiliary variable approaches become computationally expensive
when the inner sampler for the auxiliary variable is expensive. Recently, Park and Haran
(2018) focused on comparing likelihood based sampling methods and provided practical
recommendations. In contrast, our study provides evaluations of a likelihood free algo-
rithm and its applications (see details in Section 3).

As an alternative to the approaches based on classic MCMC, Stoica et al. (2017) and
Shirota and Gelfand (2017) proposed an approximate Bayesian computation (ABC) algo-
rithm for Gibbs point processes. The ABC algorithm provides a likelihood free approach
for approximating the posterior distribution and it is straightforward to implement. In
Shirota and Gelfand (2017), the simulation results for the Strauss model and the deter-
minantal point process show that the true models can be recovered. Also, the authors
compare the ABC with the exchange algorithm of Murray et al. (2012) and point out
that the ABC is more efficient in terms of the parameter inefficiency factors (IF).

In this study, we propose a more robust approach to constructing discrepancy mea-
sures for the ABC and compare the performance of available summary statistics for both
repulsive and attractive point processes. Implementing the ABC algorithm for fitting
Gibbs point processes has been proven feasible and efficient. However, we still need to
thoroughly investigate how to construct the best discrepancy measure for different sit-
uations. Inspired by the discussion surrounding the choices of various distance metrics
between two point process realizations (Mateu et al., 2010), we use the integrated dis-
tance of the available functional summary characteristics to measure the similarity of the
interactive structure for two point patterns. This measure takes into account the infor-
mation of the interactions among all the reasonable scales, which can be more informative
compared with the measures only calculated at a given interaction distance.

An important component of the ABC algorithms for Gibbs point processes is the
choice of summary statistic. In Stoica et al. (2017), the authors discuss the issue, but did
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not conduct a comparative study, especially when the sufficient statistics are not available.
In our study, we implement and compare the performance of Ripley’s K-function, nearest
neighbor distance distribution function (D-function), empty-space function (F -function),
and J-function (Van Lieshout and Baddeley, 1996) when used in the ABC algorithm, in
terms of recovering the parameters of a Gibbs point process. The final recommendation
on the most robust summary statistic among the ones tested is formed based on an exten-
sive simulation study. Note that Geyer (1998) proposed to use stochastic approximation
as rough estimates of the parameter values. Thus, we implement this estimate as an
informative prior and compare it with a vague prior for the ABC algorithms presented
herein.

The paper proceeds as follows. Section 2 begins by reviewing the repulsive and
attractive Gibbs point processes that we investigate. Section 3 provides the functional
summary statistics considered for Gibbs point processes, the proposed structure of the
discrepancy measure for the ABC algorithm, and the choices of prior distributions. Sec-
tions 4 and 5 include the results of the simulation study, and Section 6 presents applica-
tions to the Swedish pines data and Chicago crime data. Finally, in Section 7, we provide
concluding remarks.

2. Review of Classic Gibbs Point Processes

The general density function of a Gibbs point process for a finite point pattern
ϕn = {x1, . . . , xn} over a bounded domain B ∈ R2 (Cressie, 1993) is given by

f(ϕn) = c−1 exp


n∑
i−1

g1(xi) +
∑

1≤i<j≤n
g1,2(xi, xj) + · · ·+ g1,...,n(x1, . . . , xn)

 (1)

with respect to the Poisson process with unit intensity, where the function g1,...,k(·) de-
scribes the k-level interaction. Hence, c is a normalizing constant and the form of c
cannot be provided analytically. In other words, the normalizing constant for the Gibbs
point process is typically intractable. Another fundamental functional is the Papangelou
conditional intensity,

λ(u|ϕn,θ) = f(ϕn ∪ u|θ)
f(ϕn|θ) ,

which is the intensity at location u given the point pattern ϕn. Note that the normal-
izing constant in the likelihood function cancels out when calculating the Papangelou
conditional intensity. Thus, it is used to construct the log pseudo-likelihood as follows

logPL(ϕn|θ) = −
∫
B
λ(u|ϕn,θ)du+

n∑
i

logλ(xi|ϕn,θ), (2)

and the MPLE is obtained by maximizing the latter equation.

In this paper, we consider point processes that are suitable for describing inhibi-
tion and attraction. Thus, two classes of Gibbs point processes are investigated: the
homogeneous Strauss process and the area-interaction point process.
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2.1. Strauss point process

The Strauss process was introduced by Strauss (1975) to model point processes
with pairwise interactions; however, Kelly and Ripley (1976) showed that the Strauss
process density is only integrable for repulsive interactions. Hence, it is extensively used
to model point processes under the regularity assumption. The density function of the
homogeneous Strauss model for ϕn = {x1, . . . , xn} over a bounded domain B ∈ R2 is
given by

f(ϕn) = c(β, γ)−1βnγSr(ϕn), ϕn ∈ Bn, (3)
Sr(ϕn) =

∑
1≤i<j≤n

I(||xi − xj|| ≤ r),

where β > 0, γ ∈ [0, 1], c(β, γ) is the normalizing constant, r is the interaction distance
and Sr(ϕn) is the number of pairs of points that are closer than a distance r. In the
Strauss process, β and γ represent the main effect and the interaction effect, respectively.
For γ ∈ (0, 1), the point process shows inhibition between points and smaller γ leads to
stronger interaction. For γ = 0, the process is known as the hardcore process which does
not allow points to be closer than distance r. For γ = 1, the process is equivalent to the
homogeneous Poisson process with intensity β.

2.2. Area-interaction point process

The area-interaction process (Baddeley and Van Lieshout, 1995) can be used to
model point processes with attraction or repulsion. The density function of the homoge-
neous area-interaction process for ϕn = {x1, . . . , xn} in B is defined as follows

f(ϕn) = c(β, γ)−1βnγ−m(Ur(ϕn)),

with respect to the Poisson process with unit intensity, where β > 0, γ > 0, c(β, γ) is the
normalizing constant, m denotes the Lebesgue measure and

Ur(ϕn) = ∪ni=1B(xi, r),
is the union of discs with radius r centered at the points contained in the point pat-
tern. Similar to the Strauss process, γ controls interaction between points. The area-
interaction process generates repulsive point patterns if γ ∈ (0, 1) and clustered point
patterns if γ > 1. For γ = 1, this process is also equivalent to the Poisson point process
with intensity β.

In our study, we implement a canonical scale-free version of the area-interaction
process proposed by Baddeley and Turner (2014), since the interpretation is easier. The
density function is

f(ϕn) = c(κ, η)−1κnη−A(ϕn),

where κ is the new main effect, η is the new interaction effect and
A(ϕn) = m(Ur(ϕn))/(πr2)− n.

In this way, each isolated disc has unit area and contributes a factor κ to the density.
Parameter η has the same interpretation as the original parameterization. Notice that
the parameter r denotes the disc radius at each point but not the interaction distance.
Thus, for the area-interaction process, the interaction distance is 2r.
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3. Approximate Bayesian Computation for Gibbs Point Processes

The ABC algorithm has been widely used for estimating model parameters with an
intractable normalizing constant. The fundamental algorithm is known as ABC rejection
sampling that was implemented by Pritchard et al. (1999) and Sunn̊aker et al. (2013). The
specific pseudo-code associated with ABC rejection sampling is shown in Algorithm 1,
where ϕobs is the observed data, ϕsim is the simulated data, T(ϕn) is the summary statistic
and d(·, ·) is the discrepancy measure that is used to evaluate the similarity between the
data. Moreover, ε > 0 is the acceptance threshold.

Algorithm 1 ABC rejection sampling
for i = 1 to L do

repeat
Sample θ∗ from its prior, θ∗ ∼ π(θ).
Generate simulated data, ϕsim ∼ f(ϕ|θ∗).

until d(T(ϕobs),T(ϕsim)) ≤ ε
end for

Based on Algorithm 1, the proposed θ will be accepted if the discrepancy measure
is smaller than the pre-specified threshold, which implies that the data simulated based
on θ is similar to the observed one. In this way, the accepted θ is generated from the ap-
proximated posterior distribution, since the simulated data approximate the realizations
from the observed likelihood. More importantly, the choices of discrepancy measures and
summary statistics can determine the efficiency and unbiasedness of the approximation
of the posterior distribution.

In order to improve the efficiency of the ABC rejection sampling algorithm, Marjo-
ram et al. (2003) proposed the ABC-MCMC, which combines the MCMC with the ABC.
This algorithm was applied to repulsive spatial point processes by Shirota and Gelfand
(2017). However, the choice of proposal kernel can significantly affect the efficiency of
the ABC algorithm in terms of the level of mixing. In addition, choosing the most ap-
propriate proposal kernel is a challenging issue. Thus, we implement the ABC rejection
sampling algorithm for our study in order to investigate the performance of different
summary statistics, prior distributions, and discrepancy measures.

3.1. Summary Statistics

For homogeneous Gibbs point processes, it is reasonable to evaluate the similarity
of point patterns by comparing summary statistics for the main and interaction effects.
We use the number of points as a summary statistic of the main effect, since it is also
a function of the sufficient statistic. In the literature, several useful functional summary
characteristics can be used for describing the interaction effect, e.g., Ripley’s K-function,
D-function (the nearest neighbor distance distribution function), F -function (the empty
space function), and the J-function (Van Lieshout and Baddeley, 1996). The definition
of each function for a stationary point process with intensity λ is as follows:

K-function

K(r) = Eo(N(b(o, r) \ {o}))/λ,
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with N(b(o, r) \ {o}) representing the number of points found within the distance r from
the typical point o.

D-function

D(r) = Po(N(b(o, r) \ {o}) > 0),

where Po represents the Palm probability, which is the conditional probability that the
point process has the property N(b(o, r) \ {o}) > 0 given that a point of the process is in
o (see Illian et al. (2008), Page 178).

F -function

F (r) = 1−P(N(b(o, r)) = 0),

where P represents the distribution for a given point process.

J-function

J(r) = 1−D(r)
1− F (r) .

Illian et al. (2008) point out that these summary characteristics play an important
role in the analysis of point processes, and that each of them has specific advantages
that can reveal unique information about the point pattern. Hence, we implement the
functions mentioned above and compare their performance within the ABC algorithm.
In order to obtain estimates of the various functions, we use the empirical estimators
with edge correction using the R package “spatstat” (Baddeley and Turner, 2014).

3.2. Prior distributions

The prior distribution in the ABC is typically used as the proposal kernel or part of
the Metropolis-Hastings acceptance probability. Here, we discuss various choices for the
prior distribution for the ABC algorithm. Simulation studies detailing their performance
are included in Sections 4 and 5.

A common choice of prior distribution for the ABC is a vague prior over a reason-
able parameter space, such as a uniform prior with a pre-specified range. However, the
choice of parameter space is subjective without strong prior knowledge. Additionally, a
uniform prior with a wide parameter space can significantly reduce the efficiency of the
ABC algorithm.

Alternatively, a more informative distribution can be applied as a prior for the ABC
to improve estimation and efficiency. Geyer (1998) proposed using the stochastic approx-
imation to obtain the starting point for more sophisticated methods. In this context,
the estimates provided by the stochastic approximation form a consistent estimator for
the model parameters. Thus, we use the estimate from the stochastic approximation as
the mean in an informative prior that has an associated large variance. Specifically, we
implement the Robbins-Monro (R-M) algorithm (Robbins and Monro, 1951) for Gibbs
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point processes. Given the canonical form of the homogeneous Gibbs point process, the
model is as follows

f(ϕn) = exp{θ′T(ϕn)− logc(θ)},

and the R-M algorithm generates a sequence of estimates θk, k = 1, 2, . . . , given by

θk+1 = θk + A

k
{T(ϕobs)−T(ϕk)},

where ϕk is a realization generated from the specified Gibbs process given parameters θk.
We also implement an objective stopping rule proposed by Gu and Zhu (2001),

K1 = inf

K ≥ K0 :

∥∥∥∥∥∥
K∑

k=K−K0+1
sgn(θj,k − θj,k−1)/K0

∥∥∥∥∥∥ ≤ δ,∀j = 1, . . . ,m

 ,
whereK0 and δ are the pre-specified length of the subsequence of θk and required precision
level in order to calculate the stopping rule and sgn(x) is the sign function, which equals
to 1,0 or -1 depending on the sign of x. Also, A is preassigned to ensure that the
step function is slowly decreasing. It is difficult to tune these parameters, and iterative
adjustment can introduce a computational burden. However, since we only need the
sequence to converge to an area that is close to the true value, any reasonable choice of
tuning parameters should yield a satisfactory result.

3.3. Construction of the discrepancy measure

We briefly review the details of constructing discrepancy measures and propose
several measures that emerge as more robust in ABC estimation. Shirota and Gelfand
(2017) implement the approach of constructing discrepancy measures based on linear
regression for repulsive point processes (Fearnhead and Prangle, 2012). First, h(ϕu, ϕv)
is defined as a vector of functions of summary statistics for two point patterns, and
typically, the length of the vector h(ϕu, ϕv) is the same as the number of parameters
in the specified model. Shirota and Gelfand (2017) used the difference of the number
of points and the squared difference of the estimated variance stabilized K-function at
a given interaction distance to construct the vector of functions. In contrast, Mateu
et al. (2010) proposed to construct these functions based on functional summaries over
a certain range of interaction [0, rmax], e.g., the integrated squared difference between
estimates of Ripley’s K-function for two point patterns. Inspired by both approaches, we
use the difference of the number of points and the integrated absolute difference between
estimated functional summaries of the two point patterns to propose and construct our
general discrepancy measure, i.e.,

h1(ϕobs, ϕsim) = n(ϕsim)− n(ϕobs),

h2(ϕobs, ϕsim) =
∫ rmax

0
|Fsim(r)−Fobs(r)|dr,

where F represents the estimated summarizing functional, such as those mentioned in
Section 3.1 and h2(ϕobs, ϕsim) is approximated numerically.
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For comparison purposes, following the approach of Shirota and Gelfand (2017), one
of the discrepancy measures implemented in our study for a parameter vector of length
m is,

dreg(T(ϕobs),T(ϕsim)) =
m∑
j

(ξ̂l,j − ξ̂obs,j)2/v̂ar(ξ̂j), (4)

and

ξ̂l = â + b̂h(ϕsim, ϕobs),
ξ̂obs = â + b̂h(ϕobs, ϕobs) = â,

where â and b̂ are obtained by fitting linear regression for the pilot run. Moreover, v̂ar(ξ̂j)
is the sample variance of the j-th component of ξ̂ and it is also provided by the pilot
run. Notice that for Gibbs point processes model, ξ is the log transformed parameter
vector. Specifically, ξ is (logβ, logγ) for the Strauss process and (logκ, logη) for the area-
interaction process.

We further propose and implement another way of constructing the discrepancy
measure by rescaling the function h(ϕu, ϕv) based on the pilot run. The form of the
discrepancy measure is

drescale(T(ϕobs),T(ϕsim)) = w1|h1(ϕobs, ϕsim)|+ w2|h2(ϕobs, ϕsim)|, (5)

where w1, w2 are the scales provided by the inverse of the maximum absolute value
of the elements of h(ϕu, ϕv) for the pilot run, i.e., w1 = 1/max(|h1(ϕobs, ϕpilot)|) and
w2 = 1/max( |h2(ϕobs, ϕpilot)|). The goal of this approach is to rescale the effect of each
element in the discrepancy measure to a common level.

The surface of the log discrepancy measure from Shirota and Gelfand (2017) and
the proposed surfaces based on the pilot run are shown in Figures A1, A2, and A3 (in
the Appendix). The value of each pixel in the surfaces is the log discrepancy between
the observed point pattern and the simulated point pattern that is generated using the
corresponding parameter values on the axes. Smaller discrepancy values indicate that the
simulated and observed point pattern are similar. For the simulation study, we expect
that the pixel associated with the true parameter value will minimize the discrepancy.
However, we can see that the area having minimum discrepancy value is significantly
larger than one pixel and that the value of neighboring pixels are also small. This be-
havior illustrates the identifiability issue associated with the Gibbs point process, i.e.,
different parameter value combinations can generate similar point patterns in terms of
the discrepancy measures discussed in this study. We mitigate the identifiability effect by
using an informative prior; simulation results are shown in Section 5. Also, the value of
the surfaces from Shirota and Gelfand (2017) are smaller than the values of the surfaces
for the proposed method because of the lack of information. The flatness of these surfaces
can also cause inefficiencies in the ABC algorithm.

4. Simulation Study: Vague Prior

For this study, we implement a uniform prior for the ABC rejection algorithm. In
other words, we generate proposed parameter values from a uniform distribution with
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reasonable lower and upper bounds for both the Strauss process and the area-interaction
process. The crucial components of the discrepancy measures are the number of points
in the point pattern and the estimated summary characteristics over interaction range
[0, rmax]. For the K, D and F -function, we choose a moderately large rmax = 0.18
based on a sensitivity study. However, rmax is 0.08 for the J-function since the value
of J-function is either highly unstable or undefined for large r. For the pilot run, we
generate 100 parameter values equally spaced in the pre-specified parameter space, e.g.,
a sequence of β from 50 to 400 and a sequence of γ from 0 to 1. Thus, there are
10,000 combinations of parameter values in total, and the corresponding realizations are
generated to calibrate the coefficients â, b̂, w1 and w2 for the discrepancy measure. The
acceptance threshold ε is set to be the 1% percentile of drescale(T(ϕobs),T(ϕsim)) for the
pilot run. To simulate point patterns from the specified process in the ABC and pilot
run, we assume that the interaction distance is known, however it can also be estimated
using profile maximum pseudo-likelihood in practice. Finally, 1000 samples are accepted
as the posterior realizations. The simulation study is conducted based on 50 realizations
from each process, and the average estimate of the model parameters are compared in
the following sections.

4.1. Strauss point process

We first consider the homogeneous Strauss process with strong interaction on the
unit window, W = [0, 1] × [0, 1]. Following the same parameterization of (3), we set
β = 200, γ = 0.1 and r = 0.05. The simulation algorithm used to generate the point pat-
terns is the dominated coupling from the past algorithm (Berthelsen and Møller, 2003).
The prior distributions that are used as proposal kernels for β and γ are U(50, 400)
and U(0, 1), and the estimation results are shown in Table 1. Each metric in this ta-
ble corresponds to the discrepancy measures based on different summary statistics and
structures (Formulas (4) and (5)). Specifically, K(r) represents the discrepancy measure
proposed by Shirota and Gelfand (2017). For the remaining metrics, the name of the
metric indicates the functional characteristic that is used in the ABC and the method
used to construct the discrepancy measure is shown in the parentheses, e.g., D-function
(regression) means that the discrepancy measure is constructed by linear regression with
summary statistics based on the D-function and number of points.

Considering the point estimate and standard deviation of the posterior distribution
for each parameter, the algorithm proposed by Shirota and Gelfand (2017) has the best
performance, since the average posterior median provides the smallest bias for the main
effect and second smallest bias for the interaction effect. Additionally, the posterior stan-
dard deviations are the smallest for both parameters among all of the algorithms. ABC
with the discrepancy measure constructed based on the D-function and rescaling method
also has a competitive performance, and therefore, both algorithms can be considered in
order to fit the Strauss process. However, the large posterior standard deviation indi-
cates that the estimates are affected by the apparent identifiability issue inherited from
the underlying mechanism of the Gibbs processes.

4.2. Area-interaction point process

We also conducted a simulation study for the homogeneous area-interaction process
with strong interaction on unit window W . By implementing the canonical scale-free



232 J. CHEN, A. C. MICHEAS AND S. H. HOLAN [Vol. 18, No. 2

Table 1: The average posterior mean, median and standard deviation for
Strauss process with vague prior: K(r) represents the algorithm proposed by
Shirota and Gelfand (2017), “regression” and “rescaling” indicate that the
discrepancy measure is constructed based on Formulas (4) and (5). The bold
numbers represent the best and second best value in each column.

Metric Parameter True value Average mean Average median Average SD
K(r) β 200 203.5 200.4 35.65

γ 0.1 0.125 0.113 0.070
D-function β 200 251.9 248.2 51.37
(regression) γ 0.1 0.097 0.084 0.063
D-function β 200 206.5 202.9 41.81
(rescaling) γ 0.1 0.120 0.103 0.080
K-function β 200 226.2 220.7 57.87
(regression) γ 0.1 0.147 0.123 0.109
K-function β 200 195.9 192.5 42.18
(rescaling) γ 0.1 0.173 0.141 0.135
F -function β 200 182.5 179.4 40.94
(regression) γ 0.1 0.265 0.228 0.187
F -function β 200 182.9 180.1 40.14
(rescaling) γ 0.1 0.248 0.210 0.184
J-function β 200 197.0 194.0 39.50
(regression) γ 0.1 0.182 0.156 0.128
J-function β 200 194.9 192.0 37.70
(rescaling) γ 0.1 0.167 0.142 0.119

version, we set κ = 50, η = 7 and r = 0.05. Here, setting the disc radius of the area-
interaction process to be 0.05 implies that the interaction distance is 0.1. For this process,
the prior distributions of κ and η are U(10, 400) and U(1, 30). The estimation results of
50 realizations from the area-interaction process are shown in Table 2. The average mean
and median show that only using the J-function as the summary statistic can provide
reasonable estimates for both parameters. Although, the discrepancy measure based on
the K-function and D-function can provide a reasonable estimate of one parameter, the
posterior standard deviations are significantly larger than using J-function. Moreover,
the discrepancy measure based on the J-function outperforms the one proposed by Shi-
rota and Gelfand (2017).

Overall, the most robust estimator in this case is the median of the posterior sample
from the ABC algorithm based on the discrepancy measure constructed by the summary
statistic J-function and rescaling method. Similar to the Strauss process, the large pos-
terior standard deviations indicate that the identifiability issue still exists for the area-
interaction process.

5. Simulation Study: Informative Prior

In order to reduce the effect of the identifiability issue that was illustrated in Fig-
ures A1, A2, and A3 (in the Appendix), we implemented a class of informative prior
distributions for the ABC. For the Strauss process, the prior of the main effect is a shifted
gamma distribution and for the interaction effect a truncated normal distribution. Simi-
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Table 2: The average posterior mean, median and standard deviation for area-
interaction process with vague prior: K(r) represents the algorithm proposed
by Shirota and Gelfand (2017), “regression” and “rescaling” indicate that the
discrepancy measure is constructed based on Formulas (4) and (5). The bold
numbers represent the best and second best value in each column.

Metric Parameter True value Average mean Average median Average SD
K(r) κ 50 99.95 80.62 69.83

η 7 6.760 3.912 6.647
D-function κ 50 141.4 122.1 88.04
(regression) η 7 4.457 2.933 4.112
D-function κ 50 100.3 77.65 72.66
(rescaling) η 7 6.737 4.833 5.703
K-function κ 50 65.46 54.12 42.05
(regression) η 7 9.811 7.893 6.902
K-function κ 50 73.15 63.53 41.36
(rescaling) η 7 7.820 6.193 5.646
F -function κ 50 89.12 75.14 56.49
(regression) η 7 6.661 4.293 6.146
F -function κ 50 93.53 80.33 57.59
(rescaling) η 7 6.155 3.980 5.682
J-function κ 50 46.53 38.53 29.30
(regression) η 7 9.604 8.450 5.387
J-function κ 50 58.78 49.16 35.06
(rescaling) η 7 9.000 7.880 5.221

larly, the shifted gamma distribution is used for both parameters of the area-interaction
process. The summary statistics and discrepancy measures considered are the same as in
Section 4.

5.1. Strauss point process

We consider an informative prior as the proposal kernel for the ABC. In order to
generate enough points to estimate the summary characteristics, we set a lower bound for
the prior of the main effect by shifting it to the right. Specifically, the prior distributions
for β and γ are

β − lβ ∼ G((β̂ − lβ)2/σβ, σβ/(β̂ − lβ)), (6)
γ ∼ N[0,1](γ̂, σ2

γ), (7)

where lβ = 50, σβ = 300 and σγ = 0.1. β̂ and γ̂ are the estimated parameter values using
stochastic approximation. Thus, the mean and variance of the shifted gamma distribu-
tion for β are β̂ and σβ. For γ, we choose a standard deviation that is not too large over
the parameter space [0, 1] to preserve the information from the stochastic approximation.
In order to demonstrate the consistency of the stochastic approximation, we show that
the average of the estimated parameter values for β and γ over 50 realizations are 200.7
and 0.098, respectively.

The simulation results of the same realizations of Section 4.1 are shown in Table 3.
From this table, we can see the improvement in terms of the point estimate when com-
pared to the estimate from stochastic approximation, is limited and that the estimated



234 J. CHEN, A. C. MICHEAS AND S. H. HOLAN [Vol. 18, No. 2

Table 3: The average posterior mean, median and standard deviation for
Strauss process with informative prior: K(r) represents the algorithm pro-
posed by Shirota and Gelfand (2017), “regression” and “rescaling” indicate
that the discrepancy measure is constructed based on Formulas (4) and (5).
The bold numbers represent the best and second best value in each column.

Metric Parameter True value Average mean Average median Average SD
K(r) β 200 200.2 202.0 16.51

γ 0.1 0.111 0.116 0.063
D-function β 200 206.2 199.8 16.40
(regression) γ 0.1 0.110 0.104 0.051
D-function β 200 200.5 199.9 15.87
(rescaling) γ 0.1 0.104 0.098 0.051
K-function β 200 202.6 201.9 16.51
(regression) γ 0.1 0.122 0.116 0.063
K-function β 200 200.1 199.5 15.68
(rescaling) γ 0.1 0.112 0.105 0.062
F -function β 200 199.9 199.4 15.36
(regression) γ 0.1 0.123 0.118 0.067
F -function β 200 199.3 198.8 15.35
(rescaling) γ 0.1 0.118 0.111 0.066
J-function β 200 200.4 199.8 15.55
(regression) γ 0.1 0.117 0.112 0.062
J-function β 200 199.6 199.0 15.38
(rescaling) γ 0.1 0.113 0.107 0.060

values are close for different summary statistics and discrepancy measures. However,
ABC provides significant reduction of the standard deviation when compared with the
standard deviation of the prior distribution, which is an indication of Bayesian learning.
The maximum standard deviation reductions for the distribution of β and γ are 11.4% and
49%, respectively. Notice that the discrepancy measure proposed by Shirota and Gelfand
(2017) shows good point estimates of the parameters. However, combining the results
from the point estimates and the posterior standard deviation, using the D-function as
the summary statistic, and constructing the discrepancy measure by rescaling, provides
the most robust performance. More importantly, implementing the informative prior can
significantly improve point estimation and reduce the posterior standard deviation, in
contrast to the ABC with vague prior.

5.2. Area-interaction point process

We also implement the informative prior for the area-interaction process. The right
shifted gamma distribution is used as the prior distribution for κ and η,

κ− lκ ∼ G((κ̂− lκ)2/σκ, σκ/(κ̂− lκ)),
η − lη ∼ G((η̂ − lη)2/ση, ση/(η̂ − lη)),

where lκ = 10, lη = 1, σκ = 300, ση = 100, κ̂ and η̂ are the estimates from stochas-
tic approximation. That is, the mean and variance of the shifted gamma distribution
for κ and η are (κ̂, σκ) and (η̂, ση). We choose to use large prior variances to ensure
that the choice of prior will not dominate the results of the analysis. Alternatively, the
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Table 4: The average posterior mean, median and standard deviation for
area-interaction process with informative prior: K(r) represents the algorithm
proposed by Shirota and Gelfand (2017), “regression” and “rescaling” indicate
that the discrepancy measure is constructed based on Formulas (4) and (5).
The bold numbers represent the best and second best value in each column.

Metric Parameter True value Average mean Average median Average SD
K(r) κ 50 58.11 55.64 17.67

η 7 7.521 6.834 3.310
D-function κ 50 60.72 58.42 17.52
(regression) η 7 7.360 6.873 2.753
D-function κ 50 57.18 54.79 16.75
(rescaling) η 7 7.726 7.158 3.051
K-function κ 50 56.33 54.60 15.46
(regression) η 7 7.843 7.061 3.924
K-function κ 50 58.02 56.17 15.63
(rescaling) η 7 7.154 6.504 3.335
F -function κ 50 59.02 56.64 17.63
(regression) η 7 7.311 6.642 3.311
F -function κ 50 59.34 56.92 17.66
(rescaling) η 7 7.221 6.566 3.241
J-function κ 50 51.10 49.33 13.83
(regression) η 7 7.324 6.808 2.967
J-function κ 50 53.74 51.90 14.32
(rescaling) η 7 7.623 7.098 3.030

truncated gamma distribution can be used as the proposal kernel to simulate parameters
with a specific mean, variance, and positive lower bound. The average estimates from
the stochastic approximation of κ and η over the 50 realizations used in Section 4.2 are
56.57 and 7.151, and the simulation results are shown in Table 4. By comparing the
average posterior mean, median, and standard deviation with the prior distribution, we
see significant improvements in terms of the point estimate and reduction in standard
deviation, i.e., the maximum reduction for κ and η are 20.2% and 70.3%, respectively.
Among all the possible combinations, using the J-function as the summary statistic to
construct the discrepancy measure provides the most robust results for both parameters
and using regression or rescaling methods do not drastically affect the performance of
the J-function. Similar to the results in Section 4.2, the proposed discrepancy measures
based on the J-function outperform the one proposed by Shirota and Gelfand (2017).
Also, implementing the informative prior significantly improves point estimation and re-
duces the posterior standard deviation for all the approaches.

6. Real Data Application

6.1. Swedish pines data

The Swedish pines data, shown in Figure 1(a), contains the locations of 71 pine
saplings in a 9.6 by 10 meter window provided (Strand, 1972). Previous analyses on this
data include Ripley (1981), Venables and Ripley (1997) and Baddeley and Turner (2000).
All the results indicate that the interaction distance r is 0.7. To be proportional with the
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Figure 1: (a) The Swedish pines data: locations of 71 pine saplings in a 9.6
m × 10 m window first studied by Strand (1972). The data is available in
the R package “spatstat”. (b) Chicago crime data: locations based on UTM
projection of 564 Chicago homicide incidents in 2018. The data is published
by the City of Chicago Data Portal.

window size, the maximum interaction distance rmax is 0.8 for the J-function and 1.8 for
the other summary characteristics. By assuming the Strauss process, the point estimates
for β are between 1.49 and 3.29 and for γ are between 0.20 and 0.29 in the previous
analyses mentioned above. In our study, we fit the Strauss process and area-interaction
process to this dataset by using the ABC algorithm with different discrepancy measures
and prior distributions

For the Strauss process, informative and vague priors are implemented in the ABC
algorithm. Similar to Section 5, the prior distributions are gamma and truncated nor-
mal distribution with the mean provided by the estimate of the parameter values from
stochastic approximation, i.e., β̂ and γ̂ are 2.262 and 0.197, respectively. The standard
deviations of the prior distributions are

√
30 and 0.1, respectively. The results from the

ABC are shown in Table 5. For all the ABC algorithms, the acceptance threshold is the
1% percentile of the discrepancy measure in the pilot run. The overall results indicate
strong inhibition between points in the point pattern and the values are consistent with
the previous studies. Moreover, the standard deviations of the posterior distributions
show significant reduction when compared with the prior standard deviations. For the
vague priors, U(0.5, 40) and U(0, 1) are used for β and γ. The results are included in
Table A1 in the Appendix and indicate larger posterior standard deviation. However,
the overall results based on the vague prior are still consistent with the ones from the
informative prior and previous studies.

We also fit an area-interaction process to the Swedish pines data, and the estimates
show strong inhibition as well. However, a goodness-of-fit test shows lack of fit for the
area-interaction process compared with the Strauss process. We included the estimates
of the area-interaction process in the Appendix.
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Table 5: The posterior mean, median, standard deviation and 95% credible
interval of Strauss process for the Swedish pines data with informative prior:
K(r) represents the algorithm proposed by Shirota and Gelfand (2017), “re-
gression” and “rescaling” indicate that the discrepancy measure is constructed
based on Formulas (4) and (5).

Metric Parameter Mean Median SD 95% CI
K(r) β 2.877 2.494 1.766 (1.471, 7.175)

γ 0.203 0.196 0.089 (0.047, 0.381)
D-function β 1.960 1.732 1.024 (0.694, 4.479)
(regression) γ 0.211 0.204 0.078 (0.078, 0.379)
D-function β 2.047 1.878 0.945 (0.782, 4.401)
(rescaling) γ 0.207 0.201 0.077 (0.077, 0.265)
K-function β 5.134 4.006 4.190 (1.070, 16.06)
(regression) γ 0.201 0.196 0.069 (0.080, 0.343)
K-function β 2.783 2.449 1.462 (0.935, 6.691)
(rescaling) γ 0.201 0.200 0.077 (0.058, 0.361)
F -function β 2.894 2.755 0.846 (1.659, 5.029)
(regression) γ 0.168 0.163 0.089 (0.016, 0.360)
F -function β 2.881 2.748 0.850 (1.658, 4.951)
(rescaling) γ 0.167 0.163 0.087 (0.162, 0.356)
J-function β 2.406 2.234 0.761 (1.311, 4.250)
(regression) γ 0.156 0.150 0.077 (0.021, 0.311)
J-function β 2.616 2.479 0.801 (1.465, 4.605)
(rescaling) γ 0.164 0.158 0.082 (0.022, 0.343)

6.2. Chicago crime data

The Chicago crime data contains locations of reported homicide incidents in Chicago
during 2018. The source of the raw data is the City of Chicago Data Portal which is an on-
line resource summarizing incidents of crime that occurred in the city of Chicago (https:
//data.cityofchicago.org/Public-Safety/Crimes-2001-to-present/ijzp-q8t2).
As demonstrated in Figure 1(b), we use the Universal Transverse Mercator (UTM) coor-
dinates for incident locations and the city boundary as the irregular domain of this point
pattern. It is obvious that the point pattern shows significant clustering. Thus, we have
reason to assume the data is generated from an attractive point process.

In order to be consistent with the simulation study, we assume that the process is
homogeneous and proceed to fit the area-interaction process to this point pattern using
the ABC algorithm. The disc radius of the area-interaction process is 0.35, which is
calculated based on maximizing the profile pseudo-likelihood. Following the same choices
in the simulation study, the maximum interaction distance rmax is 2 for the J-function
and 7 for the other summary characteristics. Also, we implemented the gamma distribu-
tion as the informative prior along with the prior mean provided by the estimates from
stochastic approximation. The prior mean and standard deviation for κ are 0.3575 and
1 and for η are 24.2648 and 30.

For all the ABC algorithms, the acceptance threshold is the 1% sample percentile
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Table 6: The posterior mean, median, standard deviation and 95% credible
interval of area-interaction process for the Chicago crime data with informa-
tive prior: K(r) represents the algorithm proposed by Shirota and Gelfand
(2017), “regression” and “rescaling” indicate that the discrepancy measure is
constructed based on Formulas (4) and (5).

Metric Parameter Mean Median SD 95% CI
K(r) κ 0.346 0.265 0.114 (0.175, 0.586)

η 35.74 27.18 26.69 (9.035, 102.4)
D-function κ 0.495 0.448 0.216 (0.180, 0.994)
(regression) η 21.68 14.65 22.54 (1.605, 88.19)
D-function κ 0.542 0.468 0.292 (0.197, 1.300)
(rescaling) η 20.46 13.40 22.69 (0.605, 77.62)
K-function κ 0.078 0.012 0.162 (0.001, 0.561)
(regression) η 18.40 8.497 25.86 (0.046, 90.69)
K-function κ 0.590 0.447 0.469 (0.159, 1.841)
(rescaling) η 27.03 15.30 34.82 (0.094, 126.0)
F -function κ 0.372 0.353 0.131 (0.172, 0.642)
(regression) η 32.60 24.29 27.39 (5.625, 105.9)
F -function κ 0.488 0.392 0.316 (0.175, 1.383)
(rescaling) η 28.57 20.32 28.35 (0.484, 100.6)
J-function κ 0.381 0.363 0.119 (0.191, 0.661)
(regression) η 29.32 25.31 17.75 (8.026, 75.16)
J-function κ 0.417 0.381 0.189 (0.165, 0.912)
(rescaling) η 31.31 21.59 30.50 (2.258, 114.1)

of the pilot run. The results are shown in Table 6 and indicate significant attraction
between points. Similar to the results in Section 5, the ABC algorithm provides significant
standard deviation reduction for both parameters. We also use U(0, 5) and U(0, 150) as
the vague prior for κ and η. The results are included in Table A4 in the Appendix, which
show larger posterior variances for the parameters compared with the ones from the ABC
with informative prior. This indicates that the informative prior helps alleviate the lack
of identifiability.

7. Concluding Remarks

In this study, we compared the performances of several discrepancy measures for
the ABC algorithm and proposed new measures. The simulation results confirm several
aspects of our assumptions: the effect of different summary statistics on the estimation re-
sults, the improved performance of comparing the functional characteristics over a range
of interaction distances and the effect of implementing the informative prior for the ABC.

First of all, the candidate summary characteristics show different performances for
different point processes. This indicates that the choices of the most robust summary
statistic for the ABC algorithm is point process specific. Although the literature points
out that the choice should be a function of the sufficient statistic based on the sufficiency
principle, we observed that the nearest neighbor distance distribution function can also
provide competitive results for the Strauss process. Also, the F -function and J-function
are both sufficient statistics for the area-interaction process, but the simulation shows
that the J-function is more robust. Secondly, the discrepancy measure constructed by
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the K-function given a specific interaction distance K(r) out-performs the one that is con-
structed by the K-function over a range of interaction distances for the Strauss process,
but not for the area-interaction process. This result indicates that evaluating attrac-
tive point processes requires more information than repulsive point processes. Finally,
we demonstrated that applying an informative prior can significantly improve the point
estimates of the parameters and reduce the posterior standard deviation. However, the
identifiability issue of the Gibbs process cannot be completely eliminated by the current
approaches. The applications to the Swedish pines data and Chicago crime data show
that the ABC algorithm can be easily applied to point processes with regular and irreg-
ular windows.

In practice, we recommend that the analysis of the Gibbs point processes using
the ABC algorithm should proceed as follows. First, an appropriate model for the point
pattern should be specified based on an initial exploratory analysis. The Strauss process
can be considered for patterns with strong inhibition and the area-interaction process can
be considered for general clustered patterns. After choosing a specific model, one should
decide the best discrepancy measure for the chosen model. For the models included in
this study, the most robust discrepancy measures are provided. For other models, a sim-
ilar simulation study, to the ones conducted in this paper, can provide a good indication
for the best discrepancy measure. Finally, assuming that an informative prior is imple-
mented, the median of the posterior realizations from the ABC is usually the most robust
estimator of the parameters.

Since the Gibbs point process can be uniquely determined by the Papangelou condi-
tional intensity, our future work will be investigating possible choices of the nonparametric
estimate of the Papangelou and its implementation as the summary statistic for the ABC
algorithm in order to resolve the identifiability issue. Moreover, a non-homogeneous ver-
sion of the ABC algorithm will be developed. However, examining the non-homogeneous
Gibbs point processes can be challenging since the non-homogeneity of the main effect is
always confounded with the interaction effect.
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Appendix

Table A1: The posterior mean, median, standard deviation and 95% credible
interval of Strauss process for the Swedish pines data with vague prior: K(r)
represents the algorithm proposed by Shirota and Gelfand (2017), “regres-
sion” and “rescaling” indicate that the discrepancy measure is constructed
based on Formulas (4) and (5).

