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Abstract 

The stock markets all over the world have been experiencing fluctuations. These 
fluctuations are due to some political and administrative decisions. For example, in Tanzania, 
structural transformations in the economic sectors have been happening time after time, which 
resulted in fluctuations in the stock market.  In this paper, the stock market's volatility was 
modelled using Markov-Switching GARCH (MS GARCH) and the mixture of GARCH type 
models. The Bayesian Information Criterion (BIC) was employed to get the best GARCH type 
models with respective conditional distributions. The GARCH (1, 1) with skewed normal 
distribution, EGARCH (1, 1) with student’s t-distribution and Glosten, Jagannathan and 
Runkle-GARCH (GJR GARCH) (1, 1) with generalized error distribution selected for further 
analysis. The study found that the three-state heterogeneous regime MS GARCH and Mixture 
of the selected GARCH type models provide the best fit and the dynamic feedback between 
components for the DSEI All-share stock data. The Bayesian Markov Chain Monte Carlo 
(MCMC) method resulted in an acceptance rate of 28.7%, which lies between 20% and 50% 
as the requirement of the rule of thumb. The different sample sizes employed on the Bayesian 
MCMC technique have also proven the fitted model's powerfulness since all acceptance 
sampler rate falls within the range. Furthermore, the forecasting results for the next 30, 60, 90, 
and 120 days have shown a continuous fluctuation in the DSEI All-share Stock Index. 

Key words: MS GARCH; GARCH; GJR GARCH; Bayesian MCMC; DES. 

1. Introduction 
 
The global economy has been experiencing fluctuations in response to policy directives. 

Stock Market performance is also affected by the economic and other related instabilities. 
Stochastic models play essential roles in the forecasting stock market volatility. The famous 
symmetric models such as Autoregressive Heteroscedasticity (ARCH) (Engle, 1982) and 
Generalized ARCH (Bollerslev, 1986); and asymmetric models namely Exponential GARCH 
(Nelson, 1991), Threshold GARCH (Glosten et al., 1993), GARCH-M (Hamilton, 1994) and  
Fractionally Integrated Generalized Autoregressive Conditional Heteroscedastic (FIGARCH) 
(Baillie et al.,1996) were extended from Generalized ARCH model to capture asymmetric 
characteristics in the stock market. The complexity and uncertainty of the financial time series 
have resulted in the continuous modification of the GARCH-type model. To handle volatility 
prediction in the stock market. The best way forward to the question is to allow the GARCH 
model parameters to vary over time by considering the regime-switching. A single regime is 
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inflexible; thus, it’s crucial to incorporate regime-switching. The Markov-Switching GARCH 
(MS GARCH) model is a new approach introduced in more than one decade. It enables a quick 
adaption to the unconditional volatility variations (Oseifua and Korkpoe, 2018). 

 
This paper will be the first in incorporating the heterogeneous regimes-switching model 

to the DSEI All-share Index log-returns. The annotated article is distributed into four major 
sections. The first section covers the introduction; the second section will cover the literature 
reviews on modelling volatility based on Markov-Switching GARCH models. Part three will 
formally lay out the materials and methods employed in the study. Section four covers 
empirical analysis and discussion. Finally, section five concludes the paper. 

 
2. Related Work 

The MS GARCH models' history goes back to introducing the mixed normal distribution 
that was combined with the GARCH-type structure (MN-GARCH) that captures conditional 
variance and the dynamic feedback between the components(Haas et al., 2004). Recent studies 
have shown that volatility predictions using GARCH type models failed to capture the stock 
market volatility's actual variation due to the regime changes and volatility dynamics (Korkpoe 
and Kawor, 2018). The MS GARCH models are flexible alternatives to GARCH models with 
fixed parameters. Bayesian inference estimate based on data augmentation has solved the path 
dependence problem. Furthermore, the model is useful for capturing changes in the dynamics 
and volatilities in the financial market (Bauwens et al., 2014). Based on this perspective, the 
effective and efficient prediction of the market volatility has been crucial for smooth economic 
growth. 

Moreover, the era of fast-growing technology and computer applications resulted in gaps 
in the modelling and forecasting volatility. The MS GARCH models with regime-switching 
have shown the best forecasting performances based on the management perspective compared 
to forecasting based on a single regime (Ardia et al., 2016). The MS GARCH model provides 
a better evaluation of volatility by imposing the higher volatility component in each state, 
which results in the dynamic structure regime that reacts to the various species of shocks 
(Alemohammad et al., 2016). The MS GARCH with the two-regime has exhibited the best in-
sample performance with an inverted leverage effect in low and high volatility regimes and 
their volatility dynamics (Ardia et al., 2019). The regime-switching models revealed a better 
volatility forecast than the constant-variance or a single-regime GARCH (Bibi and Ghezal, 
2018). Thus, the earlier researchers have tried to model volatility without defining clearly the 
process of obtaining conditional distributions. The study involves selecting the conditional 
distribution and applying the three-state heterogeneous MS GARCH and the Mixture of 
GARCH-type models to the stock data.   

3. Materials and Methods 

3.1. The Markov-switching GARCH models 
 
The method allows the regime-switching in the conditional variance process. If 

is the information set denoted by  for the observation up to . The 
general Markov Switching specification is given by 

 

{ }1 1 , 0t tr i- -I º > 1t-I 1t -

\ ( , ) ~ (0, , ) (1)1 ,r s k D ht t t t k kx= I -
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where refers to a continuous distribution with mean zero, is the time-varying 
variance and   is the additional shape parameter and  is the number of regimes. The 
Stochastic variable  defined under the discrete space  characterizes the Markov-
Switching GARCH Models. 

3.1.1. Markov-switching ARCH model 

The ARCH model (Engle, 1982) that incorporates  the regime can be written as:- 

 

The  is required for the positivity while in each regime for the covariance-
stationarity . 

3.1.2.  Markov-switching GARCH model 

The GARCH model (Bollerslev, 1986) that incorporates the  regimes Markov-
Switching is given by 

 

The  is required for the positivity while in each regime for the covariance-
stationarity . 

3.1.3.  Markov-switching EGARCH model 

The Exponential GARCH Model (Nelson, 1991) that incorporates the  regimes is given 
by 

The model considers the leverage effects, where the past negative values influence conditional 
volatility compared to the previous positive values.  The covariance stationary in each regime 
to be achieved requires . 

3.1.4.  Markov-switching GJR GARCH model 

The GJR GARCH model (Glosten et al., 1993) captures as well the asymmetric 
conditional volatility. The GJR GARCH model that incorporates the  regimes Markov-
Switching is expressed by 

,(0, , )t k kD h x ,t kh

kx k

ts { }1,2, ...,K

k

2 ; 1, 2, 3, ..., (2)1, 0, 1,h r k Ktk t k ka a= + =-

0, 1,, , 0k k ka a b ³

1, 1ka <

k

2 ; 1, 2, 3, ..., (3)1, 0, 1, , 1h r h k Ktk t k k k k ta a b= + + =- -

0, 1,, , 0k k ka a b ³

1, 1k ka b+ <

k

( )( ) ln( ) ;, 0, 1, , 1 , 1 2, , 1 , 1

1, 2, 3, ..., (4)

h E hk t k k k t k t k k t k k t

k K

a a h h a h b= + - + +- - - -

=

1kb <

k
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To ensure positivity,  and , whereas for the covariance stationarity 

 

3.1.5. Markov-switching TGARCH model 

The Threshold GARCH model of Zakoian (1994) included conditional volatility as the 
dependent variable instead of the conditional variance. The model in (7) incorporates Markov-
Switching. 

 

To ensure positivity, ;  and , while for the covariance stationarity

 

3.2. Conditional distributions 
 

The specification of the model to be completed requires conditional distributions. The 
commonly used conditional distributions are Normal distribution, Student’s t-distribution and 
the generalized error distribution. 

Normal distribution: The probability distribution function for the normal distribution is given 
by 

 

Student’s t distribution: The probability distribution function for the Student’s t-distribution 
is given by 

 

The  is the Gamma function, and  for the existence of the second moment. 

Generalized error distribution:  The probability distribution function for the generalized 
error distribution (GED) is given by 

{ }( ) 20 ; 1, 2, 3, ..., (5)1 1, 0, 1, 2, , 1h r r h k Kt tk t k k k k k ta a a t b= + + < + =- - -

0, 1,, 0k ka a > 2, , 0k ka b ³

{ }2 0 1 (6)1, 2, , ,Ek k k t k t ka a h t h b+ < + <é ù
ë û

{ } { }( )1/2 1/20 0 ; 1, 2, 3, ..., (7)1 1 10, 1, 2,, , 1
h r r r h k Kt t tk k k kk t k t

a a t a t bº + ³ - < + =- - - -

0, 1,, 0k ka a > 2, 0ka > 0kb ³

( ) { } { }2 2 2 2 22 0 0 1 (8)1, 2, , , 1, , ,1, 2,
E Ek k k k k t k t k k t k tk k

a b b a a h t h a a h t h+ - + < - - < <æ öé ù é ùç ÷ë û ë ûè ø

1 21 2( ) , (9)
2

f r eN
h

h
p

-
º Î !

( ) ( )

11
2 22( ; ) 1 , (10)21 2

vv

f VS v vv
hh h

p

æ ö
ç ÷
ç ÷
ç ÷
è ø

æ ö
ç ÷ æ ö
è ø ç ÷

ç ÷æ ö
è øç ÷

è ø

++ -G
º + Î

-+ G
!

( )G • 2v>
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Skewed distributions: Recently, the unimodal standardized distributions introduced skewness 
in estimating the EGARCH, GJR GARCH, and TGARCH models (Trottier and Ardia, 2016). 

3.3. Model estimation 

The estimation of the MS GARCH and the Mixture of the GARCH type models can 
either based on the Bayesian Markov Monte Carlo (MCMC) or Maximum Likelihood (ML) 
methods. The two methods require evaluation under the maximum likelihood function. 

3.3.1. The maximum likelihood method 

Let  be the vector of the model parameters whose likelihood function 

is given by 

 

where refers to the density function of  given the past observations, is the 

information set and  the model parameters. 

The MS GARCH model for the conditional density of  is given by 

 

where  refers to the filter probability of state  and time . 

Moreover, for the Mixture of the GARCH type models, the conditional density function 
for  becomes 

 

Combining the two, the conditional density of the  in-state or component  given 
 and  is denoted by . 

 
 

( )

( )
( )

1 1/2
1/2

( ; ) , , 0 (11)1/1 4 3/1
2 1/
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v v
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æ ö
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è ø
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3.3.2. Bayesian Markov Monte Carlo (MCMC) method 

The MCMC estimation requires a combination of the likelihood with a truncated prior 
 to building kernel of the posterior distribution . The unknown form of posterior 

distribution should be approximated based on the simulation techniques. The random-walk 
Metropolis sampler generates draws of the posterior distribution (Vihola, 2012). 

  Furthermore, for the Bayesian estimation, the likelihood function is combined with a 
prior  in building kernel of the posterior distribution . The build prior based on 
the independent diffuse priors is done as follows 

where  and  denotes the covariance stationarity and the positivity conditions for the 

regime  , respectively. 

3.4. Data specification 

The website hosted at https://www.investing.com/indices/tanzania-all-share is the source 
of the data for this investigation. The data contain information such as stock day open, low, high 
and close prices. The dataset ranged from 15/08/2009 to 20/1/2020 with a total of 2067 
observations. Tanzania DSEI All-share Index has the market capitalization-weighted index with 
1000 base reference. The index includes all stocks listed at the Dar Es Salaam Stock Exchange 
categorized into Commercial Banks, Cement Companies, Tanzania Breweries companies, 
Tanzania Cigarette Company and Liquefied Natural Gas and Oil companies.  
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4. Empirical Results and Discussions 

4.1. Descriptive statistics for the log-returns 

The summary statistics reported in Table 1 below shows that the mean log-return is the 
positive value of 0.0004 and a standard deviation of 0.0175. The most significant price drop is 
–32.09%, and the largest price increase is 32.81%. Data exhibit a positive skewness and a very 
large excess kurtosis. The Jarque-Bera test for normality has shown that the data is not normally 
distributed (p < 0.05). The suitable distributions for this kind of data are the skewed conditional 
distributions. 

Table 1: Summary statistics 

Statistic Mean Min Max SD Skewness Kurtosis JB JB(p-value) 

Value 0.0004 –0.321 0.3281 0.0175 0.3847 168.563 3647640 2.20E-16 

The computations of the log-returns for the DSEI All-share closing price is given by 

, where  is the daily log-return, while    are the stock prices 

for time respectively.   

4.2. Time series of the DSEI all-share stock index 

The sharp decline in the DSEI All-share stock Index at different periods was a result of 
various factors. The drop observed almost every year since DSEI All-share Stock Market 
started its operation in August 2011. The Central Bank of Tanzania (BOT) merged some banks 
because of bankruptcy in 2018/2019. Moreover, the closure and liquidation non-performing 
banks aimed at stabilizing the banking system. The current President of the United Republic 
of Tanzania Hon. Dr John Pombe Magufuli has tried to support the economy; nevertheless, 
some companies failed to survive since he came into power in October 2015. The log-returns 
exhibited a continuous and frequent period of high and low volatility since the stock market 
started operation in August 2011. Figure 1 below shows a time series plot for DSEI All-share 
Stock Index. 

log log 1r P Pt t t= - - tr 1t tP and P-

1t and t -
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Figure 1: Time series plot of the DSEI series 

The plots of the DSEI All-share Index log-returns have also revealed a presence of 
volatility clustering. The prolonged stock instability observed between 2013 and 2018. The 
fluctuation has resulted in the collapse and closure of different companies and merging of the 
key players in the DSEI All-share Stock Market. Figure 2 below shows the plotting of the log-
returns series for the DSEI All-share Index. 

Figure 2: Plot of the DSEI log-return series 

The Augmented Dickey-Fuller test confirmed that the return series is stationary since the 
p-value is less than 5% (p-value = 0.01). Moreover, the GARCH model building has been done 
by first confirming the (G) ARCH effects in the stock data. The ARCH-LM test gave a
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 with 10 degrees of freedom and p-value less than 5%. Therefore, we conclude 
the presence of (G) ARCH in the log-return series. 

4.3. Model estimation and selection 

This paper extended the study by Haas (2004) with the Markov-Switching GARCH 
(MSGARCH) and mixture GARCH type model, incorporating three heterogeneous state 
regimes and conditional distributions. The selected GARCH type models based on the 
minimum Bayesian Information Criterion (BIC) are; GARCH (1, 1) with the skewed student-
t-distribution (sstd), EGARCH (1, 1) with the skewed generalized distribution (sged) and GJR 
GARCH (1, 1) with the skewed generalized distribution (sged). The study by (Catania et al., 
2018) has come up with regimes without telling where they made the GARCH-type models 
selection with the conditional distributions. Still, in this paper, we made some initial effort 
before proceeding with model estimation. Table 2 below shows the result of the model 
selection based on the BIC.   

Table 2: BIC values for conditional distributions 

Model GARCH (1,1) EGARCH (1,1) GJR GARCH (1,1) 

Distribution snorm sstd sged snorm sstd sged snorm sstd sged 

BIC –6.3832 –7.8578 –4.1269 –6.974 –7.9305 –8.2764 –6.3403 –7.8551 –8.097 

 
4.3.1. Model estimation based on maximum likelihood (ML) method 

The estimated parameters depict the difference in the volatility process from one regime 
to another. The difference in negative past reactions levels of unconditional volatility of

,  and   for the three-state heterogeneous regimes. The 

volatility persistence for the model reports ,  

and  in three-states, respectively. The result implies that the first 

regime characterized by low unconditional volatility, a strong volatility reaction to the past 
negative log-returns, and the low volatility process persistence. The second and third regimes 
are characterized by high unconditional volatility, weak volatility reaction to the past negative 
log-returns, and high volatility.  The market participants can categorize regime one as “tranquil 
market condition” compared to regimes two and three, which has the “turbulent market 
condition”. Table 3 shows the estimated model summary based on the ML technique. 

  

2  1097.3c =

( ) 0.002,1a » ( ) 0.01482,2a » - ( ) 0.72133,2a »

( ) ( )
1 0.90411,1 2,12

a a b+ + » ( ) ( ) 2
1 1.08661,2 2,22

a a b+ + »

( ) ( ) 3
1 0.99901,3 2,32

a a b+ + »
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Table 3: Estimated model summary for ML technique 

K Parameter Estimate t value P-value 

1  0.0000 1.0000E+8 <1e-16 
 0.1092 5.43394E+21 <1e-16 

  0.7948 6.91272E+22 <1e-16 
  3.7560 1.26907E+22 <1e-16 
 0.9784 6.05698E+21 <1e-16 

2  –0.4566 –3.67276E+20 <1e-16 
 0.1421 3.03187E+20 <1e-16 
 –0.0148 –9.8235E+19 <1e-16 

 0.9519 3.19745E+22 <1e-16 
 1.2262 3.75161E+23 <1e-16 
 0.9855 1.41481E+22 <1e-16 

3  0.000 3.05331E+21 <1e-16 
 0.2527 2.74911E+22 <1e-16 
 0.7213 3.26518E+24 <1e-16 

 0.3856 3.64538E+26 <1e-16 
 0.7000 7.4042E+36 <1e-16 
 0.9998 1.0202E+8 <1e-16 

The stable probabilities of being in the three states are about 32.15%, 63.97%, and 3.88% 
respectively. The results indicate that the likelihood of being in the three states differs. The 
unconditional probabilities reports; 4.57%, 40.41% and 20.97 for state 1, state 2, and state 3 
respectively. Thus, this implies a high unconditional probability in state two compared to the 
rest of the states. Moreover, all the three states' smooth probabilities are closer to one; this 
evidence a sharp increase in the volatility process. Table 4 below shows the stable probabilities, 
unconditional volatility, and smooth probabilities for the three states. 

Table 4: Results for the three states probabilities and unconditional volatility 

State 1 2 3 

Stable Probabilities 0.3215 0.6397 0.0388 

Unconditional Volatility 0.0457 0.4041 0.2097 

Smooth Probability 0.9675 0.9958 0.9994 

 
  

( )0,1a

( )1,1a

1b
_1nu

_1xi

( )0,2a

( )1,2a

( )2,2a

2b
_2nu

_2xi

( )0,3a

( )1,3a

( )2,3a

3b
_3nu

_3xi



2022] GARCH TYPE MODELS FOR ACCURACY FORECASTING  

 
 

11 

4.3.2. Model estimation based on Bayesian Markov Chain Monte Carlo (MCMC) 
method 

The estimation model based on Maximum likelihood seems to be not more powerful than 
the Bayesian MCMC method due to a stuck in the local maximum which may result in 
unreliable estimates (Billio and Cavicchioli, 2017; Das and Yoo, 2004). The adaptive MCMC 
estimation always based on the posterior distribution. The MCMC sampler requires 
decomposition and the Eigenvalue computations, therefore, it largely depends on the Linear 
Algebra library (Vihola, 2012). The proposed three-state heterogeneous regimes MS GARCH 
and the Mixture of GARCH type models such as GARCH, EGARCH and GJR GARCH model 
with skewed normal, Student’s t and generalized error conditional distributions respectively, 
has used 10000 iterations, 5000 burn-in phase and ten thinning factors in the estimation of the 
Bayesian Markov Monte Carlo (MCMC) estimation. The acceptance rate of 28.5% was 
obtained in the model estimation. The acceptance rate lied within 20%-50%  'rule of thumb' as 
recommended (Chib and Greenberg, 1995; Roberts and Rosenthal, 2009). 

The number of independent and identically distributed sample draws from the posterior 
distribution is required for the relative numerical efficiency (RNE). This determines how 
quickly the convergence of the algorithm occurs. The checking of the MCMC sampling scheme 
for the output quality is necessary (Geweke, 1992; Korkpoe and Kawor, 2018). In the proposed 
model, we found the values of RNE relatively low (<1), which are considered better for the 
fast convergence of the MCMC chains. Table 5 below shows the summary of parameter 
estimated for the three states heterogeneous regimes for the MS GARCH and Mixture of 
GARCH type models using the Bayesian MCMC method. 

The increase of the number of the MCMC draws say 15000, 20000, 30000, 50000, 
100000, 500000 and 1000000 for the estimation three state heterogeneous regimes MS 
GARCH and the Mixture of GARCH type models resulted into the same range of the 
acceptance rate of (20-50) %. The acceptance rate reveals the consistency of the estimated 
model. The best model is usually based on the minimum Deviance Information Criterion 
(Spiegelhalter et al., 2002). Moreover, at least 4000 burn-in phase is recommended for the 
model estimation (Raftery and Lewis, 1992). The thin of every tenth minimizes the posterior 
draws autocorrelations. The high autocorrelations can result in bias and Monte Carlo standard 
errors. The number of researchers has raised concern on the appropriate number of thinning, 
but the thinning number of 10L sounds good (Link and Eaton, 2012; Owen, 2017). Table 6 
shows the estimated model summary for the different MCMC sample draws.  
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Table 5: Estimated model summary for the Bayesian MCMC technique 

K Parameter Mean SD SE TSSE RNE 

1 

 0.3509 0.0325 0.001 0.0086 0.0142 

 0.5768 0.024 0.0008 0.0065 0.0138 
 2.2511 0.0431 0.0014 0.0153 0.0079 
 0.992 0.0325 0.001 0.003 0.1180 

2 

 –0.0351 0.0427 0.0013 0.0223 0.0036 
 0.4177 0.0391 0.0012 0.0056 0.0496 
 –0.0983 0.0201 0.0006 0.0019 0.1128 

 0.9955 0.0042 0.0001 0.0024 0.0031 
 0.7337 0.0273 0.0009 0.0174 0.0025 
 0.9999 0.0005 0.0000 0.0000 0.3027 

3 

 0.1737 0.0461 0.0015 0.0260 0.0031 
 0.0021 0.0018 0.0001 0.0008 0.0048 

 0.7816 0.0194 0.0006 0.0100 0.0038 
 0.7000 0.0000 0.0000 0.0000 0.0033 
 14.1021 6.3244 0.200 3.9098 0.0026 

 

Table 6: Estimated model summary for different MCMC sample draws 

nithin nburn nmcmc Acceptance Rate DIC 

10 5000 15000 27.6% –22609.639 

10 5000 20000 28.3% –10986.542 

10 5000 25000 27.5% –23339.681 

10 5000 30000 28.0% –21846.993 

10 5000 50000 27.4% –23881.170 

10 5000 100000 27.2% –22595.525 

10 5000 500000 26.1% –19464.122 

10 5000 1000000 25.7% –11562.360 

 
  

( )1,1a

1b

_1nu

_1xi

( )0,2a

( )1,2a

( )2,2a

2b

_2nu

_2xi

( )1,3a

( )2,3a

3b

_3nu

_3xi



2022] GARCH TYPE MODELS FOR ACCURACY FORECASTING  

 
 

13 

4.3.3. Forecasting of the conditional volatility based on Bayesian MCMC estimated 
model 

The prediction based on 30, 60, 90 and 120 days ahead has shown fluctuations in the 
DSEI All-share Index log-returns. The study identified the number of future periods of high 
conditional volatility; March for the 60 days forecasts in (b), April for the 90 days forecasts in 
(c), and May for the 120 days forecasts in (d) for four months in the year 2020.  The results 
still show instability in the stock market for the next four months. Figure 3 below shows stock 
volatility for the next four months.  

 

Figure 3: Conditional volatility forecasting 
 

4. Conclusion 

The stock market volatility will continue to be topical in finance since traders and 
investors observe historical data trends for future investments. The insertion of the regime 
changes become indispensable to model volatility in the stock market. The changing economic 
condition has caused persistent fluctuations in the stock market across regimes. The study acts 
as a benchmark for the countries to adopt the best trading policies and strategies to buffer 
downside. The Central Bank of Tanzania (BOT) reported a decline of shares, trading, market 
capitalization and underperformance of the Dar Es Salaam Stock Exchange (BOT, 2018). 

Moreover, stockbrokers like the five social security funds were joined into Public Service 
Social Security Fund (PSSSF) that serves public-sector employees and the National Social 
Security Fund (NSSF) for the private-sector employees and self-employed persons in 
2018/2019. The situation has disturbed the performance of the stock market. Eventually, the 

(a) 

(d) (c) 

(b) 
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country’s business environment's control and regulation become inevitable for the stock 
markets' growth. 
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Abstract
In this study we have extended longitudinal generalized variance functions (LGVF)

for grouped variables variance estimation to individual variables variance estimation. Ef-
fect of survey design and change of population over time are incorporated into modeling
to estimate variance of a survey statistic. Six such LGVF models are studied and results
produced span over 15 years of Current Population Survey’s (CPS) March Supplement data
from socio-economic category. In addition to this, variables grouped together are also stud-
ied. 18 binary variables are considered. Simulation shows that individual variable variance
estimation outperforms grouped variable variance estimation.

Key words : Longitudinal generalized variance function; Adjusted design effect model; Indi-
vidual and grouped variable variance estimation.

MSC: 62D05

1. Introduction

Cost and labor involved in computing the estimated variances for thousands of esti-
mates every year could be saved if computation could be simplified using generalized variance
functions (GVF). This paper extends the results of Zhang, Cheng and Lu (2019) to individ-
ual variables variance estimation for a large-scale, complex survey data. Individual variables
variance estimation will help to narrow the focus to only the variables of interest in survey
data whereas grouped estimation brings in unwanted variability into the model and makes it
harder to estimate individual parameters with high accuracy. Literature review in the area
shows that the relative variance (relvar) of a survey statistic is a function of the population
total. This idea is supported by Johnson and King (1987), Valliant (1987) and McIllece
(2016). As for the GVF, Wolter (2007) discusses the application of GVF to estimate vari-
ance of a survey statistic. This method of variance estimation has been in use for Current
Population Survey (CPS) data by US Census Bureau as well. Sampling error of GVF esti-
mators for Current Employment Survey (CES) is evaluated by Cho, Eltinge, Gershunskaya
and Huff (2002).
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We use the March Supplement CPS data for the state of New Mexico (NM) from the
socio-economic category from year 2003 to 2017. Figure 1 shows the sampling scheme used
in this study. New Mexico households from same neighborhood in the data are divided into
Ultimate Sampling Units (USUs) where each USU contains four households. We believe
households in the same neighborhood have similar economic statuses. 100 USUs are ran-
domly picked from each year’s data. Four individuals from each USU are then sampled using
probability proportional to size (PPS) method. The simulation process is explained in detail
in section 4. Unemployment compensation, education benefits and disability payments are
three of the eighteen variables studied – all the variables are shown in table 1 on page 23.

Figure 1: Sampling scheme employed in this study. USUs are black rectangles
within the population. Oval shows individuals sampled using PPS method.

In the next section, section 2, longitudinal generalized variance functions (LGVFs) are
briefly explained. Longitudinal adjusted design effect model (LADE) is discussed in section
3. Simulation process is discussed in section 4. Section 5, the final section, provides a
succinct conclusion.

2. Longitudinal Generalized Variance Functions

We begin this section by providing a brief description of GVFs. Parameter of interest
in this study is the proportion of people who benefit from the respective categories in table
1 on page 23. Let p̂ be the estimated proportion of people benefiting for each such category.
Let T̂ be the estimated total number of people in the state of NM. T is estimated by
Horvitz − Thompson estimator

T̂t =
∑
h

∑
i∈Sth

[
MthMthiȳthi
nthMthi

]
, (1)

where Mth is the total number of people sampled by CPS in stratum h for year t, technically,
it is the total number of people sampled by CPS in NM for year t. For an instance, M2010h =
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2108, with a maximum number of people sampled from a single, unique household (“h seq”)
being 20. Mthi is the number of secondary sampling units (SSU) in ith primary sampling
unit (PSU) for year t within stratum h. Mthi equals 4 for our study as shown in Figure
1. nth is the number of PSUs picked in the sample within stratum h, this quantity equals
100 in this study. ȳthi is the average of responses for year t and ith PSU within stratum
h. T̂thi = Mthiȳthi is the estimated total number of responses for year t and ith PSU within
stratum h.

From the formulation in Zhang et al. (2019), var(T̂ ) can be estimated by using GVF

v̂ar(T̂ ) = âT̂ 2 + b̂T̂ , (2)

which after incorporating the time or the population effect gives us the regression model as
in Zhang et al. (2019)

relvar(p̂) = υ̂tv = â+ b̂ · et
T̂

(3)

where

relvar(p̂) =
Var(p̂)

[E(p̂)]2
, (4)

â and b̂ are estimated linear regression coefficients.

et = Mt/M̄ takes into account the effect of change of population in NM for year t,
where Mt is the population total for the state of NM reported by U.S Census Bureau for
year t, M̄ is the average population total over 15 years, υ̂tv is the response variable, and et/T̂
forms the predictor variable. The need to incorporate the population effect can be explained
using Figure 2 where the change in population of NM over 2003-2018 is shown. Equation
(3) is a LGVF model. This model spans over multiple years of data. This is a generalization
of GVFs over time. Interested reader can refer to Zhang et al. (2019) for more detailed
description of this model.

To evaluate v̂ar(T̂ ) in equation (2), we have made use of the estimator mentioned by
Royall (1986),

v̂ar(T̂t) =
∑
h

nth(nth − 1)−1
∑
Sth

γ2
thir

2
thi, (5)

where

γthi = Mth(nthMthi)
−1 and rthi = T̂thi −

(∑
Sth

γthj · T̂thj/Mth

)
Mthi.

3. Longitudinal Adjusted Design Effect Model

In this section, we discuss incorporating design effects in LGVFs. We introduce the
design effect dtv and the adjusted design effect ftv = dtv/d̄t. d̄t is the average of design effects
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Figure 2: NM’s population change over time.

for year t. V = 18 is the number of variables considered in the model and τ = 15 is the
number of years over which the model is spanned. θ = (a, b)′ be the LGVF coefficients which
need to be estimated. et = Mt/M̄ follows from previous section. Hence, for grouped variable
case, we have (V × τ) observations for regression to estimate a and b, whereas for individual
variables case we have (1× τ) observations to estimate a and b. Let atv = a = −d̄v/m, and
btv = b = M̄d̄v/m be the coefficients, from equation (2) we have

v̂ar(T̂tv) =
−d̄t
m

dtv
d̄t

T̂ 2
tv +

M̄d̄t
m

Mt

M̄

dtv
d̄t

T̂tv

= atvftvT̂
2
tv + btvetftvT̂tv .

The relative variance of p̂ could be estimated by υtv for t = 1, 2, · · · , 15 and v = 1, 2, · · · , 18.
We get

υ∗
tv =

υtv
ftv

= atv + btv ·
et

T̂tv

. (6)

Equation (6), the LADE model, is applied for grouped variable variance estimation, and
for individual variables estimation with v = 1. Properties of the estimators are reported in
Zhang et al. (2019).

4. Results

We present the results for individual variables variance estimation and grouped vari-
ables variance estimation using LGVF and LADE models in this section.
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4.1. Simulation

The data from 2003-2017 is considered to be the population for this study. Within each
year, the households are assigned a USU after arranging the households in the increasing
order of “h seq”. Then, 4 households are combined in that order to form a USU, 4 individuals
are sampled from each USU. For years 2005, 2011 and 2014, one USU is dropped from each
year because the USU contained 3 individuals. Table 2 on page 23 shows the number of
USUs for each year. Following steps explain the simulation procedure in detail:

1. 100 USUs are picked based on PPS of the USUs which is about 50% sampling rate for
each USU. 500 such random samples of size 100 USUs are picked for each year.

2. Estimates for relative variance, υtv = v̂ar(T̂tv)/T̂tv are calculated using equations (1)
and (5). Population totals are also calculated for year t. The population adjustment
et is recorded as well. NM population totals (Mt) for years 2010-2017 are obtained
from the US Census Bureau factfinder.census.gov (2020) and for years 2003-2009 from
countryeconomy.com (2020). Mt is shown in Table 2 on page 23.

3. Ordinary least squares (OLS) regression model: LGVF1 model

υtv = atv + btv ·
et

T̂tv

(7)

is applied and fits along with the coefficient estimates are recorded. Weighted least
squares (WLS) regression – LGVF2 is applied with weights = 1/υtv, and LGVF3 with
weights estimated from regressing residuals from OLS (LGVF1) onto et/T̂tv is also
applied.

4. The Adjusted design effect ftv = dtv/d̄t is recorded and υ∗
tv = υtv/ftv is calculated.

5. OLS regression: LADE1 model

υ∗
tv = atv + btv ·

et

T̂tv

(8)

is applied and fits along with the estimated coefficients are recorded. WLS regression
– LADE2 is applied with weights = 1/υ∗

tv, and LADE3 with weights estimated from
regressing residuals from OLS (LADE1) onto et/T̂tv is also applied.

6. All the LGVF and LADE models are applied for grouped variables with V × τ =
18× 15 = 270 observations, and also for individual variables with 1× τ = 1× 15 = 15
observations.

7. This process is repeated for all the R = 500 samples picked in step (1).

8. Results along with the formulas used to calculate mean squared error (MSE), mean
squared prediction error (MSPE), and Bias2 are shown in Table 3 - 7 on page 24 - 30
in appendix.
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5. Conclusion

Implications of obtained results are explained in this section. First, from grouped
variable analysis – Table 3-5 on page 24-26, LADE models beat their LGVF counterparts
when sum of MSEs, MSPEs or Bias2 is considered but not necessarily for each variable, for
example in Table 3 and 4, MSE and MSPE for variable 1 LADE1 model is higher than that
of LGVF1 model. Similar conclusion can be drawn from Figure 3-4.

Second, from individual variable analysis – Table 6-7, LADE models outperform their
LGVF counterparts when sum of MSEs or Bias2 is considered and also for each variable
when MSE is considered. Similar conclusion can be drawn from Figure 5.

Lastly, from overall analysis, LADE3 model – WLS regression where weights are es-
timated by using the residuals from OLS (LADE1), looks most promising out of all the
models.

All in all, this paper has extended the results found in literature to individual variable
variance estimation and proven that this application produces smaller error than the existing
grouped variables variance estimation for longitudinal survey data. The idea of applying
LGVFs for variance estimation in survey data is strengthened from the results obtained in
this paper.
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APPENDIX: Tables

Table 1: Eighteen variables studied – binary questions

SL. NO. Variable SL. NO. Variable

1 Own business or self-employment 10 Survivors’ payments
2 Unemployment compensation 11 Retirement payments
3 Social security benefits 12 Interest payments
4 Veterans’ benefits 13 Dividend payments
5 Disability payments 14 Rental payments
6 Farm self-employment 15 Education benefits
7 Supplemental security benefits 16 Child support payments
8 Worker’s compensation 17 Financial assistance payments
9 Public assistance/welfare benets 18 Other income payments

Table 2: Number of USUs for each year. One USU is dropped from 2005, 2011,
and 2014.

Year USUs Population total = Mt

2003 253 1877574
2004 247 1903808
2005 232 1932274
2006 214 1962137
2007 220 1990070
2008 205 2010662
2009 208 2036802
2010 193 2064588
2011 184 2080395
2012 186 2087549
2013 184 2092792
2014 192 2090342
2015 318 2090211
2016 384 2092789
2017 371 2093395
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In the following tables, second-last row is the sum, and last row is the mean of the
respective column. r = {1, 2, · · · , R = 500}, implies the number of iterations.
(1) Simulation-Grouped variables results:

Table 3: Grouped-MSE

Grouped-MSE

SL. NO. LGVF1 LGVF2 LGVF3 LADE1 LADE2 LADE3

1 0.00979473 0.00070947 0.00260306 0.01186915 0.00016289 0.00169219
2 0.02570878 0.06140138 0.037641 0.01771583 0.02574147 0.01973988
3 0.00512692 0.01052768 0.00302777 0.00677246 0.00292996 0.00213194
4 0.10071434 0.33833742 0.33316984 0.07326416 0.22924619 0.19022522
5 0.01381009 0.00008473 0.00389565 0.01558064 0.00001434 0.00228918
6 0.00340038 0.00601356 0.00163116 0.0040311 0.00125022 0.00092687
7 0.01309319 0.06647825 0.05722773 0.01129848 0.03332084 0.02568329
8 0.00646665 0.0149201 0.00374728 0.00466677 0.00234624 0.00162239
9 0.03551605 0.09590948 0.07396578 0.0310229 0.05307642 0.04046547
10 0.05594735 0.23740761 0.20623049 0.043161 0.16183356 0.11629299
11 0.0099287 0.0006615 0.00267133 0.0102696 0.0001471 0.00144438
12 0.01524628 0.00002822 0.00436762 0.02292429 0.00000854 0.00346307
13 0.01025905 0.00056497 0.00265315 0.01552496 0.00011266 0.00227115
14 0.00619912 0.00223324 0.00166028 0.00774532 0.00049188 0.0011493
15 0.00743651 0.00149724 0.00182384 0.01175148 0.00030338 0.00169697
16 0.00415483 0.00408964 0.00115219 0.00819017 0.00076848 0.00127823
17 0.06939598 0.40039895 0.45240352 0.05689342 0.29200676 0.24633193
18 0.10164471 0.53987857 0.61302082 0.07296997 0.39209662 0.32619876

∑18
v=1

{∑15
t=1

{∑500
r=1(υ̂

(r)
tv −υ

(r)
tv )2

R

}
15

}
0.49384366 1.78114201 1.80289251 0.4256517 1.19585755 0.98490321

∑18
v=1

{∑15
t=1

{∑500
r=1(υ̂

(r)
tv −υ

(r)
tv )2

R

}
15

}
18

0.02743576 0.09895233 0.1001607 0.02364732 0.06643653 0.05471685
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Table 4: Grouped-MSPE

Grouped-MSPE

SL. NO. LGVF1 LGVF2 LGVF3 LADE1 LADE2 LADE3

1 0.14692099 0.010642 0.03904588 0.17803722 0.00244339 0.0253828
2 0.38563175 0.92102077 0.564615 0.26573739 0.38612198 0.29609827
3 0.07690383 0.15791527 0.04541662 0.10158697 0.0439494 0.03197908
4 1.51071516 5.07506124 4.99754763 1.09896245 3.43869281 2.85337825
5 0.20715132 0.00127092 0.05843473 0.23370953 0.00021511 0.03433766
6 0.05100575 0.09020342 0.02446746 0.06046653 0.01875324 0.01390303
7 0.19639785 0.99717382 0.85841597 0.16947713 0.49981262 0.38524942
8 0.09699981 0.22380151 0.05620918 0.0700015 0.03519358 0.0243359
9 0.53274068 1.43864213 1.10948665 0.46534351 0.79614627 0.60698199
10 0.83921018 3.56111412 3.09345728 0.64741494 2.42750345 1.74439489
11 0.14893043 0.0099225 0.04006995 0.15404396 0.00220643 0.02166576
12 0.22869413 0.00042323 0.06551435 0.34386428 0.00012817 0.05194609
13 0.15388573 0.00847451 0.03979731 0.23287445 0.00168997 0.03406732
14 0.09298682 0.03349853 0.02490425 0.11617975 0.00737819 0.0172395
15 0.11154768 0.02245857 0.02735761 0.17627213 0.00455069 0.02545455
16 0.06232243 0.06134462 0.01728288 0.12285255 0.01152714 0.01917341
17 1.04093967 6.00598423 6.78605287 0.85340126 4.38010134 3.69497891
18 1.52467068 8.09817858 9.19531234 1.09454957 5.88144932 4.89298145∑18

v=1

{∑15
t=1

{∑500
r=1(υ̂

(r)
tv −υ

(r)
tv )2

R

}}
7.40765489 26.71713 27.043388 6.38477512 17.9378631 14.7735483

∑18
v=1

{∑15
t=1

{∑500
r=1(υ̂

(r)
tv −υ

(r)
tv )2

R

}}
18

0.41153638 1.484285 1.50241044 0.35470973 0.99654795 0.82075268
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Table 5: Grouped-Bias2

Grouped-Bias2

SL. NO. LGVF1 LGVF2 LGVF3 LADE1 LADE2 LADE3

1 0.00932572 0.00043432 0.00197376 0.01064828 0.00004937 0.00101139
2 0.0062715 0.02416079 0.00228669 0.00334595 0.00323062 0.00079391
3 0.00081157 0.0059821 0.00000064 0.00229332 0.00113499 0.0000174
4 0.04073135 0.04129099 0.00143959 0.02801676 0.00076304 0.00020865
5 0.01337792 0.00002794 0.00321029 0.01409359 0.00000051 0.00147906
6 0.00186233 0.0039306 0.00020954 0.0024186 0.0005942 0.00010469
7 0.00058671 0.01136091 0.00012126 0.00003427 0.00089336 0.00001651
8 0.00003579 0.00792993 0.00001012 0.0001096 0.00115992 0.00000763
9 0.00900689 0.02377147 0.0010449 0.00887119 0.00356649 0.00150128
10 0.01459668 0.02012355 0.0000033 0.01174225 0.00015466 0.00000029
11 0.00948235 0.00039525 0.00207171 0.00913495 0.00005537 0.00084008
12 0.01478368 0.00000039 0.0036159 0.02086139 0.00000409 0.00227514
13 0.00981552 0.00037491 0.00202855 0.01382798 0.00003019 0.0013744
14 0.0055339 0.00149276 0.00094956 0.00660325 0.00020156 0.00052133
15 0.00690787 0.00105097 0.0012046 0.01021451 0.0001159 0.00091916
16 0.00321939 0.0029361 0.0003016 0.00660708 0.00034792 0.00049029
17 0.01583157 0.01323211 0.00255808 0.01319929 0.0005553 0.00105202
18 0.03075134 0.01860175 0.00295764 0.0225499 0.00221982 0.00244322

∑18
v=1

∑15
t=1

{∑500
r=1(υ̂

(r)
tv )

R

}
15

−

∑15
t=1

{∑500
r=1(υ

(r)
tv )

R

}
15

0.19293208 0.17709684 0.02598773 0.18457216 0.01507731 0.01505645

∑18
v=1

∑15
t=1

{∑500
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(r)
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}
15

−

∑15
t=1

{∑500
r=1(υ

(r)
tv )

R

}
15

18
0.01071845 0.00983871 0.00144376 0.01025401 0.00083763 0.00083647
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Figure 3: Grouped-MSEs for all variables – LADE models outperform LGVFs
for most of the variables, but not all variables when each variable is compared.
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Figure 4: Grouped-MSPEs over all variables – LADE models outperform LGVFs
for most of the variables, but not all the variables when each variable is compared.
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(2) Simulation-Individual variables results:

Table 6: Individual-MSE

Individual-MSE

SL. NO. LGVF1 LGVF2 LGVF3 LADE1 LADE2 LADE3

1 0.00013186 0.00036702 0.00013588 7.5904E-05 8.5258E-05 7.6991E-05
2 0.00911577 0.03348467 0.00975517 0.00475778 0.00640601 0.00490773
3 0.00209517 0.00611522 0.00223322 0.00138177 0.00168737 0.00142106
4 0.03552953 0.10924189 0.03668525 0.03219963 0.03809822 0.03219542
5 1.1899E-05 6.5473E-05 1.2203E-05 6.9033E-06 7.3247E-06 6.9367E-06
6 0.00098323 0.00373517 0.00110428 0.00056473 0.00064215 0.00056823
7 0.00384158 0.02781115 0.00407711 0.00225242 0.00275966 0.00225011
8 0.00221485 0.01097709 0.00238354 0.00097313 0.00125433 0.00097575
9 0.01099218 0.04044535 0.01133325 0.00670696 0.00894584 0.00675416
10 0.02237646 0.0797136 0.02348702 0.01589717 0.02046451 0.01587004
11 0.0001145 0.00049466 0.00011709 7.3763E-05 8.5823E-05 7.4661E-05
12 2.9673E-06 1.9645E-05 3.0933E-06 1.0193E-06 1.058E-06 0.00000104
13 7.9252E-05 0.00029655 8.3895E-05 6.3977E-05 6.9632E-05 6.4492E-05
14 0.00036913 0.0014005 0.00038955 0.00023347 0.00026231 0.00023636
15 0.00020298 0.00083692 0.00020594 0.00016128 0.0001765 0.00016184
16 0.00052875 0.00221343 0.00054544 0.00036051 0.00040721 0.00036441
17 0.02863593 0.07480319 0.02905497 0.02817858 0.03538639 0.02789071
18 0.0402084 0.10769188 0.04082121 0.0377467 0.04157593 0.03749089

∑18
v=1

{∑15
t=1

{∑500
r=1(υ̂

(r)
tv −υ

(r)
tv )2

R

}
15

}
0.15743444 0.49971342 0.16242812 0.13163568 0.15831552 0.13131083

∑18
v=1

{∑15
t=1

{∑500
r=1(υ̂

(r)
tv −υ

(r)
tv )2

R

}
15

}
18

0.00874636 0.02776186 0.00902378 0.00731309 0.00879531 0.00729505
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Table 7: Individual-Bias2

Individual-Bias2

SL. NO. LGVF1 LGVF2 LGVF3 LADE1 LADE2 LADE3

1 0.00000000 0.00007995 0.00000000 0.00000001 0.00000765 0.00000002
2 0.00000000 0.00781023 0.00000119 0.00000282 0.00062654 0.00000073
3 0.00000000 0.00148825 0.00000013 0.00000006 0.00022416 0.00000001
4 0.00000000 0.03136575 0.00000606 0.00039485 0.00357391 0.00032367
5 0.00000000 0.00001776 0.00000000 0.00000001 0.00000063 0.00000001
6 0.00000000 0.00080929 0.00000009 0.00000092 0.00006541 0.00000068
7 0.00000000 0.00396117 0.00000016 0.00000796 0.00027182 0.00000763
8 0.00000000 0.00252299 0.00000046 0.00000268 0.00016183 0.00000210
9 0.00000000 0.01072011 0.00000056 0.00000655 0.00110930 0.00000481
10 0.00000000 0.01717795 0.00000137 0.00008476 0.00138620 0.00007080
11 0.00000000 0.00015332 0.00000000 0.00000001 0.00001154 0.00000001
12 0.00000000 0.00000501 0.00000000 0.00000000 0.00000005 0.00000000
13 0.00000000 0.00006927 0.00000002 0.00000014 0.00000739 0.00000013
14 0.00000000 0.00037697 0.00000004 0.00000008 0.00002618 0.00000006
15 0.00000000 0.00022242 0.00000000 0.00000016 0.00002066 0.00000012
16 0.00000000 0.00057432 0.00000003 0.00000019 0.00004734 0.00000006
17 0.00000000 0.01985565 0.00000033 0.00023859 0.00379817 0.00021831
18 0.00000000 0.03093950 0.00000188 0.00042347 0.00433762 0.00034524
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Figure 5: Individual-MSEs – LADE models outperform LGVFs for all of the
variables when all the variables or each variable is compared.
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Abstract 

A texture-based model for classification of tobacco leaves for the purpose of selective 

harvesting is proposed in this paper. It relies on texture features which are extracted by 

various texture models to represent the roughness of leaves. Extracted texture features are 

fused using concatenation rule. Discriminative texture features are then selected by 

employing wrapper feature selection methods. Finally, K-NN classifier is adapted for the 

purpose of classification. An extensive experimentation has been conducted on our own 

dataset to evaluate the performance of the proposed model. The experimental results reveal 

that the proposed model has achieved the best classification accuracy. 

 

Key words: Tobacco leaves; Harvesting; Texture features; Feature selection; Classification. 

 

1. Introduction 

 

Precision agriculture is an integrated crop management system that attempts to match 

the type and quantity of inputs with the actual crop requirements for small areas within a 

farm field (Srinivasan, 2001). The potential of precision agriculture in terms of economic and 

environmental benefits could be visualized through reduced use of water, fertilizers, 

herbicides and pesticides in addition to the cost farm equipments. Instead of managing an 

entire field based upon some hypothetical average conditions, a precision agriculture 

approach recognizes site-specific differences within the field and adjusts accordingly the 

actions of management (Goovaerts, 2000). The objectives of the precision agriculture are 

profit maximization, rationalization of agriculture input and environmental damage reduction, 

by restricting the agriculture practices to the site demands. These objective could be achieved 

by adapting some site specific practices such as application of agrochemicals, right time 

harvesting, and grading of crops. Human intervention in these practices raises many 

disadvantages such as wrong diagnosis of diseases in crops, wrong quality analysis of crops, 

man power, labor cost and time consuming. Therefore, we need to automate these practices to 

increase efficiency and speed using computer vision (CV) algorithmic models.  

Requirement of Precision agriculture at different stages of plant growth is shown in 

Figure 1. 
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Figure 1: Requirement of precision agriculture at different stages of plant growth 

 

Tobacco is a commercial crop in many countries like China, India, Brazil, United 

States, European Union, Zimbabwe, Indonesia, Malawi and Russia because of its high 

economic value. Especially in Karnataka state in India, that too around Mysore district, many 

farmers are depending on tobacco crop because of suitable climate conditions and soil. It 

created a gainful employment to several lakhs of people in India. Roughly 80 percent of the 

flue cured variety (FCV) of tobacco grown in Karnataka is being exported abroad to meet the 

demand of multinational industries for various purposes. 

 

Harvesting is an important stage in tobacco crop. Tobacco crop is grown for production 

of quality leaves. The quality of a leaf depends upon the ripeness of the leaf while it is 

harvested. Therefore, while harvesting, farmers should look into factors such as unripe or ripe 

or over-ripe properties of leaves based on degree of ripeness of leaves. Ripeness of leaf 

begins after 50 days of plantation of tobacco seedlings. Harvesting usually begins after 60 

days of plantation of tobacco seedlings. Leaves are removed at intervals as they ripened. 

Manual classification of unripe, ripe and over-ripe leaves is laborious, time consuming, 

inefficient and costly process. Automation of this process helps the tobacco farmers to gain 

more profit. Computer vision and image processing techniques can be exploited for 

classification of tobacco leaves supporting automatic harvesting, which increases the speed 

and accuracy of harvesting in addition to, reducing the number of human labors and cost. 

 

With this backdrop, this work is to propose a model to automatically classifying 

tobacco leaves using computer vision technologies. Following are the overall contributions of 

this work. 

 

• Development of a model which fuses the different texture features and selects the best 

discriminating features for classification of tobacco leaves on a plant for the purpose of 

harvesting ripen leaves. 

• Segmentation of tobacco leaves from the background using CIELAB color model. 
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• Creation of a relatively large dataset of harvesting tobacco leaves due to non-

availability of a benchmarking dataset. 

• Conduction of experimentations on the created large tobacco dataset for demonstrating 

the effectiveness of the proposed model. 

 

2. Related Work 

 

Few attempts could be traced on ripeness evaluation of different crops for automatic 

harvesting. Medjool date fruits were taken as a case study to demonstrate the performance of 

a novel color quantization and color analysis technique for fruit maturity evaluation and 

surface defect detection (Lee et al., 2008). Direct color mapping method (Lee et al., 2011) 

was proposed for maturity evaluation of tomato and date fruits. This color mapping method 

maps the RGB values of colors of interest into 1-D color space using polynomial equations. It 

uses a single index value to represent each color in the specified range for the purpose of 

maturity evaluation of tomato and date fruits. A robotic system for harvesting ripe tomatoes 

in greenhouse (Yin et al., 2009) was designed. In this work, L*a*b color space was used to 

segment tomatoes from complex background and K-means clustering method was applied on 

segmented tomatoes to recognize ripe tomatoes. Recently L*a*b color features and their 

combination along with texture features have been applied for the purpose of grading of 

mangoes using hierarchical classification approach (Anitha et al., 2020). A novel and robust 

color space conversion and color index distribution analysis technique for automated date 

maturity evaluation (Lee et al., 2008) was proposed. Computer vision technology for 

detecting fruit size, color, bruise, surface defects and evaluation of fruit overall quality (Gao 

et al., 2010) were discussed. A genetic algorithm based neural network detecting system (Xu, 

2009) was developed for evaluating maturity of strawberry fruits. In this paper, H frequency 

of HIS color model was used to distinguish maturity levels of strawberry fruits in a variable 

illumination conditions. An intelligent and robust algorithm (Furfaro et al., 2007) was 

proposed to estimate absolute percentages of under-ripe (green), ripe (yellow), and over-ripe 

(brown) coffee cherries displayed on the canopy surface. The proposed algorithm was tested 

on the multispectral images. It was based on a coupled leaf/canopy radiative transfer model 

(LCM2). Feasibility of monitoring coffee field ripeness with airborne multispectral imagery 

(Johnson et al., 2004) was proposed. In this work, reflectance spectrum was recorded from 

four major components of coffee field viz., green leaf, under-ripe fruit, ripe fruit and over-

ripe fruit. Based on reflectance spectrum, ripeness evaluation of coffee field was performed. 

A Bayesian classifier considering a multivariate, three-class problem (Baltazar et al., 2008) 

was incorporated for data fusion to classify fresh intact tomatoes based on their ripening 

stages. In this work, data extracted from multiple sensors were fused. Further, fused data was 

used for the purpose of classification. 

 

In our recent publication (Guru et al., 2012), a model for classification of tobacco 

leaves for automatic harvesting of tobacco leaves using texture models was proposed. Apart 

from this, no attempts have been made on classification of tobacco leaves for automatic 

harvesting. In the proposed work, the classification accuracy has been improved by applying 

feature level fusion and feature selection methods. 

 

 

3. Proposed Model 

 

The proposed model consists of five stages – segmentation, feature extraction, feature 

level fusion, feature selection and classification. The color space model CIELAB is used to 



36 P. B. MALLIKARJUNA AND D. S. GURU  [Vol. 20, No. 1 

segment tobacco leaf area from the background. Features are extracted from segmented 

tobacco leaf using various texture models such as LBP (Local Binary Pattern), LBPV (Local 

Binary Pattern Variance), GLTP (Gray Level Local Texture Pattern), GFR (Gabor Filter 

Response) and WD (Wavelets Decomposition). These features are fused on different 

combination of texture models. The obtained fused feature vector is normalized. Features are 

selected from fused feature vector using wrapper feature selection methods such as SFS 

(Sequential forward selection), SFFS (Sequential floating forward selection), SBS (Sequential 

backward selection) and SFBS (Sequential floating backward selection). Then, K-NN 

classifier is used for classification of tobacco leaves in to three classes – unripe, ripe and 

over-ripe.   

 

3.1. Segmentation  

 

We have selected CIELAB (Viscarra et al., 2006) color model to segment a leaf area 

from their background (soil, stones and noise). Since the color of a leaf varies from green to 

yellow, the chromacity coordinate is used to segment the leaf from its background. For an 

illustration, we have shown three different samples (Figures 2, 3 and 4) of tobacco leaves and 

also the results of the segmentation. 

 

3.2. Feature extraction 

 

Top surface of a leaf with rare maturity spots (see Figure 2) is smoother and its roughness 

increases as number of maturity spots increases (see Figures 3 and 4). This roughness is 

reflected by transitions in intensity levels on the surface of a leaf in the form of uniform and 

non-uniform patterns. To exploit this, we recommend to extract texture features from gray 

scale images of segmented tobacco leaves using the various texture based models viz., LBP 

(Ojala et al., 2002), LBPV (Guo et al., 2010), GLTP (He and Wang, 1990) (Surliandi and 

Kumar, 2008), GFR and WD. 

 

3.3. Feature level fusion 

 

Feature level fusion refers to combining different feature vectors that are obtained by 

employing multiple feature extraction algorithms. When the feature vectors are 

homogeneous, a single resultant feature vector can be obtained as a weighted average of the 

individual feature vectors. When the feature vectors are non-homogeneous, we can 

concatenate them to form a single feature vector (Jain et al., 2005). 

 

 The extracted feature vectors of LBP, LBPV, GLTP, GFR and WD are fused in all 

possible combinations by concatenating the feature vectors. The fused feature vectors are 

normalized using min-max method. 
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(a)                                                                        (b) 

 

Figure 2: (a) A sample tobacco leaf with rare maturity spots (b) Segmented image 
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  Figure 3: (a) A sample tobacco leaf with moderate maturity spots (b) Segmented image 

 

 

 

 

 

 

 

 

 

 

 

(a)                                                                       (b) 
 

Figure 4: (a) A sample tobacco leaf with rich maturity spots (b) Segmented image 

 

3.4. Feature selection 

 

Feature selection is the process of selecting a subset of relevant features for building 

robust learning models. Feature selection is broadly classified into two categories such as 
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filter model and wrapper model. The filter model relies on general characteristics of the 

training data to select some features without involving any learning algorithm. The wrapper 

model requires one predetermined learning algorithm in feature selection and uses its 

performance to evaluate and determine best features for selection. 

 

A well-known filter method Relief (Kira and Rendel, 1992) relies on relevance 

evaluation. Time Complexity of Relief for a dataset with M instances and N features is 

O(MN). However, the Relief method does not help to eliminate redundant features. Empirical 

evidence from feature selection literature shows that, along with irrelevant features, 

redundant features also affect the speed and accuracy of learning algorithms and thus should 

be eliminated as well (Hall, 2000). Therefore, we have exploited feature selection methods 

based on wrapper model such as sequential forward selection (SFS), sequential floating 

forward selection (SFFS), sequential backward selection (SBS) and sequential floating 

backward selection (SFBS) (Ververidis and Kotropoulos, 2005, 2008). The criterion 

employed in these methods is the correct classification rate of the Bayes classifier assuming 

that the features obey the multivariate Gaussian distribution. These methods eliminate 

irrelevant features as well as redundant features but they are computationally slightly 

expensive than any filter method. 

 

3.5.  Classification 

 

In the proposed model, the K-NN classifier based on G-statistic, Chi-square and 

Euclidean distance measure has been used to classify tobacco leaves into unripe, ripe and 

over-ripe for the purpose of harvesting. 

 

3.5.1. Performance measures 

 

To evaluate the correctness of classification algorithms, one should look into confusion 

matrix. A confusion matrix is a matrix plot of predicted versus actual classes of the samples. 

 

Let k be the number of classes. Let ri be the total number of samples of ith class. Let ci 

be the number of samples classified (labeled) as ith class. Let Ti be the number of samples 

correctly labeled as ith class. Then precision, recall, F-measure and classification accuracy 

(Espindola and Ebecken, 2005) are defined as follows. 

 

Precision (P): Precision of the classifier model with respect to ith class is the ratio of 

the number of samples correctly labeled as ith class to the total number of samples labeled as 

ith class. The precision of the classifier model with respect to ith class is given by 

 

                                                            𝑷𝒊 =
𝑻𝒊

 c𝒊
                                                            (1)                                                           

 

Recall (R): Recall of the classifier model with respect to ith class is the ratio of the 

number of samples correctly labeled as ith class to the total number of samples of ith class. 

The recall of the classifier model with respect to ith class is given by 

 

                                                          𝑅𝑖 =
𝑇𝑖

 r𝑖
                                                                      (2) 
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F-measure (F): F-measure is the harmonic mean of precision and recall and it is given 

by  

                                             𝐹 =
2×Precision×Recall

Precision+Recall
                                                       (3) 

Classification Accuracy (CA): It is the ratio of correctly classified samples to the total 

number of samples classified. 

                                                    CA =
∑ 𝑇𝑖

𝑘
𝑖=1

∑ 𝑟𝑖
𝑘
i=1

                                                                        (4) 

 

4. Experimental Result 

 

4.1. Dataset 

 

Color images of tobacco leaves in real tobacco field are acquired using a Sony digital 

color camera. The leaves used for imaging are randomly selected from the tobacco field at 

Central Tobacco Research Institute (CTRI), Hunsur, Karnataka, India. Images are acquired at 

variable illumination conditions (sunny and cloudy). A total of 1300 sample images of size 

250×250 are used for evaluating the proposed texture-based model. 

 

Table 1: Number of samples of individual classes of tobacco leaves 

 

Tobacco leaf 

Class 

Number of samples Total samples 

Unripe leaf 323  

1300 Ripe leaf 667 

Over-ripe leaf 310 

 

4.2. Experimentation 

 

In the first set of experimentation, we conducted experiments for the proposed model 

based on individual texture models. During experimentation, we conducted four different sets 

of experiments. In the first set of experiment, we used 30% of the samples of each class of a 

harvesting dataset to create class representative vectors (training) and the remaining 70% of 

the samples for testing purpose. In the second set, third set and fourth set of experiments, the 

numbers of training and testing samples are in the ratio of 40:60, 50:50 and 60:40 

respectively. In each set of experiment, experiments are repeated 20 times by choosing the 

training samples randomly. As measures of goodness of the proposed model based on 

individual texture model, we computed minimum, maximum, average and standard deviation 

of classification accuracy of all the 20 trails using the K-NN classifier. Classification 

accuracy of the proposed model based on individual texture models (LBP, LBPV, GLTP, 

GFR and WD) for 30% training, 40% training, 50% training and 60% training are depicted in 

Figures 5-8 respectively. It is observed from Figures 5-8 that the GLTP texture model has 

achieved a better average classification accuracy in experiment 4 (60% training samples) 

when compared to the other texture models. It is also observed that the proposed model has 

achieved a good classification accuracy for all the individual texture models in experiment 4 

(60% training samples) when compared to that of experiment 1 (30% training samples), 

experiment 2 (40% training samples) and experiment 3 (50% training samples). 
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Therefore, we present experimental results obtained for 60% training only for fusion of 

texture features and application of feature selection method. In the second set of 

experimentation, we conducted experiments for the proposed model based on fusion of 

texture features. That is, the extracted feature vectors of LBP, LBPV, GLTP, GFR and WD 

are fused in all possible combinations by concatenating the feature vectors. During 

experimentation, experiments are repeated 20 times by choosing the training samples 

randomly. As measures of goodness, we computed minimum, maximum, average and 

standard deviation of classification accuracy of all the 20 trails using K-NN classifier. 

Classification accuracy of the proposed model based on fusion of 2 texture models at a time, 

3 texture models at a time, 4 texture models at a time and all 5 texture models are depicted 

respectively in Figures 9-12. It is observed from Figures 9-12 that overall fusion of GLTP 

and WD features has achieved the best average classification accuracy when compared to the 

other fusion of texture models in any combination. Fusion of GLTP and WD features has 

achieved an improvement in classification accuracy when compared to that of an individual 

texture model. It is also observed that for all combinations of fusion of texture features, good 

classification accuracy is achieved for G-statistic distance measure when compared to the 

Chi-square and the Euclidean distance measures. Also, Confusion matrix for fusion of GLTP 

and WD features is tabulated in Table 2 and performance measures such as Precision, Recall 

and F-measure of individual classes are tabulated in Table 3. 

 

In third set of experimentation, we conducted experiments based on fusion of texture 

features and the application of feature selection method. That is, we applied the wrapper 

feature selection method (SFS, SBS, SFFS and SFBS) on fused texture feature vector to 

reduce the dimension of feature matrix and to obtain discriminative texture features. During 

experimentation, experiments are repeated 20 times by choosing the training samples 

randomly. Classification accuracy of the proposed model based on fusion of texture features 

and feature selection method for 2 texture models at a time, 3 texture models at a time, 4 

texture models at a time and all 5 features are depicted respectively in Figures 13- 16. Here 

we presented results of G-statistic for 60% training as it was observed to have good results 

for the G-statistic based K-NN classifier. It is observed from Figures 13-16 that the fusion of 

GLTP and WD features with SBS feature selection method has achieved best average 

classification accuracy when compared to other combinations. Also, Confusion matrix for 

fusion of GLTP and WD features with SBS feature selection method is tabulated in Table 4 

and performance measures such as Precision, Recall and F-measure of individual classes are 

tabulated in Table 5. 

 

5. Discussion  

 

From the experimental results, it is observed that the GLTP texture model has dominant 

features when compared to LBP, LBPV, GFR and WD. Since the GLTP is built by the 

advantages of TS and LBP, it reveals more local texture information when compared to 

texture models such as Gabor response and Wavelet decomposition. The GLTP assigns a 

label (uniform label or non-uniform label) for each pixel in an image based on the uniformity 

or non-uniformity of neighborhood, where as the GFR is based on frequency and orientation 

of edge information. Though, the GFR is rotation invariant local texture information, fusion 

of Gabor response with the other texture models such as LBP, LBPV, GLTP and Wavelet 

decomposition has deteriorated the performance because the Gabor response will not 

represent edge information in the form of uniform patterns and non-uniform patterns. Fusion 

of LBPV with other texture models such as LBP, GLTP, Gabor response and Wavelet 

decomposition has also deteriorated the performance because global information such as 
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variance is embedded with local information in the LBPV. Therefore, the LBPV will 

deteriorate the classification accuracy. 

 

Feature selection after fusion has improved the classification results for all combination 

of fusion of texture models. In all feature selection methods, the dominant features are 

selected. When analyzed we observed that, the SBS method on fusion of GLTP and Wavelets 

has selected only 15 features out of 55 features (GLTP – 46 features and Wavelets – 9 

features). Out of 15 features, 10 features are from the GLTP and 5 features are from the WD. 

Therefore, the GLTP has more number of discriminating features with WD features and 

improve the classification accuracy. Similarly, the SFS on fusion of GLTP and LBP has 

selected only 6 features out of 56 features (GLTP – 46 features and LBP – 10 features). All 6 

features are from the GLTP alone. This indicates that the LBP has no discriminating 

dominant features when it is with the GLTP features. Further, the SFBS on fusion of GLTP, 

LBP and WD has selected only 8 features. Out of 8 features, 4 features are from the GLTP 

and 4 features are from the WD. No discriminating features of LBP are selected when they 

are with GLTP and WD features. 

 

The above observations appraise that GLTP and WD features have more discriminating 

and dominating features when compared to the other texture models such as LBP, LBPV and 

GFR. 

 

 
 

Figure 5: Classification accuracy of the proposed model based on individual texture    

models for 30% training 

 



42 P. B. MALLIKARJUNA AND D. S. GURU  [Vol. 20, No. 1 

 
 

Figure 6: Classification accuracy of the proposed model based on individual texture 

models for 40% training 

 

 
 

Figure 7: Classification accuracy of the proposed model based on individual texture 

models for 50% training 

 



2022] SELECTIVE HARVESTING OF TOBACCO LEAVES 43 

 
 

Figure 8: Classification accuracy of the proposed model based on individual texture 

models for 60% training 

 

 
 

Figure 9: Classification accuracy of the proposed model based on fusion of 2 texture 

models at a time 
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Figure 10: Classification accuracy of the proposed model based on fusion of 3 texture 

models at a time 

 

 
 

Figure 11: Classification accuracy of the proposed model based on fusion of 4 texture 

models at a time 
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Figure 12: Classification accuracy of the proposed model based on fusion of 5 texture 

models at a time 

 

 
 

Figure 13: Classification accuracy of the proposed model based on fusion of 2 texture 

models at a time and feature selection methods 

 



46 P. B. MALLIKARJUNA AND D. S. GURU  [Vol. 20, No. 1 

 
 

Figure 14: Classification accuracy of the proposed model based on fusion of 3 texture 

models at a time and feature selection methods 

 

 
 

Figure 15: Classification accuracy of the proposed model based on fusion of 4 texture 

models at a time and feature selection methods 

 



2022] SELECTIVE HARVESTING OF TOBACCO LEAVES 47 

 
 

Figure 16: Classification accuracy of the proposed model based on fusion of 5 texture 

models at a time and feature selection methods 

 

 

Table 2: Confusion matrix across leaf types using the proposed model based on fusion 

of 2 texture models (GLTP and WD) at a time 

 

 

        

Predicted Class 

Unripe Ripe Over-ripe 

Actual 

Class 

Unripe 109 20 00 

Ripe 10 240 16 

Over-ripe 00 18 106 

 

Table 3: Performance of the proposed model based on fusion of 2 texture models (GLTP 

and WD) at a time 

 

Leaf Class Precision Recall F-measure 

Unripe 0.91 0.84 0.87 

Ripe 0.86 0.90 0.87 

Over-ripe 0.86 0.85 0.85 

 

Table 4: Confusion matrix across leaf types using the proposed model based on fusion 

of 2 texture models (GLTP and WD) and SBS feature selection method 

 

 

        

Predicted Class 

Unripe Ripe Over-ripe 

Actual 

Class 

Unripe 112 17 00 

Ripe 07 250 09 

Over-ripe 00 16 108 
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Table 5: Performance of the proposed model based on fusion of 2 texture models (GLTP 

and WD) and SBS feature selection method 

 

Leaf Class Precision Recall F-measure 

Unripe 0.94 0.86 0.89 

Ripe 0.88 0.93 0.90 

Over-ripe 0.92 0.87 0.89 

 

6. Conclusion 

 

In this paper, a model based on texture features for classification of tobacco leaves for 

the purpose of harvesting is presented. A successful attempt is made to explore the 

applicability of texture features and wrapper feature selection methods for effective 

classification of tobacco leaves for the purpose of selective harvesting. The future work is 

expanding this for video data and developing in a real time environment. 
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Abstract
In this paper, a new inverted model called the transmuted inverted Nadarajah-Haghighi

distribution is introduced. Different estimation methods of the unknown parameters of
the new distribution are utilized. These methods are maximum likelihood (MLE), least
squares and weighted least squares, maximum product spacing estimation, AD and RAD
estimation, CVM estimation and Bayesian estimation. Also, the potentiality of the new
model is discussed via a real data set.
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1. Introduction

Two-Parameter Nadarajah-Haghighi (NH) distribution was introduced by Nadarajah
and Haghighi (2011) as an extension of exponential distribution and also as an alternative
to the gamma, Weibull and exponentiated exponential distributions. They provided three
motivations for introducing their distribution, for more details see their paper. Let Z to have
Nadarajah-Haghighi distribution, Z ∼ NH(α, β), then the cdf of Z takes the form

F (z) = 1 − e1−(1+βz)α

, z > 0, α, β > 0, (1)

where β is the scale parameter and α is the shape parameter. When α = 1, the exponential
distribution is obtained. Nadarajah and Haghighi (2011) showed that its density can take
decreasing and unimodal shapes and the hazard rate can take increasing, constant and
decreasing shapes. In order to provide some flexibility, alternative generalizations of the
Nadarajah and Haghighi distribution have been proposed. For example, Lemonte et al.
(2015) introduced the Marshall-Olkin Nadarajah Haghighi distribution via the Marshall-
Olkin generator (Marshall and Olkin, 1997). Its cdf is given by

F (z) = 1 − e1−(1+βz)α

(1 − (1 − θ)e1−(1+βz)α) , z > 0,
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where the parameter α > 0 and θ > 0 control the shapes of the distribution, and the param-
eter β > 0 is the scale parameter. If β = 1, the NH distribution is obtained. They noted
that this distribution is quite flexible and can be used effectively in modeling survival data,
reliability problems, fatigue life studies and hydrological data. Also, it can have constant,
decreasing, increasing, upside-down bathtub (unimodal), bathtub-shaped and decreasing-
increasing-decreasing hazard rate functions.

Yousof and Karkmaz (2017) introduced the Topp-Leone Nadarajah-Haghighi model
using the Topp-Leone generated family of distributions (Sangsanit and Bodhisuwan, 2016).
If a random variable Z follows the Topp-Leone Nadarajah-Haghighi distribution, then its cdf
of Z takes the form

F (z) = (1 − e2(1−(1+βz)α))θ, z > 0, α, β, θ > 0,

They provided some plots of the pdf and hazard rate function for the distribution and showed
that its hazard function allows different shapes.

Ogunde et al. (2017) introduced transmuted Nadarajah-Haghighi distribution as an-
other generalization of Nadarajah-Haghighi distribution. Its cdf takes the form

F (z) = (1 − e1−(1+βz)α)(1 + λe1−(1+βz)α), z > 0, α, β > 0 and |λ| ≤ 1.

They showed that its hazard function allows different shapes such as decreasing and bathtub
shapes.