Metric Parameter Mean Median SD 95% CI
K(r) β 5.379 2.812 5.909 (1.367, 12.38)

γ 0.242 0.190 0.201 (0.018, 0.674)
D-function β 2.176 1.727 1.514 (0.617, 6.450)
(regression) γ 0.283 0.237 0.177 (0.057, 0.712)
D-function β 2.226 1.873 1.372 (0.660, 5.633)
(rescaling) γ 0.272 0.227 0.171 (0.053, 0.674)
K-function β 11.90 9.761 8.942 (1.345, 34.63)
(regression) γ 0.181 0.166 0.093 (0.052, 0.409)
K-function β 3.665 3.118 2.398 (0.900, 9.879)
(rescaling) γ 0.213 0.189 0.129 (0.029, 0.528)
F -function β 2.894 2.755 0.846 (1.659, 5.029)
(regression) γ 0.168 0.163 0.089 (0.016, 0.360)
F -function β 3.227 3.065 1.194 (1.393, 5.981)
(rescaling) γ 0.169 0.117 0.158 (0.004, 0.561)
J-function β 2.810 2.650 0.993 (1.307, 5.263)
(regression) γ 0.123 0.096 0.103 (0.004, 0.338)
J-function β 3.011 2.919 1.037 (1.381, 5.417)
(rescaling) γ 0.137 0.105 0.120 (0.003, 0.437)

A.1. Swedish pines data: fitted by the area-interaction process

The gamma distribution is used as the informative prior, with prior means 1.128 and
0.109 for κ and η. The standard deviations for the priors are

√
30 and

√
0.1, respectively.

The estimation results are shown in Table A2. The results also show strong inhibition
in the point pattern. We can see that the ABC algorithms with the J-function yield
smaller standard deviations for the main function and closer values to the estimate from
the Strauss process (Table 5). For the ABC with the vague prior, the prior distributions
are U(0.1, 40) and U(0, 1). The corresponding results are included in the Appendix, see
Table A3.
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Table A2: The posterior mean, median, standard deviation and 95% credible
interval of area-interaction process for the Swedish pines data with informa-
tive prior: K(r) represents the algorithm proposed by Shirota and Gelfand
(2017), “regression” and “rescaling” indicate that the discrepancy measure is
constructed based on Formulas (4) and (5).

Metric Parameter Mean Median SD 95% CI
K(r) κ 4.557 1.821 7.405 (0.344, 24.80)

η 0.055 2.410×10−4 0.210 (0.000, 0.450)
D-function κ 5.343 2.057 8.555 (0.330, 28.88)
(regression) η 0.046 2.083×10−4 0.181 (0.000, 0.417)
D-function κ 4.541 1.752 7.609 (0.265, 25.49)
(rescaling) η 0.057 2.630×10−4 0.236 (0.000, 0.461)
K-function κ 5.012 1.939 8.166 (0.272, 27.87)
(regression) η 0.036 1.839×10−4 0.137 (0.000, 0.307)
K-function κ 4.169 1.605 6.583 (0.252, 23.54)
(rescaling) η 0.058 2.470×10−4 0.223 (0.000, 0.495)
F -function κ 3.892 1.018 7.607 (0.071, 25.30)
(regression) η 0.083 15.08×10−4 0.291 (0.000, 0.704)
F -function κ 4.689 2.408 6.296 (0.618, 21.54)
(rescaling) η 0.065 2.640×10−4 0.245 (0.000, 0.610)
J-function κ 1.785 0.843 2.421 (0.127, 8.619)
(regression) η 0.090 9.084×10−4 0.247 (0.000, 0.867)
J-function κ 1.758 0.764 2.345 (0.005, 8.618)
(rescaling) η 0.075 4.930×10−4 0.263 (0.000, 0.664)

Table A3: The posterior mean, median, standard deviation and 95% credi-
ble interval of area-interaction process for the Swedish pines data with vague
prior: K(r) represents the algorithm proposed by Shirota and Gelfand (2017),
“regression” and “rescaling” indicate that the discrepancy measure is con-
structed based on Formulas (4) and (5).

Metric Parameter Mean Median SD 95% CI
K(r) κ 5.379 2.812 5.901 (1.367, 23.38)

η 0.242 0.190 0.201 (0.018, 0.674)
D-function κ 1.982 0.966 3.611 (0.305, 11.06)
(regression) η 0.308 0.237 0.282 (0.001, 0.942)
D-function κ 1.726 1.117 2.151 (0.276, 7.722)
(rescaling) η 0.342 0.290 0.281 (0.002, 0.945)
K-function κ 2.084 1.455 1.875 (0.300, 7.506)
(regression) η 0.342 0.290 0.258 (0.004, 0.913)
K-function κ 1.717 1.281 1.513 (0.270, 6.373)
(rescaling) η 0.350 0.268 0.289 (0.005, 0.956)
F -function κ 2.102 1.701 1.573 (0.565, 6.080)
(regression) η 0.375 0.334 0.287 (0.006, 0.958)
F -function κ 1.988 1.624 1.394 (0.587, 6.366)
(rescaling) η 0.373 0.302 0.294 (0.005, 0.965)
J-function κ 1.553 1.247 1.360 (0.199, 6.024)
(regression) η 0.390 0.335 0.297 (0.006, 0.965)
J-function κ 1.420 1.161 1.165 (0.165, 4.511)
(rescaling) η 0.388 0.348 0.286 (0.008, 0.958)
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Table A4: The posterior mean, median, standard deviation and 95% credi-
ble interval of area-interaction process for the Chicago crime data with vague
prior: K(r) represents the algorithm proposed by Shirota and Gelfand (2017),
“regression” and “rescaling” indicate that the discrepancy measure is con-
structed based on Formulas (4) and (5).

Metric Parameter Mean Median SD 95% CI
K(r) κ 0.304 0.273 0.110 (0.173, 0.568)

η 48.18 44.88 26.90 (9.206, 97.20)
D-function κ 0.398 0.334 0.208 (0.174, 0.927)
(regression) η 36.49 29.24 28.82 (1.648, 95.90)
D-function κ 0.434 0.343 0.272 (0.181, 1.188)
(rescaling) η 34.72 27.56 28.42 (0.867, 95.26)
K-function κ 0.123 0.032 0.174 (0.003, 0.653)
(regression) η 42.18 25.71 43.63 (0.138, 139.9)
K-function κ 0.370 0.245 0.320 (0.142, 1.372)
(rescaling) η 61.18 56.44 46.72 (0.557, 145.0)
F -function κ 0.304 0.266 0.121 (0.171, 0.616)
(regression) η 47.99 45.41 27.58 (6.391, 97.21)
F -function κ 0.367 0.282 0.241 (0.177, 1.045)
(rescaling) η 44.05 41.26 29.05 (1.182, 96.66)
J-function κ 0.423 0.408 0.111 (0.236, 0.656)
(regression) η 23.77 20.71 13.10 (7.700, 58.63)
J-function κ 0.300 0.250 0.160 (0.145, 0.733)
(rescaling) η 61.35 53.80 41.85 (4.342, 141.7)
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Figure A1: Surfaces of the log discrepancy measure from Shirota and Gelfand
(2017) for pilot run of Strauss and area-interaction process. (a) Strauss pro-
cess; (b) Area-interaction process. The symbol “X” indicates the true values
of the parameters.
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Figure A2: Surfaces of the log discrepancy measure constructed by regression
dreg(T(ϕobs),T(ϕsim)) for the pilot runs of the Strauss process. Each discrepancy
measure is constructed based on different summary characteristics: (a) K-
function; (b) D-function; (c) F -function; (d) J-function. The symbol “X”
indicates the true values of the parameters.
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Figure A3: Surfaces of the log discrepancy measure constructed by regression
dreg(T(ϕobs),T(ϕsim)) for the pilot runs of the area-interaction process. Each
discrepancy measure is constructed based on different summary character-
istics: (a) K-function; (b) D-function; (c) F -function; (d) J-function. The
symbol “X” indicates the true values of the parameters.
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Figure A4: Surfaces of the log discrepancy measure constructed by rescaling
drescale(T(ϕobs),T(ϕsim)) for the pilot runs of the Strauss model. Each discrep-
ancy measure is constructed based on different summary characteristics: (a)
K-function; (b) D-function; (c) F -function; (d) J-function. The symbol “X”
indicates the true values of the parameters.
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Figure A5: Surfaces of the log discrepancy measure constructed by rescaling
drescale(T(ϕobs),T(ϕsim)) for the pilot runs of the area-interaction model. Each
discrepancy measure is constructed based on different summary character-
istics: (a) K-function; (b) D-function; (c) F -function; (d) J-function. The
symbol “X” indicates the true values of the parameters.
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Abstract
In the present work attempts have been made to highlight different computational

problems related to common clustering and dimensionality reduction techniques depending
on input data type and underlying model assumptions of the different statistical methods. As
clustering and dimensionality reduction techniques are widely used under machine learning
and big data analysis, it is very much necessary to highlight the limitations to the user
community (especially for the software industry). The effects of directional and missing
data have also been considered.
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1. Introduction

Cluster Analysis, also called data segmentation, has a variety of goals. All relate to
grouping or segmenting a collection of objects (also called observations,individuals, cases, or
data rows) into subsets or “clusters”, such that those within each cluster are more closely
related to one another than objects assigned to different clusters. Central to all of the goals of
cluster analysis is the notion of degree of similarity (or dissimilarity) between the individual
objects being clustered. There are two major methods of clustering - hierarchical clustering
and k-means clustering.

Statistical techniques for classification are essentially of two types. Members of the first
type are used to construct a sensible and informative classification of an initially unclassified
set of data; these are known as cluster analysis methods. The information on which the
derived classification is based is generally a set of variable values recorded for each object
or individual in the investigation, and clusters are constructed so that individuals within
clusters are similar with respect to their variable values and different from individuals in
other clusters. The second set of statistical techniques concerned with classification is known
as discriminant or assignment methods. Here the classification scheme is known a priori and
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the problem is how to devise rules for allocating unclassified individuals to one or other of
the known classes.

Different Statistical techniques are available for clustering and classification (Fraix
Burnet et al. (2015), De et al. (2013) and references there in). But depending on the nature
of the different types of data the following problems often arise and in some cases a proper
solution is still not available.

1. Sometimes the data set under consideration has a distributional form (usually
normal) and sometimes it is of non normal nature. Based on the above point, there is a
justification needed about which clustering or classification technique should be used so that
it reflects the proper nature of the data set provided. This problem is more relevant for
classification as most of the classification methods are model based. For clustering most of
the methods are non parametric in nature and as such the above problem is not very serious.
But here also basic assumption is that the nature of the variables under study are continuous
where as under practical situations these may be categorical like binary, nominal, ordinal
and even directional (particularly for environmental and Astronomical data). Under such
situations standard similarity/ dissimilarity measures will not work.

2. The clustering techniques which require an inherent model assumption are known
as Model Based Methods, whereas the clustering technique where no modelling assumption
or distributional form is needed may be termed as Non-Model based Methods. Hence based
on the nature of data set, one has to decide about proper application of the two types of
techniques.

3. Even if one decides about the proper methods for the data set at hand, there are
several techniques available under both the categories and no predefined criteria can be set
to judge which technique is the best for the situation under consideration.

4. The above point arises the need of a comparative study among various available
techniques and a computational analysis of all the methods.Once all the methods are imple-
mented, it requires a criterion to decide upon the best technique based on a post classifier.
So an appropriate post classification approach is also needed in this regard. For a post
classification approach, a pre-classifier or training sample is required. Since in this type of
techniques a prior knowledge of classification is provided, these are called Supervised Learn-
ing. All other techniques where no prior classification is provided are known as Unsupervised
Learning.

5. A comparative validity algorithm may be helpful for predicting the superiority of
different techniques.

6. At present big data issues related to data size is quite common. In statistical
terms this problems may be tackled in terms of both the number of observations and the
variables considered. Many standard clustering techniques fails to deal with such big data
sets. Thus some dimension reduction methods may be applied at first and then clustering
may be performed on the reduced data set. Some data mining techniques are very helpful
under such situations.
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9. The above criteria also needs to be validated depending on whether the data is Gaus-
sian or non-Gaussian. That means the dimension reduction techniques may vary according
as the data set has a distributional form or not.

10. Finally and most importantly after all these considerations, the similarity of group-
ing of objects obtained from different methods should be checked in terms of some physical
properties .

2. Hierarchical Clustering Technique

Central to all of the goals of cluster analysis is the notion of degree of similarity (or dis-
similarity) between the individual objects being clustered. There are two major methods of
clustering -hierarchical clustering and k-means clustering. In hierarchical clustering the data
are not partitioned into a particular cluster in a single step. Instead, a series of partitions
takes place, which may run from a single cluster containing all objects to n clusters each
containing a single object. Hierarchical Clustering is subdivided into agglomerative meth-
ods, which proceed by series of fusions of the n objects into groups, and divisive methods,
which separate n objects successively into finer groups. Agglomerative techniques are more
commonly used. Hierarchical clustering may be represented by a two dimensional diagram
known as dendrogram which illustrates the fusions or divisions made at each successive stage
of analysis.

2.1. Agglomerative method

An agglomerative hierarchical clustering procedure produces a series of partitions of
the data, Cn, Cn−1, . . . .., C1. The first Cn consists of n single object ‘clusters’, the last C1,
consists of single group containing all n cases.

At each particular stage the method joins together the two clusters which are closest
together (most similar). (At the first stage, of course, this amounts to joining together the
two objects that are closest together, since at the initial stage each cluster has one object.)
Differences between methods arise because of the different ways of defining distance (or
similarity) between clusters.

A key step in a hierarchical clustering is to select a distance measure. A simple measure
is Manhattan distance, equal to the sum of absolute distances for each variable. The name
comes from the fact that in a two-variable case, the variables can be plotted on a grid that
can be compared to city streets, and the distance between two points is the number of blocks
a person would walk.

A more common measure is Euclidean distance, computed by finding the square of
the distance between each variable, summing the squares, and finding the square root of
that sum. In the two-variable case, the distance is analogous to finding the length of the
hypotenuse in a triangle; that is, it is the distance as the crow flies. A review of cluster
analysis in health psychology research found that the most common distance measure in
published studies in that research area is the Euclidean distance or the squared Euclidean
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distance.

To calculate distance between two clusters it is required to define two representative
points from the two clusters. Different linkage measures like “single linkage”, “complete
linkage”, “average linkage” etc have been proposed for this purpose.

2.2. Similarity measure for mixed type data

The above mentioned dissimilarity/similarity measures are applicable to continuous
type data only. But generally we work with mixed type data sets which includes different
types like continuous, discrete, binary, nominal, ordinal etc. Gower (1971) has proposed a
general measure known as Gower’s coefficient of similarity. Two individuals i and j may be
compared on a character k and assigned a score sijk. There are many ways of calculating
sijk, some of which are described below.

Corresponding to n individuals and p variables, Gower’s similarity index Sij is defined as

Sij = Σp
k=1sijk/Σ

p
k=1δijk(i, j = 1, 2, . . . n)

where δijk = 1 when character k can be compared for
observations i and j

= 0 otherwise

For continuous (quantitative) variables with values x1k, x2k, . . . , xnk for the kth variable

sijk = 1− | xik − xjk | /Rk

where Rk is the range of the variable k and may be the total range in population or the
range in the sample.

For a categorical (qualitative) character with m categories (m = 2 for binary variable)

sijk = 0 if i and j are totally different
= q (positive fraction) if there is some degree of agreement
= 1 when i and j are same

2.3. Linkage measures

To calculate distance between two clusters it is required to define two representative
points from the two clusters. Different methods have been proposed for this purpose. Some
of them are listed below.

Single linkage: One of the simplest methods is single linkage, also known as the nearest
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neighbor technique. The defining feature of the method is that distance between clusters is
defined as the distance between the closest pair of objects, where only pairs consisting of one
object from each cluster are considered.

In the single linkage method, drs is computed as drs = Min dij, where object i is in
cluster r and object j is in cluster s and dij is the distance between the objects I and j.
Here the distance between every possible object pair (i, j) is computed, where object i is in
cluster r and object j is in cluster s. The minimum value of these distances is said to be
the distance between clusters r and s. In other words, the distance between two clusters is
given by the value of the shortest link between the clusters. At each stage of hierarchical
clustering, the clusters r and s, for which drs is minimum, are merged.

Complete linkage: The complete linkage, also called farthest neighbor, clustering method
is the opposite of single linkage. Distance between clusters is now defined as the distance
between the most distant pair of objects, one from each cluster. In the complete linkage
method, d − rs is computed as drs = Max dij, where object i is in cluster r and object j
is cluster s. Here the distance between every possible object pair (i, j) is computed, where
object i is in cluster r and object j is in cluster s and the maximum value of these distances
is said to be the distance between clusters r and s. In other words, the distance between two
clusters is given by the value of the largest distance between the clusters. At each stage of
hierarchical clustering, the clusters r and s, for which drs is minimum, are merged.

Average linkage: Here the distance between two clusters is defined as the average of
distances between all pairs of observations, where each pair is composed of one object from
each group. In the average linkage method, drs is computed as drs = Trs/(Nr×Ns) where
Trs is the sum of all pairwise distances between cluster r and cluster s. Nr and Ns are the
sizes of the clusters r and s respectively. At each stage of hierarchical clustering, the clusters
r and s, for which drs is the minimum, are merged.

Minimax Linkage: This was introduced by Bien and Tibshirani (2011). For any point x
and cluster G, define

dmax(x,G) = maxy∈G d(x, y)

as the distance to the farthest point in G from x. Define the minimax radius of the cluster
G as

r(G) = minx∈G dmax (x,G)

that is, find the point x ∈ G from which all points in G are as close as possible. This
minimizing point is called the prototype for G. It may be noted that a closed ball of radius
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r(G) centered at the prototype covers all of G. Finally we define the minimax linkage between
two clusters G and H as

d(G,H) = r(GUH)

that is, we measure the distance between clusters G and H by the minimax radius of the
resulting merged cluster.

It is very important to choose a proper linkage measure in a particular situation.
A liberal attitude always leads to single linkage whereas a conservative attitude leads to
complete linkage. Minimax is a good choice when one tries to avoid a wrong decision (loss is
more important than gain) and without any prior belief, average linkage may give the best
answer.

2.4. Optimum number of clusters

Usually the number of clusters are determined from the dendrogram and validated by
the physical properties. We specify a horizontal line for a particular similarity/dissimilarity
value and the clusters below this line are selected as optimum. But some mathematical rules
(thumb rules) are also available which are based on between cluster and within cluster sum
of squares values. If we denote by k, the number of clusters and define by W (k) the sum
of the within cluster sum of squares for k clusters then the values of W (k) will gradually
decrease with increase in k and that “k” may be taken as optimum where W (k) stabilizes. For
detailed discussion on may follow the link http://www.cc.gatech.edu/∼hpark/papers/cluster
JOGO.pdf (by Jung et al. (2002)).

3. Partitioning Clustering - k-means Method

The k-means algorithm (MacQueen, 1967) assigns each point to the cluster whose
center (also called centroid) is nearest. The center is the average of all the points in the
cluster that is, its coordinates are the arithmetic mean for each dimension separately over
all the points in the cluster. This method can be used for clustering of objects and not
variables.

This method starts with a value of k. We will discuss later the method of selection of
the value of k. Then we randomly generate k clusters and determine the cluster centers, or
directly generate k seed points as cluster centers. Assign each point to the nearest cluster
center in terms of Euclidean distance. Re-compute the new cluster centers. Repeat until
some convergence criterion is met i.e. there is no reassignment. The main advantages of
this algorithm are its simplicity and speed which allows it to run on large data sets. Its
disadvantage is that it is highly dependent on the initial choice of clusters. It does not yield
the same result with each run, since the resulting clusters depend on the initial random
assignments. It maximizes inter-cluster variance and minimizes intra-cluster variance.
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The advantages of partitioning method are as follows:

(a) A partitioning method tries to select best clustering with k groups which is not the
goal of hierarchical method.

(b) A hierarchical method can never repair what was done in previous steps.

(c) Partitioning methods are designed to group items rather than variables into a collection
of k clusters.

(d) Since a matrix of distances (similarities) does not have to be determined and the basic
data do not have to be stored during the computer run partitioning methods can be
applied to much larger data sets.

For k-means algorithms (Hartigan, 1975) the optimum value of k can be obtained in
different ways. On the basis of the method proposed by Sugar and James (2003), by using
k-means algorithm first determine the structures of clusters for varying number of clusters
taking k = 2, 3, 4 etc. For each such cluster formation compute the values of a distance
measure

dK = (1/p) minxE[(xk − ck)′(xk − ck)]

which is defined as the distance of the xk vector (values of the parameters) from the center
ck (which is estimated as mean value), p is the order of the xk vector. Then the algorithm for
determining the optimum number of clusters is as follows. Let us denote by d′k the estimate
of dk at the kth point which is actually the sum of within cluster sum of squares over all
k clusters. Then d′k is the minimum achievable distortion associated with fitting k centers
to the data. A natural way of choosing the number of clusters is plot d′k versus k and look
for the resulting distortion curve. This curve is always monotonic decreasing. Initially one
would expect much smaller drops i.e. a levelling off for k greater than the true number of
clusters because past this point adding more centers simply partitions within groups rather
than between groups.

According to Sugar and James (2003) for a large number of item versus transformed
d′k. Then calculate the jumps in the transformed distortion as

Jk = (d′(−(p/2))
k − d′(−(p/2))

k−1 )

Another way of choosing the number of clusters is plot Jk versus k and look for the
resulting jump curve. The optimum number of clusters is the value of k at which the
distortion curve levels off as well as its value associated with the largest jump.

The k-means clustering technique depends on the choice of initial cluster centers (Chat-
topadhyay et al., 2012). But this effect can be minimized if one chooses the cluster centers
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through group average method (Milligan, 1980). As a result, the formation of the final
groups will not depend heavily on the initial choice and hence will remain almost the same
according to physical properties irrespective of initial centers. In MINITAB package, the
k-means method is almost free from the effect of initial choice of centers as they have used
the group average method.

3.1. Advantages and disadvantages of k-means algorithm

The main advantages of this algorithm is that it is very fast (in terms of computational
speed), robust, easy to understand and interpret. In fact the algorithm has been modified
by Hartigan and Wong (1979) which speeds up the algorithm and is used most commonly
in the community. The open-source statistical computing environment R (https://cran.r-
project.org/); the software which is used in this entire work; has the built-in function
kmeans() which implements the above discussed version of the k-means algorithm as its
default. The algorithm is very much well suited for the data which are distinct and well-
separated from each other. The clusters thus formed are tight and often tighter than the
Hierarchical Clustering method, especially when the clusters are globular. But the algorithm
suffers due to a number of reasons. k -means depends heavily on the initialization/ seeds.
The algorithm assumes the joint distribution of the features within each cluster to have
equal variance and to be independent of each other. This assumption is hard to satisfy more
than often. Correlation between the features breaks this assumption. k-means cannot find
non-convex clusters or the clusters with unusual shapes or overlapping clusters. Finally, this
algorithm requires a priori knowledge on the number of clusters/groups to be formed. This
is most commonly tackled by using the method proposed by Sugar and James (2003) which
has been discussed earlier. Jump-Statistic as a mean of determining the number of clusters
“k” is very popular and widely accepted measure. Other possibilities are the uses of gap
statistic or silhouette index.

3.2. Example using k-means algorithm

The Fisher’s Iris data set is a multivariate data set introduced by R.A. Fisher (Fisher
(1936)). It is also known as Anderson’s Iris data set because Edgar Anderson collected the
data to quantify the morphologic variation of Iris flowers of three related species. The data
set consists of 50 samples from each of three species of Iris (Iris setosa (type-3), Iris versicolor
(type-2) and Iris virginica (type-1)). Four features were measured from each sample: the
length and the width of the sepals and petals, in centimetres.

We have performed k-means clustering of the data on the basis of the four variables
viz. sepal length, sepal width, petal length and petal width. Choosing k = 3, we have
divided the 150 observations into three groups in order to verify whether we can identify
three groups corresponding to three species. From our analysis it is clear that k-means
method has correctly identified Iris setosa (type-3) species for all the 50 cases where as there
are some errors corresponding to types 1 and 2. For type 2 three cases and for type 1 fourteen
cases had wrongly identified. The summary result for k-means clustering is given below:
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Number of clusters: 3

Number Within Average Maximum
of cluster distance distance

observations sum of from from
squares centroid centroid

Cluster1 39 25.414 0.732 1.552
Cluster2 61 38.291 0.731 1.647
Cluster3 50 15.151 0.482 1.248

4. Clustering of Variables

The hierarchical clustering method can also be used for clustering of variables on the
basis of the observations. Here instead of the distance matrix one may start with the cor-
relation matrix (higher correlation indicating similarity of variables). The linkage measures
as listed in the previous section will not be applicable for variable clustering. In order
to measure similarity/dissimilarity between two clusters of variables, one may either use
the correlation between first principal components corresponding to the two clusters or the
canonical correlations.

Dimensionality reduction techniques like Principal Component Analysis (PCA) or In-
dependent Component Analysis (ICA) could alternatively be used for variable clustering.
The variables with larger loading belonging to a particular component may be considered to
be in the same cluster.

4.1. Principal Component Analysis (PCA)

In this technique, given a data set of observations on correlated variables, an orthogonal
transformation is performed to convert it into a set of uncorrelated variables called the
principal components. The number of principal components is less than or equal to the
number of original variables. This transformation is defined in such a way that the first
principal component has the largest possible variance. One rule of thumb is to consider
those components whose variances are greater than one in the reduced space. Principal
components are guaranteed to be independent only if the variables are jointly normally
distributed.

4.2. Independent Component Analysis (ICA)

One of the most recent powerful statistical techniques for analyzing large data sets
is independent component analysis (ICA), see Comon (1994) for the original description of
ICA. Such data sets are generally multivariate in nature. The common problem is to find a
suitable representation of the multivariate data. For the sake of computational and concep-
tual simplicity such representation is sought as a linear transformation of the original data.
Principal component analysis, factor analysis, projection pursuit are some popular methods
for linear transformation. But ICA is different from other methods, because it looks for the
components in the representation that are both statistically independent and non-Gaussian.
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In essence, ICA separates statistically independent component data, which is the original
source data, from an observed set of data mixtures. All information in the multivariate data
sets are not equally important. We need to extract the most useful information. Independent
component analysis extracts and reveals useful hidden factors from the whole data sets. ICA
defines a generative model for the observed multivariate data, which is typically given as a
large database of samples. See Hyvarinen et al. (2001), Comon and Jutten (2010) and Lee
(1998) for book length discussions on ICA. ICA can be applied in various fields like neural
network (Fiori, 2003), studying EEG data (Bartlett et al., 1995), speech processing (Ku-
maran et al. 2005), brain imaging (McKeown et al., 1997), signal separation (Adali et al.,
2009), telecommunications (Hyvarinen et al., 2002), econometrics (Bonhomme and Robin,
2009), etc. Chattopadhyay et al. (2012) has applied ICA for astronomical data set.

4.3. Conversion of directional data to linear

Note that PCA or ICA has been developed for linear continuous data but if one variable,
is circular in nature then the method will not work.. But it is not immediate how to include
this type of data for clustering directly or through PCA or ICA. If a density plot of the data
show the circular variable has a bimodal distribution and the two modes are near 0o and 200o,
we may be motivated to consider two main directions, say east and west (approximately),
which correspond to 0o and 180o.

Chattopadhyay et al. (2015) proposed a method of conversion from circular to linear
where they considered standard cosine angular distance of an angle θ from a fixed angle φ,
defined by dφ = 1−cos(θ−φ), which is in the linear scale, and d ∈ [0, 2]. Thus, for a circular
variable θ , we may consider two distances d0 = 1− cos(θ− 0o) and d180 = 1− cos(θ− 180o),
both of which are linear. So, instead of taking θ in our analysis, we may consider the pair
(dmax, dsign), where dmax = max(d0, d180) and dsign = +1 if dmax = d0 and dsign = −1 if
dmax = d180. Alternately, if we want to ignore the sign we can work with θ∗ = 2× θ, which
is approximately unimodal with mode near 45o. We may work with d∗ = 1− cos(θ∗ − 45o).

5. Incomplete Data problems

Statistical analysis with missing data is an important problem as the problem of miss-
ing observation is very common in many situations. During the last two decades different
methods have been developed to tackle the situation.One possible way to handle missing
values is to remove either all features or all objects that contain missing values. Another
possibility is imputation where we fill in the missing values by inferring new values for them.
The imputation method may not be applicable to some astronomical data sets (Chattopad-
hyay, 2017) as the missing value may arise from physical process and imputing missing
values is misleading and can skew subsequent analysis of data. For example, the Lyman
break technique (Giavalisco, 2002) can identify high-redshift galaxies based on the absence
of detectable emissions in bands corresponding to the FUV rest frame of the objects. Such
high-redshift galaxies were previously unobservable.

Missing values occur for a variety of reasons, from recording problems to instrument
limitations to unfavorable observing conditions. In particular, when data are combined
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from multiple archives or instruments, it is virtually certain that some objects will not be
present in all of the contributing sources. Little and Rubin (1987) identified three models for
missing data. When values are Missing At Random (MAR, MCAR), imputation may be a
reasonable approach since the values may be predicted from the observed values. The third
type of missing values are Not Missing at Random (NMAR), when the value itself determines
whether it is missing. This is precisely the case when objects fall below a detector’s sensitivity
threshold. There is no way to impute these values reliably, because they are never observed.

Under the regression set-up with predictor X and response Y, missing value problems
often arise. To decide how to handle missing value problems, primarily we need to know
why these values are missing. We may explain the above three general missing mechanisms
in the following manner.

A variable value is missing completely at random (MCAR) if the probability of miss-
ingness is the same for all units. Under the regression set-up if the missing values are
independent of both response and predictor then these are called missing completely at ran-
dom. Most missingness is not completely at random. A more general assumption,missing
at random (MAR), is that the probability of a variable value is missing depends only on
variable information. Under the regression set up, if the missing value depends on predictor
but not on response then these are called missing at random.

Missingness is no longer at random if it depends on information that has not been
recorded and this information also predicts the missing values. In particular, a difficult
situation arises when the probability of missingness depends on the variable itself. Under the
regression set-up this type of situation arises when probability of response depends on both
response and predictor.For statistical inference with missing information, we usually assume
that the missingness pattern is MCAR or MAR. But in many situations these assumptions
are not valid.

In clustering algorithms, different packages use different types of imputation techniques
like mean imputation, hot deck imputation etc. In order to estimate the missing values prop-
erly one should take care of this fact. Use of EM algorithm is usually recommended.

6. Conclusion

From the above discussions it is very clear that although clustering and dimension re-
duction problems are widely used under different disciplines by scientists from several areas,
one should always take care of the nature of data in order to apply the methods successfully.
In the introduction we have listed several such problems and only a few are discussed in
latter sections. It is quite expected that one may identify many other computation based
problems which are not listed here.
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Abstract
Health service utilization research suffers from lack of statistical methods to analyze

routinely obtained zero-inflated correlated outcome data from multilevel longitudinal stud-
ies. Parameter estimation suffers from use of maximum likelihood based approach involving
cumbersome integration which results in lack of model convergence and utilization of consid-
erable computing resources. Similarly, sample size to conduct randomized controlled trials
are estimated using either inappropriate linear models or simplified non-linear models which
ignore multiple levels of nesting resulting in severely under powered studies. We propose a
robust estimation method based upon Laplace approximation to estimate parameters and
derive formula to compute required sample size employing multiple levels of nesting.

Key words: Health services; Zero-inflated data; Laplace approximation; Sample size.

1. Introduction

Health services (HS) researchers are widely using hierarchical mixed-effects models for
analysis of their correlated clustered and longitudinal data. Parameters are generally esti-
mated by maximum marginal likelihood, empirical Bayes estimation, fully Bayesian strate-
gies and Generalized Estimating Equations (GEE), and hypotheses are tested using t, χ2

or F tests. Furthermore, considerable computer software has now been developed and is
either freely available over the Internet or commercially available. However, this area is still
challenged by a lack of statistical methods appropriate for addressing some unique aspects
of health services research data. A major problem in HS data is missing outcomes as well as
covariate values. Another equally complex problem is the profusion of zero values in count
data such as service units or costs, which results in a highly skewed distribution. To address
these issues, in many instances missing values are imputed, and hierarchical zero-inflated
mixed models are utilized even though non-convergence issues prevail in estimation. In such
models, justification of using random effects in terms of testing its variance components is
avoided because of unavailability of user-friendly testing procedures at the boundary value.
Another challenge is the determination of sample size, as inadequate sample size runs the
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risk of inflated false positive findings (Type I error), while fitting the model with an ex-
cessive number of random-effects can mask significant relationships (Type II error). This
manuscript addresses issues pertaining to parameter estimation and sample size calculation
for HS researches and bridge a critically important gap in the designing stage of health
research studies in general, and mental health services research in particular.

In mental health services research investigators have studied service utilization, barriers
to service utilization, disparities in service utilization and cost associated with service uti-
lization (Hacker, et al. 2015). Similarly, service utilization data are also found in research on
general health care (Gilbert, et al. 2012), dentistry (Moghimbeigi, et al. 2008), occupational
health (Min and Agresti, 2005) and substance abuse (Bandhophadyay, et al. 2011). Our
careful analysis of the literature revealed that service utilization research studies regularly
encounter the problem of missing outcomes and covariates, zero-inflation, over-dispersion,
and non-convergence of statistical models. In addition, this area requires feasible parameter
estimation techniques and sample size determination methods and user friendly software for
analysis of HS data. Particularly there is an lack of suitable software for sample size deter-
mination when zero-inflation is expected in a hierarchical design with random-effects. Most
of the existing methods either assume linear model or completely ignore the random-effects
by using the GEE approach. As such there is a genuine need for sample size methodologies
and more importantly software to calculate sample size for service utilization research with
zero-inflation.

In Section 2, we present some motivating examples. In Section 3, we discuss methods
to model service utilization data. In Section 4, we derive formulae for sample size calculation
for studies employing hierarchical designs resulting in zero-inflated outcomes . In Section 5,
we present some concluding remarks on service utilization data.

2. Motivating Examples

Next we present two HS research studies to motivate the need for theoretical develop-
ments.

2.1. Example 1

The first problem was investigated by Atkins, et al. (2015) and compared group dif-
ferences between Links to Learning (L2L), a school and home-based mental health service
model, and Service As Usual (SAU) on several domains including mental health service use,
classroom observations of academic engagement, teacher report of academic competence and
social skills, parent report of social skills, teacher and parent report of problem behaviors,
daily hassles, and curriculum-based measures. Services were Medicaid-funded through 4
social service agencies (N = 17 providers) in 7 schools (N = 136 teachers, 171 children con-
sists of 124 boys (50 control + 74 Link), and 47 girls (17 control + 30 Link)) in a 2 (Links
to Learning vs. services as usual) 6 (pre- and post tests for 3 years) longitudinal design
with random assignment of schools to conditions. Services as usual consisted of supported
referral to a nearby social service agency. The primary interest was in differential change
over time. A three-level hierarchical design with multiple observations from students nested
within schools was used to analyze the study data. The model included covariates at both
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the student level (grade, gender) and classroom and teacher level (classroom assessment
scoring system, teacher sense of efficacy scale, organizational health inventory-elementary
and Quality of teacher work life survey). The conclusion of the study was that community
mental health services targeting empirical predictors of learning can improve school and
home behavior for children living in high-poverty urban communities. For a full description
of data decomposition, analysis methods, missing value problems and significant results we
refer to Atkins, et al. (2015). Some key difficulties encountered during the analysis of this
dataset were (i) problem of missing data (more than 41.79% in control and 52.88% in L2L
data), (ii) differential measurement errors, and (iii) the problem of unreliable measures of
some outcomes and covariates. This analysis inspired us to develop novel statistical meth-
ods to estimate missing outcomes when corresponding covariates are known, and missing
covariates when corresponding outcome measures are known, but in both situations causes
of missingness are unknown.

2.2. Example 2

Our second example is based on the work by Cook, et al. (2019) and Bhaumik, et
al. (2019). They recently analyzed data from randomized trial of self-directed care in Texas
public mental health system. In this study, the Zero-Inflated Negative Binomial (ZINB)
and log-gamma models were used to test the effect of an experimental intervention called
self-directed care, in which patients have greater control over service delivery funds and can
choose to hire and fire specific service providers. The authors applied the ZINB model to
analyze service utilization and log-gamma model for analysis of cost data. A total of 216
subjects with serious mental illness receiving care in the Texas public mental health system
were randomly assigned with their consent to receive services as usual ( = 102) or the exper-
imental intervention ( = 114) and followed for 24 months. The primary hypothesis was that
the experimental intervention would produce superior client outcomes at 12 and 24-month
follow-up and this proved to be the case. However, since the intervention was intended to
be budget neutral (i.e., to cost no more than services delivered through the usual system),
secondary analysis of service costs was required. Administrative data were obtained from
the local area’s managed care company in the form of “shadow claims” and grouped into
costs during the first and second years of program participation and for both years combined.
Over the two years of the program, experimental participants incurred a total average per
person cost of 5, 239(s.d. = 5, 500) compared to an average of 5, 493(s.d. = 8, 268) per person
in the control group. This difference was non-significant, as expected. However, costs for
specific service types had the additional challenge of being zero-inflated, with many non-users
of some services. Consequently, the authors used ZINB/log-gamma models for individual
services/costs, which model the mixture of the likelihood of having zero service/costs in
each category, and the relative amount of service/costs among users. As shown in Table 1,
experimental condition subjects were more likely than controls to have zero costs for psy-
chiatric rehabilitation, case management, and skills training, but there were no differences
in costs for users of these three services. On the other hand, there was no difference in the
likelihood of zero costs for medication management, but among users of this service, costs
were significantly lower for the experimental group. For the service of psychotherapy, the
experimental group was less likely than controls to have zero costs, and costs were higher for
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experimental than control subjects. When the authors used linear mixed-effects regression
analysis of these individual service costs adjusting for time, the experimental condition costs
were lower for psychiatric rehabilitation, skills training, and medication management, and
higher for psychotherapy. The linear mixed-effects model cannot provide information sepa-
rately for zero costs and costs for users. Clearly, ZINB modeling provided a more complex
and complete picture of cost differences where they existed.

Table 1: ZINB analysis modeling first, likelihood of zero costs, and second, costs
among service users

Psychiatric Rehab Case Mgmt Skills Training Medication Mgmt Psycho-therapy
Estimate p Estimate p Estimate p Estimate p Estimate p

Pred. zero cost 0.755 .007 1.183 .001 1.484 <.001 0.731 .076 -1.602 <.001
Pred. costs users-0.297 .124 0.076 .855 -0.490 .151 -0.439 .001 1.134 .001

There are important implications in these results for health services researchers and the
service system administrators and policy makers who use these study findings. First, ZINB
allowed us to use a “two-part model” in analyzing utilization data (Manning, et al. 2005).
As noted by Diehr, et al. (1999), the decision to have any use of a service is most likely
made by the person and so is primarily associated with personal characteristics, while the
cost per user may be more related to features of the health care system. When the goal is
understanding the system, a two-part model is preferred because it enables researchers to
differentiate between influences on the propensity to use a service, and factors affecting how
much of the service is used and at what cost once the individual enters the service delivery
system (Diehr, et al. 1999).

3. Model

In this section we present some models for analysis of count data inflated with zeros.
We begin by positing c centers and ni subjects nested within the ith center. The total
number of subjects N = ∑c

i=1 ni are randomized into intervention and control groups. We
assume that each subject may utilize mental health services longitudinally over T different
time periods. The outcome variable yisjt measures the number of times the jth subject from
the ith center nested within the sth intervention group used mental health services for the
tth time period. The log likelihood function for all observations yi= (yi111, · · · , yi2nT )t
nested within the ith center is

logit(πisjt) = γ0 + γ1g(t) + γ2xijk + γ3xijkg(t) +γt∗wijk + νi0 + νi1g(t) + δisj0 + δisj1g(t), (1)

log(λisjt) = β0 + β1g(t) + β2xijk + β3xijkg(t) + βt∗zijk + υi0 + υi1g(t) + δ∗
isj0 + δ∗

isj1g(t), (2)

Here f(yisjt) be the probability mass function of a Poisson distribution for a zero
inflated Poisson (ZIP) model, and if the model is zero inflated negative binomial then
f(yisjt = k) = (1− πij)

Γ(k+λ1−d
ij /α)

kΓ(−λ1−d
ij /α)(1 +αλdij)−λ1−d

ij /α(1 + λ−d
ij /α)−k. The dispersion parameter
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α is always non-negative and does not depend on covariates. This distribution reduces to
the ZIP distribution when α → 0. The constant d is used to identify a particular form of
a negative binomial distribution (see Saha and Dong, 1997). For various forms of negative
binomial distributions we refer to (McCullagh and Nelder 1989, Ridout, et al. 2001, Yau,
et al. 2003). Xiang, et al. (2007) used a score test for testing the over-dispersion of a ZIP
regression model against the ZINB alternative (i.e., α = 0 in a ZINB model). Both ZIP
and ZINB regression models will be inappropriate for fitting data with zero deflation at any
settings of the explanatory variables. A useful model for such a situation is the “Hurdle”
model proposed first by Mullahy (1986) that separately handles the zero observations and
the positive counts. An advantage of the Hurdle model is that it can handle both the zero
inflation and zero deflation. The downside of this model is that all zero counts are struc-
tural whereas ZINB and ZIP models allow both structural and functional zeros (Pardoe and
Durham, 2003). In the Hurdle model, g2(yij) = f(k)/(1− f(0)).

In model (1), γ0 +γ1g(t) and γ0 +γ1g(t) +γ2xijk +γ3xijkg(t) are the fixed linear trends
for the control group, and for the intervention group, respectively. Thus γ3 differentiates the
slope of the treatment group from the control group of service utilization and β3 has a sim-
ilar interpretation of frequency of service utilization. Exponentiation of γ3 and β3 provides
the odds ratio and risk ratio respectively. Note that these parameter estimates are subject-
specific, which indicates the effectiveness of the intervention at the individual level. The
interpretation of β∗ and γ∗ is of considerable interest. The gamma parameters (γ∗) describe
the effects of the covariates on the likelihood of service utilization, whereas the beta param-
eters (β∗) describe the effects of the same or possibly different covariates on the intensity of
service utilization. Also, νi0 + νi1g(t) is the random linear trend for the ith site effect. The
correlation between subjects nested within the same site is accounted for by the presence of
random site effects. Similarly δisj0 + δisj1g(t) is the random linear trend for the jth subject
nested within the ith site, and the random linear trend at the subject level takes care of the
correlation between multiple observations nested within the same subject. Similar interpre-
tations hold in model (2). The vectors wijk and zijk represent the additional fixed covariates
such as age, race, sex etc. for the logit and the log-linear components. A three-level ZIP or
ZINB longitudinal mixed-effects model can have a total of 12 variance covariance parameters;
six components from the binary part (variance for random intercept, variance for random
slope and their covariance for subjects and for communities), and a parallel set of six vari-
ance components from the count part of the model. Even though 12 variance components
in the above models seems to be a reasonable assumption, in actuality, we do not know how
many of them are really significant. Keeping all of them may over-saturate the model. To
select an appropriate model we generally use deviance, Akaike information criterion (AIC),
and Bayesian information criterion (BIC). Several authors have recently noted that AIC
and BIC are not appropriate for model selection when the sample size is small (Kass and
Raftery, 1995, Seghouane, 2006, Chen, et al. 2008, Tu and Xu, 2012). To resolve this issue,
there is a need for alternative approaches to evaluate the significance of variance components.
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3.1. Estimation of model parameters

The goal of this section is to derive and use the marginal likelihood function of fixed
parameters (i.e. γ and β) conditioning on the data and a suitable estimate of random effects
(posterior mode). At the initial stage, it is assumed that variance components are known.
The numerical integration over the space of random-effects in the estimation process is
avoided by approximating the log-likelihood around the starting values of random-effects. In
addition, we investigate an alternative procedure based on ordinary Laplace approximation.
The convergence rates of both ordinary Laplace and Marginal Maximum Likelihood (MML)
(combination of Gaussian quadrature and Newton Rhapson method) is O(n−1) (Ghosh,
et al. 2006, page 206). However, MML requires enormous computational time and often
fails to converge for hierarchical Zero-Inflated Data (ZID). Xie, et al. (2013) and Gupta, et
al. (2015) encountered similar convergence problem in their analysis of ZID. On the other
hand, the Laplace approximation avoids numerical integration by exploiting a property of
the multivariate normal distribution. As a result, this method provides better guarantee of
convergence compared to the quadrature methods for hierarchical models. For comparison
purposes we also include the penalized quasi likelihood (PQL) approach (Hyede, 1997).

3.2. Comparison of three estimation methods

First, zero-inflated data were simulated under the assumption that all random-effects
in the logistic component were stochastically independent from the random-effects in the log
linear component. This assumption reduced the complexity of numerical computation. To
compare results of parameter estimation obtained by Laplace and quadrature methods for
a two-level Poisson and logistic regression mixed-effects models, we set intercept parameters
of control and intervention groups at 3 and 0, respectively, and slope parameters at -0.5 and
-1, respectively. The variance-covariance matrix of the random slope and random intercept
were set at (1, -0.2, 0.05). Based on simulations using a two-level ZI model, we observed in
Table that Laplace and quadrature methods produced similar results, whereas results by
PQL were unsatisfactory. In addition, we observed in Table that standard errors of these
estimates for both Laplace and quadrature methods did not vary significantly. However, the
convergence rate obtained by the Laplace method was substantially higher than that of the
quadrature method. In addition, the Laplace method required, on average, one-fourth of the
computing time required by the MML method (whenever it converged), and the accuracy
rates of both Laplace and quadrature were at the same level.

3.3. Computation time and convergence

Another critically important issue in fitting complex models with numerous random-
effects is computational time and model convergence. To investigate these issues we used
PROC NLMIXED, SAS version 9.4 to fit our models. The computational times for ZIP and
ZINB models (i) with fixed-effects, are in terms of seconds, (ii) with mixed-effects having
one or two random-effects, are less than 5 minutes for both quadrature and Laplace, (iii)
with mixed-effects having three random-effects, are around 80 minutes for quadrature and
less than 25 minutes for Laplace, (iv) the quadrature did not converge for both ZIP and
ZINB models with four random-effects, whereas, for the same models with four random
effects, Laplace converged in two hours. The same data analyzed using GEE took less than
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Table 2: Estimation of parameters and standard errors by Laplace, Quadrature
and PQL for Poisson and logistic regression models.

Laplace Quadrature PQL
Parameters Poisson Logistic Poisson Logistic Poisson Logistic
β0 = γ0 = 3 2.997 (0.14) 3.31 (0.63) 2.997 (0.14) 3.202 (0.68) 3.022 (0.14) 2.736 (0.87)
β1 = γ1 = −0.5 -0.499 (0.04) -0.558 (0.14) -0.498 (0.04) -0.537 (0.14) -0.478 (0.04) -0.463 (0.08)
β2 = γ2 = 0 0.007 (0.20) -0.018 (0.64) 0.007 (0.20) 0.039 (0.62) -0.016 (0.25) -0.082 (0.72)
β3 = γ3 = −0.5 -0.503 (0.07) -0.543 (0.21) -0.504 (0.07) -0.557 (0.25) -0.490 (0.37) -0.412 (0.54)
σ2

δ0
= σ2

δ∗
0

= 1 0.979 (0.14) 1.412 (1.53) 0.981 (0.15) 1.606 (1.60) 0.959 (0.25) 0.219 (0.64)
σδ01 = σδ∗

01
= −0.2 -0.197 (0.04) -0.573 (0.53) -0.197 (0.04) -0.354 (0.40) -0.204 (0.09) -0.005 (0.79)

σ2
δ1

= σ2
δ∗

1
= 0.05 0.086 (0.01) 0.149 (0.15) 0.086 (0.01) 0.154 (0.21) 0.083 (0.11) 0.012 (0.25)

one minute with an exchangeable correlation matrix. The Bayesian approach with three
random-effects took 10 minutes to update 1 chain for 10,000 iterations (5000 burn-in, 5000
update), and 15 minutes to update 2 chains for 10,000 iterations (5000 burn-in, 5000 update).
We further repeated the simulation study with various levels of missingness and observed that
computational time varied significantly between the methods, and non-convergence became
a norm rather than an exception, especially when missingness exceeded more than 30%.
An alternative approach when convergence persists is the use of “Maximum A Posteriori
(MAP)” estimation that sets the initial value of the parameters to their posterior mode,
and uses adaptive quadrature instead of fixed-point quadrature. Yet another alternative
is to use the Laplace approximation at each center, and then perform meta analysis to
combine results from centers (Bhaumik, et al. 2012, Amatya, et al. 2015). Convergence rate
for this combination approach is expected to be better as random components at the center
level are eliminated. Based on this simulation study, we recommend to use Laplace method
(or a combination of Laplace and meta analysis) for estimating parameters of zero inflated
models when number of random effects is more than two in order to get consistent estimators
avoiding non-convergence issues.

4. Sample Size Determination

In this section we address the issue of sample size determination for hierarchical designs
with zero-inflated data.

Statistical methods for the analysis of longitudinal data with clustering of subjects
are now routinely applied in mental health service utilization studies. The design of such
studies often suffers from poorly specified and often inadequate sample sizes. This is be-
cause sample size determination methodology is derived based on a single outcome, or based
on longitudinal studies which ignore clustering. The determination of sample sizes when
subjects are both repeatedly measured over time and clustered within research sites (e.g.,
multisite Randomized Controlled Trials (RCTs)) can be erroneous unless both factors, and
attrition rates are taken into account. Several authors have developed power analysis for
cluster-randomized, and/or repeated measurements studies (Roy, et al. 2007, Bhaumik, et
al. 2008, 2013, Amatya, et al. 2013, Kapur, et al. 2014). Some of the key features of power
calculations include (i) type of randomization (participant level, or site level), (ii) cluster
and longitudinal variability, (iii) differential attrition rates over time, and also in different
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groups (i.e. intervention and control groups), and (iv) proportion of allocations of subjects.

4.1. Theoretical foundation for sample size computation using generalized linear
models

Denote the outcome of the ith subject nested within the cth cluster measured at the
jth time point by ycij, where i = 1, . . . , n, c = 1, . . . , C, and j = 1, . . . , T . Let yci=
(yci1, yci2, · · · , yciT )t be a column vector of dimension T × 1 composed of outcomes of the
ith subject measured at T different time points. Generalized linear mixed model that links
the expectation of yci to the linear predictor has the following expression: E(yci|δ,γ) =
h(Xciβ+Zciδci +W ciγc) = h(ηci), where ηci = Xciβ+Zciδci +W ciγc, and Xci, Zci and
W ci are design matrices associated with fixed-effects (β), subject-level random-effects (δci),
and cluster-level random-effects (γc), respectively. Random-effects δ and γ are independent
and assumed to follow multivariate distributions. Denote the number of clusters by C,
number of treatments by S, the covariance matrix of the pseudo observation y∗ (obtained by
linearizing the real observation y) by V s, the noncentrality τ parameter of a noncentral F
distribution with degrees of freedom a and b by H(a, b, α, τ). Assume G: (S−1)×1 is group
indicator vector whose sth element is 1 corresponding to treatment s; 0 otherwise. Denote
Cov(β̂) = C−1Γ−1. The focus now is on testing a set of linear hypotheses related to group-
by-time (or a function of time) interaction parameters which are expressed in the following
general linear hypothesis set up of the fixed-effect parameters β, H0 : Lβ = 0 vs. H1 : Lβ 6=
0.

4.2. Results

Assume that a study wants to compare S treatments in C centers utilizing a longitu-
dinal design of length T , and an allocation vector of π = (π1, . . . , πS)t. Further assume that
each center wants to use n subjects and randomization is performed at the center level, i.e.
all subjects in a given center receive the same treatment assigned to that particular center.
Let the proportion of dropouts in centers receiving the sth treatment be ξs = (ξs,1, . . . , ξs,T )t.
In order to attain at least (1 − τ)100% power for the test specified in H1 at an alternative
value of β = β∗, the required number of subjects n per center should maintain the following
constraint:

n ≥ min{j : λ̂(j) ≥ H(S − 1, C − S, α, τ)/C}, (3)

where λ̂(j) = (Lβ∗)t(LΓ̂
−1
Lt)−1(Lβ∗). An arbitrary value of C cannot provide a valid

solution of (3). Equation (3) provides a feasible solution only when C ≥ C∗, where

C∗ = H(S − 1, C − S, α, τ)/(β∗tLt[L((U t∆πU)⊗Σ−1
γ )−1Lt]−1Lβ∗), (4)

where, ∆π is a diagonal matrix with diagonal elements πs, U = (ut1, · · · ,uts)t and us =
(1 Gt

s)t and ⊗ is the Kronecker product. Thus, C∗ is the lower bound of C and is
independent of n. The proof is mathematically intensive and lengthy, hence is not given
here (see Amatya and Bhaumik (2018) for complete derivation). This result suggests that
at least C∗ clusters are necessary for a cluster randomized study to achieve the desired
level of power 1− τ . As C increases (starting from C∗), the requirement for the number of
subjects decreases, provided all other parameters remain fixed. An explicit expression of C∗
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is given in Amatya and Bhaumik (2018). In order to evaluate the flexibility of this exciting
result, we did some robustness studies via simulations (i) changing symmetric distributions
(of random effects) to right skewed gamma distributions, (ii) relaxing the constraint of equal
sample sample sizes of every center to 10% variations. The simulated power (under various
parametric combinations, attrition rates, and model violations of types (i) and (ii)) was never
less than 76% when it was fixed at 80%. Comprehensive results are reported in Amatya and
Bhaumik (2018). A testing procedure with inflated Type I error rates will require fewer
samples, but such a test will often show significance when the intervention effect is actually
non-significant. On the other hand, a very conservative test will require more resources to
attain the same target power (e.g., 80%) compared to an exact test. Our proposed procedure
avoids both scenarios. In order to demonstrate how fatal it can be in terms of power, when
inappropriate methods are used for sample size determination we compared our proposed
method with two existing methods by Murray (1998) and Heo, et al. (2013) designed for
linear models. Results are presented in Table where for various values of between-cluster
variation in slopes (σ2

γ22) we compute cluster size and corresponding power. Note that power
for both the existing methods is substantially lower than what was targeted at 80%.

Table 3: Comparison of required number of clusters estimated from Murray
(1998), Heo, et al. (2013), the proposed method, and the power attained in sim-
ulated evaluation

σ2
γ22 Murray (1998) Heo, et al. (2013) Proposed

C power C power C power
0.03 8 .287 12 .367 35 .797
0.04 8 .252 12 .361 41 .797
0.05 8 .237 12 .339 46 .773
0.06 8 .243 12 .297 52 .778
0.07 8 .223 12 .275 58 .767
0.08 8 .218 12 .279 64 .795
0.35 10 .153 12 .216 224 .799

Both the existing methods perform well when outcome is linear, however, they are in-
appropriate for non-linear outcomes. Hence, sample size methodologies should be developed
taking into account all complexities (type of outcome, within and between cluster variation,
attrition rate) which is incorporated in our proposed method.

5. Conclusions

Health service utilization researchers regularly conduct multi-center studies which are
longitudinal in nature. In these studies multiple correlated measurements are obtained from
subjects who are nested within hospitals, schools etc. The distribution of the outcome vari-
able usually is highly skewed with a profusion of zero as a large majority of eligible subjects
never utilize service either due to lack of need or access, and a long right tail as some subjects
are mass consumers of service. Sample size estimation methods used to design these hierar-
chical longitudinal studies with skewed zero-inflated outcome data either rely on completely
inappropriate linear models or employ simple designs ignoring various levels of hierarchy
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which can result in severe under-estimation of resulting power. We derive a robust method
for sample size estimation that incorporates multiple random-effects in a zero-inflated model.
Our simulation study showed the proposed method achieved the desired 80% power consis-
tently whereas the other competing approaches under estimated the power severely. During
the data analysis phase researchers are routinely forced to exclude important random-effects
from their fitted models due to model convergence issue. We propose a novel technique based
upon Laplace approximation which considerably reduces the non-convergence and utilizes
less computing resources in comparison to the existing methods.
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Abstract
It is well-known that a standardised U -statistic based on i.i.d. observations is asymp-

totically normal. We first give a proof of this using cumulants. Then we consider U -statistics
which are based on non-commutative variables. We show that a standardised U -statistics
of freely independent identically distributed non-commutative random variables converges
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1. Introduction

Let X1, X2, ..., Xn be independent and identically distributed (i.i.d.) random variables,
defined on a probability space (Ω,A,P) and with a common distribution F . Suppose h :
Rm → R is a Borel measurable function which is symmetric in its arguments. Let

Un =
(
n

m

)−1 ∑
1≤i1<...<im≤n

h(Xi1 , ..., Xim). (1)

Then Un is the well-known U-statistic with kernel h and has found extensive uses in statistics.
Bose and Chatterjee (2018) contains a wealth of material on the properties of U -statistics.
A fundamental distributional limit result for U -statistic is the U -statistics Central Limit
Theorem (UCLT).

Theorem 1: (UCLT) Let {Xi}∞i=1 be i.i.d. random variables with a common distribution
F and ∫

Rm
|h(x1, ..., xm)|2dF (x1)...dF (xm) <∞.
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Let σ2
1 := V ar(E(h(X1, X2, ..., Xm)|X1)) > 0. Then

√
n(Un − θ) w→ N(0,m2σ2

1)

where w→ denotes weak convergence, N(0,m2σ2
1) denotes the normal distribution with mean

0 and variance m2σ2
1 and θ =

∫
Rm h(x1, ..., xm)dF (x1)...dF (xm).

The standard proof proceeds by considering the sum of projections of Un on the sub-
space Ln := {ψ1(X1) + · · ·+ ψn(Xn) : ψ1, . . . , ψn ∈ L2(F )} and showing that in the limiting
case, as n → ∞, the contribution of this sum is most important. The remaining terms are
negligible. Then the classical CLT for the sample mean is applied to complete the proof.

With Theorem 1 as the backdrop, our goal in this article is three-fold.

(i) Show how Theorem 1 can be derived using cumulants and thereby avoid projections.

(ii) Establish the CLT for U -statistics in the non-commutative set up, by using
free cumulants.

(iii) Establish a limit theorem for degenerate U -statistics in the non-commutative set up.

We address these three goals in the next three sections.

2. Proof of UCLT Based on Cumulants

Suppose Y1, . . . Yn are random variables with joint moment generating function

MY1,...,Yn(t1, . . . , tn) = E
[

exp
{ n∑
j=1

tjYj
}]
, t1, . . . , tn ∈ R.

which is finite in a neighbourhood N of 0 in Rn. In that case, the joint cumulant generating
function is defined as

CY1,...,Yn(t1, . . . , tn) = logMY1,...,Yn(t1, . . . , tn), (t1, . . . , tn) ∈ N

which also has a power series expansion of the form

CY1,...,Yn(t1, . . . , tn) =
∞∑

k1,...,kn=0

tk1
1 . . . tkn

n

k1! . . . kn!ck1,...,kn(Y1, . . . , Yn), (t1, . . . , tn) ∈ N.

The real numbers ck1,...,kn(Y1, . . . , Yn) are called the cumulants of {Yi : 1 ≤ i ≤ n}. If
kj 6= 0 for at least two indices j, then ck1,...,kn(Y1, . . . , Yn) is called a mixed cumulant of
{Yi : 1 ≤ i ≤ n}. We shall use the notation

cj(Y1, . . . Yj) for c1,1,...1(Y1, . . . Yj).

It is easily seen that the if Y, Y1, Y2 are random variables, then

c1(Y ) = E(Y ), c2(Y ) = Var(Y ) and c1,1(Y1, Y2) = c1,1(Y2, Y1) = Cov(Y1, Y2). (2)
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In general moments and cumulants are in 1 − 1 correspondence and this can be expressed
via the well-known Möbius function on the set of all partitions of {1, . . . , n}, n ≥ 1. For
details of this and other facts, see Nica and Speicher (2006). See also Brillinger (2001) where
cumulants have been used extensively to prove limit theorems in time series. We shall need
the following facts about cumulants.

Fact 1. Suppose Yi are independent bounded random variables. Then all their mixed cumu-
lants vanish. This follows easily since the moment generating function factorises.

Fact 2. Cumulants are multi-linear functions of the random variables. This follows from
definition.

Fact 3. Y is normally distributed with mean µ and variance σ2 if and only if its first two
cumulants are c1(Y ) = µ and c2(Y ) = σ2 and all other cumulants of Y vanish. This follows
immediately from the moment generating function of Y .

Fact 4. Suppose {Yn} is a sequence of random variables such that c1(Yn)→ µ, c2(Yn)→ σ2

and ck(Yn) → 0 for all k ≥ 3. Then Yn
w→ N(0, σ2) where w→ denotes weak convergence.

This is obtained as follows: from the specific nature of the 1 − 1 correspondence, it follows
that all moments of Yn converge, and converge to the normal moments. Since the normal
distribution is the unique distribution with the normal moments, weak convergence follows.

Proof: [Proof of Theorem 1] We first prove Theorem 1 under the additional assumption
that

h is bounded. (3)

By linearity of cumulants, c1(Un) = θ and therefore c1(
√
n(Un − θ)) = 0.

Define

ζk(h) = Cov(h(X1, ..., Xk, Xk+1, ..., Xm), h(X1, ..., Xk, Xm+1, ..., X2m−k)).

Note that ζ1(h) = σ2
1. The following formula is standard. It can also be proved easily by

using the symmetry of h, equation (2) and linearity of cumulants.

c2(
√
n(Un − θ)) = n

(
n

m

)−2 m∑
k=1

(
n

k

)(
n− k
m− k

)(
n−m
m− k

)
ζk(h).

For any fixed natural number a, we have
(
n
a

)
∼ na

a! as n → ∞. Therefore, for 1 ≤ k ≤ m,
we have(

n

k

)(
n− k
m− k

)(
n−m
m− k

)
∼ nk(n− k)m−k(n−m)m−k

k!(m− k)!(m− k)! ∼ n2m−k

k!(m− k)!(m− k)! .

Thus
lim
n→∞

c2(
√
n(Un − θ)) = lim

n→∞

m!m!
n2m−1

m∑
k=1

n2m−k

k!(m− k)!(m− k)!ζk(h).
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Note that if 1 < k ≤ m then n2m−k

n2m−1 → 0. Therefore, only the k = 1 term will survive and
we get

lim
n→∞

c2(
√
n(Un − θ)) = m2ζ1(h) > .0

Now we will show that cj(
√
n(Un−θ))→ 0 for all j ≥ 3. We observe that, by multi-linearity

of cumulants,

cj(
√
n(Un − θ)) = nj/2(

n
m

)j ∑
I1,I2,...,Ij

cj(h(XI1), ..., h(XIj
)) (4)

where I1, ..., Ij are ordered m−tuples (i1 < i2 < · · · < im) with each 1 ≤ ir ≤ n for
1 ≤ r ≤ m, and h(XI) := h(Xi1 , ..., Xim) if I = (i1, ..., im).

Now we make the following observations. Fix I1. Suppose at least one of I2, ..., Ij does
not have any index common with I1. Then by independence, the corresponding cj = 0.

Let us count the remaining cases. If we fix I1, then are Om(nm−1) such choices for each
of I2, ..., Ij, giving a total of Om,j(n(m−1)(j−1)) choices. Finally, I1 can be chosen in

(
n
m

)
=

Om(nm) ways. Therefore, the total count of the remaining cases is Om,j(nm+(m−1)(j−1)). Note
that the we have a common uppper bound for all the cumulants cj that correspond to these
cases.

Hence if j ≥ 3,

cj(
√
n(Un − θ)) = Om,j(

nj/2

nmj
× nm+mj−j−m+1) = Om,j(n1−(j/2))→ 0 as n→∞.

Hence the proof is complete by an application of Fact 4, under the extra condition (3).

To relax this assumption, we use a standard truncation argument. Define

h̃(x1, . . . , xm) = h(x1, . . . , xm)I(|h(x1, . . . , xm)| ≤ B).

Let Ũ (B)
n be the corresponding U -statistic. Since h̃ satisfies (3),

√
n(U (B)

n − θ(B)
n ) w→ N(0, m2ζ̃1(h̃)) as n→∞.

It is not hard to show that (use DCT)

ζ1(h̃)→ ζ1(h) as B →∞.

Moreover, it is also easy to show, by using the variance formula developed above for any
U -statistics, that

lim
B→∞

lim
n
V
(√

n(U (B)
n − θ(B)

n )−
√
n(Un − θ)

)
= 0.

This completes the proof of Theorem 1.
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Remark 1: (a) The special case of m = 1 yields the standard CLT for the mean: if {Xi}
are i.i.d. with mean 0 and variance 1, then ∑n

i=1 Xi/
√
n converges weakly to the standard

normal distribution. This cumulant based proof avoids the use of characteristic function.

(b) By extending the above argument, and an appropriate extension of Fact 4 to multivariate
normal, it can be shown that if we have several U -statistics then after the needed centering
and scaling, they converge jointly to a multivariate normal distribution. We omit the details.

3. UCLT for Free Variables

Free Probability refers to an extension of classical probability to certain non-
commutative spaces. One of its central notions is free independence which is a natural
notion of independence available in different types of non-commutative probability spaces.
Very strong connections between free independence and random matrices were discovered by
Voiculescu (see Voiculescu (1991)). A nice combinatorial introduction to free probability is
available in Nica and Speicher (2006). Probabilists and statisticians have been increasingly
drawn to aspects of free probability, specially in the context of high dimensional random
matrices. For some flavour of its application in high dimensional time series, see Bose and
Bhattacharjee (2018).

The non-commutative probability space that we shall work with is the ∗-probability
space. We shall briefly describe its basic ingredients. For a detailed introduction see Nica
and Speicher (2006).

Recall that, an algebra A over complex numbers is called a ∗-algebra if it contains a
unity 1A, and is endowed with an antilinear ∗ operation which maps a ∈ A to a∗ ∈ A and
which satisfies (a∗)∗ = a and (ab)∗ = b∗a∗ for all a, b ∈ A.

A ∗-probability space is a pair (A, ϕ) where A is a ∗-algebra and ϕ is a linear functional
on A which satisfies ϕ(1A) = 1, ϕ(a∗) = ϕ(a), and ϕ(a∗a) ≥ 0 for all a ∈ A.

The elements of A are called random elements. An element a ∈ A is called self-adjoint
if a∗ = a. Recall that the expectation operator is also linear and satisfies E(1) = 1. Thus, it
helps to think of ϕ as an analogue of the expectation operator.

Example 1: Suppose (Ω,F , P ) is a classical probability space and E is the expectation
operator. Let A be the set of (complex valued) random variables with all moments finite,
where random variables that are almost surely equal, are identified as same. Then (A,E) is
trivially a ∗-probability space. In this case elements of A commute.

Example 2: A typical example of a ∗-probability space is the algebra A of all n×n matrices
with random variable entries all whose moments are finite, and for any A ∈ A, ϕ(A) =
n−1 E Trace(A). The unity is the n×n identity matrix I, for which ϕ(I) = n−1 E Trace(I) =
1. With ∗ denoting the usual matrix adjoint, ϕ(A∗) = n−1 E Trace(A∗) = n−1E Trace(A) =
ϕ(A) since the diagonal entries of A∗ are complex conjugates of those of A, and ϕ(A∗A) =
n−1 E Trace(A∗A) ≥ 0 since all diagonal entries of A∗A are non-negative.
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Given random elements {a1, . . . , an}, its moments are the quantities {ϕ(b1 · · · bk), k ≥
1, bj ∈ {a1, . . . , an} for all 1 ≤ j ≤ k}. Analogous to cumulants of random variables, there is
a concept of free cumulants of random elements. These are in 1− 1 correspondence with the
moments via the Möbius function on non-crossing partitions of {1, . . . , n}, n ≥ 1. We shall
avoid a formal definition. The free cumulants will be denoted by a generic κ. We may note
here that for any two random elements a and b, κ1(a) = ϕ(a) and κ2(a, b) = ϕ(ab)−ϕ(a)ϕ(b).
Note that in general κ2(a, b) 6= κ2(b, a).

A random element s on a ∗-probability space (A, ϕ) is said to be a semi-circle variable
with variance σ2 if it is self-adjoint and

ϕ(sh) =

σ
2nCn = 1

n+1

(
2n
n

)
σ2n, if h = 2n

0, if h is odd.
(5)

The numbers {Ck, k ≥ 1} are known as Catalan numbers and {σ2kCk, k ≥ 1} define a unique
probability measure, known as the semi-circle distribution with variance σ2. It is well-known
that κ1(s) = 0, κ2(s, s) = 1 and all higher order free cumulants of s are 0. Thus, this is the
analogue of the standard normal variable X which has the same property for its cumulants.

In the classical set-up, bounded random variables are independent if and only if all
their mixed cumulants are 0. Analogously, random elements are “freely independent” or
simply free, if and only if all their mixed free cumulants vanish.

We also need the notion of convergence of random elements: Suppose we have a se-
quence of ∗-probability spaces (An, ϕn). Suppose an ∈ An are self-adjoint. Then {an} are
said to converge in distribution if limϕn(akn) exists for all integers k. We visualize a limit
∗-probability space A, generated by an indeterminate (self-adjoint) element a and with the
state ϕ(ak) = limϕn(akn) for all k and extended linearly to the entire algebra. Note that
convergence in distribution is not the same as the usual weak convergence. However, if
{ϕn(akn), k ≥ 1} and {ϕ(ak), k ≥ 1} determine unique probability measures,{µn} and µ with
these as their moments, then the above convergence in distribution implies µn converges to
µ weakly. Analogous notions hold for joint convergence of several variables.

We shall need the following facts about free cumulants. For proofs see Nica and Speicher
(2006).

Fact (a). Suppose Yi are freely independent random elements in some ∗-probability space.
Then all their mixed free cumulants vanish.

Fact (b). Free cumulants are multi-linear functions.

Fact (c). Suppose s is a semi-circle variable with mean 0 and variance σ2. Then the first
two free cumulants of s are κ1(Y ) = 0 and κ2(Y ) = σ2. Further all other free cumulants of
s vanish.

Fact (d). Suppose {yn} is a sequence of self-adjoint random elements such the κ1(yn) → 0,
κ2(yn) → σ2 and κk(yn) → 0 for all k ≥ 3. Then {yn} converges to a semi-circle variable
with variance σ2.
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We are now in position to give a free version of Theorem 1. Since we are working with
random elements which are elements of an algebra, we are restricted to working with only
polynomials in the variables of the algebra. Hence the statement of Theorem 1 needs to be
modified slightly now. Variables are said to be identically distributed of they have the same
moments.

Theorem 2: Suppose X1, ..., Xn are freely independent self-adjoint identically distributed
random elements on a ∗-probability space (A, ϕ). Suppose h(x1, ..., xm) is a self-adjoint
polynomial in the m variables x1, ..., xm, symmetric in its arguments. Let Un be the U -
statistics with kernel h. Let θ = ϕ(h(X1, ..., Xm)). For k = 0, 1, ...,m define

dk = κ2(h(X1, ..., Xk, Xk+1, ..., Xm), h(X1, ..., Xk, Xm+1, ..., X2m−k)).

Suppose d1 > 0. Then
√
n(Un − θ) converges in distribution to a semi-circle variable with

variance m2d1.

Example 3: Suppose {Xi} are free and identically distributed. Consider the sample vari-
ance

s2
n =

(
n

2

)−1 ∑
1≤i<j≤n

(Xi −Xj)2

2 .

Then s2
n is a U -statistic. Suppose without loss of generality ϕ(Xi) = 0. By an application

of Theorem 2,
n1/2

(
s2
n − ϕ(X2

1 )
)
→ s

where s is a semi-circle variable with variance ϕ(X4
1 )− [ϕ(X2

1 )]2. Note that this could be 0
(for example if Xi are free Bernoulli ±1 with probability 1/2 each) in which case, s is 0.

Example 4: Suppose {Xi} are freely independent identically distributed variables where
2[ϕ(X1)]2 = θ. Let h(x, y) = xy + yx Then

√
n
(
Un − θ

)
→ s

where s is a semi-circle variable with mean 0 and variance 16ϕ(X1)2
[
ϕ(X2

1 )− [ϕ(X1)]2
]
.

Proof: [Proof of Theorem 2] The proof is almost a repetition of the proof of Theorem 1.
We sketch it. Trivially, κ1(Un) = θ and therefore κ1(

√
n(Un − θ)) = 0.

As before (we now use the fact that mixed free cumulants vanish for freely independent
variables),

κ2(
√
n(Un − θ)) = n

(
n

m

)−2 m∑
k=1

(
n

k

)(
n− k
m− k

)(
n−m
m− k

)
dk

and after similar steps, we get

lim
n→∞

κ2(
√
n(Un − θ)) = m2d1 > 0.
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Now we will show that κj(
√
n(Un − θ))→ 0 for all j ≥ 3. We observe that

κj(
√
n(Un − θ)) = nj/2

(
n

m

)−j ∑
I1,I2,...,Ij

κj(h(XI1), ..., h(XIj
)) (6)

where I1, ..., Ij are ordered m−tuples (i1 < i2 < · · · < im) with each 1 ≤ ir ≤ n for
1 ≤ r ≤ m, and h(XI) := h(Xi1 , ..., Xim) if I = (i1, ..., im).

Now we count as before and use vanishing of mixed free cumulants when there are at
least two freely independent variables, to obtain, for j ≥ 3,

κj(
√
n(Un − θ)) = Om,j(

nj/2

nmj
× nm+mj−j−m+1) = Om,j(n1−(j/2))→ 0 as n→∞.

The proof is complete once we use Fact (d).

Remark 2: By extending the above argument, and an appropriate extension of Fact (d),
to a semi-circle family (see next section), it can be shown that if we have several U -statistics
of non-commutative variables, then they converge jointly to a semi-circle family. We omit
the details.

4. Degenerate Case

An obvious question that arises here is what happens under degeneracy i.e. when
c1 = 0 or d1 = 0? The following result is well-known in the classical case. See Bose and
Chatterjee (2018).

Theorem 3: Let h : Rm → R be a symmetric kernel. Let {Xi}∞i=1 be i.i.d. random variables,
such that E(h(x1, X2, ..., Xm)) = 0 but

σ2
2 := V ar(E(h(X1, X2, X3, ..., Xm)|X1, X2))) > 0.

Then
nUn

w→
(
m

2

) ∞∑
k=1

λk(Vk − 1)

where Vk i.i.d.∼ χ2
1 and λk are eigenvalues of an appropriate integral operator.

The result is first proved for the case m = 2. The classical proof (see Bose and
Chatterjee (2018)) crucially uses the Fredholm representation: any symmetric kernel ψ :
R2 → R can be written as

ψ(x1, x2) =
∞∑
k=1

λkfk(x1)fk(x2)

where λk are eigenvalues of an appropriate integral operator. The theorem is easy to prove
when there are only finitely many non-zero eigenvalues and the general case is tackled by
approximation. Then the cases m ≥ 3 is proved by projections.
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The above proof is not suitable for our purposes since our variables are non-
commutative. We present a free version of the theorem for degenerate U -statistics based on
random elements but with special type of kernels of order 2. It should be possible to extend
this result to higher order kernels but we decided to stick to the simplest case.

Theorem 4: Let h(x1, x2) := ∑K
k=1 ak(fk(x1)fk(x2) + fk(x2)fk(x1)) where fk(x) are self ad-

joint polynomials in the variable x, and ak are constants. Let X1, ..., Xn be freely independent
self adjoint identically distributed random variables such that the following are true.

(a) For each 1 ≤ k ≤ K, ϕ(fk(X1)) = 0 and ϕ(f 2
k (X1)) = 1.

(b) For each 1 ≤ k 6= l ≤ K, ϕ(fk(X1)fl(X1)) = 0.

Define Un =
(
n
2

)−1∑
1≤i1<i2≤n h(Xi1 , Xi2). Then,

nUn → 2
K∑
k=1

ak(s2
k − 1)

where s1, ..., sK are freely independent standard semi-circular variables.

Example 5: (Examples 3 and 4 continued) Consider the kernel h(x, y) = xy + yx but we
now assume that ϕ(Xi) = 0 and ϕ(X2

i ) = 1. Then it is easy to see that K = 1 and conditions
(a) and (b) hold.

nUn = n

(
n

2

)−1 ∑
1≤i1<i2≤n

(Xi1Xi2 +Xi2Xi1)→ 2(s2 − 1)

where s is a semi-circle variable with variance 1.

Recall the sample variance s2
n. Now suppose that Xi are free and identically distributed

as classical Bernoulli ±1 with equal probability. Then ϕ(Xi) = 0 and ϕ(X4
i ) = [ϕ(X2

i )]2, so
that n1/2(s2

n − 1) converges to 0. It can be checked that

n(s2
n − 1) = n

[ 1
n− 1[

n∑
i=1

X2
i − nX̄2]− 1

]
= n[ n

n− 1 − 1]− n

n− 1
(√

nX̄
)2
→ −(s2 − 1)

where s is a semi-circle variable with variance 1.

As preparation for the proof, we need to extend some of the notions intro-
duced earlier. Suppose (An, ϕn), n ≥ 1 is a sequence of ∗-probability spaces. Let
{ai,n, 1 ≤ i ≤ k} be random elements from An, n ≥ 1. They are said to converge jointly if
ϕn
(
P (ai,n, a∗i,n, 1 ≤ i ≤ k)

)
converges for every k ≥ 1 and every polynomial P . Then we can

define a limit ∗-probability space (A, ϕ) where A is the ∗-algebra generated by polynomials
in indeterminates {ai, 1 ≤ i ≤ k} and the state ϕ is determined by the limit. That is, for
all k ≥ 1 and all polynomials

ϕ (P (ai, a∗i , 1 ≤ i ≤ k)) = limϕn
(
P (ai,n, a∗i,n, 1 ≤ i ≤ k)

)
.
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We write
(ai,n, 1 ≤ i ≤ k)→ (ai, 1 ≤ i ≤ k).

This is equivalent to saying that for all j ≥ 1 and for all 1 ≤ i1, ..., ij ≤ k,

κj(ai1,n, · · · , aij ,n)→ κj(ai1 , · · · , aij ).

A collection (s1, ..., sk) of random elements from a ∗-probability space (A, ϕ) is said to be
a semi-circular family if these are self-adjoint semi-circle variables and moreover all mixed
free cumulants of order greater than 2 are 0. Note that they are then free if all second order
mixed free cumulants are also 0.