On the other hand inverted distributions of random variables with positive support
provide a valuable alternative for the regular distributions when the assumptions for the use
of these distributions are not valid. Also, they may be used in Bayesian analysis of prior and
posterior distribution of some parameters such as the scale parameter. Sheikh and Ahmed
(1987) discussed characteristic features of the hazard functions based on this inverted class
of distributions and explored their possible uses. Hazard functions and mean residual life
of inverted normal inverted Gamma and inverted Weibull are compared with the normal,
Gamma and Weibull hazards. For a general discussion of inverted distributions, see Folks
(1983), Lehmann and Shaffer (1988) and Habibullah and Ahmed (2006).

Some authors discussed the inverse transformation method of baseline variables to
obtain inverted distributions due to its usefulness to explore additional properties of the
phonomenons which non inverted distributions cannot. Some of these distributions are:
inverse exponential distribution (Keller and Kamath in 1982), inverse Rayleigh distribution
(Voda in 1972), inverse Lindley distribution (Sharma et al., 2015), inverted Nadarajah-
Haghighi (Tahir et al., 2018), inverse xgamma (Yadav et al., 2019) etc.

Furthermore, some authors used the quadratic rank transmutation map (QRTM) ap-
proach to generate a generalization of an inverted distribution such as: Mahmoud and Man-
douh (2013); Elbatal (2013); Khan (2019) ect. According to this approach, a random variable
Z is said to have a transmuted distribution if its cumulative distribution function (cdf) sat-
isfies the following relationship:

G(x) = (1 + λ)F (x) − λF (x)2, |λ| ≤ 1, (2)
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where F(x) is the cdf of the baseline model and the corresponding probability density function
takes the form:

g(x) = f(x)[(1 + λ) − 2λF (x)], |λ| ≤ 1
(see Shaw and Buckley (2009)). The same approach has been used to introduce the trans-
muted form of inverted Nadarajah-Haghighi distribution.

2. The Transmuted Inverted N-H Distribution

Let the random variable X=1/Z, where Z follows the NH distribution whose cdf is
given in (1), then cdf of the inverted N-H distribution takes the form

F (x) = e1−(1+βx−1)α

, x > 0, α, β > 0.

Using (2) and taking the inverted N-H distribution as the base distribution, one can generate
the cdf of the transmuted inverted N-H (TINH) distribution as follows

G(x) = e1−(1+βx−1)α(1 + λ− λe1−(1+βx−1)α), x > 0, α, β > 0 and |λ| ≤ 1. (3)

The corresponding pdf and hazard function (failure rate function) are given respectively

g(x) = αβx−2(1 + βx−1)α−1e1−(1+βx−1)α(1 + λ− λe1−(1+βx−1)α), (4)

and
h(x) = αβx−2(1 + βx−1)α−1e1−(1+βx−1)α(1 + λ− λe1−(1+βx−1)α)

1 − e1−(1+βx−1)α(1 + λ− λe1−(1+βx−1)α) . (5)

The new distribution is flexible to model positive real data sets which display decreasing and
upside-down bathtub (UBT) hazard rate shapes. Some plots of density and hazard functions
are displayed in Figures (1) and (2) for different values of the parameters. In Figure (1), the
plots indicate that the TINH density can be decreasing and unimodal. The plots in Figure
(2) show that the TINH hazard function can be decreasing and UBT. The new distribution
has no finite moments.

The inverse of the cumulative function (3) yields the following quantile function

Q(u) = β((1 − ln(
1 + λ−

√
(1 + λ)2 − 4λu
2λ ))1/α − 1)−1, u ∈ (0, 1) (6)

The specification of a distribution through its quantile function takes away the need to
describe a distribution through its moments. The following alternative measures in terms of
quantiles that reduce the shortcomings of the moment-based ones:
The median as a measure of location is defined by

M = Q(0.5) = β((1 − ln(
1 + λ−

√
(1 + λ)2 − 2λ
2λ ))1/α − 1)−1.

The interquartile range as a measure of dispersion is defined by

IQR = Q3 −Q1 = Q(0.75) −Q(0.25).
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Figure 1: Plots of the TINH density for different parameter values

Figure 2: Plots of the TINH hazard rate for different parameter values

Skewness is measured by Galton’s coefficient

Sk = Q3 +Q1 − 2M
Q3 −Q1 . (7)

Moors, 1988 proposed the measure

Ku = (Q(0.875) −Q(0.625) +Q(0.375) −Q(0.125))/IQR (8)

as a measure of kurtosis. Given the form of Q(u), the calculations of all the coefficients are
very simple, as one needs to only substitute the appropriate fractions for u. For example,
one can use formulas (6), (7) and (8) to calculate the skewness and kurtosis for the TINH
distribution. Table 1 shows the skewness and kurtosis of the TINH distribution for different
values of parameters. One can note that for fixed values of α, the skewness and kurtosis
decrease as λ approaching to 1 and for fixed values of λ, the skewness and kurtosis decrease
as α increases. Also, for generating random numbers from the TINH distribution, one can
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use formula (6). Quantile functions have several interesting properties that are not shared
by distributions, which makes it more convenient for analysis. For more details see Nair et
al.,2013.

Table 1: Skewness and Kurtosis of the TINH distribution for some values of
parameters

Sk α|λ -1 -0.8 -0.4 0.4 0.8 1
0.5 0.4873 0.4889 0.4988 0.4827 0.4171 0.3770
0.8 0.4788 0.4778 0.4810 0.4518 0.3807 0.3388
1.0 0.4763 0.4751 0.4770 0.4443 0.3719 0.3295
1.5 0.4742 0.4725 0.4721 0.4368 0.3629 0.3201
3.0 0.4729 0.4710 0.4706 0.4322 0.3575 0.3144
5.0 0.4727 0.4706 0.4700 0.4312 0.3563 0.3132

Ku α|λ -1 -0.8 -0.4 0.4 0.8 1
0.5 2.1593 2.1621 2.1766 2.1347 1.8452 1.6651
0.8 2.1450 2.1445 2.1481 2.0693 1.7814 1.6109
1.5 2.1417 2.1406 2.1417 2.0547 1.7675 1.5993
1.5 2.1386 2.1367 2.1354 2.0405 1.7541 1.5882
3.0 2.1367 2.1344 2.1317 2.0321 1.7463 1.5817
5.0 2.1363 2.1339 2.1309 2.0304 1.7446 1.5804

Note: neither skewness nor kurtosis of the TINH distribution depends on the value of β.

3. Non-Bayesian Estimation Methods

Here, we use different methods for estimating the parameters of the TINH distribution
(α, β and λ). These methods are maximum likelihood estimation (MLE), least squares and
weighted least squares estimation, maximum product spacing estimation, AD and RAD
estimation and CVM estimation.

3.1. Maximum likelihood estimation (mle)

The mle is the most popular technique for obtaining estimators and it has desirable
properties such as constructing confidence intervals. Now, we consider X1, X2, . . . , Xn as a
random sample from TINH distribution, defined in (3), with observed values x1, x2, . . . , xn.
The log-likelihood function for the vector of parameters θθθ = (α, β, λ)t can be expressed by

l = nln(α) + nln(β) − 2
n∑

i=1
lnxi + (α− 1)

n∑
i=1

ln(1 + βx−1
i ) +

n∑
i=1

(1 − (1 + βx−1
i )α)

+
n∑

i=1
ln(1 + λ− 2λe(1−(1+βx−1

i )α)). (9)
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The components of the score vector U(θθθ) take the forms

Uα = n/α +
n∑

i=1
ln(1 + βx−1

i ) +
n∑

i=1
(1 + βx−1

i )αln(1 + βx−1
i )

+
n∑

i=1

2λe(1−(1+βx−1
i )α)(1 + βx−1

i )α)ln(1 + βx−1
i )

(1 + λ− 2λe(1−(1+βx−1
i )α))

,

Uβ = n/β + (α− 1)
n∑

i=1
x−1

i ln(1 + βx−1
i ) − α

n∑
i=1

x−1
i (1 + βx−1

i )α−1 (10)

+
n∑

i=1

2λαx−1
i e(1−(1+βx−1

i )α)(1 + βx−1
i )α−1

(1 + λ− 2λe(1−(1+βx−1
i )α))

,

Uλ = 1 − 2e(1−(1+βx−1
i )α)

(1 + λ− 2λe(1−(1+βx−1
i )α))

.

Equating formulas in (10) to zero and solving them simultaneously yield the mle estimates
of the unknown parameters. To construct confidence interval of the model parameter, this
requires the 3 × 3 observed information matrix J(θθθ) = −Jsk, for s, k = α, β, λ and θθθ =
(α, β, λ)t, whose elements are obtained by taking the second derivative of (9). In the ob-
served information matrix, we replace the model parameters by its mles. Maximum likelihood
estimation of the model parameters may be difficult to obtain in certain cases-particularly
where the support of the model is unknown. Moreover the mle may not be robust to de-
partures from the assumed model. These considerations motivated the following estimation
methods described below.

3.2. Minimum distance estimation

In this section, we use some methods of estimation based on minimum distance between
the cdf of TINH distribution and the empirical cdf. These methods are divided into two
approaches; the first group is known as least-square approach; the second group is related
to goodness-of-fit statistics.

3.2.1.Least-square approach (LSE)

Swain et al. (1988) used least-square approach to parameter estimation to summarize a
set of data by a distribution function in Johnson’s translation system. They investigated this
approach via minimizing the distance between the vector of “uniformized” order statistics and
the corresponding vector of expected values. Let x1, x2, . . . , xn be a random sample of size n
with the cdf F (.) in (3) and let x(1:n) < x(2:n) < · · · < x(n:n) be the ordered observations. The
LSEs of α, β and λ, say α̂LSE, β̂LSE and λ̂LSE, can be obtained by minimizing the following
formula with respect to α, β, λ.

Dls(α, β, λ) =
n∑

i=1
(F (x(i:n);α, β, λ) − i

n+ 1)2

Also, one can determine these estimators by solving
n∑

i=1
(F (xi:n;α, β, λ) − i

n+ 1)ρ1(xi:n;α, β, λ) = 0,
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n∑
i=1

(F (xi:n;α, β, λ) − i

n+ 1)ρ2(xi:n;α, β, λ) = 0,

and
n∑

i=1
(F (xi:n;α, β, λ) − i

n+ 1)ρ3(xi:n;α, β, λ) = 0,

where

ρ1(xi:n;α, β, λ) = (1 + βx−1)αln(1 + βx−1)e1−(1+βx−1)α

∗ (−(1 + λ) + 2λe1−(1+βx−1)α), (11)
ρ2(xi:n;α, β, λ) = α(1 + βx−1)α−1x−1e1−(1+βx−1)α(−(1 + λ) + 2λe1−(1+βx−1)α),(12)

and
ρ3(xi:n;α, β, λ) = e1−(1+βx−1)α(1 − e1−(1+βx−1)α). (13)

Weighted least-square estimators, α̂W LSE, β̂W LSE and λ̂W LSE, can be determined by
minimizing (see Tahir et al., 2018)

W (α, β, λ) =
n∑

i=1

(n+ 1)2(n+ 2)
i(n− i+ 1) (F (x(i:n);α, β, λ) − i

n+ 1)2

Also, one can obtain these estimators by solving
n∑

i=1

(n+ 1)2(n+ 2)
i(n− i+ 1) (F (xi:n;α, β, λ) − i

n+ 1)ρ1(xi:n;α, β, λ) = 0,

n∑
i=1

(n+ 1)2(n+ 2)
i(n− i+ 1) (F (xi:n;α, β, λ) − i

n+ 1)ρ2(xi:n;α, β, λ) = 0,

and
n∑

i=1

(n+ 1)2(n+ 2)
i(n− i+ 1) (F (xi:n;α, β, λ) − i

n+ 1)ρ3(xi:n;α, β, λ) = 0,

where ρi(.;α, β, λ), i = 1, 2, 3 are given by (11)-(13).

3.2.2.The approach based on the goodness-of-fit statistics

Anderson and Darling (1952) proposed a general class of tests for testing the goodness
of fit of a sample of n observations to a specified continuous distribution function F (x).
Their test was based on the difference between the specified distribution and the empirical
distribution Fn(x) of the sample. From the following measure

W 2
n = n

� ∞

−∞
(Fn(x) −GF (x))2ψ(F (x))dF, (14)

where ψ(t)(≥ 0) is some preassigned weight function., when ψ(t) = 1,W 2
n reduces to

nw2, where w2 is the Cramér-von-Mises test statistic (see Anderson and Darling (1954).
Put ψ(t) = 1/t(1− t) in (14) W 2

n reduces to the statistic A2
n which was studied by (Anderson

and Darling (1952, 1954)). Here, we estimate the parameters of TINH distribution based
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on minimization of the goodness-of-fit statistics with respect to α, β and λ. These statistics
are Cramér-von-Mises; Anderson-Darling. Let x1, x2, . . . , xn be a random sample of size n
with the cdf G(.) in (3) and let x(1:n) < x(2:n) < · · · < x(n:n) be the ordered observations.
After computing the last integration, the formulae of the two statistics will be obtained in
(15) and (16).

Cramér-von Mises (CVM) estimation

The CVM estimators of α, β and λ, say α̂CV M , β̂CV M and λ̂CV M , can be obtained by
minimizing the following formula with respect to α, β, λ.(see MacDonald, 1971)

CM(α, β, λ) = 1
12n +

n∑
i=1

(F (x(i:n);α, β, λ) − 2i− 1
2n )2. (15)

Also, one can obtain these estimators by solving the following non-linear equations
n∑

i=1
(F (xi:n;α, β, λ) − 2i− 1

2n )ρ1(xi:n;α, β, λ) = 0,

n∑
i=1

(F (xi:n;α, β, λ) − 2i− 1
2n )ρ2(xi:n;α, β, λ) = 0,

and
n∑

i=1
(F (xi:n;α, β, λ) − 2i− 1

2n )ρ3(xi:n;α, β, λ) = 0,

where ρi(.;α, β, λ), i = 1, 2, 3 are given by (11)-(13).

Anderson-Darling estimation

The AD estimators of α, β and λ, say α̂AD, β̂AD and λ̂AD, can be obtained by mini-
mizing the following formula with respect to α, β, λ.(see MacDonald, 1971)

AD(α, β, λ) = −n− 1
n

n∑
i=1

(2i− 1)(log(F (xi:n;α, β, λ)) + log(F̄ (xn+1−i:n;α, β, λ)), (16)

where F̄ (x) = 1 − F (x). Also, one can obtain these estimators by solving the following
non-linear equations

n∑
i=1

(2i− 1)(ρ1(xi:n;α, β, λ)
F (xi:n;α, β, λ) − ρ1(xn+1−i:n;α, β, λ)

F̄ (xn+1−i:n;α, β, λ)
) = 0,

n∑
i=1

(2i− 1)(ρ2(xi:n;α, β, λ)
F (xi:n;α, β, λ) − ρ2(xn+1−i:n;α, β, λ)

F̄ (xn+1−i:n;α, β, λ)
) = 0,

and
n∑

i=1
(2i− 1)(ρ3(xi:n;α, β, λ)

F (xi:n;α, β, λ) − ρ3(xn+1−i:n;α, β, λ)
F̄ (xn+1−i:n;α, β, λ)

) = 0.
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where ρi(.;α, β, λ), i = 1, 2, 3 are given by (11)-(13).

The Right-tail Anderson-Darling (RAD) estimators of α, β and λ, say α̂RAD, β̂RAD

and λ̂RAD, can be obtained by minimizing the formula (17) with respect to α, β, λ. (see Tahir
et al. 2018)

RAD(α, β, λ) = n

2 − 2
n∑

i=1
F (xi:n;α, β, λ) − 1

n
(2i− 1)log(F̄ (xn+1−i:n;α, β, λ)), (17)

where F̄ (x) = 1 − F (x). Also, these estimators can be obtained by solving the following
non-linear equations

−2
n∑

i=1
ρ1(xi:n;α, β, λ) + 1

n

n∑
i=1

(2i− 1)ρ1(xn+1−i:n;α, β, λ)
F̄ (xn+1−i:n;α, β, λ)

= 0,

−2
n∑

i=1
ρ2(xi:n;α, β, λ) + 1

n

n∑
i=1

(2i− 1)ρ2(xn+1−i:n;α, β, λ)
F̄ (xn+1−i:n;α, β, λ)

= 0,

and
−2

n∑
i=1

ρ3(xi:n;α, β, λ) + 1
n

n∑
i=1

(2i− 1)ρ3(xn+1−i:n;α, β, λ)
F̄ (xn+1−i:n;α, β, λ)

= 0.

where ρi(.;α, β, λ), i = 1, 2, 3 are given by (11)-(13).

3.3. Maximum product of spacing (MPS) estimation

This approach was introduced using two methods. The first was by Cheng and Amin
(1983) via the idea of spacings. They proposed it as a general method of estimating param-
eters in continuous univariate distributions. They studied some properties of their approach
such as efficiency; consistency and others. Also, they compared it with the mle method via
some examples. The second was introduced by Ranneby (1984) who used an approximation
of Kullback-Leibler information like the mle method to derive this approach.
Let x1, x2, . . . , xn be a random sample of size n with the cdf G(.) in (2.1) and let x(1:n) <
x(2:n) < · · · < x(n:n) be the ordered observations. The uniform spacings of the sample is
defined as

Di(α, β, λ) = G(x(i:n);α, β, λ) −G(x(i−1:n);α, β, λ), i = 1, 2, · · · , n, (18)

where G(x(0:n);α, β, λ) = 0, G(x(n+1:n);α, β, λ) = 1 and ∑n+1
i=1 Di(α, β, λ) = 1.

The maximum product of spacings estimators α̂MP S, β̂MP S, and λ̂MP S of the parame-
ters α, β and λ are obtained by maximizing the geometric mean of the spacings with respect
to α, β and λ , i.e. maximizing (∏n+1

i=1 Di(α, β, λ))(1/(n+1)). Or, equivalently, maximizing the
function

D(α, β, λ) = 1
n+ 1

n+1∑
i=1

lnDi(α, β, λ).
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The estimators α̂MP S, β̂MP S, and λ̂MP S of the parameters α, β and λ are obtained by solving
the following non-linear equations

∂

∂α
D(α, β, λ) = 1

n+ 1

n+1∑
i=1

1
Di(α, β, λ)(ρ1(xi:n;α, β, λ) − ρ1(xi−1:n;α, β, λ)) = 0,

∂

∂β
D(α, β, λ) = 1

n+ 1

n+1∑
i=1

1
Di(α, β, λ)(ρ2(xi:n;α, β, λ) − ρ2(xi−1:n;α, β, λ)) = 0,

and

∂

∂λ
D(α, β, λ) = 1

n+ 1

n+1∑
i=1

1
Di(α, β, λ)(ρ3(xi:n;α, β, λ) − ρ3(xi−1:n;α, β, λ)) = 0,

where ρi(.;α, β, λ), i = 1, 2, 3 are given by (11)-(13).

4. Numerical Study for Different Estimation Methods

Now, a numerical study is carried out to compare the performance of the frequentist
estimators discussed above. To do this we compute absolute value of relative bias (ARbias),
scaled root mean square error (SRMSE), average absolute (Dabs) and maximum absolute
(Dmax) differences between the theoretical and empirical distribution function at the estimate
values (see Tahir et al., 2018). The formulas of these statistics take the forms:

ARbias(θ̂) = |bias(θ̂)|/θ, bais(θ̂) = 1
m

m∑
i=1

(θ̂i − θ),

SRMSE(θ̂) =
√
MSE(θ̂)/θ, MSE(θ̂) = 1

m

m∑
i=1

(θ̂i − θ)2,

Dabs = 1
nm

m∑
i=1

n∑
j=1

|F (xij, θ) − F (xij, θ̂)|, Dmax = 1
m

m∑
i=1

max
j

|F (xij, θ) − F (xij, θ̂)|,

and ∑
Ranks gives the partial sum of the ranks. A superscript indicates the rank of each

of the estimators for that metric. For example, Table 2 shows the ARbias of the MLE (α̂)
as 0.0727 for n=30. This indicates that the ARbias of (α̂)obtained using the method of ML
ranks 7th among all other estimators. For different sample sizes (n=30, 50, 100, 150), we
generate (m=1000) random samples from TINH distribution with parameters α = 2, 0.8, β =
1.5, 0.5 and λ = 0.5,−0.5. The results are reported in Tables 2-5 and one can note that in
most cases the ARbias and SRMSE of all estimators decrease when the sample size increases.
Also, Dabs is smaller than Dmax for all estimation methods and these statistics are smaller
when n increases. According to ∑

Ranks, CVM and LS are the best compared to the other
methods. Although the results are not reported here, we also performed simulation study
by taking several different values of λ. The trend of the results are quite similar as reported
in Table 2 through 5.
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Table 2: Numerical results for α = 2, β = 0.5, and λ = 0.5

n Estimate MLE MPS CVM AD RAD LS WLS
30 ARbias(α) 0.07217 0.03176 0.01101 0.02233 0.01572 0.02284 0.02345

SRMSE(α̂) 0.26747 0.21656 0.14751 0.18755 0.17844 0.15412 0.16923

ARbias(β̂) 0.04822 0.10135 0.03841 0.11407 0.11046 0.05743.5 0.05743.5

SRMSE(β̂) 0.35287 0.33126 0.19511 0.29235 0.27004 0.20892 0.21423

ARbias(λ̂) 0.15196 0.16717 0.05693 0.08464 0.09805 0.04012 0.00551

SRMSE(λ̂) 0.53686 0.60727 0.46223 0.42581 0.46434 0.44752 0.47135

Dabs 0.03647 0.01934 0.01413 0.02155 0.02326 0.00962 0.00961

Dmax 0.06306 0.06897 0.02383 0.03534 0.04035 0.01772 0.01721∑
Ranks 486.5 486.5 161 344 365 19.52 22.53

50 ARbias(α̂) 0.04126 0.29777 0.01192 0.01535 0.013693 0.00991 0.01504

SRMSE(α̂) 0.23117 0.18746 012961 0.15444 0.156245 0.13022 0.14293

ARbias(β̂) 0.06056 0.08817 0.01751 0.07742 0.07933 0.02704.5 0.02704.5

SRMSE(β̂) 0.33727 0.30706 0.14861 0.22905 0.21244 0.15072 0.17723

ARbias(λ̂) 0.16827 0.15486 0.07323 0.11184 0.12195 0.00391 0.04432

SRMSE(λ̂) 0.47606 0.51037 0.41405 0.37861 0.41394 0.39312 0.41303

Dabs 0.03107 0.01644 0.01023 0.01685 0.01816 0.00341 0.00872

Dmax 0.07297 0.06806 0.03223 0.04884 0.05325 0.00591 0.01932∑
Ranks 537 496 192 304 355 14.51 23.53

100 ARbias(α) 0.03977 0.01303 0.00401 0.02174 0.03246 0.00962 0.02235

SRMSE(α) 0.20557 0.14726 0.10131 0.12614 0.12905 0.10612 0.11033

ARbias(β) 0.03274 0.04505 0.01063 0.06966 0.08487 0.01921 0.01922

SRMSE(β) 0.29387 0.22336 0.11321 0.19785 0.17924 0.12272 0.14083

ARbias(λ) 0.11767 0.09674 0.04293 0.10636 0.10345 0.00441 0.06393

SRMSE(λ) 0.36916 0.39797 0.33835 0.29911 0.32944 0.32432 0.32823

Dabs 0.02306 0.10107 0.00532 0.01325 0.01314 0.00181 0.00783

Dmax 0.05487 0.04544 0.02112 0.04976 0.04835 0.00271 0.02993∑
Ranks 517 426 172 374 405 121 253

150 ARbias(α) 0.00622 0.01434 0.00251 0.02895 0.04197 0.01013 0.03436

SRMSE(α) 0.18717 0.12566 0.08562 0.11054 0.11305 0.00311 0.09893

ARbias(β) 0.06705 0.03774 0.01291 0.07296 0.09327 0.01612.5 0.01612.5

SRMSE(β) 0.28597 0.19435 0.10301 0.19486 0.16644 0.10622 0.12853

ARbias(λ) 0.09877 0.05664 0.00971 0.08625 0.09016 0.01602 0.05443

SRMSE(λ) 0.31516 0.33027 0.27985 0.23271 0.27164 0.27373 0.26152

Dabs 0.02047 0.00663 0.00262 0.01105 0.01156 0.00221 0.00704

Dmax 0.04687 0.02704 0.00461 0.04115 0.04296 0.00772 0.02593∑
Ranks 487 374.5 141 374.5 456 16.52 26.53
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Table 3: Numerical results for α = 2, β = 1.5, and λ = 0.5

n Estimate MLE MPS CVM AD RAD LS WLS
30 ARbias(α) 0.07157 0.03702 0.02081 0.04874 0.04733 0.06106 0.05265

SRMSE(α) 0.29857 0.22636 0.15871 0.20585 0.18853 0.17232 0.18984

ARbias(β) 0.06911 0.10503 0.08182 0.14717 0.14666 0.12005 0.10734

SRMSE(β) 0.41137 0.34746 0.21731 0.29665 0.29194 0.23092 0.25843

ARbias(λ) 0.16136 0.17027 0.09954 0.08873 0.11955 0.01352 0.01311

SRMSE(λ) 0.54276 0.59447 0.47044 0.43991 0.49485 0.45822 0.46853

Dabs 0.04097 0.01844 0.01583 0.02035 0.02176 0.00641 0.00962

Dmax 0.06766 0.07007 0.03674 0.03603 0.04835 0.01081 0.01622∑
Ranks 477 426 201 334 375 212 243

50 ARbias(α) 0.06027 0.03672 0.02771 0.04684 0.04995 0.05766 0.04143

SRMSE(α) 0.26297 0.20186 0.14831 0.18085 0.17394 0.15752 0.16583

ARbias(β) 0.04261 0.09725 0.07512 0.12377 0.12266 0.09713.5 0.09713.5

SRMSE(β) 0.36477 0.32276 0.19341 0.26525 0.25844 0.20742 0.22963

ARbias(λ) 0.10706 0.12487 0.08354 0.08425 0.07913 0.00961 0.03132

SRMSE(λ) 0.47196 0.52237 0.40793 0.38801 0.42345 0.39622 0.41244

Dabs 0.03047 0.01535 0.01183 0.01616 0.01474 0.00461 0.00872

Dmax 0.04826 0.05497 0.03675 0.03654 0.03443 0.00741 0.01372∑
Ranks 477 456 202 375 344 18.51 22.53

100 ARbias(α) 0.03872 0.04283 0.03421 0.04876 0.05167 0.04825 0.04484

SRMSE(α) 0.21007 0.16466 0.12241 0.14675 0.14634 0.12682 0.13353

ARbias(β) 0.04601 0.09825 0.07942 0.11477 0.11426 0.08743.5 0.08743.5

SRMSE(β) 0.39927 0.27186 0.16981 0.21504 0.22265 0.17492 0.19553

ARbias(λ) 0.08024 0.09186 0.08415 0.09227 0.07763 0.04131 0.05882

SRMSE(λ) 0.37056 0.40977 0.32704 0.30731 0.32705 0.31372 0.32323

Dabs 0.02217 0.01244 0.01083 0.01406 0.01255 0.00661 0.00952

Dmax 0.03734 0.04296 0.03945 0.04307 0.03613 0.01921 0.02742∑
Ranks 384.5 436.5 222 436.5 384.5 17.51 22.53

150 ARbias(α) 0.01061 0.03752 0.04013 0.05716 0.05847 0.04965 0.04754

SRMSE(α) 0.19557 0.15946 0.11441 0.13915 0.13504 0.11852 0.12253

ARbias(β) 0.06391 0.08955 0.08072 0.12157 0.11936 0.08603.5 0.08603.5

SRMSE(β) 0.30257 0.26047 0.16121 0.20354 0.21175 0.16552 0.18613

ARbias(λ) 0.06015 0.05544 0.04913 0.07407 0.06226 0.01871 0.04252

SRMSE(λ) 0.32346 0.34137 0.27844 0.26401 0.28865 0.26972 0.27783

Dabs 0.01957 0.01084 0.00792 0.01216 0.01085 0.00501 0.00813

Dmax 0.02976 0.02604 0.02333 0.03517 0.02955 0.00881 0.02012∑
Ranks 405 384 192 436.5 436.5 17.51 23.53
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Table 4: Numerical results for α = 0.8, β = 1.5, andλ = 0.5

n Estimate MLE MPS CVM AD RAD LS WLS
30 ARbias(α) 0.08417 0.02402 0.01131 0.03654 0.03063 0.05476 0.04245

SRMSE(α) 0.26157 0.21716 0.16451 0.17784 0.19145 0.16923 0.16712

ARbias(β) 0.05061 0.14625 0.09482 0.17417 0.16496 0.12923.5 0.12923.5

SRMSE(β) 0.45427 0.43606 0.27161 0.32054 0.35065 0.28642 0.29173

ARbias(λ) 0.14796 0.22637 0.09433 0.12585 0.11564 0.02512 0.02281

SRMSE(λ) 0.61356 0.65227 0.51212 0.49061 0.51633 0.52124 0.53135

Dabs 0.03697 0.02396 0.01573 0.02104 0.02115 0.00671 0.00872

Dmax 0.06126 0.088947 0.03763 0.04955 0.04544 0.01181 0.01352∑
Ranks 477 466 161 344 355 22.52 23.53

50 ARbias(α) 0.04987 0.02572 0.02381 0.04105 0.03864 0.04916 0.03653

SRMSE(α) 0.21237 0.18106 0.13712 0.15084 0.15985 0.14233 0.13571

ARbias(β) 0.06781 0.13095 0.10562 0.17317 0.14946 0.12163.5 0.12163.5

SRMSE(β) 0.42717 0.39806 0.24701 0.30164 0.30555 0.25302 0.257843

ARbias(λ) 0.09805 0.12977 0.08374 0.12076 0.07503 0.00011 0.02692

SRMSE(λ) 0.53556 0.58427 0.43863 0.43442 0.43954 0.43041 0.46485

Dabs 0.02897 0.01835 0.01343 0.01956 0.01524 0.00541 0.00832

Dmax 0.04455 0.05637 0.03634 0.05196 0.03203 0.01031 0.01242∑
Ranks 456.5 456.5 202 405 344 18.51 21.53

100 ARbias(α) 0.02471 0.03092 0.03393 0.04486 0.04275 0.04777 0.03614

SRMSE(α) 0.16327 0.15186 0.10782 0.11674 0.12645 0.11153 0.10301

ARbias(β) 0.06591 0.14586 0.11292 0.15767 0.13755 0.12253.5 0.12253.5

SRMSE(β) 0.37056 0.39467 0.21861 0.25384 0.26895 0.22362 0.24003

ARbias(λ) 0.09803 0.14016 0.11925 0.14477 0.10144 0.07621 0.08712

SRMSE(λ) 0.46576 0.51967 0.36962 0.38694 0.38583 0.36861 0.40705

Dabs 0.02167 0.01926 0.01273 0.01695 0.01314 0.00851 0.01042

Dmax 0.04523 0.06486 0.05545 0.06707 0.04694 0.03531 0.04042∑
Ranks 344 467 233 446 355 19.51 22.52

150 ARbias(α) 0.00211 0.04263 0.04514 0.05747 0.04545 0.05366 0.04122

SRMSE(α) 0.13806 0.14027 0.10172 0.11095 0.10894 0.10433 0.09171

ARbias(β) 0.10101 0.16646 0.13943 0.18547 0.13442 0.14394.5 0.14394.5

SRMSE(β) 0.36356 0.38437 0.22921 0.24124 0.23953 0.23222 0.24355

ARbias(λ) 0.09723 0.13165 0.13246 0.15977 0.09712 0.10104 0.09171

SRMSE(λ) 0.42076 0.45627 0.31442 0.33654 0.32983 0.30841 0.34455

Dabs 0.01947 0.01836 0.01384 0.01745 0.01173 0.01082 0.01061

Dmax 0.04602 0.06235 0.06306 0.07587 0.04613 0.04804 0.04361∑
Ranks 325 466.5 284 466.5 252 26.53 20.51
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Table 5: Numerical results for α = 0.8, β = 0.5, and λ = 0.5

n Estimate MLE MPS CVM AD RAD LS WLS
30 ARbias(α) 0.06037 0.03565 0.00271 0.02713 0.02232 0.04136 0.03144

SRMSE(α) 0.23347 0.22036 0.14721 0.16564 0.16845 0.15613 0.14792

ARbias(β) 0.08492 0.20427 0.07251 0.15556 0.14775 0.09893.5 0.09893.5

SRMSE(β) 0.43876 0.50167 0.25111 0.31264 0.32485 0.26353 0.25422

ARbias(λ) 0.16306 0.23357 0.04052 0.08905 0.08674 0.08293 0.03561

SRMSE(λ) 0.59896 0.68527 0.49272 0.46231 0.50964 0.49463 0.53435

Dabs 0.03657 0.02916 0.01283 0.02004 0.02025 0.01112 0.00871

Dmax 0.06586 0.09327 0.01872 0.03535 0.03473 0.03534 0.01601∑
Ranks 476 517 131 324 335 27.53 19.52

50 ARbias(α) 0.04287 0.03856 0.01281 0.031064 0.02743 0.03615 0.02442

SRMSE(α) 0.18747 0.18176 0.12452 0.13694 0.14745 0.13013 0.11301

ARbias(β) 0.05331 0.17577 0.06652 0.13436 0.11155 0.07813.5 0.07813.5

SRMSE(β) 0.38836 0.44977 0.21453 0.28095 0.26394 0.21392 0.21281

ARbias(λ) 0.11255 0.17957 0.06263 0.11316 0.07204 0.01832 0.00891

SRMSE(λ) 0.54206 0.62637 0.432262 0.43201 0.46124 0.43463 0.48175

Dabs 0.025157 0.022526 0.0097553 0.016555 0.012774 0.00392 0.00381

Dmax 0.04904 0.07817 0.02742 0.04925 0.03113 0.00871 0.06136∑
Ranks 436 537 181 365 324 21.53 20.52

100 ARbias(α) 0.00761 0.04866 0.02442 0.04947 0.03935 0.03544 0.03253

SRMSE(α) 0.15157 0.14566 0.09772 0.11545 0.10524 0.10053 0.08871

ARbias(β) 0.10264 0.18637 0.09111 0.18096 0.13325 0.09482.5 0.09482.5

SRMSE(β) 0.36916 0.39127 0.18851 0.25545 0.23144 0.18862 0.19433

ARbias(λ) 0.11475 0.15917 0.074643 0.158046 0.10054 0.02881 0.05712

SRMSE(λ) 0.44506 0.51137 0.34262 0.34543 0.36454 0.33721 0.37835

Dabs 0.02317 0.02036 0.01063 0.01935 0.01354 0.00621 0.00862

Dmax 0.05284 0.07347 0.03453 0.07306 0.04645 0.01311 0.02632∑
Ranks 405 537 202 436 354 15.51 20.53

150 ARbias(α) 0.00281 0.03674 0.03033 0.05447 0.04166 0.03845 0.02942

SRMSE(α) 0.13477 0.13266 0.09022 0.10795 0.09233 0.09494 0.07751

ARbias(β) 0.10202 0.14395 0.09971 0.18446 0.12434 0.10503.5 0.10503.5

SRMSE(β) 0.34076 0.34497 0.18461 0.24425 0.20994 0.19172 0.19183

ARbias(λ) 0.11865 0.12586 0.10093 0.17827 0.10604 0.07172 0.06901

SRMSE(λ) 0.40726 0.43847 0.29822 0.31033 0.31884 0.29051 0.32815

Dabs 0.02017 0.01675 0.01123 0.01896 0.01174 0.00852 0.00811

Dmax 0.05635 0.06006 0.04813 0.08477 0.05054 0.03412 0.03291∑
Ranks 395 466.5 182 466.5 334 21.53 17.51

5. Bayesian Estimation

In this section, Bayesian estimation of the three unknown parameters of the TINH dis-
tribution will be discussed. Approximate Bayes estimates are computed using the Gibbs sam-
pling procedure with generating samples from the posterior distributions. This requires prior
density functions of the unknown parameters (α, β and λ). Here, we assume that α, β and λ
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are independent random variables. The parameters α and β have gamma distributions while
λ follows uniform distribution. Their pdfs, respectively are g1(α) ∝ α(a−1)e(−bα), g2(β) ∝
β(c−1)e(−dβ) and g3(λ) = constant. The hyper-parameters a, b, c and d are assumed to be
known.