We shall also need the following free Central Limit Theorem. This can be proved easily
in a few lines by using free cumulants—along the lines mentioned in Remark 1—simply use
free cumulants instead of usual cumulants. See Nica and Speicher (2006) for a moment based
proof.

Theorem 5: Suppose {Xi,j, 1 ≤ i ≤ k}, j ≥ 1 are self-adjoint variables which are identically
distributed as well as free across j ≥ 1 in some ∗-algebra such that for all i, j, ϕ(X1,j) = 0.
Then

1√
n

(Xi,1 + · · ·+Xi,n, 1 ≤ i ≤ k)→ (s1, · · · , sk)

which is a semi-circle family in some ∗-probability space (A, ϕ0) with κ2(si, sj) =
κ2(Xi,1, Xj,1) for all 1 ≤ i, j ≤ k.

Proof: [Proof of Theorem 4]

We observe that
∑

1≤i1<i2≤n

K∑
k=1

ak(fk(Xi1)fk(Xi2) + fk(Xi2)fk(Xi1)) =
K∑
k=1

ak(
n∑
i=1

fk(Xi))2 −
K∑
k=1

n∑
i=1

akf
2
k (Xi).

Therefore

nUn = 2n
n− 1

K∑
k=1

ak
( 1√

n

n∑
i=1

fk(Xi)
)2
− 2n
n− 1

K∑
k=1

ak
1
n

n∑
i=1

f 2
k (Xi).

By the free Central Limit Theorem 5,

1√
n

(
n∑
i=1

f1(Xi), · · · ,
n∑
i=1

fK(Xi),
n∑
i=1

(f2
1 (Xi)− 1), · · · ,

n∑
i=1

(f2
K(Xi)− 1)

)
→ (s1, · · · , sK , t1, · · · , tK)

which is a semi-circular family. Moreover, using conditions (a) and (b), s1, · · · , sK are all
freely independent identically distributed semi-circle variables with variance 1. The exact
parameters for (t1, · · · , tK) shall not be important to us.

Let

An,k,1 = 1√
n

n∑
i=1

fk(Xi) and An,k,0 = 1√
n

n∑
i=1

(f 2
k (Xi)− 1), 1 ≤ k ≤ K.
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Also let
bk,0 = sk, bk,1 = tk, 1 ≤ k ≤ K.

Then by definition of joint convergence, for any j ≥ 1, for any k1, ..., kj ∈ {1, ..., K} and for
any ε1, ..., εj ∈ {0, 1},

κj(An,k1,ε1 , · · · , An,kj ,εj )→ κj(bk1,ε1 , · · · , bkj ,εj ).

If j > 1 and ε1, ..., εj are not all 0, say ε1 = 1 without loss of generality, then using the
fact that constants are free of everything,

κj(An,k1,ε1 , · · · , An,kj ,εj ) = κj(
1√
n

n∑
i=1

f 2
k1(Xi), An,k2,ε2 , · · · , An,kj ,εj )→ κj(tk1 , bk2,ε2 , · · · , bkj ,εj )

and therefore, κj(
1
n

∑n
i=1 f

2
k1(Xi), An,k2,ε2 , · · · , An,kj ,εj ) → 0. Further, if j = 1, then for any

1 ≤ k ≤ K, κ1( 1
n

∑n
i=1 f

2
k (Xi) − 1) = 0 and hence κ1( 1

n

∑n
i=1 f

2
k (Xi)) → 1. This shows the

following joint convergence:

( 1√
n

n∑
i=1

f1(Xi), · · · ,
1√
n

n∑
i=1

fK(Xi),
1
n

n∑
i=1

f2
1 (Xi), · · · ,

1
n

n∑
i=1

f2
K(Xi))→ (s1, · · · , sK , 1, · · · , 1)

Therefore, we have

nUn = 2n
n− 1

K∑
k=1

ak(
1√
n

n∑
i=1

fk(Xi))2 − 2n
n− 1

K∑
k=1

ak
1
n

n∑
i=1

f 2
k (Xi)→ 2

K∑
k=1

ak(s2
k − 1).

We have crucially used the representation of the kernel. It is not clear how to obtain
a limit theorem for a more general kernel. We intend to pursue this direction in future.
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Abstract 
 

 In this paper, we consider a system with strength X and two independent stresses Y 
and Z working on it. We derive the UMVUEs of the stress-strength reliability ξ = P[X > 
max(Y,Z)] and its variance, when X, Y and Z have independent generalized uniform 
distributions with known shape parameters.  We also discuss testing of hypothesis regarding 
ξ. A comparison of the UMVUE with the MLE has been carried out in terms of the mean 
squared error. A simulation study has also been indicated. 
 
Key Words: Generalized uniform distribution; Stress-strength reliability; UMVUE; 
Hypothesis testing. 
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1. Introduction 

 
The stress-strength model finds applicability in many areas of research, like reliability 

engineering, psychology, biometry, economics, medicine, environmental risk assessments, 
etc. The main problem is to infer about Pr[X > Y], where X denotes the strength and Y the 
stress. Estimation of Pr[X > Y] has been addressed by many authors for various distributions 
of the variables. Some studies along this line are due to Reiser and Guttman (1988), Ivshin 
(1996), Ali et al. (2005), Pal et al. (2005), Ng (2006), Krishnamoorthy et al. (2007), Kundu 
and Raqab (2009), Ventura and Racugno (2011), Baklizi (2014), Gunasekera (2015). 
 

In real life situations, a system may have to withstand two or more stresses on it. For 
example, tension, compression, shear, bending, and torsion are the stresses on the wings, 
fuselage, and landing gear of an aircraft.  In such situations, the stress-strength reliability will 
be defined by the probability that the strength of the system is more than the maximum of the 
stresses acting on it. There are very few studies relating to estimation of this reliability. Rinco 
(1983) initiated a study on the estimation of Pr[Yp > max(Y1, Y2, · · · , Yp−1)] when the random 
variables Y1, …, Yp  are independent following exponential distributions with unequal location 
parameters and equal scale parameters, and suggested an estimator. Gupta and Gupta (1988) 
derived the MLE, MVUE and Bayes estimator of the same for the case of p = 2. They carried 
out simulation studies to compare these estimators. Karaday et al. (2011) investigated the 
MLE of stress-strength reliability, Pr[max(Y1,Y2) < X], when a component with strength X 
following a Gamma distribution is exposed to two independent stresses Y1,Y2 having 
exponential distributions with different parameters. Kundu (2017) estimated the reliability 
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function R = Pr[Y3 > max(Y1, Y2)], when Y1, Y2 and Y3 are independent exponential variables 
with unknown location parameters. She derived several estimators of R, and compared their 
performance based on their risks under different loss functions. Park (2010) discussed 
estimation of reliability in a load sharing system. 
 
 In this paper, we find the UMVU estimator of the stress-strength reliability Pr[X >  
max(Y, Z)], where the strength X and the stresses Y and Z are independently distributed, each 
having a generalized uniform distribution. Force of water flow, stress on venting valve, etc. 
may have generalized uniform distributions. 
 
 A generalized uniform (GU) distribution is defined by the density f(x) and cumulative 
distribution function F(x) as follows: 
 

   

 
where (see Tiwari et al., 1996). The parameters a and q are, respectively, the 
shape and scale parameters of the distribution. We may write the distribution as GU(α, θ). 
  
 We also find the UMVU estimator of the variance of the UMVU estimator of Pr[X >  
max(Y, Z)]. We further propose a test for the stress-strength reliability, which is uniformly 
most powerful within the class of tests based on complete sufficient statistics. 
 
2. Stress-Strength Reliability 

 
Consider a system with strength X, which follows the GU(α1, θ1) distribution, given by 

 

                    (1) 

 
Suppose there are two independent stresses Y and Z working on the system, which are 

distributed as GU(α2, θ2) and GU(α3, θ3), respectively. The system functions as long as it can 
withstand the two stresses.  

 Suppose θ2 = θ3 = θ, say. Let,  

 
 The stress-strength reliability of the system is then given by 
 
  x = Pr[X > max(Y, Z)] = g(r), say, where 
  

 g(r )= ,  if  

             

                   
(2)

 
 
Clearly, x is a monotone function of r. 
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Let us assume that α1, α2 and α3 are known, but θ1 and θ are unknown. 

 
3. MVUE of x 
 

Consider independent random sample  and 
of sizes n, m and r respectively, from the distributions of X, Y and Z. The 

statistic 
 

                     (3) 

 
is an unbiased estimator of x. 
  

Let and be 
the ordered observations in the samples mentioned above. Then, is a complete sufficient 
statistic for q1. The following lemma indicates the complete sufficient statistic of q . 
 
Lemma 1: (i) W = max( , ) is a complete sufficient statistic for q . 

                (ii) (and also ) is distributed independently of q. 

 
Proof: (i)We have 

 

since Y(m) and  Z(r) are independently distributed. 
    
 Hence, W~ GU( , q). 
 
 Now, for any function h(w) of w, 
 

  

 Þ  = 0.                              (4) 

Differentiating (4) with respect to θ gives h(q) = 0 for allq, which implies h(w) = 0, for 
 Hence, W is a complete statistic. 

 
The sufficiency part follows easily from Neyman-Fisher Factorization Theorem, by 

considering the joint distribution of ( ) and ( ).  
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(ii) Since Y1 ~ GU(a2,q) and Z1 ~ GU(a3,q), we have GU(a2,1) and GU(a3,1),  

which are independent of q. Similarly, , which is 

independent of q.Hence, and are distributed independently of q. 

           (Proved)
  

Using Lehmann-Scheffé Theorem, the UMVUE of xis, therefore, given by 
 

 

where  

  
Clearly, (5) is a function of only D, α1, α2 and α3, since the distributions of

 are independent of θ1 and θ. Thus, any unbiased estimator of x, which is a 

function of D will be UMVUE of x, for α1, α2 and α3 given. 
 

To find the expression of the UMVUE of x, we obtain the density function of the 
distribution of D, which comes out as  
 

 if  

   if  

where 

 
                  (6) 

 
Inspecting possible estimators of x based on D, we arrive at the following theorem: 

 
Theorem 1: The UMVU estimator of x is given by 
  
  if D ³ 1 

     = 1 – if D < 1, 
where 
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To prove the theorem, it is sufficient to show that V is an unbiased estimator of x. For r ³ 1,  
 

 

which reduces to on simplification. 

 
Similarly, for r < 1, it can be shown that V is an unbiased estimator of x. 

  
4.  UMVUE ofxk 

 

Consider k ³ 2 to be an integer. We have 
 

  

 
 if  

 if
 

 
We find the UMVUE of for k < min(n, m, r) when  are known. 

An unbiased estimator of is given by 
 

  

 
From Lehmann-Scheffé Theorem, the UMVUE of is 

 

 

which is again only a function of  Hence, an unbiased estimator of 

based on D will be the UMVUE of when  are known. 
 
Theorem 2: For positive integer k < min(n, m, r), let 
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where

 

 

Then, is the UMVUE of . 
 
Proof: For r ³ 1, 

                     (7) 

where  

 
On simplification, the second term of (7) is zero. 

 

  
Similarly, for r < 1we get Thus, Vk is an unbiased, and hence UMVU 

estimator, of . 
 

Remark: For k = 2, the UMVUE of Var( is provided min (
where V2 is given by 
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5.  Comparison with MLE of x 

The maximum likelihood estimator (MLE) of r is given by = where 

= and = are the MLEs of θ and θ1, respectively. And, the MLE of  

x is given by = g ( ). Clearly, is a biased estimator of x. To compare it with the 
UMVUE of x, a Monte Carlo simulation study has been carried out with 5000 replications. 
Without loss of generality, we set (a1, a2, a3) = (0.5, 0.25, 0.75), and compute the mean 
squared errors (MSEs) of the estimators for different settings of the parameters, which are 
shown in Table 1. 
 

Table 1: Comparison of MSEs of UMVUE and MLE of x 
 

 
(θ, θ1) 

 
Estimator 

(n,m,r) 
(5, 5, 5) (5, 10, 10) (10, 10, 10) (10, 5, 5) 

(1, 1.5) UMVUE 0.01227 0.04535 0.00245 0.00248 
MLE 0.01278 0.08158 0.00476 0.00347 

(2, 2) UMVUE 0.00981 0.01005 0.00156 0. 00241 
MLE 0.01388 0.00825 0.00451 0. 00323 

(3, 2) UMVUE 0.03371 0.03119 0.02912 0. 03433 
MLE 0.03270 0.02756 0.02691 0. 05062 

 
From Table 1 it is clear that the UMVUE does not perform uniformly better than the MLE, 
though in most situations considered, the MSE of UMVUE is lower than that of the MLE.  
 
4.  Test of x Based on D 

  
As D is the key statistic in finding the UMVUE of x,  we find the best test for H0: x = 

x0 among the class of tests based on D, when  are known. 
 

Suppose we want to test the null hypothesis H0: against Asx is 
monotone decreasing in r, this is equivalent to testing H0*:  against HA*: 
where, from (2), we have  

 if  

 
if

 
  

Within the class of tests based on D, the MP test for testing H0*: against HA*: 
has the critical region where k is determined from the size 

condition, and is given by 
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Clearly is non-decreasing in d. Hence, where d* satisfies the 

size condition, i.e.,  As , we 
get 

 
                   

(8)
 

 
 

Since d* is independent of r1, W*={d | d >d*} will be the critical region of the UMP test 
of size a among all tests based on D.  
 

For any  r > r0, the power of the test is given by 
 

 
 

 

 
                  (i)                                                                                 (ii) 

Figure 1: Power curves of tests for testing H0: against for some 
combinations of (α1, α2, α3), when θ = 2, θ1 = 3 and a = 0.05 
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For testing H0: x = x0 against HA: x > x0 (or HA: x ¹ x0), which is equivalent to testing 
H0*: r = r0 against HA*: r < r0 (or HA: r ¹ r0), we proceed as above and obtain the UMP test 
of size a among all tests based on D as follows: 
 
(i) HA*: r < r0 
 

The critical region of the size a test is W* ={d | d < d*}, where 
 

 

            
And the power of the test is 

 

  

 

 
                  (i)                                                                                 (ii) 

Figure 2: Power curves of tests for testing H0: against for some 
combinations of (α1, α2, α3), when θ = 2, θ1 = 3 and a = 0.05 
 
(ii) HA: r ¹ r0 
 

The critical region of the size a test is W* = {d | d < d1* or d > d2*}, where d1* and d2* 
(d1* < d2*) are determined from the size condition. Assuming 

 d1* is given by (9) and d2* by (8), after replacing 
a by a/2 in each case. 
 

The power of the test is: 
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                  (i)                                                                                 (ii) 

Figure 3: Power curves of tests for testing H0: against for some 
combinations of (α1, α2, α3), when θ = 2, θ1 = 3 and a = 0.05 
 
Figures 2 and 3 show that the one-sided tests are unbiased. But Figure 3 indicates that the 
suggested two-sided test is not unbiased. However, actual calculation shows that the power 
falls very slightly below the level of significance for some alternative values of r, so that the 
test may be regarded as an almost unbiased test.  
 
6.  A Simulation Study 
 

Consider X ~ GU(1, 3), Y ~ GU(1, 2) and Z ~ GU(2, 2). To obtain the UMVUE of x, 
random samples of sizes m = n = r = 20 are taken on X, Y and Z respectively. The sample 
observations are as follows: 

 
Variable Sample observations 

X 2.1207     2.5148 1.6567 2.9090 2.1738 2.4589 1.2106 0.3185 1.6929 2.9582 
 

0.8061 2.4919 1.6372 2.8557 2.8237 2.9984 2.9964 0.9302 2.8248 0.1385 
 

Y 1.3415 1.7143 1.0931 1.9151 1.9157 1.0229 0.8568 0.8378 1.6839 1.5374 
 

1.3346 1.3565 0.1223 1.7003 0.1179 1.9553 1.7329 1.9037 1.2483 0.9266 
 

Z 1.1165 1.3229 1.2098 1.1777 1.8805 1.9025 1.8780 1.7501 1.9573 1.7706 
 

1.4741 1.9629 1.6615 1.4704 1.7707 1.8960 1.5299 1.6479 0.5454 0.9176 
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The UMVUE of the stress-strength reliability x (= 0.8589 ) is V = 0.8729, 

and the UMVUE of its variance is given by  = 0.0267.  
 

Suppose we want to test the hypothesis H0:  against HA:x < 0.5. The size 0.05 
UMP test rejects H0 if observed D > 0.8942. For the given samples, the observed D is 0.6546. 
Hence, H0 is accepted. 
 
7.  Discussion 
 

The paper studies the UMVU estimator of the stress-strength reliability and its variance 
when there are two independent stresses acting on a system. The strength of the system and 
the stresses are assumed to be independent of one another, and follow generalized uniform 
distributions with known shape parameters, but unknown scale parameters. The UMVU 
estimator is obtained as a function of the ratio of the complete sufficient statistics of the scale 
parameters. Tests regarding the stress-strength reliability have been discussed, and the UMP 
test has been obtained among those based on this ratio. The study has been carried out 
assuming the scale parameters of the stress distributions to be equal. A natural extension 
would, therefore, be to assume the scale parameters to be completely unknown. Further, it 
would be interesting to extend the problem to the case of p (> 2) stresses. 
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Abstract
Meta-analysis based on only a few studies remains a challenging problem, as an accu-

rate estimate of the between-study variance is apparently needed, but hard to attain, within
this setting. Here we offer a new approach, based on the generalized inferential model frame-
work, whose success is based on marginalizing out the between-study variance, so that an
accurate estimate is not essential. We show theoretically that the proposed solution is at
least approximately valid, with numerical results suggesting it is, in fact, nearly exact. We
also demonstrate that the proposed solution outperforms existing methods across a wide
range of scenarios.

Key words: Confidence interval; Monte Carlo; Normal random effects model; Plausibility
function; Profile likelihood.

AMS Subject Classifications: 62F25, 62J05, 62F86

1. Introduction

The most important scientific questions are likely to be pursued by multiple researchers,
resulting in separate analyses that may be combined via a single meta-analysis to attain
stronger and more definitive conclusions. But even when it is appropriate to combine the
results from multiple studies, there is often a non-negligible amount of between-study hetero-
geneity, which is difficult to estimate accurately when the number of studies for meta-analysis
is small. Interestingly, meta-analyses with as few as three studies are the norm, not the ex-
ception (Davey et al. 2011), so there is considerable interest in developing improved methods
for inference in this setting of combining results from just a few heterogeneous studies.

To set the scene, consider the classical normal–normal random-effects model where
each study k included for meta-analysis provides data (Yk, σ2

k). These are modeled as

(Yk |Mk) ind∼ N(Mk, σ
2
k), Mk

iid∼ N(µ, ν), k = 1, . . . , K. (1)

Here, Mk denotes the random effect from study k, σ2
k > 0 the variance within study k, µ the

underlying population effect and ν > 0 the between-study variance. Note that taking the
σ2
k’s as part of the observed data implies that these values are known, a common assumption
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in this literature (e.g., DerSimonian and Laird 1986; Michael et al. 2019). This hierarchical
formulation of the model indicates that the K studies have something in common, namely,
a tendency toward µ, but that they are not fully homogeneous and that this degree of
heterogeneity, controlled by ν, is unknown. Therefore, the goal is inference on the unknown
mean µ, with ν as an unknown nuisance parameter.

In the simple case where ν is known, the meta-analysis is straightforward. Marginally,
Yk are independent, distributed as N(µ, σ2

k + ν), for k = 1, . . . , K. It is easy to check that
the minimum variance unbiased estimator of µ is

µ̂(ν) =
∑K
k=1 wk(ν)Yk∑K
k=1 wk(ν)

, where wk(ν) = (σ2
k + ν)−1,

and its variance is {∑K
k=1 wk(ν)}−1. Of course, the more common scenario in applications

is that ν is unknown and, somehow, the data must be used to account for that additional
uncertainty. A first idea is to estimate ν by some function ν̂ of the data, and then plug that
into the formula for the estimator of µ, i.e., µ̂(ν̂). A well-known strategy is that proposed
by DerSimonian and Laird (1986), but there are others, e.g., Paule and Mandel (1982) and
Cochran (1954). Unfortunately, the number of studies, K, to be combined is often relatively
small (Davey et al. 2011), say, K ≤ 7, and obtaining reliable estimates of the between-study
variance based on so few samples is a challenge. Besides, this plug-in style procedure does not
naturally account for uncertainty in ν, so any inference drawn can only be (provably) valid
in an asymptotic (K → ∞) sense, which may not be especially meaningful in applications
where K ≤ 7. More tangibly, confidence intervals based on the DerSimonian–Laird plug-in
style method have shown to perform poorly even when K is as large as 20 (Liu et al. 2018);
see, also, Viechtbauer (2005), DerSimonian and Kacker (2007), Sidik and Jonkman (2007),
Jackson et al. (2010), Chung et al. (2013), and Veroniki et al. (2016). Therefore, there is a
need for methods that marginalize out the nuisance parameter, ν, and achieve frequentist
error rate control even when the number of studies is small.

To alleviate this problem of estimating ν, likelihood methods have been proposed, e.g.,
the log likelihood ratio in Goodman (1989), the profile likelihood in Hardy and Thompson
(1996), and the signed profile log likelihood in Severini (2000), among others. Unlike previous
plug-in methods, these likelihood based procedures introduced an appropriate widening in
confidence intervals to deal with the imprecision in estimating ν. In fact, Guolo (2012) was
able to improve upon these first-order inference results by introducing a Skovgaard correction
to the signed profile log likelihood, making it asymptotically standard normal with an error
that vanishes at a rate of n−3/2, n → ∞. Resorting to higher-order asymptotics with the
Skovgaard correction, however, still failed to modify the likelihood to the extent necessary
to achieve the nominal coverage probability when the number of studies available is small.

So-called exact methods, featuring such frequentist guarantees, have been offered as
alternatives to the plug-in style and likelihood methods described above. These include the
methods in Follmann and Proschan (1999), Liu et al. (2018), and Wang and Tian (2018)
which, in one way or another, are based on permutation distributions. While these permu-
tation methods can produce confidence intervals that achieve nominal frequentist coverage,
the discreteness of the permutation distribution makes the results overly conservative, un-
less K is relatively large. To our knowledge, the most recent work on exact methods for
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meta-analysis is Michael et al. (2019), and since this shares a number of similarities to our
proposal, at least in terms of its construction, we describe this in detail in Section 3.1.

Given that the goal is to develop a method for meta-analysis that controls Type I er-
ror, even when K is small, it makes sense to consider the one general, normative framework
we are aware of that offers such guarantees. Specifically, Martin and Liu (2013) present a
construction of what they call an inferential model that leads to provably valid inference, no
asymptotic justification required; see Martin and Liu (2016) for a monograph-length intro-
duction, and Martin (2019) for a survey of some recent developments. The distinguishing
feature of this approach is the user-specified random set that leads to a sort of “posterior”
(but not a probability measure) on the parameter space. The distribution of this random set
can then be used to visualize the information data provides about the parameter of interest
as well as construct inference procedures. We will briefly review the basic construction and
its properties in Section 2.1. It may happen that the basic inferential model construction
is difficult to carry out in an application, so Martin (2015, 2018) developed a simpler and
more direct generalized version. Since this is the strategy we follow here for meta-analysis,
we provide a brief review in Section 2.2.

This meta-analysis application boils down to a marginal inference problem, i.e., ν
is an unknown nuisance parameter to be marginalized out so that we can make inference
about µ. The generalized inferential model framework provides at least two strategies for
marginalization, and we will show that the method proposed in Michael et al. (2019) is itself
a generalized inferential model based on one particular choice of marginalization strategy.
Our proposed method, on the other hand, is based on a different and arguably more natural
choice of marginalization strategy, leading to a method that performs better than theirs in
a variety of respects. In Section 3, we describe the construction of a generalized inferential
model for meta-analysis, show that the solution in Michael et al. (2019) is a special case, and
present our proposed method. Details about the computation and theoretical justification
are also provided. Numerical comparisons in simulated data experiments demonstrate that
our proposed method outperforms existing methods in terms of both validity and efficiency
across a broad range of scenarios. Two real applications are presented in Section 5 and some
concluding remarks are given in Section 6.

2. Background

2.1. Basic inferential models

Fisher and later Dempster aimed to develop a framework of probabilistic inference with-
out prior distributions, i.e., a prior-free alternative to Bayesian inference. These approaches,
however, failed to reach the statistical mainstream, largely because the derived procedures
have no frequentist guarantees. To fill that gap, Martin and Liu (2013) argued that frequen-
tist guarantees could be achieved by supplementing the structural, pivotal, or functional
model formulation of Fisher (1956), Dempster (2008), Fraser (1968), Barnard (1995), Dawid
and Stone (1982), Taraldsen and Lindqvist (2013), and others, with an appropriate user-
specified random set. As a consequence of this use of a random set, the inferential output is
described by a (data-dependent) non-additive plausibility function (e.g., Shafer 1976) instead
of an additive Bayesian, fiducial, or structural posterior probability distribution. The added
complexity of non-additivity is not for its own sake, however, it is actually necessary (Balch
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et al. 2019) for the strong validity property in (3) that gives the inferential model’s belief
assignments a meaningful scale for interpretation and, furthermore, leads to the frequentist
error rate control guarantees.

In general, we start with a sampling model, Y ∼ PY |θ, for the observable data Y ,
depending on some unknown parameter θ ∈ Θ. As one would if the goal were to simulate,
we express the model as

Y = a(θ, U), U ∼ PU . (2)
where a is a known function, and PU is a known distribution on the space U. We call the
relationship in (2) an association between observable data Y , unknown parameter θ, and
auxiliary variable U . This association step is the starting point in the construction of a valid
inferential model.
A-step. Specify an association of the form (2) and then define the set

Θy(u) = {θ : y = a(θ, u)}, u ∈ U.

P-step. Specify a predictive random set S, taking values in the power set of U, whose contour
function, f(u) = PS(S 3 u), is such that f(U) ∼ Unif(0, 1), when U ∼ PU . Remarks on the
choice of random set S—and the corresponding contour function f—are provided in Martin
and Liu (2016, Ch. 4); see, in particular, Corollary 4.1.
C-step. Combine the ingredients in the A- and P-steps to get a new random set

Θy(S) =
⋃
u∈S

Θy(u),

and, for inference about θ, return the distribution of this random set summarized by its
plausibility function

ply(A) = PS{Θy(S) ∩ A 6= ∅}, A ⊆ Θ.
The distribution of this random set is interpreted as a measure of how plausible the hypothesis
“θ ∈ A” is, based on data y and the posited model.

The most unique feature of this construction is the random set S. In our meta-analysis
problem, specification of the random set is straightforward as outlined in Section 2.2, but
the general details can also be found in Martin and Liu (2016). What matters is that the
properties required of the random set make the inferential model valid, i.e.,

sup
θ∈A

PY |θ{plY (A) ≤ α} ≤ α for all α ∈ (0, 1) and all A ⊆ Θ. (3)

An important consequence of this validity property is the control it provides on the perfor-
mance of statistical procedures derived from the inferential model output. Indeed, a test
that rejects a hypothesis “θ ∈ A” if ply(A) ≤ α will obviously control the frequentist Type I
error rate at level α. Similarly, a 100(1− α)% plausibility region for θ, given by

{θ : ply(θ) > α}, where ply(θ) := ply({θ}),

has frequentist coverage probability of (at least) 1 − α. These properties are exact in the
sense that they do not require any asymptotic approximations. The pointwise plausibility
function, θ 7→ ply(θ), is also a useful visualization tool, not unlike a Bayesian posterior
density function; see Figure 1 below.
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2.2. Generalized inferential models

Since the inferential model construction and validity result is general, efficiency often
becomes a concern as the dimension of the auxiliary domain increases with the size of data.
To avoid the possible need to specify such a complex, high-dimensional random set, some
non-trivial manipulations are required (e.g., Martin and Liu 2015ab) that can be difficult to
carry out in a given problem. This motivated Martin (2015, 2018) to develop a construction
based on a more general formulation and establish conditions under which the corresponding
inferential model is valid. An advantage of this generalized approach is that there is no need
for the aforementioned manipulations, hence it is easier to apply.

A generalized inferential model begins with defining a real-valued function (y, θ) 7→
Ty(θ). When Y ∼ PY |θ, the random variable TY (θ) has a distribution, which we represent
with Gθ. The generalized association then extends the notion in Section 2.1 by connecting
the data, parameter, and auxiliary variable via the expression

TY (θ) = G−1
θ (U), U ∼ Unif(0, 1).

In this paper, we will assume (without loss of generality) that Ty(θ) is large when data y
and parameter value θ disagree; therefore, Ty(θ) is a sort of distance between data y and
parameter θ. The first step to our generalized inferential model (A-step) then yields

Θy(u) =
{
θ : Gθ

(
Ty(θ)

)
= u

}
, u ∈ (0, 1).

The P-step, as before, requires the introduction of some random set in the u-space; but the
structure that has been imposed here virtually determines it. We thus take

S = [0, Ũ ], Ũ ∼ Unif(0, 1).

The C-step returns a new random set

Θy(S) =
⋃
u∈S

Θy(u) =
{
θ : Gθ

(
Ty(θ)

)
≤ Ũ

}
, Ũ ∼ Unif(0, 1).

Note that this set contains those parameter values that agree with y to some degree, and
that this degree is calibrated so that validity holds. That is, if

ply(θ) = PS{Θy(S) 3 θ} = PŨ{Gθ(TY (θ)) ≤ Ũ} = 1−Gθ(Ty(θ)),

then we immediately see that plY (θ) ∼ Unif(0, 1) under Y ∼ PY |θ and, hence, the validity
property as stated in (3) holds.

The approach described above returns a plausibility function defined on the full param-
eter space, Θ. From this, one can carry out marginal inference on any feature, ψ = ψ(θ), of θ
via optimization. In particular, following Shafer (1987, Sec. G), the corresponding marginal
point plausibility function for ψ is

mply(ψ) = sup
θ:ψ(θ)=ψ

ply(θ), (4)

and the validity properties associated with pl carry over immediately to mpl.
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But there are cases, like the one we consider in Section 3, where interest is exclusively in
a specific feature of θ, and it is beneficial to construct a marginal inferential model directly.
Express the full parameter as θ = (ψ, η), where ψ and η are the interest and nuisance
parameters, respectively. Next, define a function (y, ψ) 7→ Ty(ψ) that only directly involves
the interest parameter, again, with the property that large values of the function correspond
to cases where data and the interest parameter disagree. An example of such a function
is the negative log relative profile likelihood, as in (6). If the distribution of TY (ψ), as a
function of Y ∼ PY |ψ,η, does not depend on η, then construction of the generalized inferential
model for ψ proceeds exactly as above, with any fixed value of η. This is very similar to the
developments of Tsui and Weerahandi (1989) in the framework of generalized p-values. In
many applications, however, including our meta-analysis problem, the distribution of TY (ψ)
does depend on the nuisance parameter, so some non-trivial adjustments are required. We
discuss this in detail in Section 3.

3. Inferential Models for Meta-Analysis

3.1. Construction

For our meta-analysis case, write PY |µ,ν for the joint distribution of Y = (Y1, . . . , YK),
where Yk are independently generated from a N(µ, σ2

k + ν). It is straightforward to write
down an association that links the data Y , the unknown parameter θ = (µ, ν), and a set of
auxiliary variables, e.g.,

Yk = µ+ (σ2
k + ν)1/2Uk, k = 1, . . . , K,

where Uk’s are iid N(0, 1). Following Martin and Liu (2015a), the next step would be
to reduce the dimension of (U1, . . . , UK) to match that of θ. This step turns out to be
challenging but, fortunately, a generalized inferential model is within reach.

The full parameter is θ = (µ, ν) but, since only µ is of interest, marginalization is
desired. As discussed in Section 2.2, there are at least two ways to proceed. The first is to
start with a summary TY (θ) = TY (µ, ν) of the data and full parameter, which takes large
values when data and the candidate parameters disagree, and then marginalize to the µ-
space after constructing the plausibility function on the (µ, ν)-space. That is, we define a
plausibility function on the full parameter space as

ply(µ, ν) = 1−Gµ,ν

(
Ty(µ, ν)

)
,

where Gµ,ν is the distribution of TY (µ, ν) under Y ∼ PY |µ,ν . Like in (4), we obtain our
desired marginal plausibility by optimization:

mply(µ) = sup
ν

ply(µ, ν).

The corresponding 100(1− α)% plausibility interval for µ is {µ : mply(µ) > α}, correspond-
ing to a projection of the joint plausibility region for the full parameter onto the µ-space.
After some reflection on the solution in Michael et al. (2019), one sees that it is precisely a
generalized inferential model as just described, with Ty(µ, ν) given by

Ty(µ, ν) = Tw(µ) + c0 log Ly(µ, ν̂DL)
Ly(µ, ν) , (5)
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a linear combination of DerSimonian and Laird’s Wald-type summary statistic Tw(µ) and
a log likelihood ratio, with a constant c0 controlling its contribution. Those authors do
not describe their proposal as a (generalized) inferential model, but we believe that this
perspective is beneficial both for developing some intuition about their solution and for
comparing with our proposed solution.

Despite the ease of marginalizing out the nuisance parameter from the joint plausibility
function, we adopt the second strategy for marginalization discussed in Section 2.2 that
eliminates the nuisance parameter before constructing the plausibility function. That is, we
start with a function, Ty(µ), that does not directly involve ν. Like in Goodman (1989), we
recommend the use of a negative log relative profile in which

Ty(µ) = − log supν Ly(µ, ν)
supµ,ν Ly(µ, ν) , µ ∈ R. (6)

Here Ly(µ, ν) ∝ ∏K
k=1(σ2

k + ν)−1/2 exp{−1
2(σ2

k + ν)−1(yk − µ)2} is the likelihood function
under the assumed model PY |µ,ν . Note that the ν value at which the maximum is attained
in the numerator—call it ν̂µ—depends on the specified value of µ. As before, we define the
distribution function of TY (µ) under the model Y ∼ PY |µ,ν as

Gν(t) = PY |0,ν{TY (0) ≤ t}, t > 0.

Here we have inserted the default zero value for µ because the location model structure means
the distribution of TY (µ) does not depend on the value of µ, when Y ∼ PY |µ,ν . Following
the remainder of the construction outlined in Section 2.2, we arrive at a marginal point
plausibility function

“mply(µ)” = 1−Gν(Ty(µ)).
The quotation marks on the left-hand side are to signal that this is not a function that
we can actually work with because the right-hand side depends on the unknown value of
the nuisance parameter ν. To overcome this, we will use a plug-in estimate for ν, where it
appears in Gν . Before proceeding, it is important to emphasize that our plug-in proposal is
fundamentally different than those mentioned in Section 1; we discuss this in more detail in
Section 3.3. For our plug-in estimator, we propose to use that ν value where the maximum
in the numerator of the profile likelihood is attained, namely, ν̂µ, which implicitly depends
on data y. Putting it all together, our proposed marginal point plausibility function for µ is

mply(µ) = 1−Gν̂µ(Ty(µ)), µ ∈ R, (7)

which is now just a function of data and the generic argument µ. This function can be
plotted to visualize what the data suggests about where the true value of µ is and, more
formally, we can read off a 100(1− α)% marginal plausibility interval for µ as follows:

{µ : mply(µ) > α}.

Computation of mply requires an approximation of the analytically intractable distri-
bution Gν̂µ , but this is straightforward to do via Monte Carlo; see Algorithm 1. And once
mply(µ) is available on a grid of values, extracting the plausibility interval for µ is easy, but
the endpoints could be targeted more directly using, say, the proposed Monte Carlo method
coupled with stochastic approximation.
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Algorithm 1: Monte Carlo approximation of Gν̂µ

1 Generate M samples of K study-level errors e∗1m, . . . , e∗Km ∼ N(0, 1) Set a fine grid of
µ values for each µ value on the specified grid do

2 Find ν̂µ for the observed data y and given µ;
3 for m = 1, . . . ,M do
4 Set Y ∗km = (σ2

k + ν̂µ)1/2e∗km for k = 1, . . . , K;
5 Calculate T ∗m = TY ∗

m
(0) based on Y ∗m = (Y ∗1m, . . . , Y ∗Km);

6 end
7 Approximate Gν̂µ(t) by M−1∑M

m=1 1{T ∗m ≤ t};
8 end

3.2. Illustration

To illustrate our proposed method, two examples are shown in Figure 1. In each, a
meta-analysis is carried out on K = 3 studies, and each study’s variance σ2

k generated from
a inverse gamma distribution with a shape and scale parameter of 1. The data supplied
from each of these hypothetical studies were generated from a normal distribution in which
the true population mean was set at µ = 0 and the variance at ν + σ2

k. It is straightforward
to construct plausibility functions for the individual studies, with data (Yk, σ2

k), for k =
1, 2, 3, under the normality assumption (see, e.g., Martin 2017), and these curves are plotted
in gray in Figure 1. The black curve corresponds to the marginal plausibility function,
µ 7→ mply(µ), described in the previous section, evaluated using the Monte Carlo method
outlined in Algorithm 1. Panels (a) and (b) correspond to ν = 1 and ν = 2, respectively.
Note that, as expected, the black curve is a “combination” of the three gray curves, with
more influence coming from those gray curves that are tighter, corresponding to a more
informative individual study.

3.3. Theoretical properties

If the value of the nuisance parameter ν were known, and used, in our construction of
the (marginal) generalized inferential model for µ, then the validity property, as stated in
(3), would be immediate. For the practical case where ν is unknown, we have recommended
the inferential model with marginal point plausibility function (7), which involves a plug-
in estimator. Our use, however, of this plug-in ν̂µ, complicates verification of the validity
property. At the very least, under mild assumptions, our proposed generalized inferential
model would be valid for large K, and the following theorem confirms this.

Theorem 1: Let Y K = (Y1, . . . , YK) be an independent sample from the random effects
model, PY |µ,ν , described above, where both µ and ν are unknown, but each within-study
variance σ2

k is known. Then the marginal plausibility function mplY K in (7) satisfies

mplY K (µ)→ Unif(0, 1) in distribution under PY |µ,ν as K →∞.

In particular, the marginal plausibility region {µ : mplY K (µ) > α} has coverage probability
approximately equal to 1− α, for large K.

Proof: See the Appendix.
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(b) ν = 2

Figure 1: Examples of two simulated meta-analyses where the number of studies
available K = 3. Plausibility functions associated with each individual study
(in gray) and the combined plausibility function associated with our proposed
inferential methods approach (in black). Marginal 95% plausibility intervals for
µ can be obtained where the combined plausibility intersects with α = 0.05.

The above theorem only says that the proposed solution is approximately valid for
large K, but we do have reason to believe that the support for the proposed solution is
actually stronger than this theorem suggests. Indeed, numerically, even for small K, the
distribution of mplY (µ) is very close to uniform. As shown in Figure 2, based on 10,000
samples of the data pairs (Yk, σ2

k) from a small number of studies K = {3, 4, 5} and a high
level of heterogeneity between studies ν = 5, the distribution is close to uniform. There is
some deviation to the left of uniform when the number of studies included for meta-analysis
is particularly small, K = 3, but this is in the middle of the distribution, not in the lower
tails (e.g., around 0.05) where we would naturally be interested. Therefore, the method
appears to be not only valid, but nearly exact.