The joint prior distribution for (α, β and λ) takes the form g(α, β, λ) ∝ α(a−1)β(c−1)e(−bα−dβ)

and the likelihood function is given by

L(xxx;α, β, λ) ∝ αnβne−α
∑n

i=1 ln(1+βx−1
i )−1

e−
∑n

i=1(1+βx−1
i )e−α

∑n

i=1(1+βx−1
i )

∗ e−
∑n

i=1 ln(1+λ−2λe
(1−(1+βx−1

i
)α))−1

. (19)

Then the joint posterior is given by

g(α, β, λ|xxx) ∝ αn+a−1βn+c−1e−α(b+
∑n

i=1 ln(1+βx−1
i )−1)e−(dβ+

∑n

i=1(1+βx−1
i ))e−α

∑n

i=1(1+βx−1
i )

∗ e−
∑n

i=1 ln(1+λ−2λe
(1−(1+βx−1

i
)α))−1

. (20)

The conditional posterior distributions used in the Gibbs sampling algorithm are given by

g(α|β, λ,xxx) ∝ αn+a−1e−α(b+
∑n

i=1 ln(1+βx−1
i )−1)e−α

∑n

i=1(1+βx−1
i )

∗ e−
∑n

i=1 ln(1+λ−2λe
(1−(1+βx−1

i
)α))−1

, (21)
g(β|α, λ,xxx) ∝ βn+c−1e−α(b+

∑n

i=1 ln(1+βx−1
i )−1)e−(dβ+

∑n

i=1(1+βx−1
i ))e−α

∑n

i=1(1+βx−1
i )

∗ e−
∑n

i=1 ln(1+λ−2λe
(1−(1+βx−1

i
)α))−1

, (22)
and

g(λ|α, β,xxx) ∝ e−
∑n

i=1 ln(1+λ−2λe
(1−(1+βx−1

i
)α))−1

. (23)

The computation can be achieved using the WinBUGS software which requires only the
specification of the joint distribution for the data and the prior distributions for the model
parameters. Gibbs sampling algorithm works as follows

1. Specify the size of the samples we wish to generate, say m.

2. Choose an initial value of θθθ, say θθθ0 .

3. For iteration i from 1 to m, generate θ(i)
j from g(θj|θ(i)

1 , ..., θ
(i)
(j−1), θ

(i−1)
(j+1), ..., θ

(i−1)
p ),

for j from 1 to p.

4. Return the values θθθ(0), θθθ(1), ..., θθθ(m).

Discarding the early m0 number of burn-in draws and using the remaining m−m0,
θθθ(m0+1), θθθ(m0+2), . . . , θθθ(m), as the chosen draws from the joint posterior distribution, the Bayes
estimate of θj is

θ̂j =
∑m−m0

i=m0+1 θ
(i)
j

m−m0
, j = 1, 2, 3.
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Furthermore, the lower and upper bounds of the 100(1−ν)%, 0 < ν < 1, Bayesian probability
interval of θj can be obtained using ν/2 100 th and (1−ν/2) 100 th percentiles of the sequence
of the m−m0 draws; θ(m0+1), θ(m0+2), . . . , θ(m).
Here, we generate 10,000 samples of α, β and λ, after a “burn-in-sample” of size 1000 and
the approximate Bayes estimates with some posterior summaries, such as MC error, 95%
credible interval, median, are given in Table 6. Table 7 has the results of Bayesian estimation
for real data set (mentioned in the section 5) and the graphical representation of the marginal
posteriors of α, β and λ are displayed in Figure 3. One can note that the posteriors of α and
β are approximately normal while skewed for λ. Another MCMC method called Metropolis-
Hastings algorithm is used to generate random draws from the joint posterior distribution
without deriving its explicit form. Metropolis-Hastings algorithm unlike Gibbs-sampling,
it requires a proposal distribution and a common choice of it is the multivariate normal
distribution. Metropolis-Hastings algorithm steps are

1. Set the size of the random draws we wish to generate, say m.

2. Choose an initial value of θθθ, say θθθ(0).

3. For i = 1, 2, . . . ,m, repeat the following steps:

(a) Set θ(i) = θ(i−1).
(b) Generate a candidate value θ∗ from a proposal distribution p(θ(∗)|θ(i)).

(c) Calculate the ratio κ = min(1, g(θθθ(∗)|data)/p(θθθ(∗)|θθθ(i)

g(θθθ(i)|data)/p(θθθ(i)|θθθ(∗))).

(d) Generate a random value u from uniform distribution on (0, 1).
(e) Put θθθ(i) = θθθ∗, if κ ≥ u, otherwise put θ(i) = θ(i−1).

4. Return the values θθθ(0), θθθ(1), . . . , θθθ(m).

The lower and upper bounds of the 100(1 − ν)% Bayesian probability interval of θj as
given above. The computations are carried out using R software. We use the two previously
MCMC methods to analyze the same real dataset. We generate 10,000 samples of α, β and λ,
after a “burn-in-sample” of size 1000 with assuming gamma priors for α and β and uniform
prior for λ. The results of Bayesian estimation for real dataset are given in Tables 7-8. Table
7 has the results of Bayesian estimation for real data set (mentioned in the section 5) and
the graphical representation of the marginal posteriors of α, β and λ are displayed in Figure
5. One can note that the posteriors of α and β are approximately normal while skewed for
λ. Table 8 displays the posterior mean, median, standard deviation and the limits of a 95%
credible interval of each parameter. Figure 6 shows The approximated marginal Posterior
density functions of α, β and λ.
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Table 6: Summary results for the posterior parameters in the case of the TINH
model

Parameter n Estimate SD MC error 95% Credible Interval Median
α = 2 30 2.0140 0.4468 0.013930 (1.2990, 3.0340) 1.9660

50 2.3050 0.4715 0.017700 (1.5210,3.3660) 2.2540
100 1.9060 0.4109 0.021700 (1.2910,2.8780) 1.8400
150 1.7690 0.3769 0.022720 (1.2200,2.6930) 1.7090

β = 0.5 30 0.5695 0.1794 0.005541 (0.2963,0.0986) 0.5428
50 0.5178 0.1397 0.005364 (0.3031,0.8414) 0.5000
100 0.5614 0.1701 0.008805 (0.2924,0.9551) 0.5417
150 0.5597 0.1729 0.010350 (0.2776,0.9335) 0.5384

λ = 0.5 30 0.4009 0.2585 0.004148 (0.0172,0.9304) 0.3726
50 0.8234 0.1485 0.002417 (0.4459,0.9933) 0.8612
100 0.3069 0.1925 0.005165 (0.0181,0.7155) 0.2857
150 0.4439 0.1966 0.007221 (0.0585,0.8048) 0.4533

α = 2 30 1.9590 0.3896 0.011880 (1.3330, 2.8670) 1.9090
50 2.1540 0.3982 0.013320 (1.5060,3.0490) 2.1120
100 2.2250 0.4046 0.017630 (1.5400,3.1500) 2.1760
150 2.1170 0.3882 0.019640 (1.4970,2.9960) 2.0550

β = 1.5 30 1.5260 0.3962 0.012380 (1.4820,2.4280) 2.4280
50 1.7240 0.4165 0.014080 (1.0370,2.6490) 1.6800
100 1.4540 0.3508 0.014830 (0.8763,2.2910) 1.4230
150 1.4660 0.3605 0.018850 (0.8729,2.2600) 1.4400

λ = 0.5 30 0.7376 0.2166 0.002997 (0.1965,0.9917) 0.9917
50 0.7676 0.1897 0.003344 (0.2849,0.9909) 0.8152
100 0.6903 0.1674 0.002574 (0.3211,0.9637) 0.7069
150 0.3957 0.1627 0.003313 (0.0792,0.7070) 0.3990

α = 0.8 30 0.6644 0.1216 0.003085 (0.4721, 0.9483) 0.6484
50 0.7987 0.1368 0.003655 (0.5742,1.0200) 0.7822
100 0.7989 0.1256 0.005275 (0.5978,1.0800) 0.7839
150 0.8240 0.1186 0.005274 (0.6321,1.0950) 0.8093

β = 0.5 30 0.5976 0.2113 0.005306 (0.2687,1.0880) 0.5706
50 0.5635 0.1921 0.005415 (0.2774,1.0300) 0.5332
100 0.5212 0.1750 0.007392 (0.2570,0.9230) 0.4954
150 0.4990 0.1490 0.006292 (0.2595,0.8474) 0.4822

λ = 0.5 30 0.2354 0.1876 0.003029 (0.00653,0.6865) 0.1903
50 0.3402 0.2279 0.004328 (0.01394,0.8417) 0.3101
100 0.4408 0.2238 0.006032 (0.03971,0.8596) 0.4437
150 0.4422 0.1905 0.005595 (0.05382,0.7761) 0.4587

α = 0.8 30 0.9075 0.16500 0.004467 (0.6420, 1.2850) 0.8889
50 0.6691 0.09102 0.002224 (0.5147,0.8685) 0.6598
100 0.9733 0.14330 0.005941 (0.7385,1.2970) 0.9598
150 0.8045 0.10710 0.004466 (0.6268,1.0430) 0.7936

Continued on next page
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Table 6 – Continued from previous page
Parameter n Estimate SD MC error 95% Credible Interval Median
β = 1.5 30 1.2040 0.3524 0.009401 (0.6320,2.0060) 1.1590

50 1.8200 0.4637 0.011370 (1.0370,2.8300) 1.7790
100 1.3500 0.3489 0.014150 (0.7682,2.1310) 1.3140
150 1.4280 0.4045 0.016750 (0.7979,2.3730) 1.3710

λ = 0.5 30 0.6908 0.2128 0.002818 (0.1850,0.9612) 0.7307
50 0.1735 0.1394 0.002083 (0.00468,0.5163) 0.1409
100 0.7858 0.1563 0.003428 (0.4087,0.9894) 0.8163
150 0.3297 0.1892 0.005103 (0.02239,0.7159) 0.3160

Table 7: Summary results for the posterior parameters in the case of the TINH
model based on 128 bladder cancer patients (Gibbs sampling)

Parameter n Estimate SD MC error 95% Credible Interval Median
α 128 0.6774 0.04840 9.059E-4 (0.5871, 0.77580) 0.67620
β 5.1520 0.75810 0.01403 (3.8190,6.78600) 5.10800
λ 0.05183 0.05317 8.52E-4 (2.815E-4,0.1935) 0.03513

Figure 3: Posteriors of α, β and λ using Gibbs sampling for real data set
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Table 8: Summary results for the posterior parameters in the case of the TINH
model based on 128 bladder cancer patients (Metropolis-Hasting algorithm)

Parameter n Estimate SD 95% Credible Interval Median
α 128 0.6481 0.03593 (0.5834, 0.7227) 0.64583
β 0.0640 0.38463 (4.6554, 5.9891) 5.6639
λ 0.05183 0.04823 (0.01154, 0.1956) 0.05007

From Tables 7-8, one can note that all Bayesian point estimates are close however the
Metropolis-Hastings provides narrower credible intervals.

6. Applications

Now, to illustrate the potentiality of the TINH distribution, we use a real data set and
show that the new distribution is fit to this data set. The data set represents the remission
times (in months) of a random sample of 128 bladder cancer patients. Bladder cancer is a
disease in which abnormal cells multiply without control in the bladder. The most common
type of bladder cancer recapitulates the normal histology of the urothelium and is known as
transitional cell carcinoma. The data are as follows: 0.08, 0.20, 0.40, 0.50, 0.51, 0.81, 0.90,
1.05, 1.19, 1.26, 1.35, 1.40, 1.46, 1.76, 2.02, 2.02, 2.07, 2.09, 2.23, 2.26, 2.46, 2.54, 2.62, 2.64,
2.69, 2.69, 2.75, 2.83, 2.87, 3.02, 3.25, 3.31, 3.36, 3.36, 3.48, 3.52, 3.57, 3.64, 3.70, 3.82, 3.88,
4.18, 4.23, 4.26, 4.33, 4.34, 4.40, 4.50, 4.51, 4.87, 4.98, 5.06, 5.09, 5.17, 5.32, 5.32, 5.34, 5.41,
5.41, 5.49, 5.62, 5.71, 5.85, 6.25, 6.54, 6.76, 6.93, 6.94, 6.97, 7.09, 7.26, 7.28, 7.32, 7.39, 7.59,
7.62, 7.63, 7.66, 7.87, 7.93, 8.26, 8.37, 8.53, 8.65, 8.66, 9.02, 9.22, 9.47, 9.74, 10.06, 10.34,
10.66, 10.75, 11.25, 11.64, 11.79, 11.98, 12.02, 12.03, 12.07, 12.63, 13.11, 13.29, 13.80, 14.24,
14.76, 14.77, 14.83, 15.96, 16.62, 17.12, 17.14, 17.36, 18.10, 19.13, 20.28, 21.73, 22.69, 23.63,
25.74, 25.82, 26.31, 32.15, 34.26, 36.66, 43.01, 46.12, 79.05. These data were studied by Zea
et al. (2012), among others. According to real data set the maximum likelihood estimates
are obtained for the TINH distribution as follow:
α̂ = 3.15, β̂ = 1.8 and λ̂ = 0.85.
Given the cumulative distribution function F0(x) of the hypothesized distribution (here
TINH distribution) and the empirical distribution function Fdata (x) of the observed data,
the popular Kolmogorov-Smirnov goodness of fit test (K-S) was carried out at 5% level of
significance. The test statistic is given by:D = sup

x
|F0(x)−Fdata(x)|.For above data set, K-S

statistic D = 0.117 with p-value 0.1 > 0.05.

In many applications, there is qualitative information about the hazard rate shape,
which can help with selecting a particular model. The empirical scaled TTT transform
(Aarset, 1987) can be used to identify the shape of the hazard function. The scaled TTT
transform is convex (concave) if the hazard rate is decreasing (increasing), and for bathtub
(unimodal) hazard rates, the scaled TTT transform is first convex (concave) and then concave
(convex). The TTT plot for complete data is the plot of (i/n,G(i/n)), where G( i

n
) =∑i

j=1 Tj:n+(n−i)Ti:n∑n

j=1 Tj:n
for i = 1, 2, . . . , n, ∑i

j=1 Tj:n + (n − i)Ti:n is the total time on test at the
ith failure for i = 1, 2, . . . , n and T(j:n), j = 1, 2, . . . , n, are the order statistics of the sample.
Figure 4 presents TTT of complete data. As displayed in Figure 4: the TTT plot has first
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Figure 4: The approximated marginal Posterior density functions of α, β and λ
using Metropolis-Hastings for real data set

a concave shape and then a convex shape. It depicts a unimodal shaped failure rate which
agrees with the estimated parameters.

Figure 5: the TTT for real data set



2022] Transmuted Inverted N-H distribution 71

Now we will compare the fits of the TINH, TMIW, TMIR, TMIE and MIW models
by mean of another real data set to illustrate the potentiality of the TINH model. The cdfs
associated with the competitive models are given by:

FT MIW (x) = e−γx−1−βx−α(1 + λ− λe−γx−1−βx−α), z > 0, α, β, γ > 0 and |λ| ≤ 1,
FT MIR(x) = e−γx−1−βx−2(1 + λ− λe−γx−1−βx−2), z > 0, β, γ > 0 and |λ| ≤ 1,
FT MIE(x) = e−(γ+β)x−1(1 + λ− λe−(γ+β)x−1), z > 0, β, γ > 0 and |λ| ≤ 1,
FMIW (x) = e−γx−1−βx−α

, z > 0, α, β > 0, and γ > 0.

The following data represents a complete data with the exact times of failure. This data
is considered a data set of the life of fatigue fracture of Kevlar 373/epoxy that are subject to
constant pressure at the 90% stress level until all had failed. The data are: 0.0251, 0.0886,
0.0891, 0.2501, 0.3113, 0.3451, 0.4763, 0.5650, 0.5671, 0.6566, 0.6748, 0.6751, 0.6753, 0.7696,
0.8375, 0.8391, 0.8425, 0.8645, 0.8851, 0.9113, 0.9120, 0.9836, 1.0483, 1.0596, 1.0773, 1.1733,
1.2570, 1.2766, 1.2985, 1.3211, 1.3503, 1.3551, 1.4595, 1.4880, 1.5728, 1.5733, 1.7083, 1.7263,
1.7460, 1.7630, 1.7746, 1.8275, 1.8375, 1.8503, 1.8808, 1.8878, 1.8881, 1.9316, 1.9558, 2.0048,
2.0408, 2.0903, 2.1093, 2.1330, 2.2100, 2.2460, 2.2878, 2.3203, 2.3470, 2.3513, 2.4951, 2.5260,
2.9911, 3.0256, 3.2678, 3.4045, 3.4846, 3.7433, 3.7455, 3.9143, 4.8073, 5.4005, 5.4435, 5.5295,
6.5541, 9.0960. This data is considered by Ogunde et al. (2017). For model comparison,
we consider some well-known measures such as the Akaike information criterion (AIC), the
Bayesian information criterion (BIC), the consistent Akaike information criterion (CAIC)
and the Hannan-Quinn information criterion (HQIC). These criterions are defined by:

AIC = −2l(θ̂θθ) + 2p;
BIC = −2l(θ̂θθ) + plog(n);

CAIC = −2l(θ̂θθ) + 2pn
n− p− 1;

HQIC = −2l(θ̂θθ) + 2log(log(n)).

where l(θ̂θθ) denotes the log-likelihood function evaluated at the maximum likelihood estimates
for parameters θθθ, p is the number of parameters and n is the sample size. The model with
minimum AIC (or BIC, CAIC and HQIC) value is chosen as the best model to fit the data.
Also we consider the statistics AD (A*) and CVM (W*) to compare the models, where
lower values of these statistics indicate a good fit. Table 9 lists the mles of the model
parameters, the values of the measures AIC, BIC, CAIC and HQIC and from this table
one can conclude that the TINH model provides a better fit to the current data than the
other models. Furthermore, the values of the statistics in Table 10 indicate the TINH model
provides the best fit compared to the other models.
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Table 9: The MLEs and some measures for the fitted models

Model Estimates l(θ̂θθ) AIC BIC CAIC HQIC
TINH α̂ = 0.60, β̂ = 1.99, λ̂ = .08 -145.6 297.13 304.12 297.46 299.92
TMIW α̂ = 0.69, β̂ = 1.09, λ̂ = 0.97, γ̂ = 0.17 -150.4 308.73 318.05 309.29 312.45
TMIR β̂ = 0.01, λ̂ = 0.57, γ̂ = 0.68 -189.3 384.69 391.68 385.02 387.48
TMIE β̂ = 0.50, λ̂ = 0.02, γ̂ = 0.12 -163.5 332.92 339.91 333.25 335.71
MIW α̂ = 0.71, β̂ = 0.74, γ̂ = 0.14 -155.4 316.7 323.7 317.1 319.5

Table 10: Statistics A* and W*

Distribution A* W*
TINH 4.120 0.693
TMIW 4.983 0.851
TMIR 8.529 1.542
TMIE 6.851 1.206
MIW 5.720 0.988
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Abstract 
Sentiment analysis (SA) is a process of text analysis and is also called an area of Natural 

Language Processing (NLP). NLP is concerned with finding the emotions or opinions within 
the text. NLP is used to classify the opinions with the user's expression in text reviews and to 
analyze whether the user text is positive or negative. The data are drawn from various resources 
such as web blogs, social media sites, e-commerce, online banking, etc.  The research work 
focuses on the lexicon method and the data are collected from Twitter comments data using the 
Kaggle website. A new Senti_Con_Acro algorithm is proposed in this paper. The proposed 
work is focused on sentiment acronyms, emoticons, and contextual sentiment. The result of the 
proposed work is to improve the accuracy and efficiency of existing work. 
 
Key words: Sentiment analysis; Lexicon based approaches; Contextual words; Emoticons; 
Acronyms. 
 
1.  Introduction 

Sentiment analysis (or opinion mining) is a natural language processing technique used 
to determine whether the data is positive, negative, or neutral. Sentiment analysis on textual 
information is also done to allow companies to track consumer feedback on brand and product 
sentiment and to understand customer needs. The advancement of social media and an 
increasingly wide range of communicating networks are sharing ideas and opinions among 
people everywhere in the world.  Such comments and reviews are believed to essential assets 
for the users (Sankar, 2019). In recent years, a large number of people are accessing the Internet 
and social media. Smart devices have empowered users to share their expressions or opinions 
explicitly over social media and this information can reach a large audience in a fraction of 
seconds. 
 

Sentiment analysis relate to the identification and other information on the feelings and 
attitudes expressed in natural language texts, opinions, and beneficial evaluations. It is well 
established and subject to considerable research to identify information relating to products, 
companies, and other commercial entities automatically. Sentiment analysis can be useful for 
handling customer feedback automatically, for concentrating advertising and for analyzing 
consumer trends and trends (Mullen, 2006). 

 
Sentiment Analysis provides tools to analyse this information such as user feelings, 

emotions, product reviews, social media chats, comments and posts. SA has become popular 
in online communities to find business giants in mining consumer minds and enhanced business 
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performance in recent years. It is considered to be an effective method for classifying user 
reviews into either positive or negative polarities. Data analytics researches and organizations 
to find the opinion of customers thinking and emotions. Sentiment analysis tools have 
identified their feeling and emotions to text. Mostly sentiment tools have been done at sentence 
and document level reviews. SA has three main approaches namely lexicon-based method, 
Machine Learning (ML) and hybrid approaches Liu (2015). 

 
The lexicon-based method is tagged with polarity detection and the word or phrases 

whether determine positive or negative. ML tools are used to classify the training dataset. It 
automatically identifies the product reviews, online banking, etc (Devika, 2016). The hybrid 
approach of sentiment analysis exploits both Machine Learning methods and lexicon-based 
methods for polarity detection (Katrekar 2010). 
 

Many challenges are similar to those of traditional feeling analysis, but they are not 
always identical. It is well known that people have ambiguous expressions of their sentiments 
and opinions. The Proposed work will identify the contextual words, acronyms, and emoticons 
in the text. The Literature Review describes existing work and a comparison of existing works 
and the proposed work describes the Senti_Con_Acro algorithm model and the experiments 
results. Finally, the conclusion and references are the final sections in this research work.    

 
2.  Literature Review 

Yousif (2017) proposed and analyzed scientific citation sentiment analysis challenges 
and issues. They classified citation function and citation recommendation to have huge 
consideration of Sentiments. They identified data preprocessing methods used in scientific SA 
and presents citation context extraction, future extraction, and user’s data sources. 
 

Xie (2017) proposed maximum entropy probabilistic latent semantic analysis (ME-
PLSA). This method extracts seed emotion words from Wikipedia and training corpus data. 
The maximum entropy model tests the process of emotion classification. K-fold model divides 
the training set and the test set. The emotional classification method classifies words such as 
relevant of words, part of speech in context, some similarity emotional words, and the relevance 
of degree adverbs and so on.  
 

Felipe (2018) proposed a recommendation process in SA to textual data. They classified 
Facebook and Twitter datasets and classified all negative review posts. They evaluated the 
issues of data scarcity in e-commerce. The recommended system increased the assertiveness 
of the recommendation process. Support Vector Machine (SVM) algorithm classified the 
dataset and increased the performance of real data.  
 

Chen (2018), proposed pre-trained character embedding with a Dual-Channel 
Convolutional Neural Network (char-DCCNN) in Sentiment analysis. They represent vector-
matrix using the input text in a two-channel convolutional neural network. One channel is static 
and another one is fine-tuned. They collected the microblog sentiment dataset and identified 
the reviews such as film, sports, social and other filed of datasets. The Char-DCCNN method 
classified this dataset.  
 

Dasa (2018) proposed real-time SA of Twitter streaming data for stock prediction. 
Streaming data find the source of data analysis collected in real-time. Streaming data normally 
deals with a continuous flow of data. The data carries information such as websites, social 
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media, mobile phone applications, server logs, etc. The active learning algorithm analyzed the 
data and predicted user behavior in a ceaseless manner. Long short-term memory helps to 
stream online data prediction and provided better results.  

 
Thelwall (2017) proposed a lexicon sentiment analysis for identifying gender biases. The 

lexical sentiment algorithm detects strong positive from female categories and negative from 
male categories. A social media monitoring algorithm is used to find the male and female 
attitudes in social media. They found out that the people’s opinions and the SentiStrength tool 
gave a better performance. They compared both male and female different levels of 
communication in sentiment analysis and accurate data. 

 
Hassan (2016) proposed contextual semantic sentiment analysis for Twitter data. They 

detected the sentiment analysis of two levels such as entity level and tweet-level. They 
described three data sets such as StentiStrength during lexical words and the term of strength 
that is fixed data or unchanged data and another one is SentiCircles it dynamically changes the 
contextual words. They used SentiCircles data sets for lexicon-based sentiment identification 
at both levels of sentiment detection. These approaches enhanced the performance of other 
datasets. 

 
Alexander (2010) proposed sentiment classification using an automatic corpus collection 

method in the training set. They used TreeTagger for POS tagging and compared the difference 
in polarity sets. They used synthetic structures, it is described to emotions and or opinion state 
facts.  They collected corpus training data sets and classified the data as positive, negative, and 
neutral. The classification method such as naïve Bayes uses the N-gram and Part of Speech 
(POS) tagging method.  
 

Raghavendra (2019) proposed the Rule-Based Modeling (RBM) method for 
sentiment lexicon analysis. They collected from the dataset of Cornell's review data and 
identified the data whether it is positive or negative reviews in text files. The RBM 
classified the data and gave better performance results in existing lexicon methods. The 
RBM is highly regarded as both a sentiment analysis and feature extraction tools. 

Table 1: Comparative details of existing work 
 

Authors Approaches/ 
Classification 

Dataset Advantages Disadvantages 

Jiangfeng, 
(2019) 

• Aspect-Level 
Sentiment 
Classification,  

• NLP, 
• Gaussian 

kernel, 
• Information 

retrieval 

Social 
Media 

• The sentence is 
hidden on the 
LSTM layer. 

• Improved the 
performance of 
aspect-level 
sentiment 
classification 

• Influence among 
different aspects 
when one 
opinionated 
sentence owns 
more than one 
aspect terms 

Reinald, 
(2018) 

• Sentence 
classification. 

• NLP 

Social 
Media 

• Classification 
performance 
and achieves 
state-of-the-art 
performance 

• Complex NLP 
tasks. 

• Inaccurate 
translations thus 
data producing 
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noisy sentence 
vector 

Al-Kabi 
(2018) 

• Arabic text 
classification 

• Opinion mining 
• Naïve Bayes 
• SVM 
• K-NN 

Arabic • Effectiveness of 
two free online 
tools  such as 
social mention 
and 
SentiStrength 

• Unable to extract 
the stem of all 
slang words 

• Dataset is not 
stemmed 

• The problem of 
spelling mistakes 
and repetition of 
letters and 
characters 

Parinda (2019) • Machine 
learning 
techniques 

• Information 
Extraction 

• NLP 
• Naive Bayes 
• POS tagging 

Social 
Media  

• Flexible and 
customizable 
way of 
generating 
connections 
between data 
sources 

Low quality data 
size 

Douglas, 
(2013). 

• Dictionary-
based 
approaches 

• Conjunction-
based approach 

Blog posts 
 

• Applied to older 
corpuses 

• Develop a class 
of minimally-
supervised 

• The size of the 
dictionary 

• The sensitivity of 
various dictionaries 

Jonathan, 
(2017), 

• Machine 
Learning 

• Semantic 
parsing 

Social 
media 

• Parse utterances 
in unseen 
domains by 
decoupling 
structure 
mapping 

• Improved 
generalization 
such as 
dependency 
trees, syntactic 
CCG parses 

• Structure 
distribution in the 
target domain is 
very different from 
the source 

• Datasets where 
only denotations 
are provided 

• Average accuracy 

Hassan, 
(2016), 

• Supportvector
machine(SVM) 

• Maximumentro
py(maxent) 

Twitter  • Higher 
performance in 
detecting neutral 
entities 

 

• Influence on 
performance. 

• Different sentiment 
orientations 

Mike, (2017). Phrase-level 
sentiment 
analysis 

Twitter • Automatically 
Identify the 
contextual 
polarity for a 
large subset 

Low accuracy 
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3.  Proposed Work 
   
  The Proposed work section highlights on analysis of Twitter data, based on lexicon 
approaches. The Senti_Con_Acro algorithm framework model is proposed in this research 
work. Figure 1. shows the proposed Senti_Con_Acro algorithm framework model. The 
proposed Senti_Con_Acro algorithm model process contains several phases that follow as:  
 
3.1.    Senti_Con_Acro model framework 
 

 
Figure 1: Framework for Senti_Con_Acro algorithm 

 
Phase 1: Data Preprocessing 

 
Data Preprocessing is a process of making unstructured data into structured data. It is 

often inconsistent, incomplete, and contains a lot of certain behaviors or product reviews and 
data many errors. Data preprocessing contains data preparation and data cleaning. 

 
Data Preparation 
 

Data preparation is a collection of a dataset from various resources like social media, e-
commerce, web blogs, etc. In the proposed work, the data is collected from the Twitter dataset 
which is collected from the Kaggle website.  

 
Data Cleaning 

 
Data cleaning is the next step of data preprocessing. It refers to the process of cleaning 

to missing values, noisy data and inconsistent data. It also removes stop words and non-English 
words, etc. the Twitter dataset is cleaned and processed from the proposed work. The data 
cleaning contains three important steps that are as follows: 
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Tokenization 
 
Tokenization is the process of splitting longer text into small pieces of text. It is also 

called text segmentation or lexical analysis. 
 

Stemming 
 

Stemming is a process of reducing words to the word stem from the dataset. Stemming 
algorithms have two types namely Porter stemmer and Lancaster Stemmer. Porter stemming 
removes morphological words and Lancaster stemmer removes aggressive words. It is used to 
determine domain vocabularies in domain analysis. 

 
Lemmatization 

 
Lemmatization is to access lexical knowledge bases and to get the correct sentence from 

the words. It is used for the WorldNet corpus and stops words in the corpus. 
 

Phase 2:  Feature Extraction 
 
Feature extraction is the second stage of the proposed work. The text features are extracted 

from different ways that are as follows: 
 

i. Unigram feature 
 
In the proposed work Unigram features assume that the occurrence of each word is 

independent of its previous word. The proposed work counts all the input words using the 
unigram method. Hence each word becomes a gram (feature) here. For example: 
"I", "have", "a", "lovely", "dog." 
 
ii. Contextual words  

 
The contextual words are called the different set of words or phrases. The proposed work 

identifies the user behavior or product performance in sentiment analysis. The contextual 
dictionary increasing content constantly which provides unmatched opportunities to support 
decision-making processes and advocacy efforts. Table 2 shows some examples of contextual 
words to convert acronyms of dictionary words.  

 
Table 2: Contextual words to a dictionary word 

 

Context Words  Dictionary Words 
Abrupt Sudden 
Up-To-Date Informed 
Percepts Perceived 
Present Existing 
Common Public 
Constant Continual 
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iii. Emoticons 
 
The emoticons are emojis that identify the user behaviors and expressions. There is n number 
of emojis/ emoticons available in the emoticon dictionary. These emojis identify the positive 
and negative expressions in sentiment analysis algorithms. The proposed work identifies the 
emoticons and determines them as a positive or negative value. Figure 2 displays sentiment 
polarity using emoticons.  
 

 
Figure 2: Emoticon Dictionary 

 
iv. Acronyms 

 
Abbreviations or acronyms are widely used in text materials to reduce space. The text in 

such areas consists of one to two sentences or a few sentences such as text messages, social 
media comments and blog posts. Customers may use or add new abbreviations or short word 
types, i.e. fast communication acronyms which rarely appear in regular or modern text, for 
these messages. Text as "TIA" for "Thank You in advance" is, for instance, common in these 
fields and for the machine. The textual significance of the texts could hardly be accurately 
understood. The high-rate text adds new abbreviations that can impact the reliability of the 
emotional analysis. To solve this problem, abbreviations must be extracted and identified 
before the sentiment method is performed. 
 
Phase 3: Polarity Detection 

 
Polarity detection is the third stage of the proposed work. Sentiment polarity determines 

three types of sentiment analysis that is positive, negative, and neutral.  Sentiment polarity 
returns the overall opinion of a  text or document in one single issue.  The opinions classify 
into two opposing sentiment polarities are called positive or negative or introduce as neutral 
while the position of opinion locates between these two polarities. An opinionated text and 
categorizing it based on overall positive, neutral, and negative classes is called sentiment 
polarity classification.  

  
Phase 4: Frequency Occurrence 

 
Once the feature is extracted, they are used as input for supervised lexicon-based 

approaches for further classification. Generally, the frequency of occurrence of a keyword is a 
more suitable feature in overall sentiment analysis and not necessarily indicated by repeated 
use of keywords.  
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Brevity’s law (also called  Zipf's law) states that if words of a language are sorted in the 
order of decreasing frequency of usage, a word's frequency is inversely proportional to its rank, 
or sequence number in the list. The Brevity’s Mandelbrot law equation is federated as the 
frequency of the sentiments which is measured as low rank and high-rank ratio and categorized 
through the deviancy of the power law. Brevity’s Mandelbrot law check the ranking value if k 
>k0 is greater than the k0 value which gives the ranking is same in order the k value less than 
k0 the value is added as k0 + k 

 
 (DT) ßfk ∞(k0 + k)-b  
where, f ← frequency of a word,  

k ← ranking of a word 
 DT ← Input data 
 
Algorithm: Senti_Con_Acro 
Phase 1: Pre-Processing 
 
Input:Tweets (DT)  
Output: Processed Tweets <dt’1, dt’2, .., dt’n> equivalent to <dt1,dt2,dt3…dtn>  
Begin 
 for each tweet do 
  apply unigram and skip-gram // feature selection 
  remove URLs, username. 
  replace a repeated character by two or more indication of the same  
 character 
 if w is a stop word next 
  remove w from DT 
 else if w is a neighboring word next 
  Detect the contextual word from the DT to assign W 
 end if 
 end for 
return processed Tweets DT' 
End 
 
Phase 2: Feature Extraction 
 
If DT word found in the dictionary then 
 If DT word is a Neighboring word then 
  Replace the equivalent word in a contextual word  
 Else if DT word is an acronym then 
  Replace the equivalent word for acronyms 
 Else if DT word is emoticons then 
  Replace the equivalent word for emoticons 
            Else  

Identify the word is acronyms, and emoticons insert into the dictionary with 
equivalent meaning. 

Else 
Identify the word is acronyms, and emoticons insert into the dictionary with 

equivalent meaning.  
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Phase 3: Polarity Detection 
 
For each DT word 

DT word polarity ß DTp +DTne+ DTnu 
DTp ß ∑ 𝑑𝑡	𝑝(𝑖)!

"#$  
DTne ß∑ 𝑑𝑡	𝑛𝑒(𝑖)!

"#$  
DTnu ß ∑ 𝑑𝑡	𝑛𝑢(𝑖)!

"#$	  
∑ 𝑑𝑡!
"#$  Polarity ß sum (∑ 𝑑𝑡	𝑝(𝑖)!

"#& , ∑ 𝑑𝑡	𝑛𝑒(𝑖)!
"#& , ∑ 𝑑𝑡	𝑛𝑢(𝑖)!

"#&  
  For each dt 
   If dt p(i) > dt nu(k) > DT Class (i) ß positive 
    Else if dt ne(i) < dt nu(i) > DT Class (i) ß Negative 
   Else dt nu(i) ß Neutral 
  End for 

If DTp > DTne && DT nu then DT is positive impact 
Else if DTne< DTnu and DTp then DT is negative impact 
Else 

DT is Neutral 
End for 
Phase 4: Frequency Occurrence 
 

For each DT type 
Frequency occurrences (DT) ßfk ∞ (k + k)-b 
Max(f) then 
Rank ß min 

End for 
End 

 
3.2. Results 

 
3.2.1. Confusion matrix 

 
A confusion matrix is a table that is often used to describe the performance of a 

classification model on a set of test data for which the true values are known. Table 3. Shows 
the classification of a test dataset produces four outcomes – true positive, false positive, true 
negative, and false negative. 