It is natural to ask: why does our proposed method achieve this apparent higher-order
of accuracy? At least intuitively, this can be answered by noticing that our proposed method
has features in common with both the exact and higher-order asymptotically accurate meth-
ods described above. That is, by starting with the relative profile likelihood TY (µ) in (6), we
remove almost all of the dependence on the nuisance parameter; that is, by Wilks’s theorem,
the profile likelihood ratio has a known distribution—no nuisance parameter dependence—up
to first order. This means that the exact distribution, Gν , of our TY (µ) is roughly constant
in ν. Therefore, even though there is some remaining dependence on ν, which is why a
plug-in estimator is needed, it is not necessary that it be an especially accurate estimate.
Ultimately, our final inferential model is built using the plug-in distribution Gν̂µ , at each
individual µ value, which is very close to the exact distribution. It is this extra accuracy
that leads to the superior practical performance in Figure 2 and Section 4, beyond what
would be expected from the large-K approximate validity result in Theorem 1.
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Figure 2: Distribution function α 7→ PY |µ,ν{mplY (µ) ≤ α} of mplY (µ) (black) com-
pared with that of a Unif(0, 1) (gray) based on 10000 Monte Carlo samples from
a normal-normal random effects model.. From left to right, K = 3, 4, 5.

4. Simulation Studies

Our simulations examine the performance of our proposed method, compared to that of
other existing methods, in the case where K ≤ 7. We generate our K study-level observations
from the normal–normal random effects model, where the within-study variances—the σ2

k

values, for k = 1, . . . , K—are taken as fixed constants; following Gelman (2006), we generate
these “fixed values” from an inverse gamma distribution with a shape and scale parameter
of 1. Here we fix the overall effect at µ = 0 but vary the between-study variances as
ν ∈ {1, 3, 5}, so that we capture various settings from low to high levels of heterogeneity.
For each combination of K and ν, we repeat the experiment 1000 times to get estimates of
the coverage probability and mean length of various 95% confidence intervals.

We compare the coverage properties of our approach (IM) against that of DerSimonian
and Laird (1986, DL), the exact method in Michael et al. (2019, EX), the signed profile
log likelihood ratio in Severini (2000, LK), its Skovgaard corrected cousin in Guolo (2012,
SV), as implemented in the metaLik package in R (Guolo and Varin 2012), a traditional full
Bayesian solution with a non-informative Jeffreys prior, as implemented in the bayesmeta
package (Röver 2012), and, as a benchmark, an oracle procedure that knows the true value
of ν and uses the classical normal distribution theory for inference on µ. For EX, we set the
tuning parameter c0 to the values based on K as recommended in Michael et al. (2019).

As shown in Figure 3, our proposed generalized inferential method outperforms all the
other methods—except, of course, the oracle—in terms of both coverage and mean interval
length. The Bayes, exact and higher-order likelihood methods tend to have too high nominal
coverage, and the others too low. The over-coverage seen here is consistent with the results
shown in Michael et al. (2019). Oddly, when the between-study variance parameter is set
to a higher value ν = 5, so that the average heterogeneity among the 1000 simulations is
high, the Skovgaard corrected signed profile log likelihood actually achieves nominal coverage
across all small settings of K. This is in line with the results in Guolo (2012), in which the
estimator is sensitive to the level of heterogeneity.

To further highlight this sensitivity of the higher-order likelihood approach, we re-
ran our methods above in the same settings used in Guolo (2012); more specifically, we
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Figure 3: Coverage probabilities and mean interval lengths across 15 different
simulation settings for the number of studies available for meta-analysis K and
the level of heterogeneity ν. Results for DL (purple), LK (blue), oracle (green),
SV (yellow), EX (orange), Bayes (red), and our proposed IM (black). From left
to right, data are generated from a fixed between-study variance ν ∈ {1, 3, 5}.

re-examined the performance of our IM approach with K ∈ {3, 4, 5, 6, 7}, µ = 0.5, and
ν = {0.08, 0.10, 0.12}. We also generate the within-study variances for each study K from
a uniform distribution on the interval 0.01 and 0.06 as done in Guolo (2012). As shown
in Figure 4, our method still outperforms in these settings. Conversely, the under-coverage
of DL and LK across these two different simulation settings in Figure 3 and Figure 4 are
to be expected, as K is too small for the first-order asymptotic approximations to kick in.
Moreover, our proposed method’s strong coverage performance is not the result of having
overly wide intervals: our mean lengths fall right in between those of the over-and under-
coverage methods, and are quite close to that of the oracle as K becomes larger. Remarkably,
these patterns hold across different heterogeneity levels as well.

5. Real Data Analyses

5.1. Changes in bone mineral density

To demonstrate how their inference procedure performs against popular meta-analytic
techniques, Michael et al. (2019) carry out four separate meta-analyses on 59 randomised
trials presented in Tai et al. (2015). These meta-analyses differ in two categories: (a) the spe-
cific bones from which the outcome measure, or the change in bone mineral density (BMD),
was measured; and (b) the number studies included. The first meta-analysis consisted of
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Figure 4: Coverage probabilities and mean interval lengths across 15 different
simulation settings as done in Guolo (2012) for the number of studies available
for meta-analysis K and the level of heterogeneity ν. Results for DL (purple), LK
(blue), oracle (green), SV (yellow), EX (orange), Bayes (ired), and our proposed
IM (black). From left to right, data are generated from a fixed between-study
variance ν ∈ {0.08, 0.10, 0.12} across various number of studies, K.

27 separate trials in which BMD changes were taken from the lumbar spine, followed by a
meta-analysis of six trials of BMD changes from the hip, five from the forearm, and three
from the total body. As shown in Table 1, for the first meta-analysis, our 95% plausibility
interval almost matches the exact confidence interval from Michael et al. (2019), which also
approximately aligns with that of the classical DerSimonian–Laird approach. This is no
surprise as the number of studies K = 27 itself is large. As for subsequent studies in which
K ≤ 6, the comparison between DerSimonial–Laird and the other two methods changes a
lot and, in fact, sometimes leads to different scientific conclusions. For example, one would
conclude a significant change in BMD from the forearm and total body meta-analyses based
on DerSimonian–Laird, but conclude no significant change based on our method and that of
Michael et al. (2019). Given that the latter two approaches have stronger theoretical support
than the former, the difference in conclusions here might be indicative of the increased risk
of false positives when using traditional meta-analytic techniques.

5.2. Risk of acute myocardial infarction

Here we consider a controversial example, one that called to question the use of meta-
analyses in general (Egger and Smith 1995; Flather et al. 1997). Teo et al. (1991) conducted
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Table 1: Four meta-analyses on the effect of calcium supplements in changes in
bone mineral density from Tai et al. (2015). Intervals based on three methods
(DL, EX, and our IM) are reported, with interval lengths as subscripts.

Study K DL EX IM
Lumbar spine 27 (0.828, 1.669)0.841 (0.768, 1.726)0.958 (0.811, 1.642)0.831
Total hip 6 (0.502, 1.847)1.345 (0.159, 2.246)2.087 (0.319, 2.131)1.812
Forearm 5 (0.209, 3.378)3.169 (−0.459, 4.124)4.583 (−0.426, 4.625)5.052
Total body 3 (0.268, 1.778)1.511 (−0.740, 2.796)3.536 (−0.486, 2.568)3.054

a meta-analysis of seven clinical trials that examined mortality across 1301 patients, 657 of
which received intravenous magnesium therapy within 12 hours of hospitalization for acute
myocardial infarction and 644 of which did not. In the original work, a fixed-effect method
was used to combine the results from these seven randomized trials and arrive at a common
odds ratio of 0.47, with 95% confidence interval (0.28, 0.79)—suggesting magnesium therapy
to be highly effective in reducing mortality among this specific patient population. The
expected drop in mortality, however, was refuted in a large-scale 58,050-patient follow-up
study (Fourth International Infarct Survival Collaborative 1995) that estimated a common
odds ratio of 1.06 with 95% confidence interval (1.00, 1.12). As a result, researchers raised
concerns about meta-analytic techniques in general, citing issues around publication biases
(Yusuf and Flather 1995) and high heterogeneity between studies (Flather et al. 1997). To
address these problems, the canonical recommendation was to conduct sensitivity analyses
via the use of multiple meta-analysis procedures, like that discussed below. Had such a
precaution been taken, the fact that the Fourth International Infarct Survival Collaborative
study lead to an alternative conclusion would not have been unforeseen.

It is also worth noting here that since the raw observations recorded in Teo et al. (1991)
are in the form of a dichotomous outcome variable, we take the logarithm of the common
odds ratio, between the mortality rate of patients that receive magnesium therapy and that
of patients that do not, in order to conduct our meta-analysis as described in the competing
procedures above. While there are other simplifications, e.g., Van Houwelingen et al. (1993),
we subscribe to the rationale in DerSimonian and Laird (1986) that regards the distribution
of the log odds as approximately normal. Figure 5 thus compares the resulting interval
estimates based on several meta-analytic procedures, namely, those assessed in Section 4.
Note that the DerSimonian–Laird and signed profile log likelihood intervals approximate the
original results from Teo et al. (1991). However, our proposed approach, along with the full
Bayesian, the higher-order likelihood, and that in Michael et al. (2019), result in an odds
ratio interval that suggests magnesium therapy does not significantly affect the short-term
mortality of patients with acute myocardial infarction.

6. Conclusion

In this paper, we have considered an important and challenging problem, namely, valid
statistical inference for meta-analyses that combine only a few studies. Again, the main
obstacle is in dealing with the unknown between-study variance, in which there is only limited
information in the few studies being combined. Our proposed solution is based on a recently
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Figure 5: (Left) Estimated odds ratio intervals for various meta-analytic tech-
niques in the example described in Section 5.2. (Right) Combined plausibility
function and respective IM interval on the log scale.

proposed generalized inferential model framework, and we harness the power of profiling to
construct a generalized association that is “almost” independent of the nuisance between-
study variance. From there, we can use the exact distribution of the profile likelihood ratio,
as the lack of sensitivity to the nuisance parameter means that it is not necessary to have an
accurate plug-in estimator to achieve near-exact inference. In our numerical comparisons,
we have demonstrated that the proposed inferential model solution outperforms existing
methods in the literature, by being nearly exact and more efficient across a wide range of
simulation settings, with few studies and both large and small between-study variance.

Given the strong performance in this meta-analysis application, it is natural to consider
using the same generalized inferential model approach to solve other challenging problems.
One that we have recently considered is when data come from a parametric model are cor-
rupted by random censoring. The classical solution to this problem relies on the asymptotic
normality of maximum likelihood estimators and, therefore, can only give approximately
valid inference in an asymptotic sense. But the use of a likelihood ratio effectively marginal-
izes out the nuisance censoring distribution, so we end up in a position similar to that
encountered in the present paper, the key difference being that the nuisance parameter is
infinite-dimensional, which creates computational challenges. Preliminary results on this can
be found in Cahoon and Martin (2019) and more details are forthcoming.
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APPENDIX
Proof of Theorem 1

By definition of mplY K in (7), it is enough to show that GK
ν̂µ(TY K (µ)) converges in

distribution to Unif(0, 1) under PY K |µ,ν ; note that here we insert the superscript “K” to
highlight the dependence on the number of studies, K. Then we can write GK

ν̂µ(TY K (µ)) =
GK
ν (TY K (µ)) + ∆K , where

∆K = GK
ν (TY (µ))−GK

ν̂µ(TY (µ)),

with ν̂µ, the maximum likelihood estimate of the heterogeneity parameter at a fixed µ, and ν
the true heterogeneity between studies. The key observation is that GK

ν (TY K (µ)) is exactly
uniformly distributed under PY K |µ,ν , so if we can show ∆K → 0 in PY K |µ,ν-probability, then
the claim follows from Slutsky’s theorem.

Towards this, we clearly have

|∆K | ≤ sup
t∈[0,1]

|GK
ν (t)−GK

ν̂µ(t)|,
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so we can prove our claim by showing the difference between the two distribution functions
vanishes uniformly. But since these are distribution functions, it is enough to show that
the difference vanishes pointwise, at each fixed t. Towards this, according to Guolo (2012),
the meta-analysis problem is sufficiently regular that the classical first-order distribution
theory applies; see, e.g., Severini and Wong (1992, Sec. 4.6). In particular, this implies
ν̂µ = ν+OP (K−1/2) which, in turn, implies that PY K |µ,ν and PY K |µ,ν̂µ are mutually contiguous.
Then the classical Wilks’s theorem gives us

−2 log TY K (µ)→ ChiSq(1) in distribution, as K →∞, (8)

under both PY K |µ,ν and PY K |µ,ν̂µ . Therefore,

GK
ν (t)→ G∞(t) and GK

ν̂µ(t)→ G∞(t),

where G∞ is the limiting distribution function of TY K (µ) from (8). Now, if we write

|GK
ν (t)−GK

ν̂µ(t)| ≤ |GK
ν (t)−G∞(t)|+ |GK

ν̂µ(t)−G∞(t)|,

then we see the right-hand converges to 0 in PY |µ,ν-probability as K → ∞. This implies
∆K → 0 from which GK

ν̂µ(TY K (µ))→ Unif(0, 1) follows by Slutsky’s theorem.
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Abstract
High dimensional inference problems are generating considerable interest due to the

availability and accessibility of massive amount of data in several fields. Modern sta-
tistical problems, however, involve natural constraints on model parameters. For such
estimation problems, it is not fitting to apply standard estimates designed for unre-
stricted alternatives and then to truncate it. Given a n dimensional independent normal
observation with common variance, we consider the classical normal mean estimation
problem where the mean vector lies in a non-negative orthant. We study the behav-
ior and risk properties of Bayesian estimators under two popular priors, the horseshoe
prior and Strawderman-Berger prior, originally developed in the unrestricted mean vec-
tor estimation regime and then restrict the distribution of prior to satisfy the parameter
constraint. The performance of posterior mean based on the horseshoe prior and the pos-
terior mean and posterior median based on Strawderman-Berger prior is compared with
the maximum likelihood estimator, numerically under different sparsity configurations.

Key words: Constrained normal means; Shrinkage estimators; Mixture distribution; Spar-
sity.

1. Introduction

Traditional statistical theory has mostly focused on methods developed for large
samples and a small number of features. The modern scientific world, however, is moving
fast towards the regime of high dimensional data. In the high dimensional setting, often
one deals with the case when only few variables are relevant. Thus, it has become
increasingly important to identify true signals as the data tends to be sparse. Probably
the most common of such high dimensional sparse estimation problems is estimation of
the mean of a normal distribution when sample size is small compared to the dimension.
It is the proverbial needle in a haystack problem that has received much attention in
the literature. The setting of the problem is simple. Given data y1, . . . , yn, arising
independently from the model

yi|µi, σ2 ∼ N(µi, σ2),
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one wishes to estimate the entire vector µ = (µ1, . . . , µn). Of course, given that there are
only n independent observations for (n+1) unknown parameters, additional assumptions
are needed for meaningful estimation of the mean vector. Usually some level of sparsity
is assumed for the true mean vector. Both Bayesian and frequentist estimators have been
developed for this problem, the most well known being the shrinkage estimators starting
with James and Stein (1961), thresholding estimators starting with Donoho and Johnston
(1994), penalized estimators such as Lasso (Tibshirani, 1996), SCAD (Fan and Li, 2001)
and many other variants of them.

In the Bayesian setting, popular approaches include using the spike and slab priors
and continuous shrinkage priors for sparse mean estimation. Formulation of sparse mean
vector scenarios as a combination of two regimes where the mean values are zero or arising
from a measure which allows for possibly large values naturally leads to a mixture prior
of the form

p(µ) = pδ0 + (1− p)g(µ).

The point mass p as µ = 0 is the spike and the probability density g(·) allowing µ to take
possibly large non-zero values is the slab. Mitchell and Beauchamp (1988) considered
it in the context of variable selection in Gaussian regression. Since then such priors
have gained popularity in many contexts including variable selection, covariance matrix
estimation, false discovery rate estimation. Many authors have advocated the use of
such point mixture priors for normal mean estimation. Strawderman-Berger (SB) prior
(Strawderman and Berger, 1996) explicitly considered in this article is an example of such
a spike-and-slab prior in a hierarchical setting where the hyper-parameters governing the
slab g(·) are allowed to change according to some prior for each µi. Specifically, they
propose the following model

µi|τ, λi ∼ N(0, τ 2λ2
i ),

p(λi) ∝ λi(1 + λ2
i )1/2,

p(τ) ∼ C[σ, σ]I(τ > σ)

where C[a, b] is the Cauchy density with location and scale equal to a and b, respectively.

A version of the spike-slab prior considered recently is the non-local prior recom-
mended by Johnson and Rossell (2010, 2012) where the slab is well separated from the
spike at zero. Being a single component prior, horseshoe type priors are computationally
less demanding than the spike-slab priors.

Another class of priors considered for sparse estimation of mean are the shrinkage
priors or the global-local priors. Park and Casella (2008) proposed a scale mixture of
Gaussian prior that they called the Bayesian Lasso. However, these priors do not have
sufficient prior mass near zero to work well in the very sparse regime. Carvalho et al.
(2010) proposed the horseshoe (HS) prior defined as

µi|τ, λi ∼ N(0, τ 2λ2
i ),

p(λi) ∝ C[0, 1]+,
p(τ) ∼ σC[0, 1]+

where C[0, 1]+ is the half-Cauchy density, the standard Cauchy truncated to the positive
half. The horseshoe prior has only one component as opposed to the two separate com-
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ponents of the spike-and-slab priors but overcomes the deficiency of the Bayesian Lasso
in sparse regime by allowing infinite prior density at zero.

While full Bayesian analysis is possible, empirical Bayes solutions have also been
discussed for the two component mixture priors such as Strawderman-Berger and the
single component shrinkage priors such as horseshoe. Empirical Bayes solutions for high-
dimensional sparse mean estimation have been also looked at in the literature; see John-
ston and Silverman (2004), Brown and Greenshtein (2009).

Often one has prior knowledge on the range of possible values for the mean param-
eter, such as the parameter is non-negative. One way of estimating such a parameter
is to first obtain an unrestricted estimate of the parameter and then truncate it so that
the estimate lies in the constrained parameter space. Intuitively, the performance of the
estimator is expected to be much better if such constraint conditions are incorporated in
the model. Constrained estimation of normal mean restricted to convex cones has been
discussed in Sen and Silvapulle (2001). Danaher et al. (2012) provides an example of
Bayesian estimation of normal mean when the mean is constrained to a convex polytope.

In this paper we particularly look at the case when the dimension is large and
the mean vector is assumed to be sparse. We focus on the high dimensional normal
means estimation problem where the mean vector is constrained to be in a closed convex
polyhedral cone. Let y = (y1, . . . , yn)′ ∼ N(µ, σ2I) where the parameter of interest
µ = (µ1, . . . , µn)′ is assumed to belong to the convex cone

K = {µ ∈ Rn : Aµ ≥ 0}

where A is some fixed r×n matrix. We assume that K has non-zero interior volume with
respect to the n dimensional Lebesgue measure. Of course, one of the most interesting
question is how to specify sparsity in constrained spaces such as K. However, the scope of
this paper is very limited. Without getting into a discourse about sparsity in constrained
sets such as K, we simply compare the performance of sparsity generating spike-and-slab
priors such as Strawderman-Berger and shrinkage priors such as horseshoe, when the
priors are defined in terms of scale mixtures of truncated normal instead of normal. This
straightforward generalization is probably not optimal, particularly if the conic geometry
is very different from that of the entire space. However, given its special importance in
the applications, we will only consider K to be the positive orthant, Rd

+. The geometry of
the positive orthant is very similar to the unrestricted linear space, but there are subtle
differences in estimation due to the constraint and that is what we explore via numerical
investigation.

In Section 2 we discuss the Bayes estimators for the Strawderman-Berger and the
horseshoe priors when they are extended to the convex cone case. In Section 3 we present
results of a numerical experiment comparing the performance of posterior quantities
obtained using different priors along with that of the maximum likelihood estimator
(MLE) projected to the convex cone. We end with some discussions in Section 4.

2. Sparse Priors for the Non-negative Orthant

In this paper we consider the restriction µi ≥ 0 for all i and hence µ ∈ K = Rn
+. For

the horseshoe prior and the Strawderman-Berger prior for the non-negative orthant, we
simply replace the normal prior for µi with normal truncated to the positive half. To judge
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the performance of the estimators under different priors in the constrained case, we set
forth a list of desirable properties. These are analogous to desirable properties in a sparse
mean estimator in the unrestricted case, except adapted to the constrained mean case.
For example, one would want the estimators for µi to provide considerable shrinkage for
small to moderate yi whereas to leave yi nearly unperturbed for large positive yi. In the
constrained case, for negative yi one would expect the estimated mean to be nearly zero,
if not exactly zero. The maximum likelihood estimator for µi is exactly zero whenever yi
is negative.

Horseshoe prior

The extension for the horseshoe to the positive orthant considered here is then

µi|τ, λi ∼ N(0, τ 2λ2
i )+,

λi ∼ C(0, 1)+.

where N(θ, v)+ represent a N(θ, v) truncated from below at 0 and C(0, 1)+ represent a
standard half-Cauchy distribution on the positive reals. We use a Jeffrey’s prior on σ
and standard half-Cauchy prior with scale equal to σ on τ .

π(σ) ∝ 1
σ
,

τ |σ ∼ C(0, σ)+.

One could estimate σ and τ using an Empirical Bayes approach. However, here we
use a full Bayesian framework. Carvalho et al (2010) described λi as the local shrinkage
parameter and τ the global shrinkage parameter. For the positive orthant, the horseshoe
prior that we are considering is essentially a scale mixture of truncated normals, scale
being a function of a common variance component, τ and an individual variance compo-
nent, λi for each µi.

Conditional on σ, τ and λi’s, µi|y are independently distributed as

µi|λi, τ, σ,y ∼ N(mi, s
2
i )+

where mi = s2
i
yi

σ2 and s2
i = [ 1

σ2 + 1
τ2λ2

i
]−1. Then, we have

E(µi|λi, τ, σ,y) = mi +
φ(−mi

si
)

1− Φ(−mi

si
)si. (1)

The Bayes estimator of µi is given by

µ̂i = E(µi|y) = Eλi,τ,σ|yE(µi|λi, τ, σ,y).

From the bounds on the Mill’s ratio for the standard normal, we know that for t > 0,

t <
φ(t)

1− Φ(t) <
1 + t2

t
. (2)

This implies E(µi|λi, τ, σ,y) > 0 for all y. Also, for yi < 0, E(µi|λi, τ, σ,y) < σ2|yi|−1.
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Moreover, for large positive yi, E(µi|λi, τ, σ,y) ≈ [1− τ2λ2
i

σ2+τ2λ2
i
]yi. Hence, summarizing we

have

Result 1: For the horseshoe prior for the constrained case when the true mean is re-
stricted to the non-negative orthant:

1. E(µi|y) > 0 for all y.

2. For yi < 0, E(µi|y) = O(|yi|−1).

3. For large positive yi, E(µi|y) ≈ E([1− τ2λ2
i

σ2+τ2λ2
i
]|λi, τ, σ,y)yi.

Thus, the posterior mean of µi acts as a shrinkage estimator and its behavior is similar
to what observed in the unrestricted case.

Strawderman-Berger Prior

The extension of Strawderman-Berger prior for the non-negative orthant puts a
truncated normal distribution in place of the usual normal distribution.

π(µi) = pδo + (1− p) N(0, τ 2λ2
i )+,

π(λi) ∝ λi(1 + λ2
i )

3
2 ,

p ∼ Unif(0, 1).

Similar to horseshoe, we use a Jeffrey’s prior on σ and for τ and a truncated Cauchy
prior with location and scale both equal to σ bounded below at σ, which are

τ |σ ∼ C(σ, σ) 1(τ ≥ σ),

π(σ) ∝ 1
σ
.

Conditional on λi, τ, p, σ, the posterior distribution of µi is a mixture distribution

π(µi|λi, τ, p, σ,y) = c(θi, yi) δo +
(
1− c(θi, yi)

)
N(mi, s

2
i )+ (3)

where
c(θi, yi) =

p
σ
φ(yi

σ
)

p
σ
φ(yi

σ
) + 2(1−p)

li
φ(yi

li
)Φ(mi

si
)

is the posterior probability of µi = 0 which acts as local shrinkage, θi = {λi, τ, σ, p} and
l2i = σ2 + λ2

i τ
2 for i = 1, . . . , n.

Then, we have

E(µi|λ, τ, σ, p,y) =
(
1− c(θi, yi)

)mi +
φ
(
−mi

si

)
Φ
(
mi

si

) si
.

The Bayes estimator for µi is the posterior mean, E(µi|y) = Eλ,τ,p|yE(µi|λ, τ, σ, p,y).

Result 2: The following results hold for the posterior mean computed based on the
Strawderman-Berger prior in the constrained case:
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1. µ̂i > 0 since E(µi|λi, τ, p, σ,y) > 0 using the inequality in (2).

2. µ̂i is non-decreasing in yi.

3. For large positive yi, E(µi|y) ≈ E
[(

1− c(θi, yi)
)(

1− τ2λ2
i

σ2+τ2λ2
i

)
|λi, τ, σ,y

]
yi.

See the appendix for a proof of the above Result 2.

In the two component model, the posterior mean could be computed in a manner
similar to that computed for the horseshoe type prior. However, for the spike-and-slab
type prior, it is more interesting to look at the component-wise posterior median. For
the posterior median, we use the estimator,

µ̂iM(µi|y) = F−1
i (1/2)

where
Fi(t) = Eθ|y[P (µi ≤ t|θi, yi)]

and

P (µi ≤ t|θi, yi) = c(θi, yi) +
(
1− c(θi, yi)

)
Φ−1

(
mi

si

) [
Φ
(
t−mi

si

)
− Φ

(
− mi

si

)]
.

A more specific form of the posterior median is

µ̂iM(µi|y) =

0 if Eθ|y
(
c(θi, yi)

)
≥ 0.5,

inf{x ≥ 0 : Fi(x) ≥ 0.5} if Eθ|y
(
c(θi, yi)

)
< 0.5.

(4)

Thus, for an additive loss
L(µ, µ̂) =

∑
|µi − µ̂i|,

it makes sense to look at the component-wise posterior median, µ̂M .

One could also look at the Empirical Bayes estimator of the median which is the ex-
pectation of the posterior median expression with respect to p(y|θ). Let

Gi(t|θi, yi) = P (µi ≤ t|θi, yi).

Then the expression for the median is

µ̃i(θi, yi) = 1[c(θi, yi) ≤ 0.5] G−1
θi,yi

( 1
2 − c(θi, yi)
1− c(θi, yi)

)
. (5)

One could show that the posterior median defined in (5) is a continuous shrinkage soft
thresholding rule.

Result 3: For the Strawderman-Berger prior for the normal mean when the true mean
is constrained to the non-negative orthant, the component-wise posterior median in (5)
satisfies the following properties for a given value of the hyperparameter θ.

1. The posterior p(µi|θi, yi) is stochastically increasing in yi and hence the posterior
median of µi is a monotonically increasing in yi for each value of the hyperparameter.
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2. For each yi, there exists T (θi) such that µ̃i(θi, yi) = 0 iff yi < T (θi).

See the appendix for a proof of the above result.

3. Posterior Computation and Numerical Results

Let θ denote the set of all hyper-parameters. We use θ interchangeably for horseshoe
and Strawderman-Berger prior where θ = {λ, τ, σ} for the former and θ = {λ, τ, p, σ} for
the later. We use a Metropolis within Gibbs algorithm to generate random samples from
the marginal posterior distribution, π(θ|y) and thus compute posterior summaries for
the posterior π(µi|y) by averaging the value of the hyperparameters over the randomly
generated sample of θ. For the posterior mean E(µi|y) we use the estimator

E(µi|y) = L−1
L∑
l=1

E(µi|θl,y),

where θ1, . . . ,θL are samples from π(θ|y). For the posterior median, Med(µi|y), we use
the estimator

Med(µi|y) = F̂−1
i (1/2),

where F̂i(t) = L−1∑L
l=1 P (µi ≤ t|y,θl).

The conditional marginal of y can be factorized as

π(y|θ) =
n∏
i=1

π(yi|λi, τ, σ, p),

where π(yi|λi, τ, σ) = 1
li
φ(yi/li) Φ(mi/si) for the horseshoe prior and π(yi|λi, τ, p, σ) =

p
σ
φ(yi/σ) + 2(1−p)

li
φ(yi/li) Φ

(
mi

si

)
for the Strawderman-Berger prior. The distribution

of yi conditional on the hyperparameters is Skew-Normal for the horseshoe prior and a
mixture distribution of Normals for µi = 0 and Skew-Normal for µi > 0.

Hence the for the Gibbs sampling algorithm, the full conditionals are

1. π(λi|τ, σ,y) ∝ π(yi|λi, τ, σ) π(λi), i = 1, . . . , n

2. π(τ, σ|λ,y) ∝ π(y|λ, τ, σ) π(τ |σ) π(σ).

For the Strawderman-Berger prior we have in addition,

1. π(p|λ, τ, σ,y) ∝ π(y|λ, τ, σ, p) π(p).

The one-dimensional conditionals can be sampled using a standard Metropolis step.

3.1. Simulation results

We compare the performances of the Strawderman-Berger estimators, horseshoe es-
timator and Maximum Likelihood Estimator (MLE) under different degrees of sparsity.
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The MLE when µ ∈ K = Rn
+ for Σ = σ2I is simply the projection of y onto the non-

negative orthant i.e. µ̂i = max(yi, 0). For a general polyhedral cones, with Σ other than
σ2I, the MLE is not straightforward to compute.

We analyze the risk properties of the estimators when the mean vector is simulated
under strongly sparse signals and weakly sparse signals. For each of the sparsity level,
we further consider two scenarios described below.

Strong sparsity: We use a discrete mixture model to generate exact zero entries for the
mean vector using the model below:

yi|µi, σ2 ∼ N(µi, σ2),
π(µi) = pδo + (1− p) G(α, β),

where α is taken to be 5, β is 0.5 and 80% of the mean vector has exact zero entries. The
major concentration of µi’s is at 0 with an average concentration of µi > 0 at 10 with
variance 20. Two possible values of σ are considered: σ = 1 and σ = 3. The separation
between yi’s at µi = 0 and µi > 0 is more prominent for σ = 1 than σ = 3.

Weak sparsity: For weakly sparse signals, we generate µi which decays according to
the power law but none of its components are exactly zero. For this, we consider

yi|µi, σ2 ∼ N(µi, σ2),
µi|η, α ∼ Unif(0, ηci),

η ∼ Ex(2),
α ∼ Unif(a, b),

where ci = (n/i)1/α for i = 1, . . . , n. For simulation purposes, σ = 1 is chosen and two
possible scenarios of α ∼ Unif(a, b) are considered: a = 0.5, b = 1 and a = 1, b = 2. The
first scenario yields relatively large mean entries than the second scenario depending on
the randomly generated values of η and α. When α ∼ Unif(1, 2), one can expect the
concentration around 0 to be more dense than when α ∼ Unif(0.5, 1) depending on the
speed of decay, α.

For each of the scenarios, we simulate 1000 data sets from the corresponding model
of dimension n = 300 using MCMC with 50000 runs and a burn-in period of 10000. The
convergence is assessed using the standard MCMC diagnostic checks and all chains seem
to converge. We report the median risk under squared error loss and absolute error loss
along with the average risk ratios between the estimators in Table 1 and Table 2.

Figure 1 shows the plots for MLE estimates, posterior mean under horseshoe prior
and posterior mean and posterior median under Strawderman-Berger prior for a single
realization generated under strongly sparse signals with the variance set to σ = 1 or
σ = 3. The dimension of the mean vector is 300. Figure 2 presents the same under
weakly sparse signals for the two scenarios when α ∼ Unif(0.5, 1) and α ∼ Unif(1, 2).

From Figure 1 and Figure 2, we see that the posterior mean for the horseshoe
provides shrinkage near zero, but it is still significantly positive even when the realized y
is considerably negative. This is particularly undesirable in the constrained case when the
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Figure 1: Plots of µ̂ versus y under strong sparsity with σ = 1 (left) and σ = 3
(right)

true mean is known to be non-negative. From Result 1, we know that for negative y, the
horseshoe estimator decays as O(|y|−1). This induces considerable bias. The posterior
mean under the Strawderman-Berger prior shrinks more than the horseshoe posterior
mean estimator. However, for large positive y the horseshoe estimator seems to perform
better, and shrinks less than the posterior mean under the Strawderman-Berger prior.

The posterior median for Strawderman-Berger prior, as expected from the results
in Result 3, provides a soft thresholding estimator that is truncated to zero below the
truncation point T (y, p) and provides continuous shrinkage for y above the truncation
point. All estimators are monotonic in y and the shrinkage factor tends to one as y tends
to infinity, thereby satisfying the requirement to not perturbing the big realized values of
y.

Table 1 shows that the risk performance of Strawderman-Berger posterior median
and posterior mean is better than the MLE and horseshoe posterior mean both in terms
of squared error loss and absolute loss for the strong sparsity case. In particular, the
horseshoe posterior mean has at least 50% more risk than both the Strawderman-Berger
posterior mean and posterior median. However, the risk for horseshoe posterior mean
under squared error loss is 20%−35% less than the Strawderman-Berger estimators when
σ = 3.

From Table 2, we see that the risk of horseshoe posterior mean is consistently
less than that of MLE and Strawderman-Berger posterior mean and posterior median.
Specifically, horseshoe posterior mean has of 6%− 40% more risk than the Strawderman-
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Figure 2: Plots of µ̂ versus y under weak sparsity where α ∼ U(0.5, 1) (left)
and α ∼ U(1, 2) (right)

Berger estimators. However, when α ∼ U(1, 2), horseshoe estimator has 63% more risk
than the Strawderman-Berger posterior mean and approximately 411% more risk than
SB posterior median, although the median squared error risk is less for horseshoe than
the other estimators.

4. Real Data Analysis

We studied the performance of the estimators using the childhood acute lymphoblas-
tic leukemia (ALL) data set (GSE412) which includes gene expression information for 110
childhood acute lymphoblastic leukemia samples before and after treatment. From the
originally measured 12625 probe sets, genes that were not present in at least one sam-
ple were removed to obtain 8280 genes. After cleaning the data, we selected 250 genes
for 50 pediatric newly diagnosed children for our analysis. Our goal is to estimate the
standardized difference between post-treatment mean, θ2 and pre-treatment mean, θ1
regardless of the type of treatment used i.e. µ = θ2−θ1

σ
. For illustration purposes, we

assume up-regulation of gene expression level in ALL cells so that µ ∈ Rn
+. We further

assumed that the gene expression levels are uncorrelated and have same variance. The
observed data is the standardized difference of the average post-therapy and pre-therapy
gene expression.
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Table 1: Risk under squared error loss and absolute error loss for strongly
sparse signals in two scenarios: σ = 1 and σ = 3. The diagonal components are
median sum of squared error and absolute error. The off diagonal components
are average error ratios of estimator in row by estimator in column.

σ = 1 σ = 3

MLE HS SB
Mean

SB
Median MLE HS SB

Mean
SB

Median

Square
Error
Loss

MLE 171 1.39 2.23 2.33 1598 1.19 0.98 0.77
HS 131 1.6 1.67 1361 0.81 0.64

SB Mean 82 1.04 1636 0.78
SB Median 78 2129

Absolute
Error
Loss

MLE 143 0.92 1.97 2.6 428 0.95 1.43 1.42
HS 156 2.13 2.8 452 1.5 1.49

SB Mean 73 1.32 295 0.98
SB Median 56 299

Table 2: Risk under squared error loss and absolute error loss for weakly
sparse signals in two scenarios: α ∼ U(0.5, 1) and α ∼ U(1, 2). The diagonal
components are median sum of squared error and absolute error. The off
diagonal components are average error ratios of estimator in row by estimator
in column.

α ∼ U(0.5, 1) α ∼ U(1, 2)

MLE HS SB
Mean

SB
Median MLE HS SB

Mean
SB

Median

Square
Error
Loss

MLE 200.24 2.68 2.91 2.65 179 15.7 128.67 400
HS 122.52 0.73 0.6 63 1.63 5.11

SB Mean 185.7 0.81 128 0.92
SB Median 235.8 136

Absolute
Error
Loss

MLE 181.8 1.6 1.75 1.63 166 3.09 4.32 4.8
HS 136.39 0.94 0.85 86 0.91 0.93

SB Mean 162.67 0.89 128 0.95
SB Median 186.75 134
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Figure 3: Plot of µ̂ versus y for the standardized difference in post-treatment
and pre-treatment gene expression for 250 genes

The estimated MLE, posterior means and posterior median are shown in Figure 3.
The summary results for the observed data and the estimates are presented in Table 3.
We noticed that Horseshoe posterior mean is always positive whereas the MLE is 0 for
negative y’s. While the Strawderman-Berger posterior median is exactly 0 for y < 1.4,
the SB posterior mean is close to 0 for these values of y. All four estimates perform
similarly for larger values of y.

5. Discussion

In our simulation studies, we compared the performance of horseshoe posterior
mean, Strawderman-Berger posterior mean and posterior median for strongly sparse
signals and weakly sparse signals. While the posterior mean for both horseshoe and
Strawderman-Berger prior are shrinkage estimators, MLE and Strawderman-Berger pos-
terior median are truncation based estimators with exact zeros for small signals. When
the true sparsity regime is strong sparsity, then truncation type estimators maybe pre-
ferred. The non-negative constraint does impact the relative performance of the mean
and median estimators. It can be shown that the posterior mean under priors consid-
ered here are smooth differentiable functions of the observed value. Hence it cannot be
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Table 3: Summary statistics for the estimates under Horseshoe (HS) and
Strawderman-Berger prior

y MLE HS
Posterior Mean

SB
Posterior Mean

SB
Posterior Median

Minimum -0.0437 0.0000 0.0008 0.0000 0.0000
1st Quartile 0.0043 0.0043 0.0058 0.0000 0.0000

Median 0.0054 0.0054 0.0063 0.0000 0.0000
Mean 0.4618 0.4620 0.4630 0.4583 0.4592

3rd Quartile 0.0064 0.0064 0.0069 0.0000 0.0000
Maximum 5.6094 5.6094 5.6093 5.6094 5.6100

expected to capture the threshold like behavior present in the strongly sparse regime.

In this paper, the numerical studies for non-negative orthant is restricted to horse-
shoe prior and Strawderman-Berger prior. It would be interesting to consider other scale
mixture distributions, similar to Bayesian lasso, with hard thresholding properties for
non-negative mean vectors. Another interesting domain is the discrete mixture models
where the mixing kernel for the positive means could be chosen in a more flexible man-
ner, belonging to flexible families on the non-negative orthant, e.g. product of gamma
densities where heavy tailed priors are used for the hyperparamters. While the scope of
this paper is limited to non-negative orthant which has many popular applications, one
can think of exploring some of these priors to a general closed convex polyhedral cones.
Moreover, the observations maybe allowed to be correlated with a known low-dimensional
correlation structure. For example, one could use the model y|µ ∼ N(µ, σ2Σ) where the
positive definite matrix Σ is completely known. The mean vector is again assumed to be
in the non-negative orthant. A standard approach to dealing with general Σ matrix is to
transform the observations to Σ−1/2y so that the problem reduced to the case considered
here. However, the transformed mean Σ−1/2µ need not remain in the positive orthant
unless Σ is an M-matrix with an inverse that admits a positive square-root. Thus, for
general Σ further investigation is required.
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APPENDIX

Here we prove the claims in Results 2 and 3 about the posterior mean and median
of µi obtained using the Strawderman-Berger prior.

Result 2:

2. µ̂i is non-decreasing in yi.

For notational simplicity, we denote µi by µ and yi by y. Without loss of generality,
let us assume σ = 1.

y|µ ∼ N(µ, 1), µ ∼ g(µ)

g(µ) = πδo + (1− π)g1(µ)

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GPL8300
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An estimator of µ is then given by

l(y) = E(µ|y) =
∫
µφ(y − µ)g(µ)∫
φ(y − µ)g(µ)

= (1− π)
∫
µφ(y − µ)g1(µ)dµ

πφ(y) + (1− π)
∫
φ(y − µ)g1(µ)dµ

=
∫
µφ(µ)g1(µ)eµydµ

π
1−π +

∫
φ(µ)g1(µ)eµydµ

= a(y)
b(y) ,

where a(y) =
∫
µ φ(µ) g1(µ) eµy dµ and b(y) = π

1−π +
∫
φ(µ) g1(µ) eµy dµ.

Then a′(y) =
∫
µ2 φ(µ) g1(µ) eµy dµ and b′(y) = a(y)

l′(y) = b(y)a′(y)− a(y)b′(y)
b2(y)

=
( π

1−π +
∫
φ(µ) g1(µ) eµy dµ)(

∫
µ2 φ(µ) g1(µ) eµy dµ)− (

∫
µ φ(µ) g1(µ) eµy dµ)2

b2(y)

=
π

1−π
∫
µ2f ∗(µ) dµ+ q(y)

∫
µ2f ∗(µ) dµ)− (

∫
µf ∗(µ) dµ)2(

π
1−π + q(y)

)2 ,

where f ∗(µ) = φ(µ) g1(µ) eµy and q(y) =
∫
f ∗(µ)dµ.

Therefore l′(y) reduces to

l′(y) =
π

1−π
1
q(y)

∫
µ2 f∗(µ)

q(y) dµ+
∫
µ2 f∗(µ)

q(y) dµ)− (
∫
µ f∗(µ)

q(y) dµ)2(
π

1−π
1
q(y) + 1

)2

=
π

(1−π)q(y)E(µ2) + V (µ)(
π

1−π
1
q(y) + 1

)2 ≥ 0 ∀y.

Hence l(y) is non-decreasing function of y for any g1(µ) defined on positive µ.

Result 3:

1. The posterior p(µi|θi, yi) is stochastically increasing in yi and hence the posterior
median of µi is a monotonically increasing in yi for a given value of the hyperparameter
θ.

For notational simplicity, we denote µi by µ and yi by y. Without loss of generality,
let us assume σ = τ = λi = 1 for i = 1, . . . , n. From the expression for the posterior of
µ, we have,

π(µ|y) = c(p, y)δo(µ) + (1− c(p, y))f(µ|y),
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where

f(µ|y) = h(y)−1eµye−
1
2µ

2
g(µ),

h(y) =
∫ ∞

0
eµye−

1
2µ

2
g(µ)dµ,

c(p, y) = [1 + (1− p)
p

h(y)]−1.

To show that π(µ|y) is stochastically increasing (SI) in y, it is enough to show f(µ|y) is
SI in y since c(p, y) decreases with decrease in y.

Let µ1 < µ2 and y1 < y2. Then,

f(µ1|y1)f(µ2|y2)
f(µ2|y1)f(µ1|y2) = e(µ2−µ1)(y2−y1) ≥ 1.

Thus,

f(µ1|y1)f(µ2|y2) ≥ f(µ1|y2)f(µ2|y1).

Multiplying both sides by π(y1)π(y2) where π(y) is the marginal of y, we have,

f(µ1, y1)f(µ2, y2) ≥ f(µ1, y2)f(µ2, y1).

Hence, f(µ, y) is Totally Positive of order 2 (TP2). Hence, µ and y are SI in each other
(Theorem 6.1, Dharmadhikari and Joag-Dev 1988).

2. For each yi, these exists T (θi) such that µ̃i(θi, yi) = 0 iff yi < T (θi).

Since c(θi, yi) is monotonically decreasing in yi and

lim
yi→−∞

c(θi, yi) = 1,

lim
yi→∞

c(θi, yi) = 0.

For each θi, ∃ µ̃i(θi, yi) = 0 ⇐⇒ yi < T (θi).
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Abstract
One of the most popular methods for modelling survival analysis data is the ubiquitous

and time-honored proportional hazards model of Cox (1972). Popularity notwithstanding,
in several cases, however, the proportional hazards assumption is found to be violated.
Thus, important model extensions have been developed in the intervening years. One such
extension is the so-called Frailty model (see for example Collett, 2015), which is based on the
utilization of random effects. Another extension arises from the application of finite mixtures
in the context of time-to-event data. Although finite mixture modelling tools are used in
many fields of science, they have been less well-developed and used in survival analysis.
Thus, a key aim of this article is to provide an interesting application of mixture modeling
in survival analysis and to discuss aspects arising in its application. In this paper, we apply
these techniques using real data from the research register of the Finnish Centre for Pensions;
using pension insurance mortality data, we use the basic Cox proportional hazards model
by incorporating finite mixture modelling techniques. Additional comparisons with frailty
models are also provided.

Key words: Censoring; Cox model; Disability pension; EM algorithm; Finite mixtures; Mix-
ture models; Mortality.

1. Introduction

Survival analysis (SA) techniques include a set of methods for analyzing time until the
occurrence of a pre-specified event of interest such as mortality. In SA, subjects are usually
followed over a pre-specified period of time. As such, an event can be, for example, death, the
occurrence of a disease or the end of working life. SA can also be used to handle incomplete
information. This is called censoring. Observations are censored when the information
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about their survival time is incomplete. A commonly encountered form of censoring is right
censoring, which means that the event of interest did not occur during the chosen follow-up
period. When studying lifetime data, SA techniques are often considered superior to normal
linear regression. SA is applied in many fields of science, including economics (Heckman and
Singer, 1985; van den Berg, 2001), medicine and health (Machin et al., 2006; Collett, 2015),
amongst other fields.

One of the most popular method or model in SA is the Cox proportional hazards
(CPH) model (Cox, 1972). In important cases, however, the required proportional hazards
assumption is violated and this has led to key CPH model extensions. For example, in some
cases the survival times among individuals are not independent. This situation may arise
if individuals falling into specific groups (such as hospitals or clinics) tend to follow similar
survival times. These types of model extensions are often addressed in Frailty models (see
Collett, 2015). The basic idea in these models is to apply mixed modelling (with random
effects) in a SA context. In this type of modelling, the source of correlation is assumed to be
known. Frailty modelling includes two main approaches (see e.g., Wienke, 2010). First, it is
assumed that the event times include clusters, defined as shared frailties (random effects).
Second, frailty can also be defined on an individual level, in which case the corresponding
model is called the univariate frailty model. A comprehensive treatment of random effects
in survival modelling is given in Ha et al. (2017) for example.

In another type of modelling, the observed survival times may be correlated, but the
source of correlation cannot be directly measured. Basically, this kind of situation can
be addressed using the theory and methods of finite mixtures (e.g., McLachlan and Peel,
2000). One technique used in mixture longitudinal data analysis is trajectory analysis (e.g.,
Nagin, 2005; Nagin and Odgers, 2010a), where the focus is on the analysis of a sequence of
measurements. This technique has been widely applied in the social sciences (Nagin and
Odgers, 2010b; Nummi et al., 2017), but applications to survival data have not been that
common. Thus, although finite mixture modelling tools are used in many fields of science
(e.g., Böhning et al., 2007), they are not that much utilized with CPH model especially.
Some related topics are covered in textbooks, like Ng et al. (2019) and McLachlan and Peel
(2000), but there are surprisingly few published articles of the topic. Obviously, there are
some practical obstacles in the combination of these two techniques and we try to figure out
what these are with interesting heterogeneous pension insurance survival data that is used
for testing and illustration.

In this paper, we employ real data from the research register of the Finnish Centre for
Pensions. In the Finnish context, the causes of disability correlate with mortality as high-
lighted in Polvinen et al. (2015) and Sewdas et al. (2020). Using these data and focusing
on mortality, we test and illustrate several important and practical modelling scenarios. In
the first scenario, we apply the basic Cox proportional hazards model. In the second sce-
nario, we apply mixture modelling to survival times, and then we use the identified mixture
components as a risk factor in the basic Cox model. Our third scenario includes applying
mixture modelling within Cox model. The final scenario involves using a frailty model with
individual-level frailties. Our results are summarized in the final section as well as recom-
mendations for future research.
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2. Theoretical Background

2.1. Finite mixture analysis

A finite mixture of censored T distribution regression models is defined by letting G
denote the number of mixture components (i.e., groups) in the mixture model and Zi denote
the latent class (random) variable which indicates the component (group or sub-population)
to which the ith observation (individual) belongs. The conditional density of the outcome
variable Yi, i = 1, . . . , n, given Zi = j, is given by

Yi|{zi = j} ∼ T (β0 + µj + xTi β, σ2
j , ν), j = 1, . . . , G, (1)

where (β0 + µj) is the intercept of jth group, xi is a p-dimensional predictor vector, β is a
p-dimensional parameter vector, σj is the scale parameter, ν is the degrees of freedom and
T (µ, σ, ν) is the generalized T distribution with location parameter µ, scale parameter σ and
ν degrees of freedom. Note that if Y ∼ T (µ, σ, ν), then the distribution of (Y − µ)/σ is
standardized Student’s T distribution with ν degrees of freedom. Clearly, the mean of the
density within the jth group is β0 + µj + xTi β.

In the case of right censoring, the observed ith outcome can be defined as follows:

Y ∗i =
{
ci, if ρi = 1 (i.e. yi > ci)
yi, if ρi = 0. (2)

Here,
ρi =

{ 1, if the ith observation is right-censored,
0, if the ith observation is not censored.

Suppose that P (Zi = j) = pj and Zi is independent of predictor variables xi. The
maximum likelihood estimate is then obtained by maximizing the log-likelihood function

l(θ|y∗1, . . . , y∗n, ρ1, . . . , ρn) =
n∑
i=1

log{pj[fij(y∗i )]1−ρi [1− Fij(y∗i )]ρi} (3)

where fij and Fij are the probability density function and cumulative distribution function
of T (β0 + µj + xTi β, σ2

j , ν) distribution. Correspondingly, θ = (θT1 , . . . , θTG), where θj =
(pj, βTj , σ2

j , ν)T . In the R-package CensMixReg, the maximum likelihood estimate of θ is
found using an EM-type algorithm (Dempster et al., 1977). Note that it is also possible
to fit a finite mixture of censored normal distribution regression models using CensMixReg.
However, in our empirical experience and the context of our application, using the T
distribution gave more consistent results than the normal distribution.

The posterior probability of the ith individual belonging to the jth mixture component
is estimated by

pij = pj[fij(y∗i )]1−ρi [1− Fij(y∗i )]ρi∑G
h=1 ph[fih(y∗i )]1−ρi [1− Fih(y∗i )]ρi

, i = 1, . . . n, j = 1, . . . , G. (4)
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The individual i is assigned to the group having the highest posterior probability estimate.

Likelihood-based inference can be very difficult in mixture models and this is also the
case when mixtures and Cox models are combined. For example, when testing hypotheses
H0 : G = G0 against HA : G = G0 + 1, the usual likelihood ratio testing should not
be applied because the clusters may not be nested. Also, other point identification and
boundary problems may appear. However, the usual information criteria and some other
statistical measures may still be applied.

2.2. The proportional hazards (PH) and frailty model

2.2.1. The hazard function

Let Y be the time to an event. The hazard function can be defined as follows:

h(y) = lim
∆y→0

P (y ≤ Y < y + ∆y|Y ≥ y)
∆y . (5)

In this expression, P (y ≤ Y < y + ∆y|Y ≥ y) is the conditional probability that the event
occurs in a short time-interval, given that the event has not occurred before time y. Note
that h(y) is not the probability that the event occurs at time y or before time y. We can
interpret the hazard function h(y) as an instantaneous rate of occurrence of an event (e.g.,
death). We can also approximate the conditional probability with h(y)∆y, where ∆y is a
small positive real number.

2.2.2. The Cox PH model with finite mixtures

The Cox proportional hazards model can be defined in terms of the hazard function in
the following manner:

hi(y) = λ0(y) exp(β1xi1 + . . .+ βkxik), (6)
where hi(y) is the hazard of individual i at time y, xi1, . . . , xik are k covariates of the
individual i, β1, . . . , βk are the model regression coefficients and λ0(y) is the baseline hazard
function.

The above model is called the proportional hazards model because the hazard ratio
relating individual i to individual j,

hi(y)
hj(y) = exp{β1(xi1 − xj1) + . . .+ βk(xik − xjk)}, (7)

does not depend on time nor on the base hazard function λ0(y). In his groundbreaking paper,
Cox (1972) showed that the regression coefficients can be estimated using partial likelihood
methods without knowing the form of the base hazard.

In the mixture modelling context the population density function of time to event has
the finite mixture form

f(y) =
G∑
j=1

πjfj(y), (8)
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where f1(y), . . . , fG(y) are the densities of the mixture components and π1, . . . , πG are the
mixing proportions which add up to one. Then the survival function of the time to the event
has the mixture form

S(y) =
G∑
j=1

πjSj(y), (9)

where S1(y), . . . , SG(y) are the survival functions of the mixture components. However, it
has been shown that the hazard function of the time to the event does not have a mixture
form under CPH (McLachlan and McGiffin, 1994; Ng et al., 2019). Another possibility is to
use a mixture specification of the hazard function

h(y) =
G∑
j=1

πjhj(y), (10)

where h1(y), . . . , hG(y) are the hazard functions of the mixture components, but in that case
the survival function of the time to the event does not have a mixture form (McLachlan and
McGiffin, 1994; Ng et al., 2019).

Eng and Hanlon (2014) have proposed a method where the mixture components are
estimated using EM-algorithm. If the observation y of the jth mixture component follows
PH model, it has the density

fj(y, δ|x) = [λ0j(y) exp(xTβj)]δ exp[−H0j(y) exp(xTβj)], (11)

where δ is the censoring indicator (δ = 1, if the survival time is observed), x is the covariate
vector, y is the survival time, λ0j(y) is the baseline hazard, H0j(y) is the cumulative hazard
and βj is the regression coefficient vector. The density of the complete data can then be
written as

f(y,∆|x,U) =
n∏
i=1

G∑
j=1

[πjfj(yi, δi|xi)]uij , (12)

where y = (y1, . . . , yn) are the survival times, ∆ = (δ1, . . . , δn) are the censoring indicators
(δi = 1, if the ith survival time is observed), xi = (xi1, . . . , xik)T is the covariate vector,
U = (U1, . . . , Un) are the latent mixture components (Ui = j, if the ith observation belongs
to the jth component), P (Ui = j) = πj and uij = 1{Ui=j}. Eng and Hanlon (2014) maximized
the mixture likelihood using EM-algorithm and called the method Cox-assisted clustering
(CAC).

2.2.3. The shared frailty PH model

The shared frailty model is defined as follows:

hij(y) = h0(y) exp(xTijβ + wj) = h0(y)uj exp(xTijβ), j = 1, . . . , G, i = 1, . . . , nj, (13)

where wj, j = 1, . . . , G, are i.i.d. random effects distributed as N(0, σ2), hij(y) is the
conditional hazard of individual i from the jth component (conditional on wj), xij is the
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vector of covariates, β are regression coefficients and h0(y) is the baseline hazard function.
The uj = ewj term is the frailty of the jth component, where j = 1, . . . , G. Note that now
log(uj) is normally distributed. It follows that the hazard ratio is

hi2j2(y)
hi1j1(y) = uj2

uj1
exp((xi2j2 − xi1j1)Tβ), j1 6= j2. (14)

From this expression, it is seen that the hazard ratio depends on the frailties. We can easily
see that if the individual i2 from the j2th component and the i1 from the j1th component
have identical covariate profiles (i.e. xi2j2 = xi1j1), then the hazard ratio simplifies to

hi2j2(y)
hi1j1(y) = uj2

uj1
. (15)

Note that if the number of components is the same as the number of individuals (i.e. n =
Σjnj = G), we get the following individual frailty model or random effects frailty model:

hi(y) = h0(y) exp(xTi β + wi) = h0(y)ui exp(xTi β), i = 1, . . . , n. (16)

3. Pension Insurance Mortality Data

The practical application of this study relates to pensioners and their mortality. The
research data was collected from the research register of the Finnish Centre for Pensions.
The register is a national databank of the Finnish population, including both the working age
population and retirees. The databank contains comprehensive socioeconomic information
on the population and statutory pensions.

The base population consisted of the subset of individuals born in 1940 who were still
alive in 1995 (i.e., aged 55). The data is cross-sectional from an analytical point of view
but entails longitudinal follow-up information on lifetime from 1995 to 2018 (i.e., from ages
55 to 78). Here, we used a 50-per-cent random sample from the selected cohort and this
translated into a total of 10,637 individuals. The remaining lifetime of this cohort underlines
the difference in mortality between men and women since, according to Official Statistics of
Finland (2020), the expected years alive after 2019 for men was 8.9 years and for women
10.9 years.

The research data contains individual-level information on the following variables:

• Lifetime in years (from 55th birthday until 31 Dec. 2018),

• Gender,

• Pension benefit (Disability Pension or Old-age Pension),

• Cause of permanent disability leading to disability pension (8 classes),

• Employer before retirement (Private Sector, Public Sector or Self-employed),

• Censoring (1=alive or 0=deceased on 31 Dec. 2018),
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• Highest Education (Basic Education, Secondary Education, Lower University Degree
or Higher University Degree), and

• Age at retirement (a continuous variable while the others are classifying variables).

Lifetime is the response variable that we analyzed in this study, using both finite mixture
and survival modelling techniques.

Our analysis focuses on mortality. We followed the individuals of the cohort born in
1940 for the 24-year-period from 1995 to 2018 (i.e., ages 55 to 78). This follow-up time
translated into a great share of the cohort alive at the end of the study period (over 72%),
disregarding possible illnesses. Furthermore, in the Finnish population (as in many other
western countries), the probability of permanent disability, which ends working lives for the
majority of the seriously ill people, increases rapidly after age 55. However, a vast majority
of the cohort survived without permanent illnesses and could retire on an old-age pension
at the agreed retirement age of the pension scheme (65 yrs.). From the perspective of SA,
the censoring rate in the population was 72.8 per cent.

The actual data analysis was performed using R software (R Core Team, 2019). Specif-
ically, the CensMixReg package (Sanchez et al., 2018) was used to identify mixture groups,
and the Survival (Therneau and Lumley, 2019) and Coxme (Therneau, 2020) survival anal-
ysis R packages. Furthermore, we have also used the cac R function of Eng and Hanlon
(2014) to fit the Cox PH model within the mixture model context.

Table 1 shows some basic descriptive statistics within the respective factor classes.
The counts indicate a reasonable number of cases in the classes in the sense that the chosen
categories are not so fine as to result in sparse data. Specifically, the smallest class, higher
university graduates (n = 134), is non-censored, and the other classes include more than 300
individuals.

The shares of the deceased (non-censored) indicate that mortality among men and
disability pensioners is high, as high share of these groups face death before age 78. The
share of non-censored is significantly lower among women (20%), old-age pensioners (19%)
and lower for university graduates (20%).

The same classes are reflected in the average lifetimes of the non-censored. When
comparing men and women, the lifetime (by age 78) of the non-censored women is 0.9
years longer than that of men. The same difference can be seen when comparing disability
pensioners with old-age pensioners. The lifetime of disability pensioners is 3.9 years shorter
than that of old-age pensioners. When comparing classes of education, the lifetimes are
relatively similar within the three lowest classes: basic education (15.6 yrs.), secondary
education (15.4 yrs.), and lowest university education (15.8 yrs.). The lifetime of high
university graduates is 1.1 years longer than that of those with a basic education. The classes
of employer before retirement indicate significant but small differences between classes.

Descriptive statistics indicate that we can expect significant differences between genders
and pension benefits in the statistical analyses given in the following section.
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Table 1: Descriptive statistics of cohort born in 1940

Non-censored Censored Total
Count % Average Life-

time, years*,**
Count Count

Men 1,803 36 15.3 [15.1–15.5] 3,269 5,072

Women 1,087 20 16.2 [15.9–16.4] 4,478 5,565

Old-age pension 1,300 19 17.8 [17.6–18.0] 5,635 6,935

Disability pen-
sion

1,590 43 13.9 [13.6–14.1] 2,112 3,702

Basic ed. 1,721 30 15.6 [15.3–15.8] 3,995 5,716

Secondary ed. 676 27 15.4 [15.1–15.8] 1,856 2,532

Low univ. 359 20 15.8 [15.3–16.3] 1,400 1,759

High univ. 134 21 16.7 [16.0–17.5] 496 630

Private Sector 1,490 30 15.3 [15.0–15.5] 3,481 4,971

Public Sector 1,005 24 15.9 [15.6–16.2] 3,247 4,252

Self-employed 395 28 16.1 [15.7–16.6] 1,019 1,414
Total 2,890 7,747 10,637
*90% confidence limits in parentheses.
**Average lifetime from 55th birthday until 31 Dec. 2018.

4. Data Analysis Using Various Modelling Techniques

4.1. The Cox model

The first step of our study was to analyze our data using a Cox proportional haz-
ards model. The response variable was Lifetime and the explanatory variables were Gender,
Pension benefit, Age at retirement, Highest education and Employer. The model estimates
(Hazard ratios) are given in Table 4 (under the column titled ”Cox PH Fit”). The analysis
was done both for the whole data set and for the data set with censored cases excluded.
The first analysis includes 10,637 individuals, of which 2,890 are non-censored. The results
are reasonable and mirror much of what was demonstrated in Table 1. From the descriptive
statistics given in Table 1, significant differences in lifetime in two variables, Gender and
Pension benefit, are observed. From the Cox PH model analysis (Table 4) we observe that
women’s mortality rate is significantly lower (i.e., hazard ratio 0.5) compared to men’s mor-
tality rates. Also, disability pensioners have a much higher hazard ratio of mortality (2.42)
than old-age pensioners. In comparison with individuals in the basic education level, those
with a higher university education have a slightly lower mortality rate (the coefficient for
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higher university education (0.82) is statistically significant). Employer is not a statistically
significant variable in this model.

The second analysis was done for the non-censored data set to make the analysis and
goodness-of-fit measures comparable to the results of the Cox PH with ex ante (in the SA,
we call the groups as ”ex ante groups” since they are constructed using the survival model
underlying equation (17) below. The concordance statistics is an established measure of the
goodness-of-fit in survival models (see Harrell et al., 1996); for the basic Cox model, the
concordance value is 0.61. Subsequent sections show differences between other models and
Cox PH model.

4.2. Modelling mixture components

The second step of our analysis was to first study the distribution of the lifetime.
The lifetime is largely centered around 23–24 years, indicating the still living individuals.
Furthermore, the long left tail indicates increasing mortality with age. The first step of finite
mixture modelling was to search for possible mixture components or sub-groups from the
outcome. In general, choice of the number of mixture components is a key central question in
finite mixture modelling, and it is usually determined via statistical information criteria (e.g.,
Bayesian Information Criteria, BIC) and with the subjective consideration of the modeller.
In our application, the number of groups was based on the sizes of the mixture components,
as we did not want possible artefact or too small groups in the further steps of the analysis.

When using the CensMixReg R package (and included functions), which takes account
of right-censoring on the outcome, a regression model must be specified. To this end, we
defined the following simple regression model:

Lifetime = PensionBenefit+RetirementAge+HighestEducation (17)

The distribution of the outcome Lifetime is such that the R implementation standard
assumption of the normal distribution was switched to the T distribution, which behaved
slightly more stable in our analyses. Some experiments with gender as a factor indicated
that the model is somewhat sensitive to the underlying regression model (factors), and so
we chose to use a simple model, which provided us with a reasonable number of mixture
components and which could be estimated with the EM algorithm. The BIC values for
k = 2, 3, 4 groups were respectively 28757.09, 28799.61 and 28955.36. As is often the case,
choices of a larger number of mixture components/groups led to convergence problems of
the EM algorithm, and were therefore not considered here. Overall in the BIC analysis the
model solution was stable between several model runs.

The four-component solution yielded the group sizes as shown in Table 2. We named
the groups based on average lifetime, counted from the data using the group-assignments.
The No risk group included those who were alive at the end of the 23-year study period, and
thus had censored measurements in the survival modelling analysis.

To further illustrate the above lifetime analysis, we draw the distribution of lifetimes by



342 J. MÖTTÖNEN, J. SALONEN, T. NUMMI AND T. E. O’BRIEN [Vol. 18, No. 2

Table 2: Mixture group sizes and lifetimes

Estimated
Counts

% Average Lifetimes
(years)

No Risk (NR) 7,747 72.8 > 23.6
Low Risk (LR) 169 1.6 22.7
At Risk (AR) 325 3.1 20.1
High Risk (HR) 2,396 22.5 14.5

mixture component. The boxplot of lifetimes for the mixture components are shown in Figure
1. As demonstrated by Figure 1 and Table 2, the components or sub-groups have greatly
different mortalities. The vast majority of the sample (72.8%) are in the No Risk group, and
alive at the end of study period. The Low Risk and At Risk groups show a slightly increased
mortality with an average lifetimes of 22.7 years and 20.1 years and relatively narrow range
of lifetimes. The average lifetime in High Risk group is only 14.5 years and the Figure shows
also a wide range of lifetimes. The overall conclusion from Figure 1 is that the distribution
between mixture components barely overlap indicating a clear group assignment of the above
mixture analysis.

Although the distribution of lifetimes barely differ for men and women within com-
ponents, the shares or proportions of men and women within the components are different,
as there are significantly more men in the High Risk group (see Table 3 below). These
additional results give further assurance for the group-based correlation of survival times
and we will utilize this information in conjunction with the Cox PH regression model in the
following section.

Table 3: Mixture groups by gender

Men Women Total
Count % Count % Count %

No Risk (NR) 3,269 64.5 4,478 80.5 7,747 72.8
Low Risk (LR) 104 2.1 65 1.2 169 1.6
At Risk (AR) 196 3.9 129 2.3 325 3.1
High Risk (HR) 1,503 29.6 893 16.0 2,396 22.5
Total 5,072 5,565 10,637

The mixture groups can be further dissected and parsed by analyzing the cause of re-
tirement on a disability pension. The cause of permanent disability gives a clear indication or
a proxy of an individual’s health, and some causes of disability are more life-threatening than
others. For example, in examining Figure 2, we see that neoplasms are often life-threatening
in the sense that those presenting with neoplasms are represented to a large degree in the
High Risk mortality group. Indeed, approximately 74 per cent of individuals with neoplasms
were in the High Risk mortality group. Conversely, individuals with depression or diseases
of the musculoskeletal system were somewhat over-represented in the No Risk group. In-
terestingly, although the cause of disability was not used in mixture analysis, this analysis
revealed substantial agreement with these results.
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Figure 1: Box plot of lifetime by mixture component. Box widths are propor-
tional to sample sizes. The notches indicate the sample medians and the dots
indicate the sample means. The dashed line indicates the sample median of the
censored observations.

4.3. The Cox model with mixture components as a factor

The third step in our analysis was to combine the four-class factor obtained in the
preceding section with the basic Cox PH model developed in Section 4.1. To achieve this,
we used the risk groupings from the information of ex ante defined mixture groups. The
hazard ratios are also presented in Table 4 in the column labelled ”Cox PH + Ex Ante
Fit”. For those individuals who died before the end of the 23-year follow-up period, we
select one class of the mixture components as a reference group, and in this analysis, the
chosen reference group was the Low Risk group. As noted in Table coefficients, the fitted
results have changed in some meaningful ways as compared with the Cox PH model fit.
For example, now the hazard ratio of disability pensioners is much higher (7.00) compared
to old-age pensioners. The mixture-component-based classes are statistically significant in
the model. The coefficients are reasonable and confirm that the mixture groups capture
interesting sub-populations. The estimates for the At Risk group (3.03), and especially for
the High Risk group (24.00), are large compared to the reference (Low Risk) group, as is to
be expected.



344 J. MÖTTÖNEN, J. SALONEN, T. NUMMI AND T. E. O’BRIEN [Vol. 18, No. 2

Figure 2: Cause of disability by mixture component, %

In comparing the basic Cox PH model fit with the Cox PH combined with Ex Ante fit
(treating groups as a factor), the LR test statistic χ2 value is 1754.9 on 2 degrees of freedom.
This difference is highly significant and this indicates that adding the group component
information significantly increases the predictive power of the Cox PH model. Similarly, the
concordance statistic (0.73) for the latter model is higher than the value corresponding to
the Cox PH model (0.61), which also indicates an improved model fit.

4.4. The frailty model with random effects

The fourth step of our analysis included fitting a frailty model with individual random
effects. The results are listed in Table 4 (Column titled ”Frailty with Random Effects Fit”).
Note that in this analysis we did not use the mixture component factor developed in Section
4.2 and used in Section 4.3. The results can be summarized by noting that the hazard ratios
are quite similar to the basic Cox PH model. The coefficient for women (0.47) is slightly
smaller than in the Cox PH model (0.50) and significantly smaller than in the Cox model
with mixture components as a factor (0.92), and the coefficient for the disability pension
(2.67) is slightly higher than in the Cox PH model (2.42). As was the case for the basic Cox
PH model, the Frailty model disability pension estimate differs greatly from the Cox PH
model with mixture components, which yields the estimated hazard ratio of 7.0.
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Table 4: Cox and frailty regression estimates (hazard ratios)

Cox PH + Frailty with
Cox PH Fit Ex Ante Fit Random

Effects Fit

Censored
included

Censored
excluded

Censored
excluded

Censored
included

Gender: Women 0.50∗∗∗ 0.91∗ 0.92∗∗∗ 0.47∗∗∗

Men ref ref ref ref

Pension: Old-age ref ref ref ref
Disability 2.42∗∗∗ 1.50∗∗∗ 7.00∗∗∗ 2.67∗∗∗

Pension age 0.98∗∗∗ 0.99 0.97∗∗∗ 0.98∗∗∗

Education: Basic ed. ref ref ref ref
Secondary ed. 0.92 1.05 0.88∗∗ 0.91∗

Low univ. 0.77∗∗∗ 0.99 0.78∗∗∗ 0.75∗∗∗

High univ. 0.82∗ 0.95 0.84 0.79∗

Employer: Private sector ref ref ref ref
Public sector 1.06 0.97 0.95 1.06
Self-employed 0.94 0.96 0.94 0.93

Group: No Risk N/A N/A N/A
Low Risk N/A N/A ref N/A
At Risk N/A N/A 3.03∗∗∗ N/A
High Risk N/A N/A 24.00∗∗∗ N/A

RE Variance 0.60
Concordance 0.61 0.73
The number of cases (n) 2890 2890 2890 2890
Significance codes: ∗ ∗ ∗ < 0.001, ∗∗ < 0.01, ∗ < 0.05

The basic Cox PH model test against the frailty mode were compared with a LR test.
The value of the statistic was 33.978 (1 degrees of freedom), which clearly indicates that the
frailty model with individual effects increases the predictive power of the Cox model.

To further develop and illustrate this model, we provide the estimated random coeffi-
cients (i.e., individual frailties) in Figure 3 in the Appendix. The estimated values for the
No Risk group (mean = -0.16) are all negative highlighting that the individuals in this group
survived until the end of the study period (i.e., until age 78). Essentially all of the High Risk
(0.48), At Risk (0.24) and Low Risk (0.13) group estimates are positive. Not surprisingly,
the range of the coefficients do not differ appreciably between the Low-Risk and At-Risk
groups, but the coefficients for the High Risk group are notably higher (mean and median
around 0.5) than in the other groups.
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4.5. The mixture Cox model

Our last analysis consists of mixture modelling of lifetime using the finite mixture form
of the Cox PH model as shown in section 2.2.2. The number of mixture groups is more
complicated in our application as far more groups are separated or indicated as compared
to the ex ante modelling of lifetime as in section 4.2. The BIC analysis focusing on non-
censored cases indicate at least 15 groups with relatively similar survival patterns. The
survival times of the groups are similar and near each other. To simplify the results, we
selected a three-group solution with relatively equal sizes. Also 4 group solution was tested,
but the magnitude of the estimates obtained was no longer at a plausible level.

Table 5 shows the Cox model estimates within the mixture groups. The gender
(woman) effect is highly group-specific and estimates also differ compared to basic Cox
model (Table 4, Censored excluded). Estimates on disability pension and pension age are
in the same range between groups and, similar to basic Cox model. Estimates of level of
education differ greatly between groups. Overall the statistical significance of most of the
covariates is high, especially in groups two and three. Figure 4 in the Appendix shows the
corresponding distribution of lifetime within mixture groups. The figure shows that the
lifetimes are relatively similar between groups. In the high mortality group one the average
lifetime is 14.1 years and correspondingly 15.8 years and 18.2 years in groups two and three.
The model selected here includes three sub-groups (Non-censored only). However, we can see
that the groups are different from the ex ante mixture analysis (see Table 2) where groups
indicate very different mortalities. The ex ante mixture analysis showed a large High Risk
group (N = 2, 396) with high mortality (average lifetime 14.5 yrs.) and two smaller groups
with moderate mortality. In the mixture Cox model the groups are somewhat more similar
and not easily comparable with the ex ante groups.

5. Concluding Remarks

Survival analysis (SA) techniques are appealing approaches in many fields of research
and application because of their simplicity, their nonparametric nature, and their accommo-
dation of the presence of censoring. The key question regarding the ubiquitous Cox model
is whether the resulting model estimates are unbiased. To address such deficiencies, frailty
models have been developed to include a random factor for unknown covariates, and the
frailties aim to capture effects which are not explicitly included in the model. Furthermore,
the merit of the finite mixture modelling approach is that it reveals possible latent classes
from a given outcome distribution. As a starting point, as is demonstrated in our work here
it is noteworthy and interesting to bring the sub-groups or mixture components into the
context of SA. Using these techniques in parallel will continue to provide new insights into
the Cox model, especially regarding estimates and dealing with any related biases.

In this study, we analyzed a simple empirical data, including information on lifetimes
and some background factors of a Finnish cohort. The focus of the analysis was on modelling
lifetime at ages 55 to 78. The basic Cox model revealed differences in mortality with respect
to gender, pension benefit and education. The results indicate that women face a smaller
likelihood of death compared to men, and disability pensioners face a far greater likelihood
of death than old-age pensioners.
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Table 5: Mixture Cox model regression estimates by mixture group (hazard
ratios)

Group 1 Group 2 Group 3
Gender: Women 0.01∗∗∗ 7.91∗∗∗ 14.93∗∗∗

Men ref ref ref

Pension: Old-age ref ref ref
Disability 4.26∗∗∗ 2.64∗∗∗ 4.63∗∗∗

Pension age 0.99 0.86∗∗∗ 1.04∗∗∗

Education: Basic ed. ref ref ref
Secondary ed. 0.94 0.02∗∗∗ 24.17∗∗∗

Low univ. 3.14∗∗∗ 0.004∗∗∗ 11.35∗∗∗

High univ. 0.01∗∗∗ 0.07∗∗∗ 82.79∗∗∗

Employer: Private sector ref ref ref
Public sector 1.04 1.55∗∗∗ 1.16
Self-employed 0.10∗∗∗ 3.57∗∗∗ 1.01

The number of cases (n) 1037 923 930

More importantly, we analyzed the outcome lifetime with a finite mixture technique
and discovered that it consists of four distinct sub-populations with different level of mor-
talities. In the application considered here, the frailty model with individual random effects
yields estimates approximately the same as in the basic Cox PH model. Clearly Cox model
estimates change when adding mixture component as a factor. Thus, the results show
some discrepancy in parameter estimates, or bias, in basic Cox PH model estimates. Both
goodness-of-the fit statistics and likelihood-ratio tests improve using the extensions provided
here. Nonetheless, the frailty model yields estimates that are close to the basic Cox model.
The results for Cox-mixture analysis show differences between groups regarding gender and
level of education. Results on disability pension are similar compared to other models. It is
likely that the group-composition, which is different compared to ex ante groups, affects the
estimates.

These analyzes indicate substantially that, at this stage of the life course, there are
significant differences in mortality between men and women, and indeed the expected lifetime
for women of the studied cohort is known to be about two years longer than that for men.
The eligibility rules of disability pension are strict because there must be a severe and long-
term illnesses in order to get a pension. Therefore, the increased likelihood of premature
death indicated by the models is no surprise.

Our ongoing work includes analytically merging the Cox PH model with mixture mod-
elling techniques, with an eye to developing a much-needed open-source (e.g., R) package to
facilitate use by practitioners and statistical modellers. As noted previously, the cac function
is designed to this kind of analysis and it can be useful in analyzing Cox mixture models.
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APPENDIX

Figures

Figure 3: Box plot of individual frailty coefficients by mixture component. Box
widths are proportional to sample sizes. The notches indicate the sample medi-
ans and the dots indicate the sample means.
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Figure 4: Box plot of lifetimes in mixture Cox model by mixture component.
Box widths are proportional to sample sizes. The notches indicate the sample
medians and the dots indicate the sample means.
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Abstract
This paper is based on the estimation of the kurtosis parameters of several multivariate

populations under the assumption that all the kurtosis parameters are equal. The shrinkage
and preliminary test estimators are suggested for the estimation of the vector of kurtosis
parameters. Asymptotic properties of the suggested estimators are presented analytically and
compared on the basis of their asymptotic distributional bias and asymptotic quadratic risk.
Monte-Carlo simulations are performed in order to explain the analytical results numerically.
A real data example is also given to demonstrate the application of the suggested estimators.
From the results it can be observed that the Stein-type estimators perform better than all
other estimators when the number of populations is greater than four and also when the
assumption of homogeneity is suspicious.
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1. Introduction

Kurtosis and skewness are often considered as the shape parameters of a probability
distribution. First introduced by Karl Pearson in 1905, kurtosis can be defined as a mea-
surement with which to represent the size of a distribution’s tails in contrast to a normal
distribution. In a contemporary context, kurtosis is widely used in different areas of research,
such as finance, space science, economics and signal processing. See Kim and White (2004),
Liang et al. (2008), Nita and Gary (2010), Lai (2012), Araújo et al. (2012), and Echer and
Bolzan (2016) for detailed examples.

Mardia (1970) defined the kurtosis parameter of a p-dimensional random variable X
with mean vector µ and covariance matrix Σ as

β = E
[{

(X − µ)TΣ−1(X − µ)
}2
]
. (1)
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For a random sample of n observations X1,X2, · · · ,Xn taken from a multivariate
population, let µ̂ and Σ̂ be the estimators of µ and Σ respectively, then the estimator of
kurtosis parameter proposed by Mardia (1970) can be defined as

β̂ = 1
n

n∑
i=1

{
(Xi − µ̂) Σ̂−1 (Xi − µ̂)T

}2
, (2)

where µ̂ = 1
n

∑n
i=1Xi and Σ̂ = 1

n

∑n
i=1 (Xi − µ̂) (Xi − µ̂)T .

Ahmed et al. (2012) worked on the improved estimation of kurtosis parameter β of a
multivariate population using uncertain prior information (UPI). They proposed the linear
shrinkage and the preliminary test estimators for β and developed the large sample theory
for these estimators. Zahra et al. (2017 b) presented the improved estimation of kurto-
sis parameters for two multivariate populations and suggested that the shrinkage pretest
estimator performs better when the null hypothesis β1 = β2 is uncertain; otherwise, the re-
stricted estimator performs well. In this paper, we have extended their work on multivariate
populations to q sample case using the UPI that kurtosis parameters of all populations are
homogeneous. The UPI can be presented in the form of null hypothesis as

H0 : β1 = β2 = · · · = βq = β0, (3)

where β0 is unknown.