 
Table 3: Confusion matrix classification of a test dataset 

 

 
 

• True Positives (TP) - These are the correctly predicted positive values which mean that the 
value of the actual class is yes and the value of the predicted class is also yes. 
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• True Negatives (TN) - These are the correctly predicted negative values which mean that 
the value of the actual class is no and value of the predicted class is also no. 

 
• False Positives (FP) – When the actual class is no and the predicted class is yes.  
 
• False Negatives (FN) – When actual class is yes but predicted class is no. 
 
3.2.2. Basic measures derived from the confusion matrix 

Various measures can be derived from a confusion matrix. These are follow as: 

Ø Precision - Precision is the ratio of correctly predicted positive observations to the total 
predicted positive observations. High precision relates to the low false-positive rate. In this 
proposed work done 0.7875 pretty good precision. 

 
Precision = TP/TP+FP 

 
Ø Recall (Sensitivity) - Recall is the ratio of correctly predicted positive observations to all 

observations in actual class - yes. In this proposed work is done recall of 0.7552 is good for 
this model as it’s above 0.5. 

 
Recall = TP/TP+FN 

 
Ø F-Measure – F-measure is the weighted average of Precision and Recall. Therefore, this 

score takes both false positives and false negatives into account. If the cost of false positives 
and false negatives are very different, it’s better to look at both Precision and Recall. In the 
proposed work done the F-measure is 0.7717. 

 
F1 Score = 2*(Recall * Precision) / (Recall + Precision) 

 
Ø Accuracy - Accuracy is the most intuitive performance measure and it is simply a ratio of 

correctly predicted observation to the total observations. For the proposed model, done 
0.8093 which means the proposed model is approx. 81% accurate. 

 
Accuracy = TP+TN/TP+FP+FN+TN 

 
3.2.3. Comparison results of the existing work 

 
Table 4: Comparison results of the proposed work and existing work 
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3.2.4. Result for the proposed work 
 

Table 5: Result for the Proposed Work  
 

 
 

 

 
 

Figure 3: Evaluation measures from the confusion matrix 
 

In this proposed work the statistical analysis of confusion matrix is applied to predict the 
result of emoticons, acronyms, contextual words with acronyms, and sentiments. Mainly 
sentiment analysis results are also predicted. The results are compared with the existing work 
and it brings better results than existing work. 
 
4.  Conclusion 
 

Sentiment analysis is a platform of text analysis. It’s identifying people's opinions, 
emotions, and sentiments, etc.  This paper focused on lexicon-based sentiment analysis. A new 
Senti_Con_Acro Algorithm has been proposed to identify sentiment acronyms, emoticons, and 
contextual words.  The emoticons, acronyms, contextual acronyms, and sentiments have been 
evaluated. This proposed work has given better results than the existing work. In the future, an 
image-based emotion detection method using different sentiment analysis approaches can be 
carried out to find the sentiments and to improve the accuracy to handle different evaluation 
metrics.  
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Abstract
Frailty models are used in the survival analysis to account for the unobserved hetero-

geneity in individual risks to disease and death. To analyze the bivariate data on related
survival times (e.g. matched pairs experiments, twin or family data), the shared frailty mod-
els were suggested. Shared frailty models are used despite their limitations. To overcome
their disadvantages correlated frailty models may be used. In this paper, we introduce the
correlated inverse Gaussian frailty models based on reversed hazard rate with three different
baseline distributions namely, the generalized log-logistic type I, the generalized log-logistic
type II and the modified inverse Weibull. We introduce the Bayesian estimation procedure
using Markov Chain Monte Carlo (MCMC) technique to estimate the parameters involved
in these models. We present a simulation study to compare the true values of the parameters
with the estimated values. We also apply the proposed models to the Australian twin data
set and a better model is suggested. . . .

Key words: Australian twin data; Bayesian estimation; Correlated inverse Gaussian frailty;
Generalized log-logistic distribution; MCMC; Modified inverse Weibull distribution; Re-
versed hazard rate.

AMS Subject Classifications: 62F15; 62N01; 62P10

1. Introduction

Frailty models are extensively used in the survival analysis to account for the unob-
served heterogeneity in individual risks to disease and death. The frailty model is a random
effect model for time to event data which is an extension of the Cox’s proportional hazards
model. To analyze the bivariate data on related survival times (e.g. matched pairs exper-
iments, twin or family data), the shared frailty models were suggested. Bivariate survival
data arises whenever each study subjects experience two events. Particular examples include
failure times of paired human organs, (e.g. kidneys, eyes, lungs, breasts, etc.) and the first
and the second occurrences of a given disease. In the medical literature, several authors
considered paired organs of an individual as a two-component system, which work under in-
terdependency circumstances. In industrial applications, these data may come from systems
whose survival depend on the survival of two similar components.
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Research on the bivariate survival models has grown rapidly several years in the past.
Clayton’s (1978) random effect model of the bivariate survival was a key innovation. He in-
troduced the notion of the shared relative risk. This model was further developed by Oakes
(1982) to analyze the association between two non-negative random variables. Clayton and
Cuzick (1985) added observed covariates to the bivariate survival model with the shared rel-
ative risk. Crowder (1985) and Hougaard (1986) proposed the random effect models of the
bivariate Weibull distributions. A shared frailty model with a positive stable distribution of
frailty was suggested by Hougaard (1987). He also discussed several other bivariate distribu-
tions with biomedical and reliability applications. Oakes (1989) developed a shared frailty
model related to the “archimedean distributions” studied by Genest and MacKay (1986). He
also proposed a local time dependent association measure between bivariate life spans and
discussed its use for a large class of bivariate survival functions. Vaupel (1991), Vaupel et
al. (1991), Nielsen et al. (1992) studied genetic and environmental influences on longevity
using bivariate survival models.

Hanagal (2006) discussed the gamma frailty regression model in the bivariate survival
data and Hanagal (2007) also presented the gamma frailty regression models in the mix-
ture distributions. Hanagal and Dabade (2013), Hanagal and Bhambure (2015, 2016) and
Hanagal and Pandey (2014a, 2014b, 2015a, 2015b, 2016, 2017) and Hanagal et al. (2017a,
2017b) analyzed kidney infection data and Australian twin data using shared gamma and
inverse Gaussian frailty models with different baseline distributions for the multiplicative
model. Hanagal and Sharma (2013, 2015a, 2015b, 2015c) analyzed acute leukemia data, kid-
ney infection data and diabetic retinopathy data using shared gamma and inverse Gaussian
frailty models for the multiplicative model. Hanagal and Bhambure (2014) developed shared
inverse Gaussian frailty model based on the reversed hazard rate for Australian twin data.
Hanagal et al.(2017b) discussed correlated gamma frailty models for bivariate survival data
to analyze kidney infection data and Hanagal and Pandey (2017) proposed correlated gamma
frailty models for bivariate survival data based on reversed hazard rate for Australian twin
data. Hanagal (2017) gave extensive literature review on different shared frailty models.

Shared frailty explains correlation between subjects within clusters. However, it does
have some limitations. Firstly, it forces the unobserved factors to be the same within the
cluster, which may not always reflect reality. For example, at times it may be inappropriate
to assume that all partners in a cluster share all their unobserved risk factors. Secondly,
the dependence between survival times within the cluster is based on marginal distributions
of survival times. However, when covariates are present in a proportional hazards model
with gamma distributed frailty the dependence parameter and the population heterogeneity
are confounded (Clayton and Cuzick, 1985). This implies that the joint distribution can
be identified from the marginal distributions (Hougaard, 1986). Thirdly, in most cases, a
one-dimensional frailty can only induce positive association within the cluster. However,
there are some situations in which the survival times for subjects within the same cluster are
negatively associated. For example, in the Stanford Heart Transplantation Study, generally
the longer an individual must wait for an available heart, the shorter he or she is likely
to survive after the transplantation. Therefore, the waiting time and the survival time
afterwards may be negatively associated.

To avoid these limitations, correlated frailty models are being developed for the anal-
ysis of multivariate failure time data, in which associated random variables are used to
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characterize the frailty effect for each cluster. Correlated frailty models provide not only
variance parameters of the frailties as in shared frailty models, but they also contain addi-
tional parameter for modeling the correlation between frailties in each group. Frequently
one is interested in construction of a bivariate extension of some univariate family distribu-
tions (e.g., gamma). For example, for the purpose of genetic analysis of frailty one might
be interested in estimation of correlation of frailty. It turns out that it is possible to carry
out such extension for the class of infinitely-divisible distributions (Iachine 1995a, 1995b).
In this case an additional parameter representing the correlation coefficient of the bivariate
frailty distribution is introduced.

2. Reversed Hazard Rate and Correlated Frailty

In many practical situations reversed hazard rate (RHR) is more appropriate to analyze
the survival data. Reversed hazard rate was proposed as a dual to the hazard rate by Barlow
et al. (1963). Shaked and Shantikumar (1994) and Block et al. (1998) provided a general
definition of reversed hazard rate (RHR) as,

m(t) = lim
△t→0

P (t− △t < T ≤ t|T ≤ t)/△ t, t > 0. (1)

The reversed hazard rate specifies the instantaneous rate of death or failure at time
t, given that it failed before time t. Thus in a small interval, m(t) △ t is the approximate
probability of failure in the interval, given failure until the end of the interval (t− △t, t]. In
lifetime data analysis, the concepts of reversed hazard rate has potential application when
the time elapsed since failure is a quantity of interest in order to predict the time of failure.
The reversed hazard rate is more useful in estimating reliability function when the data
are left censored or right truncated. Reversed hazard rate plays a vital role in the analysis
of parallel systems, in reliability and survival analysis. For example, in certain systems or
situations, sometimes the failure is prevented through numerous safety measures.

The correlated frailty model is the important concept in the area of multivariate frailty
models. It is a natural extension of the shared frailty approach on the one hand, and
of the univariate frailty model on the other. In the correlated frailty model, the frailties of
individuals in a cluster are correlated but not necessarily shared. The conditional distribution
function in the bivariate case ( without observed covariates) is

F (t1, t2|Z1, Z2) = S1(t1|Z1)S2(t2|Z2) = e−Z1M01(t1)e−Z2M02(t2), (2)

where Z1 and Z2 are two correlated frailties and M0i(ti) =
� ∞

ti
m0i(u)du, (i = 1, 2) is cu-

mulative reversed hazard rate. The distribution of the random vector (Z1, Z2) needs to be
specified and determines the association structure of the event times in the model.

The reversed hazard of the i-th (i = 1, 2) individual of the j-th (i = j, ..., n) pair has
the form

m(t | Xij, Zij) = Zijm0i(t)eβ
′
Xij , (3)
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where t denotes age or time, Xij is a vector of observed covariates, β is a vector of regression
parameters describing the effect of the covariates Xij, m0i(.) are baseline reversed hazard
functions, and Zij are frailties. Bivariate correlated frailty models are characterized by the
joint distribution of a two-dimensional vector of frailties (Z1j, Z2j). If the two frailties are
independent, the resulting lifetimes are independent, and no clustering is present in the
model. If the two frailties are equal, the shared frailty model is obtained as a special case of
the correlated frailty model with correlation one between the frailties.

In order to derive a marginal likelihood function, the assumption of conditional inde-
pendence of lifespans, given the frailty, is used. Let δij be a censoring indicator for individual
i(i = 1, 2) in pair j(j = 1, ..., n). Indicator δij is 1 if the individual has experienced the event
of interest, and 0 otherwise. According to (2), the conditional distribution function of the
ith individual in the jth pair is

F (t|Xij, Zij) = e−ZijM0i(t)eβ′Xij , (4)
with M0i(t) =

� ∞
t
m0i(u)du denoting the cumulative baseline hazard function. Here and in

the following, F is used as a generic symbol for a distribution function. The contribution of
individual i(i = 1, 2) in pair j(j = 1, ..., n) to the conditional likelihood is given by[

Zijm0i(t)eβ′Xij

]δij

e−ZijM0i(tij)eβ′Xij , (5)

where tij stands for observation time of individual i from pair j. Assuming the conditional
independence of life spans, given the frailty, and integrating out the frailty, we obtain the
marginal likelihood function

n∏
j=1

�

R×

�

R

[
u1jm01(t1j)eβ′X1j

]δ1j

e−z1jM01(t1j)eβ′X1j

[
u2jm02(t2j)eβ′X2j

]δ2j

e−z2jM02(t2j)eβ′X2jf(z1j, z2j)dz1jdz2j (6)

where f(., .) is the probability density function of the corresponding frailty distribution. All
these formulas can be easily extended to the multivariate case, but need a specification of
the correlation structure between individuals in a cluster in terms of the multivariate den-
sity function, which complicates analysis. For more details see Hanagal(2011) and Hanagal
(2019).

3. Correlated Inverse Gaussian Frailty Model

Alternative to the gamma distribution, Hougaard (1984) introduced the inverse Gaus-
sian as a frailty distribution. It provides much flexibility in modeling, when early occurrences
of failures are dominant in a life time distribution and its failure rate is expected to be non-
monotonic. In such situations, the inverse Gaussian distribution might provide a suitable
choice for the lifetime model. Also inverse Gaussian is almost an increasing failure rate distri-
bution when it is slightly skewed and hence is also applicable to describe lifetime distribution
which is not dominated by early failures. Secondly, for the inverse Gaussian distribution, the
surviving population becomes more homogeneous with respect to time, where as for gamma
distribution the relative heterogeneity is constant.
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Consider a continuous random variable Z follows inverse Gaussian distribution with
parameters µ and σ2 then density function of Z is,

fZ(z) =


[ 1
2πσ2

] 1
2
z− 3

2 e
− (z−µ)2

2zσ2µ2 ; z > 0, µ > 0, σ2 > 0
0 ; otherwise,

(7)

and the Laplace transform is,

LZ(s) = exp

 1
µσ2 −

(
1

σ4µ2 + 2s
σ2

) 1
2
 . (8)

The mean and variance of frailty variable are E(Z) = µ and V (Z) = µ3σ2. For identifiability,
we assume Z has expected value equal to one i.e. µ = 1. Under this restriction, the density
function and the Laplace transformation of the inverse Gaussian distribution reduces to,

fZ(z) =


[ 1
2πσ2

] 1
2
z− 3

2 e− (z−1)2

2zσ2 ; z > 0, σ2 > 0
0 ; otherwise,

(9)

and the Laplace transform is,

LZ(s) = exp

1 − (1 + 2σ2s) 1
2

σ2

 , (10)

with variance of Z as σ2. The frailty variable Z is degenerate at Z = 1 when σ2 tends to
zero.

Let Z be an infinitely divisible frailty variable with Laplace transformation LZ(s) and
ρ ∈ [0, 1], then there exist random variables Z1, Z2 each with univariate Laplace transform
LZ(s) such that the Laplace transform of Z1, Z2 is given by:

L(s1, s2) = Lρ
Z(s1 + s2)L1−ρ

Z (s1)L1−ρ
Z (s2) (11)

If Z has a variance the Corr(Z1, Z2) = ρ.
The respective bivariate survival model is identifiable under mild regularity conditions on Z
provided that ρ > 0. The case ρ = 1 is known as the shared frailty model.

The above equation (11) can be extended to multivariate case (ρ > 0) as below.

L(s1, s2, ...., sk) = Lρ
Z(s1, s2, ...., sk)L1−ρ

Z (s1)....L1−ρ
Z (sk).

The case ρ = 1 leads to shared frailty. If ρ = 0, Z1, ....Zk are mutually independent.

Let Zi be the inverse Gaussian distributed with mean 1, variance σ2, and Laplace
transform

L(si, σ
2) = exp[1 − (1 + 2σ2si)

1
2

σ2 ] (12)
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The bivariate Laplace transform for the correlated inverse Gaussian frailty model is given by

L(s1, s2, σ
2, ρ) = exp

ρ1 − (1 + 2σ2(s1 + s2))
1
2

σ2

 exp
(1 − ρ)1 − (1 + 2σ2s1)

1
2

σ2


exp

(1 − ρ)1 − (1 + 2σ2s2)
1
2

σ2

 (13)

where Corr(Z1, Z2) = ρ.
The correlated inverse Gaussian frailty model in the presence of covariates is charac-

terized by the bivariate distribution function of the form:

F (t1j , t2j) = exp
[

ρ
1 − (1 + 2σ2ηj(M01(t1j) + M02(t2j))) 1

2

σ2

]
exp

[
(1 − ρ)1 − (1 + 2σ2ηjM01(t1j)) 1

2

σ2

]

exp
[

(1 − ρ)1 − (1 + 2σ2ηjM02(t2j)) 1
2

σ2

]
(14)

where M01(t1j) and M02(t2j) are the cumulative baseline hazard functions of the life time
random variables T1j and T2j respectively.

The bivariate distribution function in the presence of covariates, when the frailty vari-
able is degenerate is given by

F (t1j, t2j) = e−[(M01(t1j)+M02(t2j))ηj ] (15)

According to different assumptions on the baseline distributions we get different corre-
lated inverse Gaussian frailty models.

4. Baseline Distributions

We present the modified inverse Weibull distribution, generalized log-logistic type I
and generalized log-logistic type II as baseline distribution with the interesting properties.

4.1. Modified Inverse Weibull Distribution

The modified inverse Weibull distribution is more convenient for computational point
of view for left censored data. The cumulative distribution function, the reversed hazard
rate and the cumulative reversed hazard rate of the modified inverse Weibull are respectively
as follows.

F (t) = exp
(
−αt−λe−γt

)
; t > 0, α > 0, λ > 0, γ > 0, (16)

m(t) = αe−γtt−1−λ(λ+ γt). (17)

M(t) = αt−λe−γt, (18)

When γ = 0, this distribution reduces to the inverse Weibull distribution. The reversed
hazard rate of the modified inverse Weibull distribution is decreasing function of t > 0. For
more details see Devendra et al. (2011).



2022] CORRELATED INVERSE GAUSSIAN FRAILTY 95

4.2. Generalized Log-logistic Distribution

The log-logistic distribution is very useful in a wide variety of applications, especially
in the analysis of survival data (O’ Quigley and Struthers 1982; Bennett 1983; Cox and
Snell 1989). The log-logistic distribution is very similar in shape to the log-normal distri-
bution, however it has the advantage of having simple algebraic expressions for its survivor
and hazard functions and a closed form for its distribution function. It is therefore more
convenient than the log-normal distribution in handling censored data. However, due to
the symmetry of the log-logistic distribution, it may be inappropriate for modeling censored
survival data, especially for the cases where the hazard rate is skewed or heavily tailed. In
order to overcome this, we use a generalization of the log-logistic distribution and refer to
this as the generalized log-logistic distribution given in Mohammed et al.(1990). The gener-
alized log-logistic distribution reflects the skewness and the structure of the heavy tail and
generally shows some improvement over the log-logistic distribution.

Mohammed et al.(1990) show that the distribution function of generalized logistic is
given by

F (x) = 1
β(m,n)

� F0(x)
0 um−1(1 − u)n−1du

where β(m,n) is the complete beta function and

F0(x) = (1 + e−x)−1,−∞ < x < ∞

is the logistic distribution function. We call F (x) the generalized logistic distribution with
parameters (m,n), and use the notation X ∼ GLD(m,n).
The logarithmic transformation X = γln(λT ) applied to GLD(m, 1) to obtain the general-
ized log-logistic distribution GLLD(m, 1). The distribution function of T is

F (t) = (1 + (λt)−γ)−m, t,m, λ > 0, γ ≥ 1. (19)

Similarly logarithmic transformation X = γln(λT ) applied to GLD(1, n) to obtain the
generalized log-logistic distribution GLLD(1, n). The distribution function of T is

F (t) = 1 − (1 + (λt)γ)−n, t, n, λ > 0, γ ≥ 1. (20)

A random variable T with c.d.f. as given by (19) and (20) are generalized log-logistic
distribution with parameters (m, 1) and (1, n) respectively. We call (19) as generalized log-
logistic type I and (20) as generalized log-logistic type II.

Now rearranging the parameters, the cumulative distribution function of the general-
ized log-logistic distribution type I is

F (t) =
(

(λt)γ

1 + (λt)γ

)α

. (21)

The corresponding reversed hazard rate and cumulative reversed hazard rate are respectively
as follows.

m(t) = αγ

t(1 + (λt)γ) . (22)



96 DAVID D. HANAGAL [Vol. 20, No. 1

M(t) = αln

(
1 + (λt)γ

(λt)γ

)
(23)

Now rearranging the parameters, the cumulative distribution function of the generalized
log-logistic distribution type II is

F (t) = 1 − (1 + (λt)γ)−α . (24)

The corresponding reversed hazard rate and cumulative reversed hazard rate are respectively
as follows.

m(t) = αγλ(λt)−1+γ(1 + (λt)γ)−1−α

1 − (1 + (λt)γ)−α . (25)

M(t) = −ln(1 − (1 + (λt)γ)−α) (26)

When α = 1, this distribution reduces to log-logistic distribution. The reversed hazard
rate of the generalized log-logistic distribution is decreasing function of t > 0.

5. Proposed Models

Substituting cumulative reversed hazard function for the modified inverse Weibull base-
line distribution, generalized log-logistic type I and generalized log-logistic type II, we get
following six models.

F (t1j , t2j) = exp
[

ρ
1 − (1 + 2σ2η0j(η1jα1t−λ1

1j e−γ1t1j + η2jα2t−λ2
2j e−γ2t2j )) 1

2

σ2

]

exp
[

(1 − ρ)
1 − (1 + 2σ2η0jη1jα1t−λ1

1j e−γ1t1j ) 1
2

σ2

]

exp
[

(1 − ρ)
1 − (1 + 2σ2η0jη2jα2t−λ2

2j e−γ2t2j ) 1
2

σ2

]
(27)

F (t1j , t2j) = exp
(

−η0j

{
η1jα1t−λ1

1j e−γ1t1 + η2jα2t−λ2
2j e−γ2t2

})
(28)

F (t1j , t2j) = exp
[

ρ
1 − (1 + 2σ2η0j(η1jα1 ln(1 + 1/(λ1t1j)γ1) + η2jα2 ln(1 + 1/(λ2t2j)γ2))) 1

2

σ2

]

exp
[

(1 − ρ)1 − (1 + 2σ2η0jη1jα1 ln(1 + 1/(λ1t1j)γ1)) 1
2

σ2

]

exp
[

(1 − ρ)1 − (1 + 2σ2η0jη2jα2 ln(1 + 1/(λ2t2j)γ2)) 1
2

σ2

]
(29)
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F (t1j , t2j) = exp

(
−η0j

{
η1jα1

(
ln(1 + (λ1t1j)γ1

(λ1t1j)γ1
)
)

+ η2jα2

(
ln(1 + (λ2t2j)γ2

(λ2t2j)γ2
)
)})

(30)

F (t1j , t2j) = exp
[

ρ
1 − (1 + 2σ2η0j(η1j ln(1 − (1 + 1(λ1t1j)γ1)−α1) + η2j ln(1 − (1 + 1(λ2t2j)γ2)−α2))) 1

2

σ2

]

exp
[

(1 − ρ)1 − (1 + 2σ2η0jη1j ln(1 − (1 + 1(λ1t1j)γ1)−α1)) 1
2

σ2

]

exp
[

(1 − ρ)1 − (1 + 2σ2η0jη2j ln(1 − (1 + 1(λ2t2j)γ2)−α2)) 1
2

σ2

]
(31)

F (t1j , t2j) = exp
(
η0j

{
η1j ln(1 − (1 + (λ1t1j)γ1)−α1) + η2j ln(1 − (1 + (λ2t2j)γ2)−α2)

})
(32)

Here onwards we call equations (27), (28), (29), (30), (31), and (32) as Model I, Model
II, Model III, Model IV, Model V and Model VI respectively. Model I and Model II are
the modified inverse Weibull baseline distribution with and without frailty, Model III and
Model IV are the generalized log-logistic baseline distribution type I with and without frailty
and likewise Model V and Model VI are the baseline with generalized log-logistic baseline
distribution type II with and without frailty.

6. Likelihood Specification and Bayesian Estimation of Parameters

Suppose there are n individuals under study, whose first and second observed failure
times are represented by (t1j, t2j). Let c1j and c2j be the observed censoring times for the jth

individual (j = 1, 2, 3, ..., n) for the first and the second recurrence times respectively. We
use the left censoring scheme. We assume that the censoring time and the lifetimes of an
individual are independently distributed.

The contribution of the bivariate lifetime random variable of the jth individual to
likelihood function is given by,

Lj(t1j, t2j) =


f1(t1j, t2j), ; t1j > c1j, t2j > c2j,
f2(t1j, c2j), ; t1j > c1j, t2j < c2j,
f3(c1j, t2j), ; t1j < c1j, t2j > c2j,
f4(c1j, c2j), ; t1j < c1j, t2j < c2j.

and likelihood function is,

L(ψ, β, θ) =
n1∏

j=1
f1(t1j, t2j)

n2∏
j=1

f2(t1j, c2j)
n3∏

j=1
f3(c1j, t2j)

n4∏
j=1

f4(c1j, c2j) (33)

where θ, ψ and β are respectively the frailty parameter (σ, ρ), the vector of baseline pa-
rameters and the vector of regression coefficients respectively. For without frailty model,
likelihood function is

L(ψ, β) =
n1∏

j=1
f1(t1j, t2j)

n2∏
j=1

f2(t1j, c2j)
n3∏

j=1
f3(c1j, t2j)

n4∏
j=1

f4(c1j, c2j) (34)
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In equation (34) the frailty parameters θ and ρ are absent and in equation (33) they are
present. The counts n1, n2, n3 and n4 be the numbers of individuals for which first and
second failure times (t1j, t2j) lie in the ranges t1j > c1j, t2j > c2j; t1j > c1j, t2j < c2j;
t1j < c1j, t2j > c2j and t1j < c1j, t2j < c2j respectively such that n1 + n2 + n3 + n4 = n and

f1(t1j, t2j) = ∂2F (t1j, t2j)
∂t1j∂t2j

f2(t1j, c2j) = ∂F (t1j, c2j)
∂t1j

f3(c1j, t2j) = ∂F (c1j, t2j)
∂t2j

f4(c1j, c2j) = F (c1j, c2j) (35)

where ηoj = e(β0X0), η1j = e(β1X1) and η2j = e(β2X2). Substituting cumulative reversed hazard
rate M01(t1j), M02(t2j), reversed hazard rate m01(t1j), m02(t2j) and distribution function
F (c1j, c2j) for six proposed models into the last relations we get the likelihood function given
by equations (33) and (34) for all the six models.

Unfortunately computing the maximum likelihood estimators (MLEs) involves solving
a eleven dimensional optimization problem for Model I, Model III and Model V and nine
dimensional optimization problem for Model II, Model IV and Model VI. As the method
of maximum likelihood fails to estimate the parameters due to convergence problem in the
iterative procedure, so we use the Bayesian approach. The traditional maximum likelihood
approach to estimation is commonly used in survival analysis, but it can encounter difficul-
ties with frailty models. Moreover, standard maximum likelihood based inference methods
may not be suitable for small sample sizes or situations in which there is heavy censoring
(see Kheiri et al. (2007)). Thus, in our problem a Bayesian approach, which does not suffer
from these difficulties, is a natural one, even though it is relatively computationally inten-
sive. To estimate parameters of the model, the Bayesian approach is now popularly used,
because computation of the Bayesian analysis become feasible due to advances in computing
technology.

To estimate the parameters of the model, the Bayesian approach is now popularly
used, because computation of the Bayesian analysis become feasible due to advances in
computing technology. Several authors have discussed Bayesian approach for the estimation
of parameters of the frailty models. Some of them are, Ibrahim et al.(2001) and references
their in, Santos and Achcar (2010). Santos and Achcar (2010) considered parametric models
with Weibull and generalized gamma distribution as baseline distributions and gamma, log-
normal as frailty distributions. Ibrahim et al. (2001) and references therein considered
Weibull model and piecewise exponential model with gamma frailty. They also considered
positive stable frailty models.

The joint posterior density function of parameters for given failure times is obtained
as,

π(α1, λ1, γ1, α2, λ2, γ2, θ,β) ∝ L(α1, λ1, γ1, α2, λ2, γ2, θ,β)

×g1(α1)g2(λ1)g3(γ1)g4(α2)g5(λ2)g6(γ2)g7(θ)
5∏

i=1
pi(βi)
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where gi(.) (i = 1, 2, · · · , 7) indicates the prior density function with known hyper parameters
of corresponding arguments for baseline parameters and frailty variance; pi(.) is prior density
function for regression coefficient βi; βi represents a vector of regression coefficients except
βi, i = 1, 2, . . . , k and likelihood function L(.) is given by equation (33) or (34). Here we
assume that all the parameters are independently distributed.

To estimate the parameters of the model, we used Metropolis-Hastings algorithm and
Gibbs sampler. We monitored the convergence of a Markov chain to a stationary distribution
by Geweke test (Geweke 1992)and Gelman-Rubin Statistics (Gelman and Rubin, 1992).
Trace plots, coupling from the past plots and sample autocorrelation plots are used to check
the behaviour of the chain, to decide burn-in period and autocorrelation lag respectively.

Algorithm consists in successively obtaining a sample from the conditional distribution
of each of the parameter given all other parameters of the model. These distributions are
known as full conditional distributions. In our case full conditional distributions are not easy
to integrate out. So full conditional distributions are obtained by considering that they are
proportional to the joint distribution of the parameters of the model.

We have full conditional distribution of the parameter α1 with frailty as,

π1(α1 | λ1, γ1, α2, λ2, γ2, θ,β) ∝ L(α1, λ1, γ1, α2, λ2, γ2, θ,β) · g1(α1) (36)

We have full conditional distribution of the parameter α1 without frailty as,

π1(α1 | λ1, γ1, α2, λ2, γ2,β) ∝ L(α1, λ1, γ1, α2, λ2, γ2,β) · g1(α1) (37)

Similarly full conditional distributions for other parameters can be obtained.

To evaluate the performance of the Bayesian estimation procedure we carry out a
simulation study. For the simulation purpose we have considered only one covariate X0 which
we assume to follow binomial distribution. The frailty variable Z1 and Z2 are assumed to have
inverse Gaussian distribution with known variance and correlation ρ . Lifetimes (T1j, T2j)
for jth individual are conditionally independent for given frailty Z1j = z1j and Z2j = z2j. We
assume that Tij(i = 1, 2.; j = 1, 2, · · · , n) follows one of the baseline distribution modified
inverse Weibull distribution, Generalized log-logistic distribution type I and Generalized log-
logistic distribution type II. As the Bayesian methods are time consuming, we generate only
twenty five pairs of lifetimes.

A widely used prior for frailty parameters σ, are the gamma distributionG(0.0001, 0.0001).
In addition, we assume that the regression coefficients are normal with mean zero and large
variance say 1000. Similar types of prior distributions are used in Ibrahim et al. (2001), Sahu
et al. (1997) and Santos and Achcar (2010). So in our study we also use same non informa-
tive prior for frailty parameters σ, and regression coefficients βi, i = 1, .., 5. Since we do not
have any prior information about baseline parameters, λ1, γ1, α1, λ2, γ2 and α2, prior distri-
butions are assumed to be flat. We consider two different non-informative prior distributions
for baseline parameters, one is G(a1, a2) and another is U(b1, b2). All the hyper-parameters
a1, a2, b1 and b2 are known. Here G(a, b) is the gamma distribution with the shape parameter
a and the scale parameter b and U(b1, b2) represents uniform distribution over the interval
(b1, b2). For correlation parameter we use uniform distribution U(0, 1). We use different
value of baseline parameters for Model I, Model III and Model V, details are given in Table
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1, 2 and 3. We assume the value of the hyper-parameters as a1 = 1, a2 = 0.0001, b1 = 0 and
b2 = 100.

We run two parallel chains for model one using two sets of prior distributions with the
different starting points using Metropolis-Hastings algorithm and Gibbs sampler based on
normal transition kernels. We iterate both the chains for 100000 times. There is no effect of
prior distribution on posterior summaries because the estimates of parameters are nearly the
same and the convergence rate of Gibbs sampler for both the prior sets is almost the same.
Also for both the chains the results were somewhat similar. For all models, the trace plots,
the coupling from the past plots, the running mean plots and the sample autocorrelation
plots for the simulation study are not provided due to lack of space. Table 1, 2 and 3 presents
the estimates, the credible intervals of the parameters for the Model I, Model III and Model V
based on the simulation study. These also contains the Gelman-Rubin (Gelman and Rubin,
1992) convergence statistic and the Geweke test (Geweke, 1992) for all the parameters of
the Model I, Model III and Model V based on the simulation study. The Gelman-Rubin
convergence statistic values are nearly equal to one and also the Geweke test values are
quite small and the corresponding p-values are large enough to say that the chain attains
stationary distribution. Simulated values of the parameters have the autocorrelation of lag
k. So that every kth iteration is selected as a sample from the posterior distribution.

7. Analysis of Australian Twin data

Duffy et al. (1990) considered Australian twin data which consist of information about
the age at appendectomy of monozygotic (MZ) and dizygotic (DZ) twins. There were some
pairs with missing age at onset and those are the left censored observations. Duffy et al.
(1990) excluded these left censored observations in the analysis. It is therefore, appropriate
to model common random effect by including those left censored observations, which can
be done by developing frailty models using RHR. Accordingly, Sankaran and Gleeja (2011)
introduced frailty as a common random effect that acts multiplicatively on reversed hazard
rates, which is useful for the analysis of left censored data.

Now we apply the all six models to the Australian twin data given in Duffy et a1.
(1990). The data consists of six zygote categories. We consider the subset of the data with
zygote category 4. The data consists of males gender only and consist if 350 pair of twins
with 9 and 11 censored in twin 1 and twin 2 respectively. An individual having age at
onset less than 11 are considered as left censored observations. The data has information
on the age at onset at appendectomy of twins. The genetic effect involved in the risk of
appendectomy is the frailty variable. Here there is a common covariate age of twins for
both T1 and T2 and one covariate each for T1, T2, i.e., presence or absence of appendectomy.
To check goodness of fit of Australian twin data set, We obtain Kolmogorov-Smirnov(K-S)
statistics and their p-values for T1 and T2. For Model I, Model III and Model V p-values of
observe that p-values for Kolmogorov-Smirnov (K-S) statistics are provided in Table 4. Thus
from p values of K-S test are quite high. We can say that there is no statistical evidence to
the reject the hypothesis that data are from these three models.

As in case of simulation, here also we assume the same set of prior distributions. We
run two parallel chains for all models using two sets of prior distributions with the different
starting points using the Metropolis-Hastings algorithm and the Gibbs sampler based on
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normal transition kernels. We iterate both the chains for 100000 times. As seen in simulation
study here also we got nearly same estimates of parameters for both the set of priors, so
estimates are not dependent on the different prior distributions. Convergence rates of Gibbs
sampler for both the prior sets are almost the same. Also both the chains show somewhat
similar results, so we present here the analysis for only one chain with G(1, 0.0001) as prior
for baseline parameters and G(0.0001, 0.0001) as the prior for the frailty parameter σ2. Due
to lack of space we are presenting only for model one( trace plots and coupling from the
past plots ) for the parameters. Trace plots for all the parameters shows zigzag pattern
which indicates that parameters move and mix more freely. Thus, it seems that the Markov
chain has reached the stationary state. Burn in period is decided by using coupling from
the past plot. However, a sequence of draws after burn-in period may have autocorrelation.
Because of autocorrelation consecutive draws may not be random, but values at widely
separated time points are approximately independent. So, a pseudo random sample from
the posterior distribution can be found by taking values from a single run of the Markov chain
at widely spaced time points (autocorrelation lag) after burn-in period. The autocorrelation
of parameters become almost negligible after the certain lag.