Let X(l)
i =

(
X

(l)
1i ,X

(l)
2i , · · · ,X

(l)
pi

)
where i = 1, 2, · · · , nl and l = 1, 2, · · · , q be a multi-

variate random sample of size nl from a p-variate normal distribution with mean vector µl
and covariance matrix Σl. We want to estimate the parameter vector of kurtosis coefficients
β = (β1, β2, · · · , βq)T using their maximum likelihood estimator (MLE) β̂ = (β̂1, β̂2, · · · , β̂q)T
with sample sizes (n1, n2, · · · , nq) under the UPI given in equation (3). Our multivariate
sampled data X(l)

i may have collected at q different times or spaces and there is natural
tendency to combine the data to get efficient estimation results. One has to integrate both
the sample information (SI) available in the form of X(l)

i , l = 1, 2, · · · , q and the UPI in such
a way that estimators having optimal properties in terms of smallest risk, can be developed.
Such integrated estimation strategies are based on the preliminary test (pretest) and Stein’s
shrinkage methodologies and are proved to be superior for data polling purposes. Many of
these estimation strategies under different contexts have been discussed by Zahra et al. (2017
a), Shah et al. (2017), Lisawadi et al. (2019), Shah et al. (2020) and references therein.

The organization of the paper is as follows: Several estimation strategies are given
in Section 2 that utilized either SI or the combination of both SI and UPI. Section 3 is
concerned with the expressions of the asymptotic distributional quadratic bias (ADQB) and
asymptotic distributional quadratic risk (ADQR) of the stated estimators. The results of the
Monte-Carlo simulations are given in Section 4. An empirical example is given in Section 5
and the concluding remarks are made in the last section. All computations are done with
the latest version of freeware R, and mathematical proofs are given in the Appendix. The
matrices and vectors are represented with boldface symbols, while script letters E and V are
reserved for the operators of expectation and variance.
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2. Estimation Strategies

In this section, some improved estimation strategies for the kurtosis parameter vector
β for q multivariate populations are described. At the first place, Using Mardia’s estimator
given in equation (2), the unrestricted estimator (UE) of β using only the SI is defined as

β̂UE = (β̂1, β̂2, · · · , β̂q)T . (4)

The restricted estimator (RE) of the parameter vector β under UPI is given as

β̂RE =
(
β̂0, β̂0, · · · , β̂0

)T
= β̂01q. (5)

The point estimator of β0 denoted by β̂0 is calculated as β̂0 = ω̂−1∑q
l=1 λl,nβ̂

UE
l , where

ω̂ = ∑q
l=1 λl,n and λl,n = nl/n. An alternative form of β̂RE, which is further used for the

derivation of the mathematical results, is given as

β̂RE = ω̂−1JqV
−1
n β̂UE = Hnβ̂

UE, (6)

where Jq = 1q1
T
q , Hn = ω̂−1JqV

−1
n , Vn = diag

(
v

λ1,n
, v
λ2,n

, · · · , v
λq,n

)
, and v = 8p(p + 2).

Assuming lim(λl,n) = λl is fixed for l = 1, 2, · · · , q then Vn converges in probability to
V = diag

(
v
λ1
, v
λ2
, · · · , v

λq

)
as n → ∞ where n = n1 + n2 + · · · + nq. The linear shrinkage

(LS) estimator of β may be defined as

β̂LS = β̂UE − π(β̂UE − β̂RE); π ∈ (0, 1), (7)

where π is the degree of trust in the null hypothesis (3). The linear shrinkage estimator
becomes a restricted estimator when π is one and an unrestricted estimator when it is zero.

The preliminary test or simply pretest (PT) estimator of the population parameter
vector β is stated as

β̂PT = β̂UE −
(
β̂UE − β̂RE

)
I(Ln < cn,α), (8)

where I(·) is an indicator function and Ln is a Wald-type test statistic computed as

Ln = n
(
β̂UE − β̂RE

)T
V −1
n

(
β̂UE − β̂RE

)
. (9)

Under the null hypothesis given in equation (3), Ln converges in distribution to a χ2

distribution with (q−1) degrees of freedom. Thus, upper α-level critical values of Ln defined
by cn,α are approximated by a χ2

(q−1) distribution. The shrinkage pretest (SP) estimator
which incorporates π into equation (8) is given as

β̂SP = β̂UE − π
(
β̂UE − β̂RE

)
I(Ln < cn,α). (10)

It is interesting to note that for π = 1, the shrinkage preliminary test estimator β̂SP is
reduced to the preliminary test estimator β̂PT .
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The Stein-type shrinkage (SS) estimator is defined as

β̂SS = β̂UE − (q − 3)L−1
n

(
β̂UE − β̂RE

)
, q ≥ 4, (11)

and an improved Stein-type shrinkage (S+) estimator for q ≥ 4 is given as

β̂S+ = β̂UE−(q−3)L−1
n

(
β̂UE − β̂RE

)
−
[
1− (q − 3)L−1

n

]
I(Ln < q−3)

(
β̂UE − β̂RE

)
. (12)

Secondly, it is to be noted that the test-statistic given in equation (9) is consistent
against fixed β such that β /∈ H0, hence all the estimators involving Ln are equivalent to
the bench-mark estimator β̂UE for the fixed alternatives in a large sample setup. Interested
readers are referred to Ahmed (2002) for further details. Therefore, we consider a sequence
of local alternatives {H(n)} as

H(n) : β = β(n), (13)
where β(n) = β01q +n−1δ, and δ ∈ Rq is a fixed real vector. It is to be noted that we are not
making any assumption for local alternatives setup either. By virtue of Ahmed et al. (2012)
and under the sequence of local alternatives defined in equation (13) in the univariate sense,
following result holds: √

nl(β̂l − βl) ∼ N (δ, v) . (14)
Following Appendix A.1 in Zahra et al. (2017 a) with aforementioned local alternative and
using equation (14), the asymptotic distribution of β̂UE is

√
n(β̂UE − β) ∼ N (0,V ) . (15)

3. Asymptotic Results

In this section, the analytical results regarding the asymptotic properties of the afore-
mentioned estimators are presented. Using the asymptotic framework cited in Section 3
of Shah et al. (2020), and under the sequence of local alternatives given in equation (13),
following evaluation criterion are used to assess the performance of the estimators under
consideration. We have omitted the special cases of estimators (as mentioned above) from
discussions in order to save space, as one can deduce their results by using their relations.

3.1. Asymptotic distributional bias

The vector of asymptotic distributional bias (ADB) of an estimator β̂∗ is calculated as

B(β̂∗) = lim
n→∞

E
(√

n
(
β̂∗ − β(n)

))
. (16)

Theorem 1: Expressions for ADB of various estimators under sequence of local alternatives
are given as

B(β̂LS) = −πδ?,
B(β̂SP ) = −πδ?Φq+1(χ2

q−1,α; ∆),
B(β̂SS) = −(q − 3)δ?E

(
χ−2
q+1(∆)

)
,

B(β̂S+) = −δ?[Φq+1(q − 3; ∆) + (q − 3)E{χ−2
q+1(∆)I(χ2

q+1(∆) > (q − 3))}],
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where δ? = C0δ, C0 = Iq−H0, and Φq+1 (·; ∆) is the cumulative distribution function (CDF)
of a non-central chi-square distribution with q + 1 degrees of freedom and non-centrality
parameter ∆.

Proof: See Appendix 1 for the proof.

3.2. Asymptotic distributional quadratic bias

The expressions given in Theorem 1 are in vector form and for comparison purposes,
we needed expressions in scalar form. Thus, we applied following quadratic transformation
that yielded asymptotic distributional quadratic bias (ADQB) of the competing estimators:

B?(β̂∗) =
(
B(β̂∗)

)T
V −1B(β̂∗). (17)

Theorem 2: Under the sequence of local alternatives, expressions for ADQB of various
estimators are given as

B?(β̂LS) = π2∆,

B?(β̂SP ) = π2∆
[
Φq+1(χ2

q−1,α; ∆)
]2
,

B?(β̂SS) = (q − 3)2∆
[
E
{
χ−2
q+1(∆)

}]2
,

B?(β̂S+) = ∆
[
Φq+1(q − 3; ∆) + (q − 3)E

{
χ−2
q+1(∆)I(χ2

q+1(∆) > (q − 3))
}]2

.

Proof: Using the transformation mentioned in equation (17) and with the help of following
Lemma, the proof is straightforward.

Lemma 3: The test statistic given in equation (9) converges to a non-central χ2 distribution
with (q − 1) degrees of freedom and non-centrality parameter ∆ = (δ?)TV −1δ? as n→∞.

Note that the estimators based on the strategies of preliminary test and Stein-type
shrinkage methodologies are biased.

3.3. Asymptotic mean square error matrix

The asymptotic mean-square error matrices are needed for the computations of asymp-
totic distributional quadratic risk (ADQR) expressions of the various estimators mentioned
above. Under the sequence of local alternative, the general expression for such matrices is
given as

S(β̂∗) = lim
n→∞

E
[√
n
(
β̂∗ − β(n)

)√
n
(
β̂∗ − β(n)

)T ]
. (18)
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Theorem 4: The expressions for the asymptotic mean square error matrices for various
estimators, under the sequence of local alternatives and for C = V CT

0 , are given as follows:

S(β̂LS) = V − π(2− π)C + π2δ?(δ?)T ,
S(β̂SP ) = V − π(2− π)Φq+1(χ2

q−1,α; ∆)C
+ πδ?(δ?)T

[
2Φq+1(χ2

q−1,α; ∆)− (2− π)Φq+3(χ2
q−1,α; ∆)

]
,

S(β̂SS) = V − (q − 3)C
[
2E

[
χ−2
q+1(∆)

]
− (q − 3)E

[
χ−4
q+1(∆)

]]
+ (q − 3)(q + 1)δ?(δ?)TE

[
χ−4
q+3(∆)

]
,

S(β̂S+) = S(β̂SS)−CE
[{

1− (q − 3)χ−2
q+1(∆)

}2
I
(
χ2
q+1(∆) < (q − 3)

)]

+ δ?(δ?)T
 2E

[{
1− (q − 3)χ−2

q+1(∆)
}
I
(
χ2
q+1(∆) < (q − 3)

)]
−E

[{
1− (q − 3)χ−2

q+3(∆)
}2
I
(
χ2
q+3(∆) < (q − 3)

)]
 ,

Proof: Following Appendix 7 of Zahra et al. (2017 a), the proof can be completed.

3.4. Asymptotic distributional quadratic risk

The asymptotic distributional quadratic risk (ADQR) of an estimator β̂? of the pa-
rameter vector β is defined as

R(β̂?;W ) = lim
n→∞

E
[√
n
(
β̂∗ − β(n)

)T
W
√
n
(
β̂∗ − β(n)

)]
= lim

n→∞
tr
[
WE

{√
n
(
β̂∗ − β(n)

)√
n
(
β̂∗ − β(n)

)T}]
= tr

[
WS(β̂∗)

]
, (19)

where W is a (q × q) positive semi-definite (psd) weight matrix.
Theorem 5: Under the sequence of local alternatives, expressions of ADQR for the various
estimators are given as

R(β̂LS;W ) = tr (WV )− π(2− π)tr (WC) + π2∆W ,

R(β̂SP ;W ) = tr (WV )− π(2− π)tr (WC) Φq+1(χ2
q−1,α; ∆)

+ π∆W

[
2Φq+1(χ2

q−1,α; ∆)− (2− π)Φq+3(χ2
q−1,α; ∆)

]
,

R(β̂SS;W ) = tr (WV )− (q − 3)tr (WC)
[
2E

[
χ−2
q+1(∆)

]
− (q − 3)E

[
χ−4
q+1(∆)

]]
+ (q − 3)(q + 1)∆WE

[
χ−4
q+3(∆)

]
,

R(β̂S+;W ) = R(β̂SS;W )

− tr (WC)E
[{

1− (q − 3)χ−2
q+1(∆)

}2
I
(
χ2
q+1(∆) < (q − 3)

)]

+ ∆W

 2E
[{

1− (q − 3)χ−2
q+1(∆)

}
I
(
χ2
q+1(∆) < (q − 3)

)]
−E

[{
1− (q − 3)χ−2

q+3(∆)
}2
I
(
χ2
q+3(∆) < (q − 3)

)]
 ,
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where ∆W = (δ?)TWδ? is the non-centrality parameter involving weight matrix W .

Proof: Using the asymptotic mean square matrices given in Theorem 4 and the definition
of ADQR in equation (19), the proof is trivial.

Corollary 6: For the choice W = V −1, ADQR expressions given above are simplified and
are given as

R1 = R(β̂UE;V −1) = q,

R2 = R(β̂RE;V −1) = 1 + ∆,
R3 = R(β̂LS;V −1) = q − π(2− π)(q − 1) + π2∆,
R4 = R(β̂PT ;V −1) = q − (q − 1)Φq+1(χ2

q−1,α; ∆)
+ ∆

[
2Φq+1(χ2

q−1,α; ∆)− Φq+3(χ2
q−1,α; ∆)

]
,

R5 = R(β̂SP ;V −1) = q − π(2− π)(q − 1)Φq+1(χ2
q−1,α; ∆)

+ π∆
[
2Φq+1(χ2

q−1,α; ∆)− (2− π)Φq+3(χ2
q−1,α; ∆)

]
,

R6 = R(β̂SS;V −1) = q − (q − 1)(q − 3)
[
2E

[
χ−2
q+1(∆)

]
− (q − 3)E

[
χ−4
q+1(∆)

]]
+ (q − 3)(q + 1)∆E

[
χ−4
q+3(∆)

]
,

R7 = R(β̂S+;V −1) = R(β̂SS;V −1)

− (q − 1)E
[{

1− (q − 3)χ−2
q+1(∆)

}2
I
(
χ2
q+1(∆) < (q − 3)

)]

+ ∆

 2E
[{

1− (q − 3)χ−2
q+1(∆)

}
I
(
χ2
q+1(∆) < (q − 3)

)]
−E

[{
1− (q − 3)χ−2

q+3(∆)
}2
I
(
χ2
q+3(∆) < (q − 3)

)]
 .

Proof: This proof of Corollary 6 can be completed by replacingW = V −1 and noting that
tr(WV ) = tr(Iq) = q, tr(WC) = tr(V −1V CT

0 ) = tr(CT
0 ) = tr(Iq −H0)T = tr(Iq −H0) =

q − 1, and ∆W = (δ?)TV δ? = ∆.

3.5. Risk comparison

In this section, the performance of restricted (RE), linear shrinkage (LS), both prelim-
inary test (PT and SP) and Stein-type shrinkage estimators (SS and S+) is compared with
the benchmark unrestricted estimator (UE) using the aforementioned simplified ADQR ex-
pressions of Corollary 6. For this purpose, we have defined the notion of asymptotic relative
efficiency (AREFF) of an estimator β̂∗ with reference to β̂UE as

AREFF(β̂∗, β̂UE) = R(β̂UE;V −1)
R(β̂∗;V −1)

= R1

Rj

; j ≤ 7. (20)

An estimator is considered to be more efficient, in asymptotic terms, if AREFF exceeds 1,
and vice versa. Since all the risk expressions are the function of a drift parameter ∆, we
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have plotted the AREFF of all the competing estimators against ∆ in order to compare their
performance in Figures 1–4, while fixing q = 4, 8, 10, π = 0.50, and α = 0.01, 0.05, 0.10, 0.20.

From Figure 1, it can be seen that both β̂RE and β̂LS have higher efficiencies than β̂UE
(which is constant), and that the AREFF decreases as ∆ increases but the decay of β̂RE is
much faster than that of β̂LS.

Figure 1: Asymptotic relative efficiencies of β̂UE, β̂RE, and β̂LS

AREFFs of the unrestricted estimator and the preliminary test estimators are compared
in Figure 2. It can be observed that the β̂PT dominates the β̂SP in a region where the drift
parameter ∆ is smaller i.e., when the null hypothesis (3) is true or nearly true. But for larger
values of ∆, the situation is reversed, and it is β̂SP that outperforms β̂PT for all choices of
α. Moreover, curves of AREFFs of β̂PT are approaching β̂SP for larger values of α. This
means that for smaller values of α, the region where β̂PT dominates β̂SP is more spacious.

From Figure 3, it is evident that β̂S+ is far superior to β̂SS and β̂UE, uniformly
dominating both estimators. Figure 4 establishes the dominance of the restricted estimator
β̂RE over the Stein-type shrinkage estimator β̂SS and shrinkage preliminary test estimator
β̂SP for smaller values of ∆. Even the shrinkage preliminary test estimator β̂SP performs
better than β̂SS in a reasonable region over ∆.

4. Monte-Carlo Simulations

In this section, we conducted extensive Monte-Carlo simulations to examine the per-
formance of the various estimators discussed earlier for β, which incorporates UPI into the
estimation procedure. The performance of the estimators is investigated by comparing their
simulated relative efficiencies (SRE). The SRE of an estimator β̂∗ to a benchmark unre-
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Figure 2: Asymptotic relative efficiencies of β̂UE, β̂PT , and β̂SP

stricted estimator β̂UE is defined by the ratio of their simulated risks as

SRE(β̂∗, β̂UE) = Simulated Risk(β̂UE)
Simulated Risk(β̂∗)

. (21)

The value of an SRE greater than 1 indicates that β̂∗ is superior to β̂UE. Furthermore, we
have defined a parameter ∆∗ (which is essentially a measure of how far away we deviate from
the hypothesized common kurtosis vector β0) as ∆∗ = (β − β0)T (β − β0).

Ahmed et al. (2012) mentioned comparisons for kurtosis of a multivariate normal
distribution with t-distribution with degrees of freedom ranging from ν = 5 to ν = 60. Fol-
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Figure 3: Asymptotic relative efficiencies of β̂UE, β̂SS, and β̂S+

Figure 4: Asymptotic relative efficiencies of β̂RE, β̂SP , and β̂SS

lowing the same idea, we have considered multivariate normal distributions with dimensions
p = 2 and 4 initially, when the null hypothesis is assumed to be true. In order to study the
deviation of the data from the null hypothesis, further samples are taken from multivariate
t-distribution with various degrees of freedom between 5 and 60.

Simulation processes are repeated N = 5000 times for different choices of q = 4, 6, 8,
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10 and nl = 80, 100, 150, 200. The choices of α and π are assumed to be 0.05, 0.10 and
0.25, 0.50, 0.75, respectively. Simulated relative efficiencies of the suggested estimators for
different configurations of p, q, nl, α, and π against various values of ∆∗ ≥ 0 were computed;
results are reported in Table 1 for only p = 4, π = 0.50 and nl = 100 to conserve space. A
graphical representation is shown in Figure 5.

Table 1: Simulated relative efficiencies of estimators when p = 4, π = 0.50 and
nl = 100

q ∆∗ β̂RE β̂LS β̂PT β̂SP β̂SS β̂S+

α = 0.05 α = 0.10 α = 0.05 α = 0.10

4 0.00 4.00 2.29 2.41 2.00 1.78 1.60 1.35 1.50
0.58 2.52 2.02 1.60 1.43 1.46 1.34 1.23 1.32
1.30 1.22 1.55 1.02 1.01 1.12 1.09 1.09 1.13
1.89 0.82 1.25 0.86 0.89 0.99 0.99 1.02 1.04
3.46 0.51 0.89 0.81 0.86 0.91 0.94 0.98 0.99
10.39 0.45 0.69 0.97 0.98 0.99 0.99 0.99 0.99

6 0.00 5.91 2.65 3.03 2.39 2.01 1.77 1.86 2.33
0.50 3.17 2.28 1.97 1.74 1.68 1.54 1.58 1.90
1.12 1.58 1.86 1.16 1.12 1.24 1.18 1.29 1.37
1.63 0.96 1.42 0.92 0.93 1.06 1.04 1.09 1.14
2.98 0.53 0.93 0.80 0.84 0.92 0.94 0.99 0.99
8.94 0.43 0.69 0.97 0.98 0.98 0.99 0.99 0.99

8 0.00 7.84 2.89 3.57 2.77 2.17 1.92 2.43 3.15
0.44 2.98 2.08 1.62 1.45 1.42 1.32 1.72 1.79
0.99 1.66 1.85 1.27 1.22 1.34 1.26 1.39 1.55
1.44 1.07 1.52 0.98 0.98 1.12 1.09 1.18 1.24
2.65 0.57 0.99 0.81 0.85 0.93 0.95 0.99 0.99
7.94 0.42 0.68 0.96 0.97 0.98 0.99 0.99 0.99

10 0.00 9.91 3.07 3.85 2.97 2.25 1.99 3.05 3.94
0.40 4.02 2.41 1.88 1.63 1.57 1.43 2.14 2.28
0.90 2.23 2.05 1.36 1.27 1.32 1.24 1.68 1.74
1.31 1.30 1.72 1.08 1.06 1.20 1.15 1.34 1.41
2.40 0.61 1.04 0.83 0.86 0.95 0.96 0.99 0.99
7.20 0.42 0.68 0.96 0.97 0.98 0.99 0.99 0.99

The restricted estimator β̂RE performed better when homogeneity assumption of kur-
tosis parameters holds, but when it is not true, the SRE of the restricted estimator declined
rapidly, and approaches zero for larger values of ∆∗. The SRE of the linear shrinkage esti-
mator β̂LS declined slowly and its performance is comparable to shrinkage estimators only
when q and ∆∗ are small. The SRE of the pretest β̂PT and shrinkage pretest β̂SP estimators
declined as ∆∗ increased, but after reaching a minimum value, it attained a value of one
again. Both pretest estimators performed well for smaller values of q ≤ 4 and ∆∗. The
Stein-type estimators β̂SS and β̂S+ performed better than all other suggested estimators in
the wider range of ∆∗, especially as q increases. In short, simulation study endorsed the
analytical findings.
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Figure 5: Simulated relative efficiency of the estimators

5. Data Application

Our real-data application considered the four-dimensional multivariate data of geo-
graphical regions of Europe, based on monthly long-term interest rates in percentages. Four
countries of each region are considered; Central Europe: Austria, Germany, Hungry, and
Poland; Southern Europe: Spain, Italy, Portugal, and Slovenia; Western Europe: Belgium,
France, Netherlands, and Switzerland; Northern Europe: United Kingdom, Norway, Den-
mark, and Sweden. The data comprises of 100 observations for each country from August
2007 to November 2015, as reported by the Organisation for Economic Co-operation and
Development (OECD) website.
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The unrestricted estimator is obtained as β̂UE = (25.16, 27.20, 28.17, 20.45)T . Next,
we want to test the hypothesis that the kurtosis parameters are same for all four regions,
against the alternative that at least one of them is different from others. The test statis-
tic Ln is 18.42, therefore, we reject the null hypothesis at α = 0.05. The suggested esti-
mators are calculated for π = 0.50 and α = 0.05 as β̂RE = (25.24, 25.24, 25.24, 25.24)T ;
the pretest, shrinkage pretest and Stein-type estimators are equal to the unrestricted es-
timator, while linear shrinkage and improved Stein-type shrinkage estimators are given as
β̂LS = (25.20, 26.22, 26.71, 22.85)T and β̂S+ = (25.17, 27.10, 28.01, 20.71)T .

Bootstrap methodology is used to assess the performance of the suggested estima-
tors. Samples of equal size nl = 100 are selected from each country with replacement;
this process is repeated N = 5000 times. All the suggested estimators are computed for
π = 0.25, 0.50, 0.75 and α = 0.05, 0.10, 0.30. Simulated relative efficiencies of the estimators
under consideration relative to the unrestricted estimator are computed and reported in the
following table:

Table 2: Relative efficiencies of estimators for long-term interest rates data based
on multivariate bootstrap samples

α π β̂RE β̂LS β̂PT β̂SP β̂SS β̂S+

0.25 0.54 1.23 0.93 0.99 1.01 1.01
0.05 0.50 0.54 1.11 0.93 0.97 1.01 1.01

0.75 0.54 0.80 0.93 0.95 1.01 1.01

It is revealed from the above table that the SRE of β̂RE is less than 1, which is in line
with the analytical and simulated results; this confirms when the null hypothesis is not true,
the restricted estimator performs inferior to all other estimators. The SRE of β̂LS declines as
the value of π increases. β̂PT and β̂SP both have SREs smaller than 1 and their SREs remain
below 1 as π increases. However, we recommend using the positive part of the Stein-type
shrinkage estimator, since its performance is not drastically impacted by departure from the
null hypothesis.

6. Concluding Remarks

In this paper, we have discussed the asymptotic theory of simultaneous estimation of
kurtosis parameters for q multivariate normal distributions using the UPI that all kurto-
sis parameters are homogeneous. It is concluded that the performance of restricted and
pretest estimators is better when the null hypothesis of equal kurtosis parameters holds,
while the risk of the restricted estimator becomes unbounded as we move away from the null
hypothesis. The pretest estimator performs better than restricted and Stein-type shrinkage
estimators but only in a certain region of the parametric space. Stein-type estimators, out-
perform the unrestricted estimator in the entire parametric space. The improved Stein-type
shrinkage estimator is strongly recommended when the equality of parameters is uncertain
for q ≥ 4, while for small dimensions, shrinkage pretest estimator is a better choice.
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APPENDIX
Mathematical Proofs

Two important results cited in Lemma 3 of Shah et al. (2020) are used, as well as
some distributional results crucial for the derivation of mathematical results of appendices,
are given in the following theorem:

Theorem 7: Under the sequence of local alternatives {Hn} and assuming independence
among q components, following distributional result holds:

η1,n =
√
n
(
β̂UE − β

)
D−→ η1 ∼ Nq(0,V ),

η2,n =
√
n
(
β̂UE − β0

)
D−→ η2 ∼ Nq(δ,V ),

η3,n =
√
n
(
β̂RE − β0

)
D−→ η3 ∼ Nq(0, vJq),

η4,n =
√
n
(
β̂UE − β̂RE

)
D−→ η4 ∼ Nq(δ?,C),(

η2,n
η4,n

)
D−→
(
η2
η4

)
∼ N2q

{(
δ
δ?

)
,

(
V C
CT C

)}
,(

η3,n
η4,n

)
D−→
(
η3
η4

)
∼ N2q

{(
0
δ?

)
,

(
vJq 0
0 C

)}
,

where D−→ means convergence in distribution as n→∞.

Proof: See Appendices A1–A6 of Zahra et al. (2017 a) for detailed proof with some adjust-
ments in notations.

A1. Proof of Theorem 1

B(β̂LS) = lim
n→∞

E
[√
n(β̂LS − β(n))

]
= lim

n→∞
E
[
√
n

{
β̂UE − π(β̂UE − β̂RE)− β0 −

1√
n
δ

}]
= lim

n→∞
E [η2,n − δ − πη4,n] = E(η2)− δ − πE(η4) = −πδ?.

B(β̂SP ) = lim
n→∞

E
[√
n(β̂SP − β(n))

]
= lim

n→∞
E
[
√
n

{
β̂UE − π(β̂UE − β̂RE)I(Ln < cn,α)− β0 −

1√
n
δ

}]
= lim

n→∞
E [η2,n − δ − πη4,nI(Ln < cn,α)]

= E(η2)− δ − πE[η4I(χ2
q−1(∆) < χ2

q−1,α)] = −πE[η4I(χ2
q−1(∆) < χ2

q−1,α)]
= −πδ?Φq+1(χ2

q−1,α; ∆).
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B(β̂SS) = lim
n→∞

E
[√
n(β̂SS − β(n))

]
= lim

n→∞
E
[
√
n

{
β̂UE − (q − 3)L−1

n (β̂UE − β̂RE)− β0 −
1√
n
δ

}]
= lim

n→∞
E
[
η2,n − δ − (q − 3)η4,nL

−1
n

]
= E(η2)− δ − (q − 3)E[η4χ

−2
q−1(∆)]

= −(q − 3)δ?E[χ−2
q+1(∆)].

B(β̂S+) = lim
n→∞

E
[√
n(β̂S+ − β(n))

]
= lim

n→∞
E
[
√
n

{
β̂SS −

(
1− (q − 3)L−1

n

)
I(Ln < (q − 3))(β̂UE − β̂RE)− 1√

n
δ

}]
= lim

n→∞
E
[√
n
{
β̂SS − β(n) −

(
1− (q − 3)L−1

n

)
I(Ln < (q − 3))(β̂UE − β̂RE)

}]
= B(β̂SS)− lim

n→∞
E [η4,nI(Ln < (q − 3))] + (q − 3) lim

n→∞
E
[
η4,nD

−1
n I(Dn < (q − 3))

]
= B(β̂SS)− E

[
η4I(χ2

q−1(∆) < (q − 3))
]

+ (q − 3)E
[
η4χ

−2
q−1(∆)I(χ2

q−1(∆) < (q − 3))
]

= B(β̂SS)− δ?Φq+1(q − 3; ∆) + (q − 3)δ?E
[
χ−2
q+1(∆)I(χ2

q+1(∆) < (q − 3))
]

= −δ?
[
Φq+1(q − 3; ∆) + (q − 3)E[χ−2

q+1(∆)I(χ2
q+1(∆) > (q − 3))]

]
.
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Abstract
Informatics and technological advancements have triggered generation of huge volume

of data with varied complexity in its management and analysis. Big Data analytics is the
practice of revealing hidden aspects of such data and making inferences from it. Although
storage, retrieval and management of Big Data seem possible through efficient algorithm
and system development, concern about statistical consistency remains to be addressed in
view of its specific characteristics. Since Big Data does not conform to standard analytics,
we need proper modification of the existing statistical theory and tools. Here we propose,
with illustrations, a general statistical framework and an algorithmic principle for Big Data
analytics that ensure statistical accuracy of the conclusions. The proposed framework has
the potential to push forward advancement of Big Data analytics in the right direction. The
partition-repetition approach proposed here is broad enough to encompass all practical data
analytic problems.

Key words: Big Data; Data mining; Partition-repetition; Statistical inference.

AMS Subject Classifications: 62K05, 05B05

1. Introduction

‘Big Data’ presents itself with unique challenges in retrieving, storing and all the way
to analysing the data. Technological breakthrough makes generation and collection of huge
volume of data possible in many fields like genetics, genomics, health care, customer service,
informatics, to name a few. Among various challenges presented by the abundance of data,
analysis of the data is a well recognized hurdle. While the explosion of information allows us
to know more about the process, appropriate methods or algorithms are essential to make
‘correct’ inference or to reveal hidden patterns.

Recent advancements of technology and targeted methods to Big Data analytics give
access to ample capacity for storing the data along with the skill of parallel computing.
Much effort has been dedicated to extract information from Big Data in an efficient manner.
From a practical standpoint, concern remains about the validity of results from analysis of
Big Data. As attested by many recent articles, in most cases the inference based on such
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data is unacceptable and unreliable. For example, High dimension conventional classification
methods are no better than random guesses (Fan and Fan, 2008). Understanding the output
of Big Data analytics than to fixate on the technical aspect of it is the most important issue
(Fan et al., 2014; Fan et al., 2018; Huang, 2014), because the future decision making process
depends only on this output. The aim of this article is to put forward a framework in order
to establish the acceptability of the learning from the Big Data. This framework also fits to
the paradigm of parallel computing and at the same time provides a robust statistical basis
for practical application.

The classical statistical theory of data analysis has its roots in axioms of probability
theory. By some arguments data analysis is more complex than physics, biology and even
behavioural science. Formal statistics developed so far can help to tackle the analytics but
it will produce realistic results only if we can keep the basic assumptions loose (Tukey,
1962). The velocity of data flow in today’s world makes it more challenging for producing
meaningful conclusion over time on the same problem (Efron, 2020). Naturally it is not
possible to analyze the entire data at the same instance when we have so little time to produce
results. Also, subsequent results can make a previous conclusion redundant. With growing
complexity of Big Data, statistical theory needs to be revisited (Davidian, 2013), mainly
due to the violation of probabilistic independence or exchangeability conditions. Statistics
community has raised concerns about how the sound and carefully developed theory can
help build a structure around it. Implicitly classical statistics is already equipped with basic
mechanisms to deal with big data. Sampling and sufficiency, among other core discoveries
of statistics, are extremely useful in analysis of data of large volume, a characteristic of
big data (Donoho, 2017). But the analysis of such high volume data needs to be done in
presence of variety and high velocity, the two main characteristics of big data. Algorithmic
or computational innovations for parallel computing are not the entire solution, but they are
important tools when coupled with appropriate statistical methods in order to utilise the
entire available information (sufficiency) that is contained in the data flow (large sample)
(Donoho, 2017). In this article we exploit an algorithmic architecture used in practice
to tackle Big Data and suggest an appropriate mathematical ground for analysis of such
architecture.

We propose a partition and repetition approach in a general framework for statistical
analysis of Big Data. This approach expands the horizon of standard statistical methods as
well as opens new avenues for novel methods to encompass and tackle the challenges arisen
due to the specific characteristics of Big Data. With the help of this general framework, we
prove consistency and accuracy of the analytic results thus obtained. We have explained
this theory through various examples that are usually required in common data analysis
paradigm in respect of many fields. We hope that such a framework would help in further
development of Big Data analytics. Note that although here we mainly address the problems
due to volume, velocity and variety, the 3-V’s that occur simultaneously in a typical Big Data
problem, the other 3-V’s–veracity, validity, and volatility–must always be taken care of in
any statistical analysis. A statistical model has to deal with inherent variability which is
nothing but volatility especially when considered with respect to time. It is natural that
with available data at hand, we have to model the variance and hence the volatility, how it
is related with time or other auxiliary variables. This study of volatility would be inbuilt
in our proposed framework. Similarly veracity and validity must be ensured properly with
appropriate strategies, for example, using back-testing, training-testing protocol etc. Our
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proposed framework for the basis of data analytics in the Big Data paradigm considers
many possible statistical fundamentals and validity requirements when analysing data with
the above characteristics.

2. Developing the general framework

2.1. The divide and conquer algorithm

Abundance of digital information is one way to explain what we today understand
as ‘Big Data’. There are two aspects to the story. Firstly, human intuition suggests that
accuracy of the answer to our question increases if we have more and more information. This
intuition works backward; we start with a question, try to comprehend what data we might
need to answer the question and then realize that relevant information exists somewhere in
digitized format. The catch is that, this retrospective thought process assumes that the skill
by which human intelligence finds this answer from the data is transferable to mechanical
and algorithmic computing. Secondly, with huge volume of data we can find a question
of interest from the data itself and then get the answer to the question. But the inherent
complexity of available data makes this task difficult. This whole process is advertised as
Big Data analytics.

Principle characteristics of Big Data are its volume, velocity, variety and complexity
(Katal, 2013). All of them presents as unique challenges at a technical level of dealing
with the data. At the hardware level we have reached a saturation point on the achievable
clock pulse on a single processor. Rather, the growth in computing capacity is attained by
increasing the number of threaded cores. Moreover, while storage capacity is fairly cheap
and scalable, the Random Access Memory is not so. Recognizing this hardware restriction
the state of the art algorithms (Hadoop, Amazon EC2) for Big Data analytics has adopted
a partitioning based method.

However, in view of advancements in computing systems including storage and pro-
cessing, need for new data analytic tools are required that are adaptive to new technologies
(Petcu et al., 2015). Building such statistical tools and algorithms for monitoring and anal-
ysis is needed to achieve success in Big Data analytics. Hence standard statistical methods
should be revisited, modified, and validated in the light of scalability to extremely large scale
data applications (Reed and Dongarra, 2015).

Fisher et al. (2012) have identified the standard workflow of data analysis as, (1)
acquiring data, (2) choosing an architecture, (3) shaping the data to the architecture, (4)
writing and editing the code, and (5) reflecting and iterating on the results. The initial
struggle is to adopt a suitable architecture for the data and map the collected data to that
architecture. In this article, we are not focusing on this domain of analytics job. Rather
the focus is on the later part of analysing the data. To address the problem of huge volume
of data, the way is to partition it into small portions that are manageable by the Random
Access Memory, process the data in a parallel manner, and finally combine the processed
information to produce the final output. This idea of partitioning has been used, although
in a subtle way, in other areas of research, e.g., data mining (Buehrer et al., 2015; Calders et
al., 2010), Markov Chain Monte Carlo (Wang et al., 2015). An extra benefit of this divide
and conquer method is that such an algorithm easily adapts to the velocity of Big Data.
Velocity contributes to new partitions which are to be analysed and then the inference is
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to be combined with the earlier output (Schifano et al., 2016). The other issues relating
to variety and complexity are taken into account by the statistical methods and algorithms
that are used in the analysis.

2.2. The framework

Sample space structure: Classical theory of statistical analysis is a well developed area with
sound theories. To establish a framework for Big Data analytics we naturally would like
to fall back on those works. To begin with, we consider a sample space (S,AS) where S
is the space of realized values of the data and AS is the sigma field associated with the
sample space. We denote by M(S) the set of probability measures on (S,AS). Also let
Me(S)

(
⊂M(S)

)
be the set of probability measures with finite support. An observed data

Xn×p can be identified by a probability measure mX on (S,AS), with a support having finite
cardinality, defined as follows,

mX(A) =
n∑

xi∈A,i=1

1
n
,

for any A ⊆ AS and xi (i = 1, . . . , n) is the i-th data point. To build a theory around it
we would require a suitable metric on the space M(S). For example, if (S,AS) is a polish
space then with Prokhorov metric (dM) we can put weak convergence on M(S).

Till this point we have not considered any aspect of Big Data par se. Our aim is to
build the ideology of Big Data analytics on this sample space structure. Identification of
the realized data with an empirical measure on some sample space gives a broader ground
to work on. In a Big Data set up, we hardly have any control on the generation of data.
Thus unlike in classical statistical theory, where mostly we want to build better experimental
designs to apply statistical methods, be it standard or novel, here we want to construct an
algorithm that would work with the data generation process. This difference in approaches
is subtle but central to how these two ideologies differ.

The problem approach: Main goal of Big Data analytics is to extract information from
the data, which is equivalent to getting information from an element in Me(S). So we
assume that a satisfactory data collection and mapping architecture exists. To develop a
full framework, we introduce some definitions about functionality of data analysis. This is
necessary to avoid the cumbersome details and technicalities of a particular scenario.

Extracted information of a data analysis can be viewed as an element in the result space
(R). A problem approach (ρ) is a function from Me(S) to R. Based on this formulation of
problem approach we can consider two classes of problem approaches as follows.

Definition 1: Inference Problem: If the problem approach ρ can be extended to a strictly
larger subset of M(S) than Me(S), then such a problem or problem approach is called an
inference problem.

Definition 2: Mining Problem: If the problem approach ρ can only be defined onMe(S),
then such a problem or problem approach is called a mining problem.
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The usual examples of these two classes of problems are as follows. Parametric esti-
mation and testing problems fall under the class of inference problems where the subset of
M(S) under consideration is Me(S) along with the parameter models. Clustering problem
or outlier detection problem, on the other hand, are under the class of mining problems. In
later sections, we shall discuss both these classes of problem approaches and their solutions
in more details.