The Gelman-Rubin convergence statistic values are nearly equal to one and the Geweke
test statistic values are quite small and corresponding p-values are large enough to say the
chains attains stationary distribution. The posterior mean and standard error with 95%
credible intervals for baseline parameters, frailty parameter and regression coefficients are
presented in Tables 5-10. The posterior summery of the Model I, Model II, Model III, Model
IV, Model V and Model VI are given in Tables 5, 6, 7, 8, 9 and 10. Tables 5, 6, 7, 8, 9
and 10 presents estimates, credible intervals, Geweke test and Gelman-Rubin statistics for
all the parameters of the Model I, Model II, Model III, Model IV, Model V and Model
VI respectively, based on data. For Model I, Model III and Model V the estimates of
frailty parameter σ are respectively 5.6081, 5.4875 and 4.7686. This shows that there is a
heterogeneity between the pairs of twins. Bayes factor for Model I with Model II is 32.80,
for Model III and Model IV is 298.41 and Model V with Model VI is 1704.12. This is also
a Bayesian test based on Bayes factor for testing σ2 = 0 against σ2 > 0 and which supports
the alternative hypothesis, i.e., models with frailty fits better. The credible interval of
regression coefficient β0 does not contain zero for all models except, Model VI. The credible
interval of regression coefficient β1 contain zero for all models except, Model III and Model
V. The credible interval of regression coefficient β2 contain zero for all models. Hence age
is the significant covariate for Model I, Model II, Model III, Model IV and Model V. The
convergence rate of Gibbs sampling algorithm does not depend on these choices of prior
distributions in our proposed model for Australian twin data. The Geweke test values are
near to zero and corresponding p-values are quite high and the Gelman-Rubin Statistics for
all the parameters of all six models based on data are very close to one.

To compare six models we first use Aikaike information criteria (AIC), Bayesian in-
formation criteria (BIC) and deviance information criteria (DIC) values which are given in
Table 11 and Bayes factor in Table 12. The AIC, BIC and DIC values for Model V is least
among all six models. On the basis of AIC, BIC and DIC values Model V is the best among
all six models. Similarly the Bayes factor show that models with frailty (Model I, Model
III and Model V) are better than the models without frailty and Model V, the correlated
inverse Gaussian frailty based on reversed hazard rate with generalised log-logistic type II
baseline is the best and the frailty is significant.



102 DAVID D. HANAGAL [Vol. 20, No. 1

8. Conclusions

Our main aim of the study is to examine the role of the bivariate correlated frailty
model based on the reversed hazard rate in survival studies. For this we used the correlated
inverse Gaussian frailty model with the modified inverse Weibull distribution, generalized
log-logistic type I and generalized log-logistic type II as a baseline distribution and these
models are compared with their baseline model based on reversed hazard rate. We also
found that the correlated inverse Gaussian frailty models are better models as compared to
their baseline model on the basis of AIC, BIC and DIC values for Australian twin data set.
Bayes factor support the correlated frailty models.

Initially we thought to use the method of maximum likelihood to estimate the param-
eters but likelihood equations do not converge and the method of maximum likelihood fails
to estimate the parameters so we used the Bayesian approach. In this study, the model is
specified in a Bayesian framework and estimated with the MCMC algorithms. The estimates
of the parameters are not dependent on the different prior distributions.

Two different chains were run for the proposed models from different starting points
using the Metropolis-Hastings algorithm within Gibbs sampler. We have provided 100,000
iterations to perform the simulation study. Estimates were calculated after discarding a
burn-in interval for each chain. The quality of convergence was checked by Gelman-Rubin
statistics. The values of the Gelman-Rubin statistics in this case are quite close to one and
also the Geweke test values are small with large p-values. Thus the sample can be considered
to have arisen from stationary distribution and descriptive statistics can be seen as valid
estimates of unknown parameters. The simulation results indicate that the performance of
the Bayesian estimation method is quite satisfactory. Bayes factor is used to test the frailty
parameter σ2 = 0 and it is observed that the frailty parameter is highly significant in all
frailty models. From Table 12 it is clear that the models with frailty fit better than without
frailty models and Model V is best among the all six models. Age is the significant for all
the models except Model VI.

The choice of the best model for Australian twin data is based on AIC, BIC, DIC and
Bayes factor values. We found that Model V is a best Model on the basis of AIC, BIC, DIC
and Bayes factor values. The age is the significant covariate for all models except Model IV.
Correlated inverse Gaussian frailty models(Model I, Model III and Model V) are better than
their baseline model. We also compare with correlated gamma frailty models suggested by
Hanagal and Pandey (2017) and observe that correlated inverse Gaussian frailty based on
reversed hazard rate with generalized log-logistic type II baseline performs better and more
suitable than the correlated gamma frailty models proposed by Hanagal and Pandey (2017)
for Australian twin data set, with left censored observations. The methods discussed in this
paper may be extended into other frailty models and correlated frailty models with different
baseline distributions, using the Bayesian approach, provided the models fit to the data.
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ANNEXURE

Table 1: Baseline Distribution Modified inverse Weibull Distribution Model I
with Correlated Inverse Gaussian Frailty (Simulation for Model I )

Parameter Estimate Standard Lower Upper Geweke p Gelman
( value) Error Credible Credible values values & Rubin

Limit Limit values
burn in period = 2500; autocorrelation lag = 250
α1 (2.0) 1.9894 0.1319 1.7806 2.2365 -0.00670 0.4973 0.9999
λ1 (1.5) 1.5197 0.0188 1.4725 1.5510 -0.00085 0.4996 1.0003
γ1 (2.5) 2.5306 0.1482 2.2461 2.7781 0.00052 0.5002 1.0020
α2 (2.2) 2.2126 0.0370 2.1228 2.2726 -0.00321 0.4987 1.0007
λ2 (2.5) 2.5197 0.0186 2.4721 2.5474 -0.02074 0.4917 1.0332
γ2 (3.0) 3.0537 0.1413 2.7424 3.2960 -0.00574 0.4977 1.0006
σ (2.0) 2.0660 0.0544 1.8817 2.1360 0.00084 0.5003 1.0031
ρ (0.7) 0.7349 0.0324 0.6458 0.7785 -0.00578 0.4976 1.0047
β (0.50) 0.5131 0.0343 0.4157 0.5812 -0.00229 0.4990 1.0059

Table 2: Baseline Distribution Generalized Logistic Distribution Type I Model-
III with Correlated Inverse Gaussian Frailty(Simulation for Model III )

Parameter Estimate Standard Lower Upper Geweke p Gelman
( value) Error Credible Credible values values & Rubin

Limit Limit values
burn in period = 7000; autocorrelation lag = 350
α1 (2.0) 1.8692 0.0528 1.7779 2.0937 0.00261 0.5010 0.9999
λ1 (1.5) 1.5621 0.0211 1.5032 1.5786 0.00171 0.5006 1.0031
γ1 (2.5) 2.3454 0.0836 2.2347 2.6174 -0.01263 0.4949 1.0099
α2 (2.2) 2.0152 0.0472 1.9713 2.2819 0.00531 0.5021 1.0138
λ2 (2.5) 2.5667 0.0425 2.4663 2.6287 0.00511 0.5020 1.0043
γ2 (2.5) 2.4307 0.1117 2.2773 2.6411 -0.00644 0.4974 1.0015
σ (0.20) 0.2304 0.0085 0.2091 0.2396 0.01255 0.5050 1.0071
ρ (0.7) 0.7686 0.0745 0.6106 0.8548 0.00563 0.5022 1.0001
β (0.50) 0.4879 0.0149 0.4702 0.5105 -0.02020 0.4919 1.0005
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Table 3: Baseline Distribution Generalized Logistic Distribution Type II Model-
V with Correlated Inverse Gaussian Frailty(Simulation for Model V )

Parameter Estimate Standard Lower Upper Geweke p Gelman
( value) Error Credible Credible values values & Rubin

Limit Limit values
burn in period = 7000; autocorrelation lag = 250
α1 (2.0) 2.0512 0.1433 1.7726 2.2631 -0.00394 0.4984 1.0012
λ1 (1.5) 1.5015 0.0218 1.4812 1.5492 0.00149 0.5005 1.0027
γ1 (3.5) 3.5009 0.1216 3.3806 3.6401 0.00061 0.5002 1.0009
α2 (2.2) 2.1858 0.1226 1.9576 2.4178 -0.01473 0.4941 0.9999
λ2 (2.5) 2.5055 0.0212 2.4715 2.5318 0.00056 0.5002 1.0004
γ2 (3.5) 3.4905 0.1519 3.4567 3.6781 -0.00213 0.4991 1.0097
σ (0.2) 0.21811 0.0198 0.1801 0.2191 -0.00431 0.4982 1.0047
ρ (0.7) 0.7125 0.1011 0.6128 0.7867 -0.00015 0.4999 1.0055
β (0.50) 0.4888 0.0402 0.4557 0.5549 -0.00171 0.4993 1.0000

Table 4: p-values of K-S Statistics for Goodness of Fit Test for Australian Twin
Data Set

Recurrence time
Distribution First Second
Model I 0.57402 0.59688
Model III 0.85443 0.7794
Model V 0.99977 0.99787

Table 5: Posterior Summary for Australian Twin Data Set (Model I)

Parameter Estimate Standard Lower Upper Geweke p Gelman
( value) Error Credible Credible values values & Rubin

Limit Limit values
burn in period = 7500; autocorrelation lag = 1300

α1 44.1762 2.7887 39.12322 48.7418 0.01771 0.5070 1.0068
λ1 0.4632 0.0311 0.4111 0.5071 -0.00162 0.4993 1.0341
γ1 0.1227 0.0042 0.1106 0.1312 -0.00224 0.4991 1.0034
α2 41.1201 2.9285 35.816 46.3785 0.00857 0.5034 1.0192
λ2 0.4574 0.0217 0.4161 0.4989 0.00243 0.5009 1.0041
γ2 0.2011 0.0035 0.1913 0.2112 -0.01221 0.4951 1.0066
ρ 0.9294 0.0414 0.8424 0.9978 -0.00069 0.4997 1.0099
σ 5.6081 0.0651 5.4172 5.7571 -0.01036 0.4958 1.0054
β0 0.0209 0.0023 0.0133 0.0304 -0.01873 0.4925 1.0000
β1 -0.0742 0.0641 -0.2287 0.1041 -0.00320 0.4987 1.0086
β2 -0.0312 0.0204 -0.0564 0.0161 -0.00684 0.4972 1.0045
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Table 6: Posterior Summary for Australian Twin Data Set (Model II)

Parameter Estimate Standard Lower Upper Geweke p Gelman
( value) Error Credible Credible values values & Rubin

Limit Limit values
burn in period = 12000; autocorrelation lag = 180

α1 11.44908 0.5554 10.47060 12.34491 -0.00330 0.4986 1.0075
λ1 0.06949 0.0112 0.04948 0.08727 0.01716 0.5068 1.0043
γ1 0.10227 0.0036 0.09499 0.10941 -0.00179 0.4992 1.0065
α2 10.43929 0.5275 9.44735 11.34131 -0.00460 0.4981 1.0008
λ2 0.07101 0.0106 0.05109 0.08880 -0.00714 0.4971 1.0031
γ2 0.09919 0.0038 0.09192 0.10693 9.27e-05 0.5001 0.9999
β0 0.00575 0.0020 0.00152 0.00950 0.003835 0.5015 1.0000
β1 -0.01649 0.0715 -0.14075 0.12942 -0.007237 0.4971 1.0008
β2 0.06323 0.1238 -0.17651 0.29295 0.004567 0.5018 1.0000

Table 7: Posterior Summary for Australian Twin Data Set (Model III)

Parameter Estimate Standard Lower Upper Geweke p Gelman
( value) Error Credible Credible values values & Rubin

Limit Limit values
burn in period = 7500; autocorrelation lag = 1100

α1 18.5175 0.2150 18.0612 18.8641 0.0015 0.5006 1.0004
λ1 0.0701 0.0012 0.0676 0.0722 -0.0259 0.4896 1.0095
γ1 23.1861 0.2119 22.6789 23.4689 -0.0056 0.4977 1.0000
α2 18.0016 0.5215 17.1468 18.1801 0.0022 0.5008 1.0003
λ2 0.0801 0.0012 0.0771 0.0823 -0.0254 0.4898 1.0149
γ2 24.1014 0.2182 23.6952 24.4461 -0.0043 0.4982 1.0026
ρ 0.8941 0.0151 0.8721 0.9078 0.0026 0.5010 0.9999
σ 5.7845 0.1155 5.5526 5.9101 -0.0061 0.4975 1.0039
β0 0.8465 0.0290 0.8161 0.8722 -0.0235 0.4906 1.0083
β1 -0.0507 0.0277 -0.0971 -0.0052 0.0042 0.5017 1.0134
β2 -0.0143 0.0314 -0.0426 0.0413 0.0113 0.5045 1.0321
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Table 8: Posterior Summary for Australian Twin Data Set (Model IV)

Parameter Estimate Standard Lower Upper Geweke p Gelman
( value) Error Credible Credible values values & Rubin

Limit Limit values
burn in period = 6500; autocorrelation lag = 200

α1 1.4806 0.2172 1.08298 1.87900 -0.00716 0.4971 1.0091
λ1 0.0475 0.0031 0.04162 0.05341 -0.00838 0.4966 1.0008
γ1 1.3022 0.1518 3.29435 3.93994 0.00624 0.5024 1.0017
α2 0.0456 0.0026 1.00322 1.56740 -0.00976 0.4961 1.0096
λ2 3.6265 0.1957 0.04062 0.05151 -0.00932 0.4962 1.0088
γ2 3.6135 0.1680 3.25814 3.99208 0.01088 0.5043 1.0018
β0 0.0059 0.0026 0.00068 0.01158 -0.00174 0.4993 1.0005
β1 8.9e-06 0.0024 -0.00437 0.00442 -0.00050 0.4997 1.0054
β2 0.0592 0.1285 -0.20118 0.29163 -7.76e-05 0.4999 1.0134

Table 9: Posterior Summary for Australian Twin Data Set (Model V)

Parameter Estimate Standard Lower Upper Geweke p Gelman
( value) Error Credible Credible values values & Rubin

Limit Limit values
burn in period = 6500; autocorrelation lag = 300

α1 0.2817 0.0032 0.2781 0.2877 -0.00066 0.4997 1.0002
λ1 0.0701 0.0025 0.0585 0.0724 -0.00274 0.4989 1.0004
γ1 55.4383 1.1412 52.9768 57.2222 0.00761 0.5030 1.0026
α2 0.1051 0.0031 0.0891 0.1108 0.00678 0.5027 1.0069
λ2 0.0706 0.0012 0.0687 0.0728 -0.00166 0.4993 1.0012
γ2 58.6274 1.6105 55.7728 61.0344 -0.00435 0.4983 1.0057
ρ 0.8824 0.0242 0.8461 0.9165 0.00041 0.5001 0.9999
σ 4.7686 0.0505 4.5495 4.8869 0.00315 0.5012 0.9999
β0 0.0785 0.0057 0.0751 0.0903 0.00317 0.5012 1.0002
β1 -0.0412 0.0202 -0.0819 -0.0051 0.01608 0.5064 1.0018
β2 -0.0214 0.0247 -0.0615 0.0221 -0.00370 0.4985 1.0136
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Table 10: Posterior Summary for Australian Twin Data Set (Model VI)

Parameter Estimate Standard Lower Upper Geweke p Gelman
( value) Error Credible Credible values values & Rubin

Limit Limit values
burn in period = 6500; autocorrelation lag = 200

α1 0.6047 0.1027 0.4205 0.8341 0.01169 0.5047 1.00
λ1 0.0475 0.0026 0.0428 0.0526 -0.00679 0.4972 1.03
γ1 5.1896 0.5964 4.1191 6.4377 -0.01175 0.4953 1.00
α2 0.6736 0.0885 0.5048 0.8412 0.01642 0.5065 1.00
λ2 0.0463 0.0029 0.0406 0.0524 -0.00860 0.4965 1.00
γ2 4.7336 0.4456 3.9453 5.7410 -0.01335 0.4946 1.01
β0 0.0042 0.0041 -0.0041 0.0119 0.00415 0.5016 1.00
β1 -0.0013 0.0239 -0.0441 0.0452 0.01221 0.5048 1.00
β2 0.0481 0.1225 -0.1985 0.2838 -0.00571 0.4977 1.01

Table 11: AIC, BIC and DIC Comparison

Model AIC BIC DIC
Model- I 5155.713 5188.813 5113.985
Model- II 5384.161 5426.847 5375.313
Model- III 5071.699 5082.212 5057.809
Model- IV 5355.809 5396.766 5351.894
Model- V 5016.714 5018.908 5003.065
Model- VI 5781.328 5901.931 5935.093

Table 12: Bayes Factors for Four Models

- M12 M31 M14 M51 M16 M32 M42 M52
Bayes Factor 32.80 302.08 5.59 336.81 1274.5 301.2 27.40 338.49

- M26 M34 M53 M36 M54 M46 M56 -
Bayes Factor 1268.83 298.41 32.79 1582.82 316.8 1271.11 1704.12 -

Mij = 2 ∗ ln( Ii
Ij

)
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Abstract 
 

This paper addresses the problem of estimation of population mean of a sensitive variable 
under investigation using scrambled randomized response mechanism in presence of non-
sensitive auxiliary variable at current move in two occasion successive sampling. The proposed 
estimator is studied under scrambled randomized response models. The detail properties of the 
suggested estimators have been provided. To measure the scrambled model effect the 
envisaged estimators are compared with direct estimators. Optimum replacement policy has 
been elaborated. Numerical study is carried out to demonstrate the applicability of the 
propounded estimators and hence appropriate recommendations are given. 

   
Key words: Scrambled response mechanism; Successive sampling; Non-sensitive auxiliary 
variable; Bias; Mean squared error. 

 
AMS Classification: 62D05 

  
 

1.     Introduction  
 
Surveys covering human population associated with sensitive issues, for instance, drug 

addiction, induced abortion, HIV infection status, excessive gambling, incidence of domestic 
violence, illegitimacy of offspring, drinking and driving, social security frauds, tax evasion, 
substance abuse, alcoholism, illegal income and AIDS etc. need to be addressed in social, 
psychological, socioeconomic and biometric research. In such cases employing the derived 
method of interview, people do not respond truthfully on even refuse to respond owing to social 
stigma and/ or fear. Under such circumstances, to gather valid and reliable data, protect 
respondent confidentiality and avoid unacceptable rate of non-response, randomized response 
procedures pioneered by Warner (1965) may be employed. Later Horvitz et al. (1967), 
Greenberg et al. (1969), Chaudhari and Mukerjee (1988), Kuk (1990), Mangat and Singh 
(1990), Christofides (2003), Mangat (1994), Arnab (2011) and Chaudhari and Christofides 
(2013) introduced various other devices for obtaining information on sensitive questions. 

                                                                            
 Pollock and Bek (1976) and Eichhorn and Hayre (1983) have made initial efforts to take 

sword of scrambled response technique ahead. Later various authors including Singh and 
Joardar (1996), Bar-Lev et al. (2004),  Saha (2007),  Diana and Perri (2012), Gjestvang and 
Singh (2009),  Odumade and Singh (2009), Singh and Mathur (2005), Singh and Kim (2007), 



114                                                         H. P. SINGH AND P. PATIDAR                                        [Vol  20, No. 1 
  

Tarray and Singh (2015),  Arcos et al. (2015), Singh and Gorey (2017), and many more have 
discussed the problem of estimating the population mean of a sensitive variable under 
scrambled randomized response model. 

 
It is to be mentioned that the above work done for single time survey associated with 

sensitive character analysis; instead, these issues need to be tracked constantly over time so 
that reflection of actual scenario in society associated with sensitive issues as well as changed 
level of sensitivity of issues with respect to time may be understood in a better way [see 
Priyanka and Trisandhya (2018)]. Interesting aspect of the scrambled response mechanism is 
that it can be used to protect the anonymity of individuals who have provided sensitive 
information. In such situations, the use of successive sampling scheme can be attractive 
alternative to improve the estimators of level at a point in time or to measure the change 
between two time points. Arnab and Singh (2013, pp. 2499-2500) have given the following 
examples well suited to the above mentioned situations: (i) A police department may be 
interested to know the average number of rapes in a large city during a particular year or a 
change in the number of rapes over a period of couple of years; (ii) A university administration 
may be interested to know the total amount of a particular drug used by students in a particular 
year, and after educating students about the adverse effect of drug use on health and society, if 
there is any significant change in the total drug use on campus or not; (iii) A social organization 
could be interested to know the proportion of those people who truly quit the drug after 
attending a lecture or seminar or after taking a medication.  

 
Jessen (1942) first introduced the successive sampling procedure on two occasions to 

estimate the mean on the most recent (current) occasion. Later several authors including 
Patterson (1950), Narain (1953), Singh (1968), Ghangurde and Rao (1969), Sen (1973), Okafor 
and Arnab (1987), Biradar and Singh (2001), Singh and Priyanka (2008), Singh et al. (2008), 
Singh and Vishwakarma (2007, 2009), Singh and Pal (2017) etc. have paid their attention 
toward the estimation of mean on current occasion using successive sampling. Arnab and Singh 
(2013), and Yu et al. (2015), have used randomized response technique to deal with sensitive 
issues on successive occasion. Singh et al. (2017) applied scramble response procedure using 
Patterson (1950) method to tackle sensitive issues on successive occasion. Assuming non-
sensitive additional auxiliary information is available at both occasions, Priyanka et al. (2017) 
and Priyanka and Trisandhya (2018, 2019) have employed both randomized and scramble 
response procedure to cope up with the studies related to sensitive issues on successive 
occasions. For example, we consider a situation, where an investigator is interested in 
estimating the average monthly expenditure on drug usage by undergraduate students in the 
current year 2016 (i.e. at second occasion) designated as the study variable y, then the auxiliary 
variable x may be taken as the average monthly expenditure on drug usage by undergraduate 
students in the year 2015 (i.e. at first occasion) and the average monthly pocket money of 
undergraduate students from all sources in the year 2015 may be taken as a non-sensitive 
additional auxiliary variable z. Here non-sensitive auxiliary data are available at both 
occasions. Hence this led authors to propose a class of estimators for estimating sensitive 
population mean of a sensitive variable at current occasion in two occasions successive 
sampling using non-sensitive auxiliary information. To deal with sensitive issues, randomized 
response technique due to Gjestvang and Singh (2009) has been applied. The detail properties 
of the suggested class of estimators have been discussed. Numerical illustration is given in 
support of the present study. 
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2.      Survey Strategies and Analysis 
 
2.1.   Sampling procedure 

 
Let  be a finite population of size N, which has been sampled over 

two occasions to estimate the population mean of sensitive variable at current occasion. It is 
supposed that the units of the population are unchanged over two occasions i.e. the sampling 
frame remain the same there by meaning is that no new units are added or deleted from the 
population. The character under investigation is sensitive variable designated by  on the 
first (second) occasion and z is a non-sensitive auxiliary variable available at both occasions. 
At the first occasion, a sample of n units is drawn from the population   by simple random 
sampling without replacement (SRSWOR). However, at the second occasion considering the 
partial overlap case, two independent samples are selected; one is matched sample of size 

drawn as subsample from the sample of size n  and another is unmatched simple 
random sample of size selected afresh at the second occasion so that the 
sample size at both the occasions is same (i.e. n). The sensitive variable  on the first 
(second) occasion are perturbed to with the aid of scrambling variable W. The scrambling 
variable W so considered as it may follow any distribution. The following notations are 
considered further 

 

: Fraction of sample drawn afresh at current occasion, 

: Fraction of samples matched from previous occasion, 

: Population means of variables x, y, z, g, h and w respectively, 
: Sample means of the variate based on sample sizes shown in suffices, 

: Sample means of non-sensitive auxiliary variate z based on sample sizes shown in        
                  suffices, 

: Correlation coefficient between the variables depicted in suffices, 
: Coefficient of variation of variables depicted in suffices, 

 : Population mean square of variability x, y, z respectively, 

: Population variance of x, y, z and w respectively, 
 
Note that the scrambling variable W such that and . 
 
2.2.    Randomized response technique on successive occasions  

 
 For estimating the population mean (or) total of a sensitive variable Gjestvang and Singh 

(2009) suggested a randomized response model (say ). In this paper Gjestvang and Singh 
(2009) randomized response model has been modified to be applied on successive occasions. 

 
  Let  be two known positive real numbers. Consider a deck of cards in which p 

is the proportion of cards bearing the statement: Multiply scrambling variable W with  and 
add to the real value of the sensitive variable  at first (second) move and  be the 
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proportion of cards bearing the statement: Multiply scrambling variable W with  and subtract 
it from the real value of the sensitive variable  at first (second) move. Let  
be known. In this procedure each respondent is asked to draw one each secretly (confidentially) 
and report the scrambled response according at first (second) move accordingly. Using above 
randomization device, response given by  respondent on the first and second moves, 
respectively are described as  

     and         

 

Therefore applying  on two successive occasions, the sensitive variable  are 
switched to  and are given by  

 
and   

 
such that  .                                                           (1)             

, , . 

 
Remark 1: Strategy is to obtain suitable estimator of population mean of coded response 
variable on current occasion and substituting the same in (1) to obtain the relevant estimator 
for sensitive population mean  at current occasion. 

 
2.3.    Design of the Class of Suggested Estimators 

 
 For estimating the population mean of perturbed variable H on the second (current) 

occasion, we have suggested two classes of estimators where one class of estimators  based 
on unmatched sample (or afresh sample) of size u on the current (second) occasion and others 
class of estimators based on the matched sample of size m (which is common to both the 
occasions). 
 
2.3.1. Class of estimators based on unmatched sample on the second occasion using   

information on  of non-sensitive auxiliary variable z 
 
The usual ratio and product-type estimators can be ramified to estimate the population 

mean of coded response variable. The following estimators based on sample of size u drawn 
afresh at current occasion for estimating the population mean of switched variable H on current 
(second) move can be considered 
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etc., where  are suitably chosen constants to be determined such 
that mean squared errors (MSEs) of are (maybe) 
minimized,  and b are real numbers or the values of the parameters coefficient 
of skewness , coefficient of kurtosis  and  etc. associated 
with additional non-sensitive auxiliary variable z, for instance, see Upadhyaya and Singh 
(1999). 

 
We propose a class of estimators of population mean of sensitive characteristic based on 

unmatched sample of size u, by following Srivastava (1980). When the population mean   
of the auxiliary variable z is known, we define a class of estimators for population mean of 
sensitive characteristic as 
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Assuming that the population size is sufficiently large so that finite population correction 
(fpc) term can be ignored, the bias and MSE of  to the first degree of approximation (fda) 
are respectively given by  

,                                  (3)

                     
 (4) 

where ,  and  are the first and second order partial derivatives 
of the function  at the point . 
 

Any parametric function  satisfying conditions (i)-(iii) can be an acceptable 
estimator of population mean of a sensitive variable at current move. The class of such 
estimators is very large. 

 
 It can be easily identified that the estimators are members of the suggested 

class of estimators given by (2). Thus the biases and mean squared errors of the estimators 
 to  can be easily obtained from (3) and (4) just by putting the values of ( ,

) and  in (3) and (4) respectively.  
The  at (4) is minimized for  

 

                                               (5) 
 
where  is the population regression coefficient of h on z, and  

 

 
Thus, the resulting minimum MSE of  is given by 

 
.                                                (6) 

Thus, we established the following theorem. 
 
Theorem 1: Up to terms of order , 
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many survey situations of practical importance, information on population variance ( ) / 
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on   we define a class of estimators for population mean  of coded response 
variable at current (second) occasion (move) in two occasion successive sampling as 

 

                                                      (7) 
 

where ,  and F(.) is a function of such that   
,  being the first order partial derivative of the function  at the 

point . 
 
The function  at (7) also satisfies certain regularity conditions like those given in 

Srivastava and Jhajji (1980, 1981). 
 
The Bias and MSE of  to the fda, ignoring fpc term, are respectively given by  

,              
(9) 

where  , ,  (r,s,t) being non-

negative integers,  and { , , , ,  } are the first and 
second order partial derivatives of the function F  at the point . 

 
Differentiating (9) partially with respect to (  and  ) and equating them to zero 

we have  

.                                     (10) 

  
After simplification of (10) we get the optimum values of    and  respectively as  
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Theorem 2: Up to the fda, 

 

with equality holding if , . 
 
The class of estimators  is very large. The following estimators are given below 

,     , 

     ,                      , 

etc. are members of the proposed class of estimators , where are suitably 
chosen constants. The bias and MSE of the estimators can be easily obtained 
from (8) and (9) just by putting the suitable values of , , , , ,

and . 
 
It is to be mentioned that the estimator like has been suggested by Priyanka and 

Trisandhya (2019). The bias and MSE of can be easily obtained by putting  

, , , , 

 and ,  in (8) and (9) respectively. 

From (6) and (13) we have  

                                
                              (14) 

 
Thus, the class of estimators  is more efficient than  provided . For 

this situation , both the classes of estimators  and  are equally efficient. 
We should also add here that if the variables (h, z) have bivariate normal distribution, then 
there is no advantage of using the estimator .  In such case, it is worth advisable to pick up 
the estimators belonging to the class of estimators . 
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information on  
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where are suitably chosen 
constants. It is to be noted that the estimators  are not utilizing the information on 
matched sample for additional non-sensitive auxiliary variable z (i.e. information on (
)) while information on ( ) associated with additional non-sensitive auxiliary variable z 
can be made available easily. This led authors to propose classes of estimators utilizing 
information on ( ) along with  of non-sensitive auxiliary variable 
z.  
 

We propose a class of estimators of population mean  at current (second) occasion, 
by following Srivastava (1971, 1980) as 

 
                                                                                                                         (15) 
 
where J(.) is a function of with such that  
 

                                                                     (16) 
 

 being the first order partial derivative of the function  at the point  
and satisfies certain regularity conditions similar to these given in Srivastava (1971,1980). A 
large number of estimators may be identified as member of the class  at (15). The following 
are some examples 
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etc., where  are suitably chosen constants. 

To the fda, ignoring fpc term, the bias and MSE of the class of estimators  are 
respectively given by  
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(18)

 
where and  are first and second order partial derivatives of the function 

 at the point . 
 
The   at (18) is minimized for  
 

 

(19) 
 
Thus, the resulting minimum MSE of  is given by  

,                                (20) 

where                                   

Now, we state the following theorem: 
 
Theorem 3: Up to the fda, 

        

 

with equality holding if . 
 

2.3.3.1. Class of estimators based on matched sample of size m at current occasion using 
information on   

 
If the information on  is used to estimate the population mean  at current 

move, then following the procedure adopted by Srivastava (1971), we define a class of 
estimators as  
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being the first and second order partial derivatives of the function about the point ; 
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,
 

(22) 

                                                  (23)                                         

where and are first and second order partial 
derivatives of the function  at the point . 
 
The   at (23) is minimized when    

                                                
 (24) 

                                                     (25) 

Thus, the resulting minimum MSE of  is given by  

.                                  (26) 

Now, we state the following theorem. 
 
Theorem 4: To the fda,   

 

with equality holding if  and . 
 
The class of estimators  is very large. In addition to Priyanka and Trisandhya (2019) 

estimator , the following estimators  

     ,                , 

,                    , 

 
etc. are the members of the proposed class of estimators , where are suitably 
chosen constants. The bias and MSE of the estimators , can be obtained 

easily just by putting the values of derivatives , , , ,  

and ,   in (22) and (23) respectively. 
 
We also note that the proposed class of estimators  is a member of class of estimators 

at (15).  
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                           (27) 

where   is the partial correlation coefficient between h and g. 

 
It follows from (27) that the proposed class of estimator  is more efficient than the 

estimator . 
 

2.3.4. Class of estimators based on matched sample at current move using information on 

 
 
It is to be noted that the estimator  due to Priyanka and Trisandhya (2019) utilizing 

information on  based on matched sample of size m can be further generalized as  

(28)   
 
where  

   
are suitably chosen constants. 

 
 Keeping the class of estimators (28) in view and adopting the same procedure as adopted 

by Srivastava and Jhajji (1981) we define a class of estimators of sensitive population mean 
 of coded response variable h based on the matched sample of size m at current move as  
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where L(.) is a function of   such that   being 
the first order partial derivative of the function  at and also satisfies 
certain regularity conditions similar to these given in Srivastava and Jhajji  (1981).  

 
To the fda, ignoring fpc term, the bias and MSE of the class of estimators  are 
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(31) 
where and are the first and second order partial 

derivatives of the function  at the point . 
 

The   at (31) is minimized for    
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where             
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Substitution of (32) to (36) in (31) yields the minimum MSE of  as  
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Now, we state the following theorem. 
 
Theorem 5: To the fda, 

 

( ) ( ) ( ) ( ) ( ) ( ){
( ) ( ) ( ) ( ) ( ) ( )

( ) ( )} ( ) ( ) ( ) ( ){
( ) ( ) ( )}]BLBLCBLS

BLCSBLBLCS
n

BLBLC

BLBLCBLBLCCBLSBLCS

BLCSBLBLCBLCS
nm

JMSE

zh

zhhzzhz

gzggzhzhhz

ghhgzghm

640036012

4
2
6004

2
4

22
53003

521023250123

2
2
5004

2
3

22
2

22
3

22

2112

2222

2111
2
1 

ll

rll

lrlr

rl

++

+-++++

++++

ê
ë

é
+-+++÷

ø
ö

ç
è
æ -=

( ) ( )6,5,4,32=iBLi ( ) ( )( );5,4,32,1, =jiBLij
( )vwhL m ,,,,, xyf B

( )3mJMSE

( ) ( ) sayBL
C
S

BL
g

h ,20*

*
1

2 ==
d
d

( ) ( ) sayBL
C
S

BL
z

h ,30*

*
2

3 ==
d
d

( ) ( )[ ]
( ) ( ) sayBL

C
S

BL
z

hzh ,
1
1

402
003004

004012003
4 =

--
--

=
ll

rlll

( ) ( ) sayBL
S

BL h ,50*

*
3

5 ==
d
d

( ) [ ]
( ) ( ) sayBL
S

BL hzh ,
1 602

003004

012003
6 =

--
-

=
ll

lrl

( ) ( ){ } ( )[ ]102003102003102004
2
003004

* 11 llrllllrrlld -+-----= gzgzgz

( ) ( ){ } ( )[ ]012003102003012004
2
003004

*
1 11 llrllllrrllrd -+-----= hzhzgzhg

( ){ } ( ){ } { }[ ]hzgzgzhghz rlrlllllrrlllrd 102012102003102004003012004
*
2 11 -+-----=

( ) ( ) ( )[ ]102003102012003012
*
3 llrrrllrrlrld -+---= gzhghzgzgzhg

3mJ

( ) ( )
( )
( ) ,

1
11

1
111

2
003004

2
0120032

2
1

2
12

.
2

3min
ú
ú
û

ù

ê
ê
ë

é

ïþ

ï
ý
ü

ïî

ï
í
ì

--
-

--+
ïþ

ï
ý
ü

ïî

ï
í
ì

-
--÷

ø
ö

ç
è
æ -=

ll
lrl

r
r

r hz
hz

gz
gzhhm nQ

R
nm

SJMSE

( ) ( ) ( )[ ]2
0121020030031021 1 gzgzhzgzhg rllrlrlrlrr -+-+-=

( )( ) ( ) ( )[ ]102003003003102102
2

0041 11 lrlllrllrl gzgzgzQ ------=

( ) ( )
( )
( ) ,

1
11

1
111

2
003004

2
0120032

2
1

2
12

.
2

3min
ú
ú
û

ù

ê
ê
ë

é

ïþ

ï
ý
ü

ïî

ï
í
ì

--
-

--+
ïþ

ï
ý
ü

ïî

ï
í
ì

-
--÷

ø
ö

ç
è
æ -³

ll
lrl

r
r

r hz
hz

gz
gzhhm nQ

R
nm

SJMSE



126                                                         H. P. SINGH AND P. PATIDAR                                        [Vol  20, No. 1 
  

with equality holding if . 
 