A technical assumption we need to have is that, one such problem approach is viable
if the map

ρ :
(
ρ−1(R), dM

)
−→

(
R, dR

)
(1)

is a continuous map, where dM and dR are appropriate metrics on respective spaces. A viable
problem approach (ρ) then ensures that the problem is consistent in the number of samples
and robust in the data points. This means that slight change in the data generation process
(M(S)) should not create substantial difference in the result (R). Here consistency indicates
the large sample property of converging results as the number of data points increases whereas
robustness indicates very little or not significant change in the results from two data sets
that are not too different from each other.

The existence of ρ has important implications both in statistical modelling with an
underlying stochastic data generation model and also in algorithm modelling with unknown
data mechanism (Breiman, 2001). We only emphasis that ρ should be judiciously chosen and
it has no conflict with the “two cultures” of statistical modelling (Breiman, 2001). However,
in any case, we assume that there is an underlying σ-field behind the data generation process,
be it known or unknown, and hence ρ is well defined. The existence of ρ is essential for
establishing the sound framework for Big Data analytics that we establish through two
theorems in the next section.

2.3. Big Data Algorithm

We now discuss various components of our proposed algorithmic structure of Big Data
analytics.

Partitioning: A naturally accepted strategy in analysing huge volume of data is to consider
small parts of data at a time. Our formulation for Big Data analytics formulates this method
of partitioning the data as a functional,

HL :Me(S) −→Me(S)× · · · ×Me(S) (L suchMe(S) s)
HL(m) = (m1,m2, . . . ,mL), (2)

such that (m1,m2, . . . ,mL) is related to m by,

supp(m) =
L
∪
i=1

supp(mi);

supp(mi) ∩ supp(mj) = ∅, 1 ≤ i 6= j ≤ L.
(3)

where supp(m) denotes the support set of m and ∅ denotes the empty set.
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For convenience we write supp(mi) =
(
x

(i)
1 , x

(i)
2 , . . . , x

(i)
ni

)
for each i. For a fixed data m

(or m ≡ X) we would be given a problem approach ρ. Then the divide and conquer strategy
would choose a partitioning functional HL.

But to reduce the error in result due to partitioning, the strategy is to repeat K(> 1)
times the partitioning; denote them by HL,1, HL,2, . . . , HL,K . This type of algorithm we call
as the partition-repetition algorithm. We now formulate this partition-repetition algorithm
in a comfortable manner.

Let HL be the set of all partitioning functionals HL. A σ-field AHL
can be defined

as the smallest σ-field on HL such that the functions fi,j(·) on
(
HL,AHL

)
to (S,AS) are

measurable for any choice of m ∈Me(S), where

fi,j
(
HL(m)

)
= x

(i)
j j = 1, 2, . . . , ni; i = 1, 2, . . . , L.

Then the strategy of analysing data of unmanageable size, in terms of volume, variety and
most importantly velocity, by partition-repetition algorithm can be understood as a probabil-
ity measure PHL

on the measurable space
(
HL,AHL

)
. More precisely {HL,1, HL,2, . . . , HL,K}

would be viewed as a random sample from the probability measure space
(
HL,AHL

, PHL

)
.

For simplicity of notation let us denote by ρL the map,

ρL : (m1, . . . ,mL) 7−→ (ρ(m1), . . . , ρ(mL)) for mi ∈Me(S);

for i = 1, 2, . . . , L. Then a single random sample HL from the probability distribution
PHL

provides us L results ρL
(
HL(m)

)
, which are L elements from R. With a random

sample HL,1, HL,2, . . . , HL,K from the distribution, the set of results we get using the problem
approach ρ is

{R∗k,l}k=1,2,...,K; l=1,2,...,L =
{
R∗k,1, R

∗
k,2, . . . , R

∗
k,L

}
k=1,2,...,K

=
{
ρL
(
HL,k(m)

)}
k=1,2,...,K

.

This framework also encompasses the case where rather than partitioning one chooses
to sub-sample. In that case we would get rid of the extra restriction in equation (3) on the
functional HL. Popular algorithms of Bootstrap and Bag-of-Little-Bootstraps (Kleiner et
al., 2014) are covered in this framework.

Combining: Next critical part of the algorithm is combining the results obtained above,{
R∗k,l

}
k=1,2,...,K; l=1,2,...,L

in order to arrive at a final result. Let CKL be the combining map that

takes all the results from the collection and gives the final result. The triplet
(
ρ, PHL

, CKL
)

can be called a solution to a Big Data problem.

Now it remains to understand the viability of the solution. We have put a stable
condition of continuity in equation (1) on problem approach ρ as a viable problem approach.
Proper behaviour of the pair

(
PHL

, CKL
)

would ensure an accurate solution to the problem
ρ for m.
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We focus on the case where CKL := C2
K ◦C1

L works in two stages. In the first stage C1
L

works on each partition (k) to collect the results

R∗k := C1
L

(
{R∗kl}l=1,2,...,L

)
for k = 1, 2, · · · , K.

This K-tuple is combined by C2
K . For a fixed data m when C1

L is a measurable map, the ran-
domness of {HL,1, HL,2, . . . , HL,K} makes the collection {R∗1, R∗2, . . . , R∗K} an independently
and identically distributed (i.i.d.) sample on the measure space

(
R,AR

)
. This formulation

of the solution
(
ρ, PHL

, C2
K ◦ C1

L

)
provides an opportunity to use rich statistical theory in

data analytics.

In the general case, the result space can be quite complicated (we shall give concrete
examples in later section). Rather than dealing with the space R itself it would be better to
work with real numbers. This is achieved by an evaluation function ev : R −→ RN for some
fixed N belonging to the set of natural integers. Then, viability of the choice of PHL

can be
understood using the evaluation function of the result space R. For a given data m and a
problem approach ρ, we call a partitioning probability measure PHL

to be viable under the
first stage combining operator C1

L if,
�
ev ◦ C1

L

(
ρL(HL(m))

)
dPHL

= ev ◦ ρ(m). (4)

This condition means that the probability measure PHL
and the combining method C1

L

are compatible with each other for the problem ρ. If we do infinitely many repetitions
of our partition-repetition based algorithm, the combining method C1

L will give equivalent
performance as the one we would have got if we could apply ρ on the data m.

The second stage of combining method C2
K operates on the collection of first stage

result by combining R∗1, R∗2, . . . , R∗K to get the solution

R∗∗K := C2
K

(
{R∗k}k=1,2,...,K

)
.

Now the viability of C2
K is based on the comparison of R∗∗K with ρ(m) = R∗ (say). Here we

present the soundness of the algorithm of partitioning and combining through the following
theorem.

Theorem 1: For a Big Data solution
(
ρ, PHL

, C2
K ◦ C1

L

)
, if PHL

is a viable partitioning
method under combining method C1

L (i.e., equation (4) is satisfied) and convergence in ev
is equivalent to that of in R, then there exists a second stage combining method C2

K , such
that R∗∗K −→ R∗ almost surely in PHL

.

Proof: Define C2
K on R×R× · · · × R (K times) as follows,

C2
K(R1, R2, . . . , RK) := arg min

{Rk}k=1,2,...,K

∣∣∣∣∣∣ev ◦Ri − ev ◦R∗
∣∣∣∣∣∣.

Let us use the notations Yk = ev ◦ R∗k, ZK = ev ◦ R∗∗K and µ = ev ◦ R∗. Since {R∗k}k≥1 is
an i.i.d. sample, by strong law of large numbers as equation (4) holds, for all ε > 0 with
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PR := PHL
◦ C1−1

L ◦ ev−1,

PR

(
∪∞k0=1 ∩K≥k0

(∣∣∣∣∣∣∣∣ 1
K

K∑
k=1

Yk − µ
∣∣∣∣∣∣∣∣ < ε

))
= 0.

Now using the fact that ||∑K
k=1 Yk/K − µ|| ≥ ||ZK − µ|| and definition of C2

K , the above
holds with ∑K

k=1 Yk/K replaced by ZK . Since convergence in (R, dR) is equivalent to that
in
(
ev ◦ R, || · ||

)
, rest of the argument follows as by assumption convergence in (R, dR) is

equivalent to that in
(
ev ◦ R, || · ||

)
.

The theorem above deals with the volume aspect of Big Data. It says that even if
the data is unmanageable to be processed practically, we can adopt partition-repetition
approach to get a good solution. It is also not passed our attention that the number of
combination rules may be more than two, but the final convergence of results requires some
more assumptions and strong theorems in the dependence set up.

Next we also need to answer the question which is more of classical statistical in nature.
If the velocity of the data provides us more and more information of specific form, is the
partition-repetition algorithm able to extract that information? The following theorem tells
us if that is the case, we would be able to choose a partitioning measure and a sequence of
combining methods that gives the final result.

Theorem 2: Let {mn}n≥1 ∈Me(S) and m ∈ domain of ρ. Suppose the problem approach
ρ is viable on its domain and mn −→ m. If conditions of Theorem 1 hold for the sequence
of solutions

(
ρ, PHL,n, C

2
K,n ◦C1

L,n

)
, then there exists a sequence of integers {kn : n ≥ 1} and

a PHL
such that, for n ≥ 1, PHL,n is absolutely continuous with respect to PHL

with∣∣∣∣∣∣∣∣ev ◦ C2
kn,n ◦ C

1
L,n

{
ρL(HL,k(mn)

)}
k=1,2,...,K

− ev ◦ ρ(m)
∣∣∣∣∣∣∣∣ −→ 0,

as n→∞ almost surely in PR.

Proof: Define PHL
(·) = ∑∞

n=1 PHL,n(·)/2n. Let us denote,

R∗∗K,n = C2
K,n ◦ C1

L,n

({
ρL
(
HL,k(mn)

)}
k=1,2,...,K

)
.

Then for every ε(> 0), by Theorem 1 and equation (1) there exists a sequence {kn(ε) : n ≥ 1}
and N ≥ 1 such that for all n ≥ N ,∣∣∣∣∣∣ev ◦R∗∗kn(ε),n − ev ◦ ρ(m)

∣∣∣∣∣∣ < ε

2n ,

almost surely in PR,n = PHL,n ◦ C1−1
L,n ◦ ev−1. Choosing ε as rationals, result follows from

Cantor’s diagonal argument.

Both these results are of existential nature rather than being instructive for practice.
Although little abstract in their formulation, these theorems form the basis of the methods
that would be applied in practice. Study on combining methods is not new to statistics. This
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framework enforces the importance of various combining methods along with partitioning
methods in the light of Big Data analytics.

The power of this kind of theory is that we do not put any hard and fast regularity
condition on the data or the data generation process. Theorem 2 only requires that the data
collected eventually amounts to some specific information.

3. Illustrative Examples

An analyst’s job and a statistician’s work differ in a crucial way. An analyst is more
concerned with how to extract information from the data available. This work is referred
to as number crunching. A statistician is concerned about the quality of the extracted
information sometimes taking for granted the effort of extracting the information. In a Big
Data scenario where importance of analyst’s job comes more into the limelight, a statistician
could provide support by accepting some compromise on their ideology. In this section we
illustrate the formulation developed above through some standard data analytic problems.

We first consider a few problems where the solution ρ(mn) can be calculated without
any error from partitioning based algorithm. Here we specify by subscript n the size of the
data. In these examples it is enough to consider PHL

to be some degenerate probability
distribution of convenience and we only require a single sample (K = 1) from it.

Calculating sample mean: Here PHL
can be any distribution that partitions the data

into manageable balanced pieces. Then for ρ(mn) := (
�
x dmn, n) the combining method

shall be,
C1
L({(x̄i, ni)}i=1,2,...,L) =

(∑
i nix̄i∑
i ni

,
∑
i

ni

)
.

A little tweak in these definitions allows us to calculate many other descriptive statistics like
weighted means, dispersion measures and also some robust measures for central tendency.

Sorting: To get a Big Data solution to the sorting problem we can define a partitioning
PHL

as a degenerate distribution such that it divides the data mn into L parts based on a
sequence bound0 < bound1 < · · · < boundL as,

boundi−1 ≤ {x(i)
j } < boundi for i = 1, 2, · · · , L.

The choice of the sequence {boundi} should be such that the individual parts are of man-
ageable sizes. With ρ providing us with a sorted array, the combining stage should simply
concatenate the ordered parts, i.e.,

C1
L({R∗l }l=1,2,...,L) := (R∗1, R∗2, · · · , R∗L).

Similar solutions of the above type are obvious for problems like searching, calculating
extreme statistics (x(1), x(n)), constructing a histogram etc. Most of the time these simple
problems are only intermediate steps towards more challenging problems of data analytics.

Some solutions to more standard problems of Big Data analytics are discussed in brief
below. First few examples are inference problems while the later ones are mining problems.
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We assume that the data are cleaned and dressed for the purpose at hand. We avoid
discussing the technical aspects of implementing these algorithms in practice, though in
a few examples we shall provide references to available literature that has more focus on
detailed analysis of the algorithms.

Estimation: The problems of modelling (nonparametric, parametric, time series or even
Bayesian) come under the radar of inference problem. Based on the requirements of the
solution (e.g., unbiasedness, minimum variance, consistency) there would be different Big
Data solutions to the problem approach ρ. Many of the times it suffices to consider PHL

as a
random partitioning measure of the data, although while considering spatial and/or temporal
data more clever partitioning measure would be required to satisfy viability condition like
equation (4).

Let us consider the problem of finding maximum likelihood estimate for a parameter
based on some algorithm (say, Expectation-Maximization algorithm or Newton-Raphson or
Fisher’s Scoring etc.). The scenario is that, we have a statistical model in mind where
the number of parameters is fixed. Then partitioning the data simply breaks the objective
function (log-likelihood function) into L parts. Consequently an intuitive choice of the
combining method CKL would be whichever of the results from partitions maximizes the
whole objective function. Although this method does not ensure the MLE for the data, but
in practice we are hardly concerned about theoretical properties like efficiency; the estimate
found by this method is acceptable.

Testing: Consider a test function ρ that provides p-value for testing H0 against H1. Then
based on random partitioning of the data into balanced parts, a conservative combining
algorithm (Tippett, 1931) for the corresponding solution can be

R∗k := C1
L

(
{R∗lk}l=1,2,...,L

)
= min

l=1,2,...,L
R∗lk, for k = 1, 2, . . . , K,

and
R∗∗ := C2

K

(
{R∗k}k=1,2,...,K

)
= median{R∗k}k=1,2,...,K .

A large part of recent statistical methods literature focuses on the regime of p >> n.
Even when the data is not formally a Big data, because it does not inherit the various
characteristics discussed in the introduction, the data set can be in this regime; for example,
genome sequencing data. Note that the above discussion also encompasses the scenario when
p >> n. Depending on the testing problem, if we get a p-value or a test statistic for each
partitioned dataset, the solution is immediate in the proposed framework. It is valuable to
consider specific problems in this regime in depth as they can be helpful to solve important
problems in the relevant fields. But data sets solely of the p >> n variety arguably represent
a small part of Big data as we consider here.

Variable Selection: The context in which variable selection problem has been addressed
in recent literature is sometimes too idealistic for Big Data paradigm, although there are
some promising methods. The data generation process is assumed to provide information on
a set of response variables and a fixed set of regressors. We might be interested in a subset
of these variables which have effect on the responses. The quality of the selected variables
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can be assessed by proportions of the variables wrongly selected. In a situation where
assumption of homoscedastic uncorrelated linear model is valid, Barbar and Candes (2015)
proposed a method to select variables with a control on the proportion of falsely discovered
variables. This method is no doubt computationally heavy. The partition-repetition
philosophy can be used to adapt this algorithm to achieve the same goal in current context.

If the data generation process is well controlled, the above inference problems and
solutions make sense. Some recent works are available in the area of regression (Battey
et al., 2015; Chen and Xie, 2014) focusing on divide and conquer methods. Unfortunately
spurious correlations, noisy data etc. are very common in Big Data perspective. In that
case these naive solutions can be hugely mis-representative of the actual truth. Data mining
problems are more relevant in such a scenario. In a mining problem we are interested in the
data itself without having to make any modelling assumption. Possible Big Data solutions
to a few mining problems are discussed below.

Clustering: An elaborate and critical discussion on clustering problem in view of Big Data
analytics can be found in recent article by the authors (Karmakar and Mukhopadhyay, 2016;
Karmakar et al., 2019). Karmakar and Mukhopadhyay (2016) provide a detailed example
illustrating how the proposed framework fits to the class of Big Data clustering problems
where it (a) demonstrates existence and evaluation of the required quantities and (b) proves
validity of the final result. In brief, the combing method would identify the unique clusters
from the set {R∗lk}l=1,2,...,L based on a decision function that tells us to combine two results
when they seem to form a single data cloud. The second stage is to make stable clusters
based on some measure from the K sets of clusterings {R∗k}k=1,2,...,K .

Outliers Detection: Based on a random partitioning measure PHL
and a problem approach

ρ that separates the outliers (mo
n) and the data (md

n) section, (i.e., ρ(mn) := (md
n,m

o
n)), the

combining method C1
L would check the structure of the outliers from the individual parts

and get the outliers from the whole part. The method should check if outliers from one part
belongs to the data section of some other part and also if outliers from all the parts together
form some data section. Second stage of combining would then pick out the stable outliers
from all repetitions.

Ramaswamy et al. (2000) discuss another Big Data solution to this mining problem
based on a different partitioning method based on clustering the data and van Stein et al.
(2016) propose local subspace-based solution to outlier detection problem, which applies a
combining strategy using global neighbourhoods. These methods can be viewed as special
cases of our proposed framework.

Classification: First we consider the k-Nearest Neighbor classifier, where ρ finds the k
nearest neighbours of a test data point (x) as,

ρ(mn) := ((x(i), d(x, x(i)))i=1,2,...,k)

such that d(x, x(1)) ≤ · · · ≤ d(x, x(k))
≤ min{d(x, xi);xi ∈ X \ {x(1), x(2), . . . , x(k)}}.

Based on any partitioning PHL
, then the problem is exactly solvable in a single repetition

with a combining operator that picks the k data points nearest to x among the L×k points.
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Subsequently the classifier is contracted on a second algorithm that simply checks for the
maximum number of representatives in these k data points from each of the classes.

Another celebrated class of classifiers is decision trees. A relevant combining operator
of decision trees based on partition of the data is proposed by Hall et al. (1998).

4. Discussion

Data is the lubricant that drives the machinery of statistics. It is no longer a topic of
debate that the way data is generated and collected in modern times is drastically different
from what statisticians are used to deal with. Statistics should adapt to this change and
thereby assist the masses of data analytic work.

The main contribution of this article is suggesting a basis of statistical theory for
present day data analytic works. In composing the theory we have tried to stay true to
the practical nature of a data science job. This formulation proposes a divide and conquer
algorithm (either partition-repetition or subsampling method). More importantly it respects
the fact that more often than not we have no control on the data generation process. We have
also tried to encompass all possible data analytic problems. A range of such data analytic
problems are discussed in perspective of our formulation.

5. Conclusion

Successful use of statistical theory in data analysis would require understanding the
field of ‘Big Data’. Rather than being insistent on developing methods and elaborate theo-
ries based on idealistic assumptions, we have kept their applicability in mind. Our proposed
framework encompasses statistical analyses of majority of problems in view of complex char-
acteristics of Big Data and can be extended further keeping its compatibility with modern
advances in computational world.
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Abstract 

A-optimality refers to the design that minimizes the sum of variances of the estimators 
of all parameters in a model. By virtue of the Cramer-Rao bound, for a vector-parameter of 𝑘 
components, 𝑘" times the trace of the inverse of the information matrix for the parameters 
serves as a lower bound for the sum of variances of the estimators and the bound is attained 
asymptotically. Hence, asymptotically, A-optimality is achieved by maximizing the trace of 
the inverse of the information matrix. For a binary response experiment with a logit model, 
the asymptotic solution is known to be a two-point design which is point symmetric but not 
weight symmetric. For nonlinear models, Cramer-Rao bound may be crude for finite samples 
and hence the asymptotic solution may be different from the design that minimizes the sum 
of variances. Here we explore the validity of the asymptotic solution by directly minimizing 
the sum of variances using numerical methods in the space of all 2-points designs as well as 
more restrictive design spaces. We demonstrate that even in a restrictive search space of point 
symmetric designs, the theoretical solution is half as efficient for a sample size of 100. 
Further improvement is achieved by relaxing the restriction of the solution being point 
symmetric. 

Key words: A-optimality; Dose-response model; Information matrix; Logistic regression 
model. 
 

1.  Introduction 

Optimal designs are a class of experimental designs that are optimal with respect to 
some statistical criterion. The context is to provide estimators of unknown model parameters 
and the optimality criteria seek to maximize or minimize some meaningful statistical 
functions relevant to the model and criteria. Traditionally, optimality-criteria are functionals 
of the eigenvalues of the information matrix. Much of the literature on optimal design rests 
on asymptotic properties of various optimality criteria. We refer to Pukelsheim (1993) for 
description of different optimality criteria.  

 Dose-response models have been extensively studied in the optimal design literature 
(Hedayat et. al. 1997). Logistic or logit models and probit models are among the popular 
ones. In this paper, we focus on optimality for a logistic linear regression model [Abdelbasit 
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and Plackett (1983), Biederman et. al. (2006), Ford et. al. (1992), Minkin (1987), Sitter and 
Wu (1993), Yang and Stufken (2009)]. Among the well-known and commonly used 
optimality criteria, A-optimality is perhaps the most intuitive. Consider a binary response 𝑦$ 
resulting from a non-stochastic dose level 𝑥. Assume that 𝑦$ takes the values 0 and 1 and the 
probability that  𝑦$ takes the value 1 is given by 

𝑃(𝑦$ = 1) = 	 (1 + 𝑒.(/01$)).2    (1) 

where 𝛼 and 𝛽	are unknown and 𝛽 > 0,without loss of generality. A-optimality criterion is 
simply minimizing the sum of variances of the parameter estimates in the model. For this 
two-parameter logistic model, the A-optimality criterion seeks to minimize 𝑉𝑎𝑟(𝛼;) +
𝑉𝑎𝑟<𝛽=>. It is mathematically challenging to directly optimize the sum of the variances for a 
theoretical solution. Instead, investigators have exploited the Cramer-Rao bound, which 
presents a lower bound on the sum of variances of unbiased estimators, indicating that the 
variance of any such estimator is at least as high as the inverse of the Fisher information. 
Specifically, in the current context, the lower bound is the trace of the inverse of the 
information matrix. In other words, 

						𝑉𝑎𝑟<𝛼;) + 𝑉𝑎𝑟(𝛽=> ≥ ∑ 𝜉C
DE(FGHIJ)

<20DE(FGHIJ)>
K (1 + 𝑥C")/|𝑰(𝜶,𝜷)|Q

CR2 ,                 (2) 

where ∑𝜉C = 1 and  

							𝑰(α, β)	 = S
∑ 𝜉C

DE(FGHIJ)

(20DE(FGHIJ))K
Q
CR2 ∑ 𝜉C𝑥C

DE(FGHIJ)

(20DE(FGHIJ))K
Q
CR2

∑ 𝜉C𝑥C
DE(FGHIJ)

(20DE(FGHIJ))K
Q
CR2 ∑ 𝜉C𝑥C"

DE(FGHIJ)

(20DE(FGHIJ))K
Q
CR2

T.               (3) 

By minimizing the trace of the inverse of the information matrix, instead of 𝑉𝑎𝑟(𝛼;) +
𝑉𝑎𝑟<𝛽=>, it is possible to obtain a theoretical solution. The solution to the A-optimal design 
was first postulated by Mathew and Sinha (2001) under restricted conditions and later 
established conclusively by Yang (2008). In this context, it should be noted that a major 
challenge in determining an optimal design for nonlinear models is that it actually depends on 
the unknown parameters. This presents a conundrum: one is looking for the design with the 
goal of optimizing the estimation of the unknown parameters, and yet one must know the true 
values of the parameters to find the best design. This problem has been addressed previously 
by Nandy and Nandy (2015) and is not the focus of the current article.  

However, the Cramer-Rao bound is strict for finite samples and equality is only attained 
asymptotically. Hence, the A-optimal solution obtained by minimizing the trace of the inverse 
of the information matrix is only approximate. For non-linear models, the Cramer-Rao bound 
may be crude with small samples and hence the asymptotic solution can be different from the 
design that minimizes the sum of variances of the estimates. For finite samples, it is of great 
importance to examine the differences between the asymptotic and exact solutions. Keeping 
this in mind, the objective of this article is to focus on A-optimality criterion in a non-linear 
model, specifically the two-parameter logistic regression model noted in (1) and study its 
finite sample properties. 
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2.  Methods 

2.1.  Theoretical asymptotic solution 

The theoretical asymptotic solution for the A-optimal design has been shown to be a 
two-point design that is point-symmetric but not weight symmetric (Yang 2008). 
Specifically, the design is given by  

𝑑∗ = {(𝑥2∗, 𝜉2∗), (𝑥"∗, 𝜉"∗)} where 𝑥2∗ =
(.Y∗./)

1
, 𝑥"∗ =

(Y∗./)
1

;  

𝜉2∗ = 𝜉Y∗,	/,1, 		𝜉"∗ = 1 − 𝜉2∗where  𝜉Y,	/,1 =
[(1K0(Y0/)K)

[(1K0(Y0/)K)0[(1K0(Y./)K)
 

and 𝑐∗ > 0 is the only positive solution of the equation  

   YK./K.1K

[(1K0(Y0/)K)0[(1K0(Y./)K)
= 1 + Y(2.D])

20D]
.      (4) 

2.2.  Exact numerical solution using simulation 

We now describe the simulation methodology for obtaining empirically A-optimal 
designs. It should be noted that in our chosen parametrization, the variance of 𝛽=depends 
heavilyon the chosen scale of measurement of𝑥, whereas the variance of 𝛼; does not, since it 
isunit-free. Hence the A-optimal solution is not scale-invariant, and the scale can be 
chosenarbitrarily to modify the optimal design points. This is a serious weakness of the 
criterionin the context of logistic regression model. In order to circumvent the arbitrariness of 
the solutions based on the chosen scale, we fix a scale for which 𝛽 = 1. For the sake of 
brevity, we describe the process for 𝛼 = 1. The methods outlined here can be easily applied 
to any other values of the parameters by appropriate rescaling and shift. In principle, for a 
given finite sample size, it is possible to find the true A-optimal design in the full unrestricted 
design space. However, the computational time can be prohibitively expensive. So, the search 
is conducted in the space of two-point designs, lifting the restriction of point symmetry. This 
sheds light on how much improvement a restricted search can offer over the asymptotic A-
optimal design solution.  

In order to facilitate simpler and faster solutions within the restricted search space of 
two-point designs, we impose different types of additional restrictions as described below. 

i. First, we fix the symmetric design points by the doses determined from the theoretical 
solution, and then search for a weight (𝜉2) that minimizes the A-optimality criterion, 
i.e., the sum of variances of the estimates. Note that ∑𝜉C = 1 and 𝜉C 's represent the 
relative frequencies (𝑛C/𝑛)'s for a given total sample size of 𝑛. 

ii. Next, we fix the weight (𝜉2) to the theoretical solution, and then search for point-
symmetric doses (𝑥2, 𝑥") that minimize the sum of variances of the estimates. 

iii. We then conduct an exhaustive grid search in the restricted space of two-point, point 
symmetric designs. 

iv. Finally, we complete the investigation by relaxing the point symmetry restriction and 
conduct an exhaustive grid search in the space of all two-point designs. 

It should be noted that even with the additional restrictions, the performance will not be any 
worse than the theoretical A-optimal design, since the theoretical solution resides within the 
restricted search spaces. 
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2.3.  Simulation details 

Simulations for sample sizes varying from 20 to 1000 were conducted for each of the 
cases considered. For case (i) in 2.2, we used the theoretical A-optimal design points as 
obtained from equation 4 and then searched for the weight that minimizes the A-optimality 
criterion. Hence, the dosage values are 𝑥2 =

Y∗./
1

 and 𝑥" =
.Y∗./
1

, where 𝑐∗ is the theoretical 
A-optimal design point as obtained from equation 4. For each pair (𝑥2, 𝑥"), the sample 
weight 𝜉2, i.e. the proportion of the total sample allocated to 𝑥2, was varied with the 
remainder being allocated to 𝑥". For a given sample size	𝑛 and a weight 𝜉2, 𝑛2 = 	 𝜉2 ∗ 𝑛 
random Bernoulli responses were generated at dosage 𝑥2, with probability of success  𝑝2 =

2

20`ab	(.20]
∗EF
H )

. Similarly, 𝑛" = 	1 − 𝑛2random Bernoulli responses were generated at dosage 

𝑥" with probability of success 𝑝" =
2

20`ab	(.20E]
∗EF
H )

. A logistic regression model was fit to 

the resulting dataset of 𝑛	(= 𝑛2 +	𝑛"	)	Bernoulli responses at design points 𝑥2 and 𝑥". The 
corresponding estimates of  𝛼 and 𝛽	are obtained and (𝑉𝑎𝑟(𝛼;) + 	𝑉𝑎𝑟<𝛽=>) calculated by 
repeating this process 10,000 times from which an empirical estimate for the A-optimality 
criterion is obtained for a given sample size and design. The final optimal design was chosen 
to be the one that minimized this criterion. 

For case (ii) in 2.2, the weight 𝜉2 was determined from the theoretical A-optimal design 
in equation 4, and 𝑐 was allowed to vary in the design space of point-symmetric designs. The 
optimal 𝑐 and corresponding design points 𝑥2 and 𝑥"are obtained by repeating the procedure 
for case (i). For case (iii), we generalize the process by also allowing sample weight 𝜉2 to 
vary. Finally, we relax the assumption of point-symmetry and conduct a search in a much 
larger space, where the design points 𝑥2 and 𝑥"are also allowed to vary freely. The 
optimization problems are solved using a grid search, with a search space set up for c ranging 
from 0.1 to 2.0 in 0.05 increments. For 𝜉2, the range is setup to be 0.1 to 0.9 in 0.04 
increments. 

2.4.  Computational detail 

The programming is completed in R software (R-Project.org, v 3.3.1) using the 
“doParallel” package to conduct simultaneous simulations on all cores of a hyper-threaded 
quad-core computer. Efficiencies are obtained during the simulations by minimizing the 
number of calls to built-in functions. For example, instead of going through the linear process 
of generating a sample of size ‘n’, conducting a logistic regression, saving the parameter 
estimates, and then generating another dataset, all the datasets (e.g. 10,000 ×n size matrix) 
are generated in one call and the logistic regression model is applied to each dataset and 
parameters saved, resulting in 10,000 fewer calls to the “rbinom” function to generate the 
random sample. 

3.  Results 

3.1.  Performance of the theoretical A-optimal design 

As noted earlier, the Cramer-Rao bound is a lower bound for the true sum of the 
variances of the estimates. We first compare the true sum of the variances of the estimates for 
finite samples with the Cramer-Rao bound to assess how far off the asymptotic design is from 
true A-optimality. With α and β set to 1, the theoretical design points are calculated to be:	
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𝒙𝟏(low dose) = –2.482 and 𝒙𝟐	(high dose) = 0.482 and optimal weights are 0.71 and 0.29 
respectively. In Table 1, we have summarized the results. It is clear that we need a sample 
size of at least 300 to attain the bound. For sample sizes of 100 or less, the true sum of 
variances is much higher than the best case. 
 

Table 1: Comparison of theoretical versus empirical A-optimal design solutions 
 

Sample size (n) 𝒄𝑨∗  𝝃𝟏 𝐴klm = 𝑻𝒓(𝒊𝒏𝒗(𝑰))/𝒏 𝑨𝒐𝒑𝒕∗  
20 1.482 0.71 0.54 29.15 
40 1.482 0.71 0.27 4.84 
60 1.482 0.71 0.18 1.31 
80 1.482 0.71 0.14 0.57 

100 1.482 0.71 0.11 0.25 
300 1.482 0.71 0.04 0.04 
1000 1.482 0.71 0.01 0.01 

Note:𝒄𝑨∗  is the theoretical solution 𝒄∗in (4) and 𝐴klm∗  is the A-optimality criterion (i.e., sum of 
the variances of the parameter estimates) for the chosen design points. 
 

3.2.  Performance of various finite samples designs compared to theoretical A-optimal 
design 

To compare the performances, we define an improvement (or loss) in efficiency for 
each design as 

𝐸 =
𝐴wDxyYz∗ − 𝐴klm∗

𝐴klm∗ ∗ 100% 

where, 𝐴wDxyYz∗  is the minimum value of the A-optimality criterion for the restricted design 
space. In Tables 2-5, we summarize the performances of the four finite sample designs 
described in 2.2 with 𝐴klm, the A-optimality criterion for the theoretical A-optimal design. 
 

Table 2: Optimal proportion 𝒘𝟏 (𝑐 is fixed) at various sample sizes and gain in 
efficiency 
 

Sample size (n) 𝒄𝑨∗  𝝃𝒔𝒆𝒂𝒓𝒄𝒉∗  𝑨𝒔𝒆𝒂𝒓𝒄𝒉∗  E (%) 
20 1.482 0.87 25.00 14.25 
40 1.482 0.59 3.85 20.52 
60 1.482 0.59 0.62 52.78 
80 1.482 0.51 0.26 55.32 
100 1.482 0.59 0.14 43.72 
300 1.482 0.71 0.04 0.00 

1000 1.482 0.71 0.01 0.00 
Note:𝝃𝒔𝒆𝒂𝒓𝒄𝒉∗ is the weight at the left design point for which the minimum value of the A-
optimality criterion is attained, as shown in 𝐴wDxyYz∗ . 
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Table 3: Optimal design point 𝑐 (𝝃𝟏is fixed) at various sample sizes and gain in 
efficiency 
 

Sample size (n) 𝒄𝑨 𝝃𝟏 𝑨𝒔𝒆𝒂𝒓𝒄𝒉∗  E (%) 
20 1 0.71 17.88 38.68 
40 0.95 0.71 1.95 59.74 
60 0.65 0.71 0.49 62.53 
80 0.95 0.71 0.21 63.35 
100 1.25 0.71 0.14 42.11 
300 1.50 0.71 0.04 0.00 

1000 1.55 0.71 0.01 0.00 
Note:𝒄𝑨 is the right design point that minimizes the A-optimality criterion, 𝑨𝒔𝒆𝒂𝒓𝒄𝒉∗ . 

 
Table 4: A-optimal design in the restricted class of point symmetric designs 
 

Sample Size 
(n) 

𝒄𝑨 𝝃𝟏 𝑨𝒔𝒆𝒂𝒓𝒄𝒉∗  E (%) 

20 0.5 0.55 12.94 56 
40 0.7 0.55 0.68 86 
60 1.15 0.51 0.29 78 
80 1.15 0.59 0.17 70 

100 1.3 0.63 0.13 48 
300 1.45 0.67 0.04 0 
1000 1.45 0.71 0.01 0 

 
We can achieve improvements, ranging from 50% to 90%, depending on the sample size. 

 
Table 5: A-optimal design in the class of two-point designs without any additional 
restrictions 

Sample Size (n) 𝒙𝟏 𝒙𝟐 𝝃𝟏 𝑨𝒔𝒆𝒂𝒓𝒄𝒉∗  E (%) 
20 –3.0 –0.1 0.87 10.27 65 
40 –1.5 –0.1 0.59 0.60 88 
60 –1.7 0.3 0.59 0.25 81 
80 –1.8 0.6 0.67 0.16 72 

100 –1.9 0.5 0.67 0.12 50 
300 –2.3 0.5 0.67 0.04 0 
1000 –2.3 0.6 0.71 0.01 0 

 
We find further efficiency by relaxing the symmetry requirement, although the improvement 
is limited and is only significant at the smallest sample sizes 
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Figure 1: Comparison of the theoretical versus direct minimization in point symmetric 
design space 
 

In this graph, each segment relates to sample sizes 40, 60, 80 and 100. We can see that as the 
sample size increases, the distance between the theoretical solution of the A-optimality 
criterion and the solution via direct minimization decreases. 
 

4.  Discussion 

 Even though we have clearly established that the asymptotic result is inadequate for a 
sample size of 100 or less, the fundamental reason for the widespread use of asymptotic result 
in small sample designs is the lack of a theoretical solution. In fact, it is impractical to find 
the true A-optimal design numerically by searching the entire space of designs. Instead, we 
obtained the optimal solutions numerically in several restricted design spaces and assessed 
the improvements over the asymptotic solution. 

In the restricted space of all 2-point designs only (without any additional restriction), 
the optimal solution offers an improvement of up to 88%. The Cramer-Rao bound is attained 
with a sample size of only 100, whereas the theoretical solution needs approximately 300 
samples to reach the Cramer-Rao bound. Hence, even the optimal solution obtained from a 
restricted design space can offer a vast improvement over the theoretical solution. 

If we impose the additional restriction of point symmetry in the design space (weights 
unrestricted), the optimal solution offers an improvement of up to 86%. Hence, even with the 
addition of a further restriction of point symmetry in the design space, we observe a vast 
improvement over the theoretical solution. 
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To gain computational efficiency, if in addition we fix the weights of the 2-point design 
to match the weights of the theoretical solution, the optimal solution still offers an 
improvement of up to 63%. On the other hand, if we fix the symmetric design points to match 
the theoretical solution, the optimal solution offers an improvement of up to 55%. 
Nonetheless, irrespective of which design space is chosen, the improvement over the 
theoretical solution is remarkable. It is also evident from the results that there is a trade-off 
between computational efficiency and the performance.  

If higher performance is a priority, it is preferable to use the point symmetric design, as 
the performance is very close to the entire 2-point design space but with a much higher 
computational efficiency. In fact, it can be easily observed in Figure 1 that the optimal 
solution in the point-symmetric design space is quite different from the theoretical solution 
for smaller sample sizes. As expected, as sample size grows, the two solutions tend to 
converge.  

If computational efficiency is the priority, it is preferable to use the point symmetric 
design with fixed weight, as the performance is better than the point symmetric design with 
fixed weight with similar computational efficiency. 

From a practitioner perspective, it may be prohibitive to perform a grid search to obtain 
the finite-sample optimal design. In a future communication, the authors will provide a 
comprehensive table for the finite sample A-optimal designs for different values of 𝛼 and 
sample sizes. It would suffice to have the table for 𝛽 = 1 only, since 𝛽	can and will be 
rescaled to 1. We will also address other important optimality problems; for example, the 
estimation of percentiles, median effective dose, etc. 

Finally, it should be noted that in Tables 2−5, the gain inefficiency increases and then 
decreases with increased sample size. This may appear counter-intuitive as we expect a 
monotonic behavior with increased sample sizes. However, it can be explained by the fact 
that when sample size is very small, we frequently encounter singularity issues in a logistic 
regression framework. This results in a lack of efficiency in terms of A-optimality criterion. 
 

5.  Limitations and Conclusions 

There are two main limitations of the work. First, we have been unable to provide a 
theoretical solution to the finite sample problem. However, it is unclear if it is at all possible 
to obtain a theoretical solution to the problem. The second limitation is that our method does 
not provide A-optimal design for the entire unrestricted design space. However, the solution 
from the space of all 2-point designs is close to the true A-optimal solution for a relatively 
small sample size as evidenced by the A-optimality criterion values being close to the 
Cramer-Rao bound.  

The fundamental conclusion from this article is that the asymptotic theoretical A-
optimal solution for a logistic dose response performs poorly in minimizing the sum of 
variances of the parameters for small finite samples. To our knowledge, this is the first article 
studying the finite sample characteristics of A-optimality in a dose response model. This 
finding in of itself is quite significant as it is customary to use the asymptotic theoretical 
solution in the finite sample case. 
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