The class of estimators  at (29) is very large. The following estimators:  

 
, 

 

, 
 
etc. are the members of the suggested class of estimators , where  are 
suitably chosen constants. The bias and MSE of the estimators,  and   at (28) 
can be obtained easily from (30) and (31) just by putting the values of derivatives. 

  
Keeping the form of Priyanka and Trisandhya (2019) the estimator   and motivated 

by Srivastava and Jhajji (1981) we define a subclass of estimators  of the class of estimators 

 for the population mean   of the coded response at current move as  
 

                                                                         (38) 
 
where is a function of   such that , being 
the first order partial derivative of the function  at the point  and also 
satisfies 
certain regularity conditions similar to these given in Srivastava and Jhajji (1981). 

 
To the fda, ignoring fpc term, the bias and MSE of the class of estimators  are 

respectively given by  
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.                            (41) 

 
Thus, the resulting minimum MSE of  is given by  

.       (42)   

Thus, we arrived at the following theorem. 
 
Theorem 6: To the fda, 

 

with equality holding if where  is given by (41), 
. 

 
The class of estimators  is very large. The following estimators  
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       , 
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etc. are the members of the suggested class of estimators , where  are suitably 
chosen constants. The bias and MSE of the estimators can easily be obtained from (29) and 
(40) just by putting the values of derivatives. 
 
From (37) and (42) we have  

.   (43) 

 
It follows from (43) that the proposed class of estimator  is more efficient than the 

estimator , and hence better than the Priyanka and Trisandhya (2019) -type estimator . 
 

3.     Combined Classes of Estimators 
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mean of coded response at current occasion in two occasion successive sampling is defined 
by  

 
                                                             (44) 

 
where , , , , ,and are respectively defined in (2), (7), (15), (21), (29) and 

(38) and is a scalar quantity to be chosen suitably. 
 

Theorem 7: Bias of the combined class of estimators  to the fda, ignoring fpc term, is 
obtained as  
 

                                                 (45) 
where  and  .   
 
Proof is simple so omitted.             

 
Putting the values of , , , , ,and  as 

respectively defined in (3), (8), (17), (22), (30) and (39) in the above equation, we get the 
expression for the bias of the class of estimators  in (45). 

 
Theorem 8: The mean squared error of the class of estimators  is given by  
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where   are constants to be determined such that mean squared 
errors of   are minimum. 
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therefore . Thus inserting  and  in place of 
and  respectively and  in (47), we get the MSE of  as 

in (46). 
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3.1.    Minimum MSE of the suggested combined class of estimators   
  
Differentiating (46) with respect to and equating them to zero, we get the optimum 

value of as    

                        (48) 

 
Inserting the value of  from equation (48) in (46), we get the minimum MSE of 

classes of estimators  as  

,               (49) 

 
Putting the value of   and  from (6), (13), (20), (26), (37) and 

(42) respectively in (49), the simplified values of  are obtained as  
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         ,

. 

3.2.    Optimum rotation rate  
 
 It is observed from (50) to (57) that  is the function of  

which is rotation rate or the fraction of sample to be drawn afresh at current occasion. As 
less the sample need to be selected afresh, less is the total cost of the survey so to estimate 
population mean with maximum precision and minimum cost  at (50)-(57) have 
been minimized with respect to . The optimum values   have been derived as 
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Inserting  admissible value of from (58)-(65) 

respectively in (50) - (57) we get the optimum values of  as 
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  (67) 

                            
  (68) 

                                          
 (69) 

                                
  (70)   

                            
 (71) 

                                       (72)

                 
  (73) 

 
 

4.     Performances of the Suggested Classes of Estimators 
 
For examining the relevance and utility of the information used on non-sensitive auxiliary 

variable with the proposed classes of estimators, we have considered a class of estimators 
where no additional non-sensitive auxiliary information is used, known as modified general 
class of successive sampling estimators. 

 
4.1.    Modified general class of estimators based on matched sample of size m  

 
 Following the procedure adopted by Srivastava (1971,1980) we consider the following 

class of estimators of the population mean of coded response variable on the current 
(second) occasion as  
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where G(.) is a function of  such that  
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where  and . 

 
The MSE of  at (77) is minimum when  

.                                                                         (78) 
 
Substitution (78) in (77) yields the minimum MSE of the class of estimators  as 

                                                        (79) 

 
which is equal to the minimum MSE of the difference estimator  

 ,                                                                  (80) 

where  is the population regression coefficient of  h on g. 

We note that the class of estimators  at (74) is very vast. The following estimators 
(including ) 

                ,    ,     , 

etc. are the members of the class of estimators  at (74). The bias and MSE of the estimators
and  can be easily obtained from (76) and (77) just by putting the suitable 

values of derivatives ,  and . 
 
Now we state the following theorem. 
 

Theorem 9: Up to the first order of approximation, 
 

 

 
with equality holding if . 

 
4.2.   Combined class of estimators 

 
We consider the following combined classes of estimators for population mean response 

 of coded response variable at current (second) move at  
 

                                                                         (81) 
where  is unknown constant.  
 
We note that the class of estimators 
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due to Priyanka and Trisandhya (2019) is a member of the class of estimators  at (81), 
 is unknown constant and  is a suitably chosen scalar. 

 
The MSE of   is given by 

,                              (83) 
as the term . 

Replacing by its in (83) we have  
 

,  (84) 
 
which is minimum when 

                                                              (85) 

and thus the resulting minimum MSE of class of estimators  is given by   

   .                                                            (86) 

Expression (86) is optimized for  

 .                                                                        (87) 

Thus the optimum value of  is   

  .                                                (88) 

 
4.3. Theoretical comparison of the estimators  and 

 with the estimators  [or with the 
estimators  

 
 From (66), (67) and (68) we have  

,                         (89) 
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 .                                 (92) 

 
It follows from (92) that the proposed estimator  is more efficient than the estimators 

and . Theoretical Comparison among the estimators , , , , and are 
tedious, therefore we have not made the comparison among these estimators. 

 
5.      Estimators of Sensitive Population Mean at Current (Second) Move under Model 

  

The population mean  of the coded response variable h at current occasion in (1) is 
replaced by its estimators given in (44) and (81) respectively, to 

derive the estimators and  for sensitive population mean which are given below 

                                  

                                 

                                 

                                

. 
 
5.1.    Numerical illustration  
  

 To have tangible idea about the performance of the suggested estimators and  (for 

the sake of convenience we have considered only two estimators and  for purpose of 
comparison), we have considered artificial parametric values 

 
 

 
Here we suppose that  for which , . 

 
The optimum values of fraction of sample to be drawn afresh at current (second) occasion 

(move) and percent relative efficiencies (PREs) have been computed by using the following 
formulae 

,                                                                 (93) 

,                                                    (94) 

                                   

  (95) 

( ) ( ) ( )optCoptopt TMSETMSETMSE min12min11min <<

11T
12T CT 13T 14T 21T 22T 23T 24T

GM

H
( )4,3,2,1;2,1, == jiTT Cij

ijŶ CŶ
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                 (96) 

 
Findings are given in Table 5.1 and 5.2. 

Table 5.1:   Optimum Values of  (in bracket) and PRE of  with respect to . 
   

 
0.01 0.05 0.1 0.3 0.5 0.7 0.9 1.0 1.50 2.00 

0.01 207.13 
(0.5201) 

206.63 
(0.52) 

206.02 
(0.5199) 

203.64 
(0.5194) 

201.36 
(0.5189) 

199.18 
(0.5185) 

197.1 
(0.518) 

196.09 
(0.5178) 

191.35 
(0.5169) 

187.06 
(0.516) 

0.05 206.63 
(0.52) 

204.22 
(0.5195) 

201.36 
(0.5189) 

191.35 
(0.5169) 

183.16 
(0.5152) 

176.33 
(0.5139) 

170.56 
(0.5127) 

167.99 
(0.5122) 

157.56 
(0.5101) 

149.94 
(0.5086) 

0.1 206.02 
(0.5199) 

201.36 
(0.5189) 

196.09 
(0.5178) 

179.6 
(0.5145) 

167.99 
(0.5122) 

159.37 
(0.5105) 

152.72 
(0.5092) 

149.94 
(0.5086) 

139.56 
(0.5065) 

132.82 
(0.5052) 

0.3 203.64 
(0.5194) 

191.35 
(0.5169) 

179.6 
(0.5145) 

152.72 
(0.5092) 

139.56 
(0.5065) 

131.75 
(0.505) 

126.58 
(0.5039) 

124.6 
(0.5035) 

118.05 
(0.5021) 

114.37 
(0.5014) 

0.5 201.36 
(0.5189) 

183.16 
(0.5152) 

167.99 
(0.5122) 

139.56 
(0.5065) 

128.09 
(0.5042) 

121.91 
(0.5029) 

118.05 
(0.5021) 

116.61 
(0.5019) 

112.01 
(0.501) 

109.48 
(0.5005) 

0.7 199.18 
(0.5185) 

176.33 
(0.5139) 

159.37 
(0.5105) 

131.75 
(0.505) 

121.91 
(0.5029) 

116.88 
(0.5019) 

113.82 
(0.5013) 

112.7 
(0.5011) 

109.11 
(0.5005) 

107.14 
(0.5003) 

0.9 197.1 
(0.518) 

170.56 
(0.5127) 

152.72 
(0.5092) 

126.58 
(0.5039) 

118.05 
(0.5021) 

113.82 
(0.5013) 

111.28 
(0.5008) 

110.35 
(0.5007) 

107.37 
(0.5003) 

105.74   
(0.5001) 

1 196.09 
(0.5178) 

167.99 
(0.5122) 

149.94 
(0.5086) 

124.6 
(0.5035) 

116.61 
(0.5019) 

112.7 
(0.5011) 

110.35 
(0.5007) 

109.48 
(0.5005) 

106.73 
(0.5002) 

105.23 
(0.5001) 

1.5 191.35 
(0.5169) 

157.56 
(0.5101) 

139.56 
(0.5065) 

118.05 
(0.5021) 

112.01 
(0.501) 

109.11 
(0.5005) 

107.37 
(0.5003) 

106.73 
(0.5002) 

104.7 
(0.5001) 

103.6 
(0.5) 

2 187.06 
(0.516) 

149.94 
(0.5086) 

132.82 
(0.5052) 

114.37 
(0.5014) 

109.48 
(0.5005) 

107.14 
(0.5003) 

105.74 
(0.5001) 

105.23 
(0.5001) 

103.6 
(0.5) 

102.75 
(0.5) 

 
 

Table 5.2:   Optimum Values of  (in bracket) and PRE of  with respect to . 

  
 

0.01 0.05 0.1 0.3 0.5 0.7 0.9 1.0 1.50 2.00 

0.01 188.8 
(0.4741) 

188.42 
(0.4742) 

187.96 
(0.4743) 

186.15 
(0.4748) 

184.41 
(0.4752) 

182.74 
(0.4757) 

181.14 
(0.4761) 

180.36 
(0.4763) 

176.68 
(0.4773) 

173.33 
(0.4781) 

0.05 188.42 
(0.4742) 

186.59 
(0.4747) 

184.41 
(0.4752) 

176.68 
(0.4773) 

170.26 
(0.479) 

164.84 
(0.4804) 

160.2 
(0.4816) 

158.12 
(0.4821) 

149.58 
(0.4843) 

143.23 
(0.4859) 

0.1 187.96 
(0.4743) 

184.41 
(0.4752) 

180.36 
(0.4763) 

167.44 
(0.4797) 

158.12 
(0.4821) 

151.08 
(0.4839) 

145.57 
(0.4853) 

143.23 
(0.4859) 

134.43 
(0.4879) 

128.61 
(0.4892) 

0.3 186.15 
(0.4748) 

176.68 
(0.4773) 

167.44 
(0.4797) 

145.57 
(0.4853) 

134.43 
(0.4879) 

127.68 
(0.4894) 

123.14 
(0.4902) 

121.39 
(0.4905) 

115.51 
(0.4914) 

112.17 
(0.4918) 

0.5 184.41 
(0.4752) 

170.26 
(0.479) 

158.12 
(0.4821) 

134.43 
(0.4879) 

124.48 
(0.49) 

118.99 
(0.4909) 

115.51 
(0.4914) 

114.21 
(0.4915) 

110.02 
(0.4921) 

107.73 
(0.4925) 

0.7 182.74 
(0.4757) 

164.84 
(0.4804) 

151.08 
(0.4839) 

127.68 
(0.4894) 

118.99 
(0.4909) 

114.46 
(0.4915) 

111.67 
(0.4918) 

110.64 
(0.492) 

107.4 
(0.4926) 

105.67 
(0.4934) 

0.9 181.14 
(0.4761) 

160.2 
(0.4816) 

145.57 
(0.4853) 

123.14 
(0.4902) 

115.51 
(0.4914) 

111.67 
(0.4918) 

109.35 
(0.4922) 

108.51 
(0.4923) 

105.87 
(0.4933) 

104.48 
(0.4942) 

1 180.36 
(0.4763) 

158.12 
(0.4821) 

143.23 
(0.4859) 

121.39 
(0.4905) 

114.21 
(0.4915) 

110.64 
(0.492) 

108.51 
(0.4923) 

107.73 
(0.4925) 

105.32 
(0.4936) 

104.05 
(0.4945) 

1.5 176.68 
(0.4773) 

149.58 
(0.4843) 

134.43 
(0.4879) 

115.51 
(0.4914) 

110.02 
(0.4921) 

107.4 
(0.4926) 

105.87 
(0.4933) 

105.32 
(0.4936) 

103.62 
(0.4949) 

102.74 
(0.4959) 

2 173.33 
(0.4781) 

143.23 
(0.4859) 

128.61 
(0.4892) 

112.17 
(0.4918) 

107.73 
(0.4925) 

105.67 
(0.4934) 

104.48 
(0.4942) 

104.05 
(0.4945) 

102.74 
(0.4959) 

102.08 
(0.4968) 
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It is observed from Tables 5.1 and 5.2 that  
 

(i)    the suggested class of estimators  and  perform better than the class of estimators 

 which  does not utilize information on additional auxiliary variable ‘z’ in terms   
of optimum fraction of sample to be drawn afresh and also in terms of percent relative 
efficiency. 

(ii)   the PRE’s of the proposed estimators  and  decreases with increasing values of 
. 

(iii)    the larger gain in efficiency is observed by using the proposed classes of estimators  

and  over the class of estimators  when the value of  are small.  

(iv)    the gain in efficiency by using the proposed class of estimators   over   is 

larger as compared to the class of estimators  over . 
 
It is to be mentioned that a practical choice of  and , fixed by the experience of the 

experimenter from repeated surveys can always provide better results than the class of 
estimators . 

 
Remark 2: The procedure outlined in this paper can be also applied to the randomized response 
models mentioned in Priyanka and Trisandhya (2019) {see Arcos et al. (2015) and Odumade 
and Singh (2008) etc} to get the efficient estimators of the population mean at current (second) 
move using information on additional non-sensitive auxiliary variable at both the occasion in 
two occasion successive sampling. 
 
6.      Conclusion 

 
This article presents some classes of estimators for estimating the population mean at 

current (second) occasion in two occasions successive sampling using information on an 
additional non-sensitive auxiliary variable in presence of randomized response model. The 
properties of the suggested classes are studied under randomized response models. Optimum 
replacement policies have been elaborated. It has been demonstrated that the proposed classes 
of estimators are better than the class of estimators which does not utilize non-sensitive 
auxiliary information. Numerical illustration is given in support of the present study. It has 
been shown that there is appreciable gain in efficiency by using the proposed classes of 
estimators over the class of estimators . Thus the proposed study is recommended for 
its use in practice. 
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Abstract 

Some recursive constructions of α– resolvable group divisible designs with λ1=0 from 
certain group divisible designs with λ1=0 are presented here. In this process some non– 
isomorphic solutions of group divisible designs are also obtained. A group divisible design 
with λ1=0 is used in the construction of Group divisible codes, optimal codes over a cyclic 
group and LDPC codes, see Ge (2007), Chee et al. (2008) and Xu et al. (2019). Transversal 
designs are special classes of such designs.  

Keywords: Group divisible designs and codes; Uniform frames; α– resolvable designs; Optimal 
and LDPC codes. 

1. Introduction 

1.1.   Group divisible design 

In statistical design theory, a Group divisible (GD) design is defined as an arrangement 
of v (= mn; m, n ≥2; m groups of n treatments) treatments into b blocks such that each block 
contains k (<v) distinct treatments, each treatment occurs r times and any pair of distinct 
treatments which are first associates occur together in λ1 blocks and in λ2 blocks if they are 
second associates. Furthermore, if r– λ1=0 then the GD design is singular; if r– λ1>0 and rk–
vλ2=0 then it is semi-regular (SR); and if r– λ1>0 and rk–vλ2>0, the design is regular (R). 

In Combinatorial design theory; a GD design with index λ is a triple (𝒱, 𝒢, ℬ) where 
(i)	𝒱 is a finite set of elements and 𝒢 is a set of subsets of 𝒱, called groups, which partition 𝒱;  
(ii) ℬ is a set of subsets of 𝒱, called blocks, such that every pair of elements from distinct 

groups occurs in exactly λ blocks and |𝐺 ∩ 𝐵| ≤ 1 for all 𝐺 ∈ 𝒢, 𝐵 ∈ ℬ. 
If all the blocks of the GD design have the same size k and all the groups have the same 

size n then the GD design is uniform and it is known as (k, λ) – GD design of type nm for some 
positive integer m. 

Clearly a (k, λ) – GD design of type nm is a GD design with λ1=0 (in Statistical design 
theory). A GD design with λ1=0 is used in the construction of Group divisible codes, optimal 
codes over a cyclic group and LDPC codes, see Ge (2007), Chee et al. (2008) and Xu et al. 
(2019). A semi- regular GD design with λ1=0 and k = m is also known as a transversal design 
in combinatorial design theory.  
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1.2.  Partial resolution classes and frames 

Suppose b blocks of a block design D (v, b, r, k) can be divided into 𝑡 = 𝑟 𝛼⁄  classes, 
each of size 𝛽 = 𝑣𝛼 𝑘⁄  such that in each class of 𝛽 blocks every treatment of D is replicated α 
times. Then these t classes are known as α– resolution (or parallel) classes and the design is 
called an α– resolvable design. When α=1 the design is said to be resolvable and the classes 
are called resolution classes. 

Let 𝒱 be the set of treatments, 𝒢 be a set of subsets of 𝒱 (called groups), each of size n 
which partitions 𝒱 and ℬ be the set of subsets of 𝒱, called blocks of a GD design. A partial 
resolution class is a collection of blocks such that every treatment of 𝒱\𝐺, 𝐺 ∈ 𝒢 occurs exactly 
once and the treatments of 𝐺 do not occur.  

A uniform (k, λ) – frame of index λ is a GD design with parameters v, b, r, k, λ1 = 0, λ2 = 
λ, m, n such that 
(i) the block set ℬ can be partitioned into a family ℛ of partial resolution classes, and  
(ii) each 𝑅 ∈ ℛ can be associated with a group 𝐺 ∈ 𝒢 so that R contains every treatment of 
𝒱\𝐺 exactly once.  

 Such frame is of type nm where n is the size of the each group of the GD design. For 
details see Furino et al. (1996; pp. 27– 28) and Ge and Miao (2007). 

A comprehensive coverage of constructions of GD designs may be found in Dey (1986, 
2010), Raghavarao (1971), Raghavarao and Padgett (2005) and Saurabh et al. (2021). Some 
construction methods of α– resolvable partially balanced incomplete block designs may be 
found in Sinha and Dey (1982), Kadowaki and Kageyama (2009) and Saurabh and Sinha 
(2020). Here, some recursive constructions of α– resolvable group divisible designs with λ1=0 
from certain group divisible designs with λ1=0 are presented. In this process some non– 
isomorphic solutions of group divisible designs are also obtained. All the group divisible 
designs constructed here have λ1=0. SRX numbers are from Clatworthy (1973). 

2.  Recursive Constructions 

Theorem 1: The existence of a resolvable SRGD design with parameters  

v, b = nr, r, k, λ1 = 0, λ2= λ, m, n                                                                                               (1) 
implies the existence of another resolvable SRGD design with parameters  

𝑣∗ = 𝑣 + 𝑝𝑛, 𝑏∗ = 𝑛"𝑏, 𝑟∗ = 𝑛"𝑟, 𝑘∗ = 𝑘 + 𝑝, 𝜆#∗ = 0, 𝜆$∗ = 𝑛"𝜆,𝑚∗ = 𝑚 + 𝑝, 𝑛∗ = 𝑛      (2)  
p is a positive integer. 
 
Proof: Let 𝑅#, 𝑅$, … , 𝑅% be the resolution classes of the SRGD design with parameters (1). Let 
𝐵#& , 𝐵$& , … , 𝐵'&  be arbitrarily chosen blocks in its ith resolution class and 𝜃#, 𝜃$, … , 𝜃' be the new 
treatments other than the v treatments of the GD design. We form b/r resolution classes 	
𝑅#& , 𝑅$& , … , 𝑅( %⁄

& 	corresponding to a resolution class 𝑅& of the SRGD design with parameters (1) 
as follows: 
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𝑅#&  𝑅$&  … 𝑅( %⁄

&  
𝐵#&⋃{𝜃#} 
𝐵$&⋃{𝜃$} 

⋮ 
𝐵'&⋃{𝜃'} 

𝐵#&⋃{𝜃$} 
𝐵$&⋃{𝜃#} 

⋮ 
𝐵'&⋃{𝜃'*#} 

⋯ 
⋯ 
⋮ 
⋯ 

𝐵#&⋃{𝜃'} 
𝐵$&⋃{𝜃'*#} 

⋮ 
𝐵'&⋃{𝜃#} 

This process is continued for all the resolution classes of the SRGD design. New treatments 
are added once only in each block. The union of these new resolution classes generates the 
blocks of another resolvable SRGD design with parameters:  
          𝑣∗ = 𝑣 + 𝑛, 𝑏∗ = 𝑛𝑏, 𝑟∗ = 𝑏 = 𝑛𝑟, 𝑘∗ = 𝑘 + 1, 𝜆#∗ = 0, 𝜆$∗ = 𝜆𝑛,𝑚∗ = 𝑚 + 1, 𝑛∗ = 𝑛. 
Further, by repeated application of this process p (p a positive integer) times we will get a 
resolvable SRGD design with parameters (2). 

Example 1: Consider the following resolution classes of SR23: v = b = 9, r = k = 3, λ1 = 0, λ2 
= 1, m = n = 3 

R1 R2 R3 

1, 2, 3  
4, 5, 6 
7, 8, 9 

1, 5, 9 
2, 6, 7 
3, 4, 8 

1, 6, 8 
2, 4, 9 
3, 5, 7 

Then using Theorem 1, the resolution classes of SR43: v = 12, r = 9, k = 4, b = 27, λ1 = 0, λ2 = 
3, m = 4, n = 3 are 

𝑅## 𝑅$# 𝑅+# 𝑅#$ 𝑅$$ 𝑅+$  
1, 2, 3, 10 
4, 5, 6, 11 
7, 8, 9, 12 

1, 2, 3, 11 
4, 5, 6, 12 
7, 8, 9, 10 

1, 2, 3, 12 
4, 5, 6, 10 
7, 8, 9, 11 

1, 5, 9, 10 
2, 6, 7, 11 
3, 4, 8, 12 

1, 5, 9, 11 
2, 6, 7, 12 
3, 4, 8, 10 

1, 5, 9, 12 
2, 6, 7, 10 
3, 4, 8, 11 

 

𝑅#+ 𝑅$+ 𝑅++  
1, 6, 8, 10 
2, 4, 9, 11 
3, 5, 7, 12 

1, 6, 8, 11 
2, 4, 9, 12 
3, 5, 7, 10 

1, 6, 8, 12 
2, 4, 9, 10 
3, 5, 7, 11 

 

Example 2: Consider the following resolution classes of SR36: v = b = 8, r = k = 4, λ1 = 0, λ2 

= 2, m = 4, n = 2 
R1 R2 R3 R4 

1, 2, 3, 4 
5, 6, 7, 8 

1, 2, 7, 8 
3, 4, 5, 6 

1, 3, 6, 8 
2, 4, 5, 7 

1, 4, 6, 7 
2, 3, 5, 8 

Then using Theorem 1, the resolution classes of SR54: v = 10, r = 8, k = 5, b = 16, λ1 = 0, λ2 = 
4, m = 5, n = 2 are 

𝑅## 𝑅$# 𝑅#$ 𝑅$$ 𝑅#+ 𝑅$+ 
1, 2, 3, 4, 9 
5, 6, 7, 8, 

10 

1, 2, 3, 4, 
10 

5, 6, 7, 8, 9 

1, 2, 7, 8, 9 
3, 4, 5, 6, 

10 

1, 2, 7, 8, 
10 

3, 4, 5, 6, 9 

1, 3, 6, 8, 9 
2, 4, 5, 7, 

10 

1, 3, 6, 8, 
10 

2, 4, 5, 7, 9 
𝑅#, 𝑅$, 

1, 4, 6, 7, 9 
2, 3, 5, 8, 

10 

1, 4, 6, 7, 
10 

2, 3, 5, 8, 9 
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Theorem 2: The existence of an n– resolvable SRGD design with parameters (1) implies the 
existence of another n- resolvable SRGD design with parameters  

𝑣∗ = 𝑣 + 𝑝𝑛, 𝑏∗ = 𝑛"𝑏, 𝑟∗ = 𝑛"𝑟, 𝑘∗ = 𝑘 + 𝑝, 𝜆#∗ = 0, 𝜆$∗ = 𝑛"𝜆,𝑚∗ = 𝑚 + 𝑝, 𝑛∗ = 𝑛.     (3)   
p is a positive integer. 

Proof: Since the SRGD design with parameters (1) is n-resolvable, the number of resolution 
classes is r/n and the number of blocks in each resolution class is 𝑏𝑛 𝑟⁄ = 𝑣𝑛 𝑘⁄ = 𝑛$. Let 
𝑅#, 𝑅$, … , 𝑅% '⁄  be the resolution classes of SRGD design with parameters (1). Let 
𝐵#& , 𝐵$& , … , 𝐵'!

&  be arbitrarily chosen blocks in its ith resolution class and 𝜃#, 𝜃$, … , 𝜃' be the new 
treatments distinct from the v treatments of the SRGD design. We construct n resolution classes 
corresponding to a resolution class 𝑅& of the SRGD design as follows: 

 
𝑅#&  𝑅$&  … 𝑅'&  

𝐵#&⋃{𝜃#} 
𝐵$&⋃{𝜃#} 

⋮ 
𝐵'&⋃{𝜃#} 
𝐵'-#& ⋃{𝜃$} 

⋮ 
𝐵$'& ⋃{𝜃$} 

⋮ 
𝐵'!*#
& ⋃{𝜃'} 
𝐵'!
& ⋃{𝜃'} 

𝐵#&⋃{𝜃$} 
𝐵$&⋃{𝜃$} 

⋮ 
𝐵'&⋃{𝜃$} 
𝐵'-#& ⋃{𝜃#} 

⋮ 
𝐵$'& ⋃{𝜃#} 

⋮ 
𝐵'!*#
& ⋃{𝜃'*#} 
𝐵'!
& ⋃{𝜃'*#} 

⋯ 
⋯ 
⋮ 
⋯ 
⋯ 
⋮ 

 
⋯ 
⋯ 
⋯ 

𝐵#&⋃{𝜃'} 
𝐵$&⋃{𝜃'} 

⋮ 
𝐵'&⋃{𝜃'} 

𝐵'-#& ⋃{𝜃'*#} 
⋮ 

𝐵$'& ⋃{𝜃'*#} 
⋮ 

𝐵'!*#
& ⋃{𝜃#} 
𝐵'!
& ⋃{𝜃#} 

We continue this process for all the resolution classes of the SRGD design with parameters (1). 
New treatments are added once only in each block. The union of these new resolution classes 
generates the blocks of another n-resolvable SRGD design with parameters: 

𝑣∗ = 𝑣 + 𝑛, 𝑏∗ = 𝑏𝑛, 𝑟∗ = 𝑏 = 𝑛𝑟, 𝑘∗ = 𝑘 + 1, 𝜆#∗ = 0, 𝜆$∗ = 𝑛𝜆,𝑚∗ = 𝑚 + 1, 𝑛∗ = 𝑛. 
Further, by repeated application of this process p (p a positive integer) times we will get an n- 
resolvable SRGD design with parameters (3). 

Example 3: Consider the following 2– resolvable solution of SR66: v = 12, b = 8, r = 4, k = 6, 
λ1 = 0, λ2 = 2, m = 6, n = 2: 

 
R1 R2 

1, 2, 3, 4, 5, 6 
5, 6, 7, 8, 9, 10 

1, 2, 9, 10, 11, 12 
3, 4, 7, 8, 11, 12 

1, 3, 8, 5, 10, 12 
2, 4, 5, 7, 9, 12 
1, 4, 6, 8, 9, 11 
2, 3, 6, 7, 10, 11 

Then using Theorem 2, a 2– resolvable solution of SR82: v = 14, r = 8, k = 7, b = 16, λ1 = 0, λ2 

= 4, m = 7, n = 2 is obtained as: 
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𝑅## 𝑅$# 𝑅#$ 𝑅$$ 

1, 2, 3, 4, 5, 6, 13 
5, 6, 7, 8, 9, 10, 13 

1, 2, 9, 10, 11, 12, 14 
3, 4, 7, 8, 11, 12, 14 

1, 2, 3, 4, 5, 6, 14 
5, 6, 7, 8, 9, 10, 14 

1, 2, 9, 10, 11, 12, 13 
3, 4, 7, 8, 11, 12, 13 

1, 3, 8, 5, 10, 12, 14 
2, 4, 5, 7, 9, 12, 14 
1, 4, 6, 8, 9, 11, 13 
2, 3, 6, 7, 10, 11, 13 

1, 3, 8, 5, 10, 12, 
13 

2, 4, 5, 7, 9, 12, 13 
1, 4, 6, 8, 9, 11, 14 
2, 3, 6, 7, 10, 11, 

14 

Remark 1: Clatworthy (1973) reported a resolvable and a 4-resolvable solution for SR82 while 
the solution presented here is 2-resolvable. Hence the present solution is non– isomorphic.  

The following Table lists n-resolvable (n ≥1) solutions of some SRGD designs using 
Theorems 1 and 2 with p = 1: 

Table 1: SRGD Designs 
No. Original design Derived design Source 
1 SR1, Resolvable SR19, Resolvable Th. 1 
2 SR6, Resolvable SR25, Resolvable Th. 1 
3 SR23, Resolvable SR43, Resolvable Th. 1 
4 SR36, Resolvable  

and 2– resolvable 
SR54, Resolvable  
and 2– resolvable 

Th. 1 & 2 

5 SR52, 2– resolvable SR69, 2– resolvable Th. 2 
6 SR66, 2– resolvable SR82, 2– resolvable, 

Non- isomorphic 
Th. 2 

Theorem 3: The existence of a uniform (k, λ) – frame with parameters: v = b, r = k, λ1 = 0, λ2= 
λ, m, n implies the existence of a resolvable GD design with parameters  

𝑣∗ = 𝑣, 𝑏∗ = 𝑛𝑣, 𝑟∗ = 𝑛(𝑘 + 1), 𝑘∗ = 𝑘 + 1, 𝜆#∗ = 0, 𝜆$∗ = 𝜆𝑛 (𝑘 + 1) (𝑘 − 1)⁄ ,𝑚∗ = 𝑚, 
   𝑛∗ = 𝑛.                                                                                                               (4) 
where n is equal to the number of blocks in partial resolution class of a uniform (k, λ) – frame. 

Proof: Let 𝑅#, 𝑅$, … , 𝑅.	be the partial resolution classes. Let 𝐵#& , 𝐵$& , … , 𝐵'&  be arbitrarily 
chosen blocks and {𝜃#, 𝜃$, … , 𝜃'} be the missing group in ith partial resolution class of the 
uniform (k, λ) – frame. We form n resolution classes corresponding to a partial resolution class 
𝑅& as follows: 

𝑅#&  𝑅$&  … 𝑅'&  
𝐵#&⋃{𝜃#} 
𝐵$&⋃{𝜃$} 

⋮ 
𝐵'&⋃{𝜃'} 

𝐵#&⋃{𝜃$} 
𝐵$&⋃{𝜃#} 

⋮ 
𝐵'&⋃{𝜃'*#} 

⋯ 
⋯ 
⋱ 
⋯ 

𝐵#&⋃{𝜃'} 
𝐵$&⋃{𝜃'*#} 

⋮ 
𝐵'&⋃{𝜃#} 

We continue this process for all the partial resolution classes of an (k, λ) – frame. One of the n 
treatments from missing groups are added once only in each block. The union of these new 
resolution classes generates the blocks of a resolvable GD design with parameters (4). 

 

Example 4: Consider a (3, 1) – frame of type 24 whose partial resolution classes are: 



 SHYAM SAURABH AND KISHORE SINHA [Vol. 20, No. 1 146 

 
Partial Resolution Classes R1 R2 R3  R4 

groups {1, 5} {2, 4} {3, 6} {7, 8} 

blocks {2, 6, 7} 
{3, 4, 8} 

{1, 6, 8} 
{3, 5, 7} 

{1, 4, 7} 
{2, 5, 8} 

{1, 2, 3} 
{4, 5, 6} 

Then using Theorem 3, we obtain a resolvable GD design with parameters SR39: v = 8, r = 8, 
k = 4, b = 16, λ1 = 0, λ2 = 4, m = 4, n = 2 whose resolution classes are: 

𝑅## 𝑅$# 𝑅#$ 𝑅$$ 𝑅#+ 𝑅$+ 
{1, 2, 6, 7} 
{3, 4, 5, 8} 

{2, 5, 6, 7} 
{1, 3, 4, 8} 

{1, 2, 6, 8} 
{3, 4, 5, 7} 

{1, 4, 6, 8} 
{2, 3, 5, 7} 

{1, 3, 4, 7} 
{2, 5, 6, 8} 

{1, 4, 6, 7} 
{2, 3, 5, 8} 

𝑅#, 𝑅$,   
{1, 2, 3, 7} 
{4, 5, 6, 8} 

{1, 2, 3, 8} 
{4, 5, 6, 7} 

  

Theorem 4: The existence of a nonresolvable SRGD design with parameters (1) implies the 
existence of another r–resolvable SRGD design with parameters  

𝑣∗ = 𝑣 + 𝑛, 𝑏∗ = 𝑛$𝑟, 𝑟∗ = 𝑛𝑟, 𝑘∗ = 𝑘 + 1, 𝜆#∗ = 0, 𝜆$∗ = 𝜆𝑛,𝑚∗ = 𝑚 + 1, 𝑛∗ = 𝑛. (5)
  

Proof: Let 𝐵#& , 𝐵$& , … , 𝐵'%&  be arbitrarily chosen blocks of the nonresolvable SRGD design with 
parameters (1) and 𝜃#, 𝜃$, … , 𝜃' be the new treatments other than v treatments of the SRGD 
design. We constitute an r– resolvable solution of a GD design with parameters (5) whose 
blocks are given as follows:  

𝑅# 𝑅$ … 𝑅' 
𝐵#⋃{𝜃#} 
𝐵$⋃{𝜃#} 

⋮ 
𝐵%⋃{𝜃#} 
𝐵%-#⋃{𝜃$} 

⋮ 
𝐵$%⋃{𝜃$} 

⋮ 
𝐵'%*#⋃{𝜃'} 
𝐵'%⋃{𝜃'} 

𝐵#⋃{𝜃$} 
𝐵$⋃{𝜃$} 

⋮ 
𝐵%⋃{𝜃$} 
𝐵%-#⋃{𝜃#} 

⋮ 
𝐵$%⋃{𝜃#} 

⋮ 
𝐵'%*#⋃{𝜃'*#} 
𝐵'%⋃{𝜃'*#} 

⋯ 
 
⋯ 
 
⋯ 
 
⋯ 
⋮ 
⋯ 
⋯ 

𝐵#⋃{𝜃'} 
𝐵$⋃{𝜃'} 

⋮ 
𝐵%⋃{𝜃'} 

𝐵%-#⋃{𝜃'*#} 
⋮ 

𝐵$%⋃{𝜃'*#} 
⋮ 

𝐵'%*#⋃{𝜃#} 
𝐵'%⋃{𝜃#} 

New treatments are added once only in each block. 

When r=n in Theorem 4, by the repeated application of the process in Theorem 2 we get: 

Corollary 1: The existence of a nonresolvable SRGD design with parameters (1) implies the 
existence of another n– resolvable SRGD design with parameters: 
 𝑣∗ = 𝑣 + (𝑝 + 1)𝑛, 𝑏∗ = 𝑛"-+, 𝑟∗ = 𝑛"-$, 𝑘∗ = 𝑘 + 𝑝 + 1, 𝜆#∗ = 0, 𝜆$∗ = 𝜆𝑛"-#,	 𝑚∗ = 𝑚 +
𝑝 + 1, 𝑛∗ = 𝑛; p is a positive integer.                                                                                     (6)                                                                                    

Example 5: Consider a SRGD design SR41: v = 12, b = 9, r = 3, k = 4, λ1 = 0, λ2 = 1, m = 4, n 
= 3 whose blocks are given as: 
{1, 2, 3, 4}, {4, 5, 7, 10}, {4, 6, 9, 11}, {1, 6, 7, 8}, {2, 5, 8, 11}, {3, 8, 9, 10}, {1, 10, 11, 12}, 
{2, 7, 9, 12}, {3, 5, 6, 12}.  
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Then using Theorem 4, a 3-resolvable solution of SR57: v = 15, b = 27, r = 9, k = 5, λ1 = 0, λ2 
= 3, m = 5, n = 3 is given as: 

 

 

 

 

 
 

Since r = n = 3 here, following Corollary 1 for p =1 we will get a SRGD design with parameters: 
v = 18, b = 81, r = 27, k = 6, λ1 = 0, λ2 = 9, m = 6, n = 3. 

Remark 2: Clatworthy (1973) reported a resolvable solution for SR57 whereas a 3-resolvable 
solution is obtained here for the same. Hence the present solution is non– isomorphic.  

Remark 3: The association scheme of the derived GD design in the Theorems 1, 2 and 4 is 
obtained by adjoining a new row: mn+1, mn+2,…, n(m+1) to the m×n association scheme of 
the original GD design. 
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Abstract 
                

Present paper studies the behaviour of few clientele available in the system, when the 
system starts and derives the time dependent probabilities of a single server queueing model 
with impatient customers (“balking and reneging”), Bernoulli schedule and multiple vacations. 
“Server accepts a customer with fix probability ρ or commences a vacation of random duration 
with probability (1- ρ)”. An arriving customer may balk (do not enter) or renege pursuant to 
the negative exponential distribution. Time dependent probabilities are computed with the help 
of recurrence relations and provide us a better understanding of the behaviour of the system. 
Finally, measureable outcomes are calculated with the help of Maple software. 
 
Key words: M/M/1; Bernoulli schedule; Impatient customers; Multiple vacations; Laplace 
transform. 

1. Introduction 
 

In recent years, various authors have studied queueing models from productive point of 
view. Many real-life situations occur where clienteles are dejected by longer queue and as a 
result clienteles have to wait long to get into service upon arrival. In queues, “balking and 
reneging are common phenomena, as a consequences the customer either decides to join the 
queue or depart after joining the queue without getting service due to impatience”. Queueing 
systems with impatient units (“balking and reneging”) have engross many authors because of 
their extensive applications in many practical situations such as perishable goods in 
supermarkets, emergency room in hospitals etc. Haight (1957), Haight (1959) obtained 
probabilities for impatient customers (“balking and reneging”) respectively. Anker and 
Gafarian (1963), Anker and Gafarian (1963) calculated steady state probabilities with impatient 
clienteles for a finite and an infinite queueing model respectively. Abou-El- Ata (1991) derived 
steady state probabilities for single-server Markovian queue with state dependent arrivals and 
impatient clienteles. Seddy et al. (2009) obtained time dependent probabilities by using 
generating function technique for c-servers Markovian queueing model. Bouchentouf and 
Messabihi (2018) obtained time independent probabilities for a heterogeneous server queueing 
system with feedback. Sharma and Indra (2020) obtained time dependent probabilities for a 
two-dimensional state Markovian queueing model with reneging. 

From the past few decades, Vacations Queueing system has attracted much attention 
from numerous researchers. “Vacation: when the server finishes serving a unit and finds the 
system empty, however, it goes away for a length of time”. Cooper (1970) was the first who 



2022] TWO- STATE QUEUEING MODEL WITH INITIAL CUSTOMERS 150 

talked about vacation model and obtained waiting time distribution for M/G/1 model by using 
Laplace Stieltjes transform. There are different kinds of vacation policies available in literature 
i.e., single vacation, multiple vacations, Bernoulli schedule, t- policy and so on. “In Multiple 
vacations policy, server keeps on taking vacations until it finds at least one customer waiting 
in the system at the instant of vacation completion”. Bacot and Dshalalow (2001) obtained time 
independent probabilities for single server bulk queueing system with multiple vacations. 
Altman and Yechailli (2006) analyzed both single and multiple vacations cases and calculated 
time independent probabilities by using PGF technique for different markovian model. Banik 
(2009) obtained time independent probabilities and queue length distribution at various epochs 
for an infinite-buffer single server queueing model. Another feature that is widely used in 
queueing models is the Bernoulli schedule. “In Bernoulli schedule the server serves the new 
customer with probability ρ or takes a vacation with probability (1–ρ)”. Keilson and Servi 
(1987) introduced the concept of Bernoulli schedule and obtained steady state probabilities for 
M/G/1 queueing model. Khedhairi and Tadj (2007) studied bulk service queueing system for 
both discrete and continuous time by using semi regenerative technique. The combined effects 
of impatience customers and multiple vacations were studied by numerous researchers such as: 
Ramaswamy and Servi (1988) calculated joint distribution for busy period of M/G/1 model. 
Madan et al. (2003) calculated steady state probabilities by using generating function technique 
for a queueing system with two parallel servers. Yue et al. (2003) derived the closed-form 
expressions for the system sizes for a queueing model with variant of multiple vacations. 
Choudhary et al. (2007) calculated steady state behaviour in terms of recursive solutions of 
batch arrival queue with two phases of heterogeneous service. Ammar (2015) obtained 
transient probabilities in terms of modified Bessel function by employing PGF technique.  
 

All aforesaid authors have worked on the concept that, there is no clienteles available in 
the system when the system starts. Thus, the main aim of the paper is to make a model that is 
more applicable in day-to-day life activities such as railway booking counters, banks, doctor 
clinics, etc. In call centre: Calls arriving to a call centre are managed by agent to answer the 
calls. Primary calls are automatically answered by machines (i.e. initially a few clienteles are 
always present). The behaviour of the call may depend on several circumstances including 
waiting time and others. Each individual call may decide to balk or wait for some time and it 
may happen that clienteles abandon their call when their patience time expires. Server after 
completing all the clienteles (calls) in the system can go for vacation and after coming back 
from vacation if there are no clienteles available (calls) in the system server can go on vacation 
again. 

 
To obtain the time dependent solution by taking together all the above mentioned 

parameters is very interesting. As transient probability obtained by recursive technique does 
not involve heavy algebraic manipulations. “The two dimensional concept helps us to 
understand the probability of exactly a- arrivals and b- services occurs over a time interval of 
length t”. Validation of the model in form of tables is also done with the previous existing 
results. Graphical analysis shows the impact of parameters on measuring outcomes. Finally an 
expected cost model is discussed. 

 

2. Assumptions and Notations 
 

i. Inter-arrival time, Service times, vacation times and reneging times are exponentially 
distributed with parameter λ, μ, w, and ξ respectively. 
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ii. On arrival a customer either decides to join the queue with probability β or balk with 
probability (1–β). 

iii. Initially there are ‘n’ customers present at time t=0 i.e. 𝑃!,#(𝑛, 0) = 1.  
iv. When a customer has just been served and other customers are present, the server 

accepts a customer with fix probability ρ or commences a vacation of random duration 
with probability (1– ρ) 

v. The system state is given by (a, b), where a is the number of arrivals and b is the number 
of departures up to time t, i.e. 

 

P(n, 0) = ∑ 𝑃!$%,%,&(𝑛, 0) = 1'
%(# 																																																												   (1) 

3. Model 
             

Define 
𝑃),%,*(𝑐, 𝑡) = The probability of exactly a arrivals, b departures and c- customers remain in the 
system by time t and the server is busy corresponding to the queue; b< a                                                                                                         
𝑃),%,&(𝑐, 𝑡) = The probability of exactly a arrivals, b departures and c- customers remain in the 
system by time t and the server is on vacation; b ≤ a                                                                                                                                                                                                                                              
𝑃),%(𝑐, 𝑡) = The probability that there are exactly a arrivals and b departures and c- customers 
remain in the system by time t; b ≤ a                                                                                                                                  
 
3.1.  Equations of the system 
 
𝑑
𝑑𝑡 𝑃),%,&

(𝑐, 𝑡) = −(𝜆𝛽 + 𝑤)𝑃),%,&(𝑐, 𝑡) + (𝜆𝛽)𝑃)+,,%,&(𝑐 − 1, 𝑡)

+ µ(1 − 𝜌)𝑃),%+,,*(𝑐 + 1, 𝑡)51 − 𝛿%,#7 
   

	0 ≤ 𝑏 < 𝑎	, 𝑐 ≥ 1																(2) 
 
  
		 -
-.
𝑃),),&(0, 𝑡) = −(𝜆𝛽)𝑃),),&(0, 𝑡) + 𝜇𝑃),)+,,*(1, 𝑡)51 − 𝛿),#7,	     	𝑎 ≥ 0																											(3) 

            
                                                                          
𝑑
𝑑𝑡 𝑃),%,*

(𝑐, 𝑡) = −(𝜆𝛽 + 𝜇 + (𝑐 − 1)𝜉)𝑃),%,*(𝑐, 𝑡) + 𝜆𝛽𝑃)+,,%,*(𝑐 − 1, 𝑡)51 − 𝛿%,)+,7
+ 		𝑤𝑃),%,&(𝑐, 𝑡) +	(𝜇𝜌 + 	𝑐𝜉)𝑃),%+,,*(𝑐 + 1, 𝑡)																						 

 
0 ≤ 𝑏 < 𝑎, 𝑐 ≥ 1																	(4) 

 
  Clearly, 
 
𝑃),%(𝑐, 𝑡) = 𝑃),%,&(𝑐, 𝑡) + 𝑃),%,*(𝑐, 𝑡)(1 − 𝛿(),%)) 𝑎 ≥ 𝑏 ≥ 0																   (5)      
 

3.2. Findings of equations 
 

Solving above equation recursively with the help of Laplace transform: 
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	PDa,b,V(0,s)=
1

(s+λβ)
δ(n,0)P0,0,V(0,	0),		𝑎 = 0 = 𝑏				                                              	(6) 

											 
𝑃G),#,&(𝑎, 𝑠) = (𝜆𝛽))𝐻D),,,#

9:$;,9:,#(𝑠)𝛿(!,#)	𝑃#,#,&(0,0) +
∑ (𝜆𝛽))+-𝐻D)+-$,,#,#

9:$;,#,# (𝑠)𝛿(!,-)𝑃-,#,&(𝑑, 0), 𝑎 > 0		'
-(, 	    

(7) 
 

𝑃G),#,*(𝑎, 𝑠) = 	𝑤. ∑ 	 (9:)!"#

∏ {>$9:$?$()+-+,).A}!"#
$%&

		𝑃GC,#,&(𝑓, 𝑠),'
C(, 						𝑎	 > 	0																																			(8)   

𝑃G),%,&(𝑐, 𝑠) = ∑ (𝜆𝛽))+D+%)+%
D(# 𝜇(1 − 𝜌)(,+E((,&))	𝐻D)+%$,+D+E((,&),E((,&),#

9:$;,9:,# (𝑠)𝑃G%$D,%+,,*(𝑒 +

1, 𝑠) + (𝜆𝛽))+%𝐻D)+%,,,#
9:$;,9:,#(𝑠)	𝛿(!,#)𝑃%,%,&(0,0) +

∑ (𝜆𝛽))+- 	𝐻D)+-$,,#,#
9:$;,#,#'

-(%$, (𝑠)	𝛿(!,-+%)𝑃-,%,&(𝑑 − 𝑏, 0), 𝑎 > 𝑏 > 	0		   (9)                                                                                          

									 

𝑃G),%,*(𝑐, 𝑠) = P
(𝜆𝛽))+C . {𝜇𝜌 + (𝑓 − 𝑏). 𝜉}

∏ {𝑠 + 𝜆𝛽 + 𝜇 + (𝑎 − 𝑑 − 𝑏 − 1). 𝜉})+C
-(#

	𝑃GC,%+,,*(𝑓 − 𝑏 + 1, 𝑠)
'

C(%$,

+𝑤. P
(𝜆𝛽))+C .

∏ {𝑠 + 𝜆𝛽 + 𝜇 + (𝑎 − 𝑑 − 𝑏 − 1). 𝜉})+C
-(#

	𝑃GC,%,&(𝑓 − 𝑏, 𝑠)
'

C(%$,

,

𝑎	 > 𝑏

> 	0																																																																																																																		(10) 

𝑃G),),&(0, 𝑠) 		=
?

(>$9:)
𝑃G),)+,,*(1, 𝑠)(1 − 𝛿(),#)) +

,
(>$9:)

𝛿(!,#)𝑃),),&(0,0),	 	 	 	𝑎	 > 0					 	 	 	 	(11)																												                                                                                                                                
 

3. Substantiations 

The Laplace Transform	𝑃G).(𝑐, 𝑠)of the probability 𝑃).(𝑐, 𝑡) that exactly a unit arrives by 
the time t”: 

a) 𝑃G).(𝑠) = ∑ T(𝑃G),%,&(𝑐, 𝑠) + 𝑃G),%,*(𝑐, 𝑠)(1 − 𝛿),%)U)
%(#  

           = ∑ 𝑃G),%(𝑐, 𝑠))
%(# =	 (9:)!

(>$9:)!+,
  

              And its Inverse Laplace transform is 							𝑃).(𝑐, 𝑡) = 		
D"-./(9:.)!

)!
 

b) ∑ ∑ V𝑃G),%,&(𝑐, 𝑠) + 𝑃G(),%,*(𝑐, 𝑠)(1 − 𝛿(),%))W =
,
>

)
%(#

'
)(#  

            ∑ ∑ V𝑃),%,&(𝑐, 𝑡) + 𝑃),%,*(𝑐, 𝑡)(1 − 𝛿(),%))W = 	1)
%(#

∞
)(#   
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5. Analytical Results 

i. Pr {a arrivals in (0, t)} = D
"-/(9.)!

)!
  =  ∑ 𝑃),%(𝑐, 𝑡))

%(#  = 𝑃)	,.(𝑐, 𝑡) 

Table 1: For Exactly a customers served by time t 
 

λ µ w β ξ T a 𝑒+9. ∗ (𝜆𝑡))

𝑎!  P𝑃),%(𝑡)
)

%(#

 

1 2 1 1 1 3 1 0.149361 0.1493612051 
1 2 1 1 1 3 3 0.224042 0.2240418076 
1 2 1 1 1 3 5 0.100819 0.1008188135 
2 2 1 1 1 3 1 0.014873 0.01487251306 
2 2 1 1 1 3 3 0.089235 0.08923507838 
2 2 1 1 1 3 5 0.160623 0.1606231410 
1 2 1 1 1 4 1 0.073263 0.07326255556 
1 2 1 1 1 4 3 0.195367 0.1953668148 
1 2 1 1 1 4 5 0.156293 0.1562934518 
2 2 1 1 1 4 1 0.002684 0.002683701023 
2 2 1 1 1 4 3 0.028626 0.02862614425 
2 2 1 1 1 4 5 0.091604 0.09160366157 
2 4 1 1 1 4 5 0.091604 0.09160366160 
1 2 1 1 1 4 4 0.195367 0.1953668148 
1 2 1 1 1 3 6 0.050409 0.05040940672 
3 2 1 1 1 3 1 0.0011106 0.001110688237 
3 2 1 1 1 3 3 0.0149942 0.01499429120 
3 2 1 1 1 3 5 0.0607268 0.06072687936 

  

The last Column of Table-1 completely matches with Table-1 of Pegden and Rosenshine 
(1982). 

ii. The probability that exactly b number of customers have been served.  
 
Server is on vacation i.e.   ∑ 𝑃),%,&(𝑐, 𝑡)∞

)(%  
 
Server is busy i.e.    ∑ 𝑃),%,*(𝑐, 𝑡)'

)(%  are based on the following relationship     
               			𝑃.,%(𝑐, 𝑡) = 			∑ 𝑃),%(𝑐, 𝑡)'

)(%  where 𝑃),%(𝑐, 𝑡) is defined in equation (5)”.   
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Table 2: For exactly b customers served by time t 

λ = 1, µ = 4, w = 1, n = 0, β = 1, ξ = 1, ρ = 1, b = 0 to 6             
𝑃.%(𝑐, 𝑡) = 𝑃.%,*(𝑐, 𝑡) + 𝑃.%,&(𝑐, 𝑡) 

t = 1 t = 3  t = 5 t = 7 t = 10 
.483485 .392200 .338348 .222880 .0739809 
.333343 .293382 .232925 .136406 .0375456 
.13382 .156248 .112178 .0580149 .0132014 
.03866 .0738856 .048044 .0216532 .0040095 
.00875 .032712 .019831 .0075688 .0010965 
.00161 .013342 .007936 .0024681 .0002598 
.000252 .0047242 .002920 .0007192 .0000477 
.99992 .966494 .762184 .44971 .130142 

Table-2 Coincides with table I of Hubbard et al. (1986) 

iii. 𝑃H(𝑡) = 𝑃(𝐸𝑥𝑎𝑐𝑡𝑙𝑦	𝑁	𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑠	𝑖𝑛	𝑡ℎ𝑒	𝑠𝑦𝑠𝑡𝑒𝑚	𝑏𝑦	𝑡𝑖𝑚𝑒	𝑡). 𝑃H(𝑡)			can be 
expressed in terms of  𝑃),%(𝑐, 𝑡) and is based on the relationship, we have 
 
																𝑃H(𝑡) = ∑ 𝑃%$H,%(𝑁, 𝑡)∞

%(#    &  𝑃H(𝑡) = 𝑃*(𝑁, 𝑡) + 𝑃&(𝑁, 𝑡)   
 

where,	𝑃*(𝑁, 𝑡) = ∑ 𝑃%$H,%,*(𝑁, 𝑡)'
%(# , 				𝑃&(𝑁, 𝑡) = ∑ 𝑃%$H,%,&(𝑁, 𝑡)'

%(#     

                

Table 3: 𝐄𝐱𝐚𝐜𝐭𝐥𝐲	𝑵	𝐜𝐮𝐬𝐭𝐨𝐦𝐞𝐫𝐬	𝐢𝐧	𝐭𝐡𝐞	𝐬𝐲𝐬𝐭𝐞𝐦 

λ = 1,	µ = 2 ,	w = 1, n = 1, ρ = 0.2, β = 0.6, ξ = 0.7, N = 0 to 6 
t = 1 t = 3 t = 5 
.245353 .367102 .362711 
.462100 .323646 .303897 
.221013 .181321 .158741 
.058932 .079292 .063808 
.010870 .028463 .020800 
.001528 .008188 .005287 
.000166 .001609 .000837 
.999963 .989623 .916082 

 

iv. The server’s utilization time, server’s vacation time i.e. the fraction of time the 
server is busy and the fraction of time server is on vacation until time t can also be 
expressed in terms of 	𝑃),%(𝑐, 𝑡) 

 
            Server’s utilization time: 𝑈(𝑡) = ∑ ∑ 𝑃),%,*(𝑐, 𝑡))

%(#
∞
)(#  
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       Server’s vacation time:𝑉(𝑡) = ∑ ∑ 𝑃),%,&(𝑐, 𝑡))
%(#

∞
)(#  

 

Table 4: Server’s utilization time and Server’s vacation time 
 

λ =1.7, µ = 2.5, w = 1.5, n = 1, ρ = 0.6, β = 0.7, ξ = 1.1 
 

PP𝑃),%,&(𝑐, 𝑡)
)

%(#

∞

)(#

 PP𝑃),%,*(𝑐, 𝑡)
)

%(#

∞

)(#

 
Total 

t = 1 0.650353 0.342156 0.992509 
t = 2 0.621177 0.285446 0.906623 
t = 3 0.513311 0.198857 0.712168 
t = 4 0.364730 0.118833 0.483563 
t = 5 0.228494 0.0633109 0.291805 

 

6. Performance Indices 
 
(a) The expected number of customers in the system E(L) is given by 

 
																																										𝐸(𝐿) = 	∑ 𝑁'

H(, 		[𝑃*(𝑁, 𝑡) + 𝑃&(𝑁, 𝑡)] 
 

(b)   The expected number of customers in the queue is given by 
 
																																					𝐸(𝐿I) = 	∑ (𝑁 − 1'

H(, 	)	[𝑃*(𝑁, 𝑡) + 𝑃&(𝑁, 𝑡)] 
 

(c)  The throughput is 

𝑇(𝑃) = 	P µ[
'

H(,

𝑃*(𝑁, 𝑡) + 𝑃&(𝑁, 𝑡)] 

 
(d)  Mean balking rate is given by 

 

																		𝐵. 𝑅. = 	P 𝜆(1 − 𝛽)
'

H(,

{𝑃*(𝑁, 𝑡) + 𝑃&(𝑁, 𝑡)} 

 

(e) Mean reneging rate is given by 

																																𝑅. 𝑅. = 	P 𝜉(𝑁 − 1)
∞

H(,

	[𝑃*(𝑁, 𝑡) + 𝑃&(𝑁, 𝑡)] 

(f) Average rate of customer loss (L.R.) is given by 
 

L.R. = B.R. + R.R. 
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7. Cost Model 

We make a expected cost function for the given system, considering cost per some unit 
of time of server for all the parameters considered above. 
 

Let 

C1 = Vacation Cost 

C2 = Busy cost 

C3 = Idle Cost. 

C4 = unit is waiting for service. 

C5 = unit joins the system and is served. 

C6 = customer renege or balks. 

Mean cost function per some unit time: 
 
C = C1*PVAC+C2*PBUSY+C3*PIDLE+C4*E(Lq)+C5*[E(L)−E(Lq)]+C6*L.R. 
 

We fix cost elements C1 = 100, C2 = 110, C3 = 120, C4 = 150, C5 = 130, C6 = 140. 

  



2022] TWO- STATE QUEUEING MODEL WITH INITIAL CUSTOMERS 157 

 

8. Graphical Presentations 

  
Figure 1: Arrival rate on E(L) Figure 2: Arrival rate on probability 

of   server remains idle 
 

 
 

Figure 3: Arrival rate on L.R. Figure 4: Arrival rate on Cost function 

 
In Figures 1 to 4 we fix w = 1.5, n = 1, µ = 2.5, β = 0.4, ρ = 0.6, ξ = 1.1, t = 1 and vary the 
values of λ. These graphs show that the expected number of customers in the system, 
expected cost and average rate of customer loss increase as arrival rate increases but 
probability of server remains idle decreases as λ increases 
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Figure 5: Service rate on E(L) Figure 6: Service rate on throughput 

 

  
Figure 7: Service rate on L.R Figure 8: Service rate on cost function 

 
In Figures 5 to 8 we fix λ = 1.7, w = 1.5, n = 1, β = 0.4, ξ = 1.1, ρ = 0.6 and vary the values 
of µ. These graphs show that the expected number of customers in the system, expected cost 
and average rate of customer loss decrease as µ increases but probability of server remains 
idle increases as µ increases”. 
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Figure 9: Vacation Rate (𝒘) on E(L) Figure 10: Vacation Rate (𝒘) on   
Probability of server remains idle 

 

  
Figure 11: Vacation Rate (𝒘) on L.R. Figure 12: Vacation Rate (𝒘) on Cost 

Function 
 
In Figures 9 to 12 we fix λ=1.7, µ= 2.5, n=1, β = 0.4, ρ = 0.6, ξ=1.1 and vary the values of 
w. “These graphs show that the expected number of customers in the system, expected cost, 
expected queue length and average rate of customer loss decrease as w increases but 
probability of server remains idle increases as vacation rate increases”. 
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Figure 13:  β on E(L) Figure 14: β on Probability of server 

remains idle 
 

  

Figure 15: Impact of β on Total Cost Figure 16: Impact of β on L.R. 

 
In Figures 13 to 16 we fix λ=1.7, µ=2.5, n=1,w = 1.5, ξ=1.1, ρ = 0.6 and vary the values of 
β. “These graphs show that the expected number of customers in the system, average rate of 
customer loss, expected cost increase as β increases but probability of server remains idle 
decreases as β increases”. 
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Figure 17: Reneging rate on E(L) Figure 18: Impact of ξ on probability that 

server remains Idle 
 

  
Figure 19: Impact of ξ on L.R. Figure 20: Impact of ξ on cost function 

 
In Figures 17 to 20 we fix λ = 1.7, w =1.5, n = 1, µ = 2.5, β = 0.4, ρ = 0.6, t = 1 and vary the 
values of ξ.  These graphs show that expected cost, probability of server remains idle and 
average rate of customer loss increase as ξ increases but expected queue length decreases as 
ξ increases. 
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Figure 21: Impact of λ on E(L) Figure 22: Impact of λ on L.R. 

 

 
 

Figure 23: Impact of β on E(L) Figure 24: Impact of λ on E(L) and L.R. 

 
Figures 23 and 24 give the effect of β and λ on mean system length and average loss of 
customer. As probability of joining the queue increases E [L] increases and as reneging rate 
increases E[L] decreases and average rate of customer loss increases 

 

9. Conclusions 

This paper considers two-dimensional state Markovian queueing model with Bernoulli 
Schedule, multiple vacations and impatience customers in which the state of the system is given 
by (a, b). The concept of few clienteles (say “n”) available in the system makes this model 
different from the previous models available in literature. The governing systems of equations 
are solved by using the Laplace transform and different measures of effectiveness (Expected 
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system length, throughput of system, mean balking rate, mean reneging rate, etc.) are calculated 
that provide better perception of a queueing system. Finally, an expected cost function is 
discussed, and it shows that if we increase service rate then the probability that customers may 
balk or renege from the system is reduced which minimize expected cost for the system.  
Different firms can utilize this model to model their system accordingly and can have an idea 
about the minimum cost that system will generate. 
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Abstract 
 

This paper addresses the problem of estimating the population mean of the study variable 
y using information on the auxiliary variable x in double sampling for stratification. A general 
class of product-cum-ratio-type estimators have been defined in this paper. The properties of 
the suggested class of estimators are studied up to terms of order . Asymptotic optimum 
estimator (AOE) in the class is also identified. In particular, to illustrate the general results, we 

have suggested a subclass of estimators along with its properties. Preference regions are 

obtained in which the proposed estimator is better than the existing estimators. In support 
of the present study, an empirical study is also carried out. 

Key words: Auxiliary variable; Bias, Mean squared error; Double sampling for stratification. 

Mathematics Subject Classification Code: 62D05. 
 
1. Introduction 

It is a well-established fact that the use of auxiliary information in the estimation of 
population mean provides efficient estimators. Out of many, ratio, product and regression 
methods of estimation are good examples in this context. A large amount of work has been 
carried out in estimating the population mean using simple random sampling (SRS) with or 
without replacement (WOR) scheme, for instance, see Singh (1986), Singh (2003) among 
others. Usually, heterogeneous populations are encountered in practice. In such a situation, 
stratification (or stratified sampling) is extensively used procedure in sample surveys to provide 
samples that are representatives of major sub-groups of a population. When the sampling frame 
within strata is known, stratified sampling is used, but there are many situations of practical 
importance where strata weights are known but a frame within the strata is not available; post-
stratification may then be employed to cope with this problem. For example, in household 
survey in a city, number of households in different colonies may be available, but list of 
households may not be available. In such a situation post-stratification is used. However, in 
other situations with the passage of time, the stratum weights may not be known exactly as 
they become out-of-date. Further, the information on the stratification variable may not be 
readily available but could be made available by diverting a part of the survey budget to its 
collection. This type of situation occurs during the household surveys, when the investigator 
does not have information about newly added households in different colonies, see Tailor et al. 

( )1-nO

)1(Ŷ

)1(Ŷ
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(2014). In such a situation we employ the procedure of double sampling for stratification (DSS) 
introduced by Neyman (1938). Double sampling for stratification is a sampling design that is 
extensively employed in forest and other resource inventories in forest ecosystems. Double 
sampling is a powerful and cost-effective procedure. For more studies on this topic the reader 
is referred to the papers by Rao (1973), Ige and Tripathi (1987, 1991), Singh and Vishwakarma 
(2007), Vishwakarma and Singh (2012), Tailor and Lone (2014), Vishwakarma and Zeeshan 
(2018) and Singh and Nigam (2020 a, b). 

 
2. Procedure of Selecting a Sample and Terminologies 

Consider a finite population  of N units. Let y and x be study variate 
and auxiliary variate, respectively. Let be the population mean of the study variate y. 
Suppose we want to estimate the population mean of y and consider it desirable to stratify 
the population on the basis of the values of ran auxiliary variate x but the frequency distribution 
of x is unknown. Let the population of size N be stratified into L strata of size with strata 

weights , (h = 1,2,…,L). The sampling frame for different strata and the strata weights

, h = 1,2,…,L are not known although the strata may be fixed in advance. Under 

these circumstances we employ the procedure of double sampling for stratification (DSS). It 
consists of the following steps [see Rao (1973) and Ige and Tripathi (1987)]: 

 
(i) We select first phase sample  of size  using simple random sampling without 

replacement (SRSWOR) and measure only auxiliary variate x. 
(ii) The first phase sample  is stratified into L strata based on measured x-values. 

Let  be the number of units in falling into stratum h (h=1,2,…,L;
 

) and  denote the resulting configuration of . 
(iii) Sub-sample of sizes , ,  being predetermined for 

all h, are drawn from strata, independently from each other, using SRSWOR. Thus, 

it constitutes a second phase sample S of size . The study variable y is 

measured on all nh sampled unites, for all h. 
 
We use the following notations: 

is an unbiased estimator of strata weights (or proportion of first sample 

falling in stratum h), see Cochran (1977, p.328), 

 is the population mean of the study variable y, 

 is the population mean of the auxiliary variable x. 

 is the population mean square of y, 
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 is the population mean square of x, 

is the population covariance between y and x, 

is the population mean square of y of stratum, 

 is the population mean square of x of stratum, 

is the population correlation coefficient between y and x in the stratum, 

 is an unbiased estimator of the population mean ,  

 is an unbiased estimator of the population mean ,  

 is an unbiased estimator of the population mean , 

 is the mean of the second phase taken from   stratum for y, 

 is the mean of the second phase taken from   stratum for x, 

 is the mean of the first phase sample of   stratum for x, 

is the first phase sampling fraction, 

 is the weighted average of the strata 

population regression coefficient, , 

, 

, 

and . 

 
To obtain the bias and mean squared error (MSE) of the suggested estimator, we write  
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and  
 

such that  
 

 
and 

, 

, 

, 

, 

, and 

. 

3. Review of Some Existing Estimators 

The usual unbiased estimator for population mean is defined by 
 

.      (1) 

The variance/MSE of  is given by 
 

.   (2) 

 
In double sampling for stratification, ratio and product estimators due to Ige and Tripathi 

(1987) are respectively given by 
 

,      (3) 

.      (4) 

 

The MSEs of  and  up to terms of order , are given respectively by 
 

,              (5) 
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 ,                       (6) 

where . 

 
Motivated by Bahl and Tuteja (1991), Tailor et al. (2014) suggested the ratio-type and 

product-type exponential estimators in double sampling for stratification for population mean 
 respectively as 

 

,     (7) 

.      (8) 

 

The MSEs of  and  up to terms of order , are respectively given by 
 

                        ,               (9) 

.             (10) 

 
From (2), (5), (6), (9) and (10) it can be observed that the: 

(i) ratio estimator is more efficient than the unbiased estimator if 
 

                                      (11) 

 
(ii) product estimator is better than the unbiased estimator if 

 

                                                   
                           (12) 

 

(iii) ratio-type exponential estimator is superior to the unbiased estimator if 
 

                                                                               (13) 

 
(iv) product-type exponential estimator is more precise than the unbiased 

estimator if 
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                          (14) 

 
In this paper we have suggested a general class of product-cum-ratio-type exponential 

estimators for population mean of y using double sampling for stratification based on 
auxiliary information. Expressions of bias and MSE of the proposed estimator up to are 
derived. Asymptotic optimum estimator (AOE) in the class is identified with its approximate 
MSE formula. To illustrate the general results we have considered a subclass of estimators

along with its properties up to terms of order . An empirical study is carried out 
in support of the present study. 
 
4. The Suggested Class of Product-Cum-Ratio-Type Exponential Estimators 

We define a general class of product-cum-ratio-type exponential estimators for 
population mean  in double sampling for stratification based on auxiliary information, as 

 

                         ,                        (15) 

 
where  is a suitable chosen constant, are scalars taking values (-1,0,1) for generating 
ratio and product-type estimators, and b are either real numbers or functions of known 
parameters of the auxiliary variable x like coefficient of variation , standard deviation , 
coefficient of skewness , coefficient of kurtosis , correlation coefficient 

between y and x; and . One may also take the values of a and b as 

and 

with , for instance, see Koyuncu and Kadilar 

(2009, p.2553). 
 
A large number of estimators can be generated from the proposed estimator for 

suitable values of . For example: 
 

(i) for , 

(ii) for , 

(iii) for , 

(iv) for , 

(v) for , 
 etc. 
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4.1. The bias and MSE of the proposed class of estimators  

Expressing at (15) in terms of e’s we have 
 

 

                   ,   (16) 

where the . 

 
Expanding right hand side of (16), multiplying out, subtracting from both sides and 

neglecting terms of e’s having power greater than two we have 
 

  (17) 

 
Taking expectation of both sides of (17) we get the bias of up to terms of order 
as 
 

            .           (18) 

 
Squaring both sides of (17), neglecting terms of e’s having power greater than two and 

then taking expectation of both sides we get the MSE of up to terms of order as 
 

                              ,            (19) 

 
which is minimized for 
 

                           (say),                                                 (20) 

where . 
 

Thus the resulting minimum MSE of  up to terms of order is given by 
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                                            .                        (21) 

 
Now we state the following theorem. 
 
Theorem 1: Up to terms of order , 
 

 
 

with equality holding if 

. 

 

To illustrate the general results of the class of estimators , we consider the 

following sub class of estimators for as 
 

            (22) 

 
which is obtained on putting in (15). We designate the estimator as ‘product-
cum-ratio-type exponential’ estimator. 

 
Inserting in (18) and (19) we get the bias and MSE of  up 

to terms of order respectively as 
 

,               (23) 

.   (24) 

 

The at (24) is minimum when 
 

                (say).                         (25) 

 

Substitution of (25) in (24) yields the minimum MSE of as 
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.             (26) 

 
Now we give the conditions under which the proposed estimator is more efficient 

than the estimators , , , and . 
 
From (2), (5), (6), (9), (10) and (24) it can be easily shown that the proposed product-

cum-ratio-type exponential estimator is more efficient than: 
(i) the usual unbiased estimator if 

 

.             (27) 

 
(ii) the ratio estimator if 

 

. (28) 

 
(iii) the product estimator if 

 

. (29) 

 

(iv) the ratio-type exponential estimator if 

 

.  (30) 

 

(v) the product-type exponential estimator if 
 

.  (31) 

5. Numerical Illustration 

To illustrate the performance of the suggested estimator over other existing 
estimators, we have considered three data sets whose descriptions are given below.  
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Data 1 [Source: Tailor et al. (2014)] 
x: Area in ‘000 Hectare, y: Productivity (MT/Hectare) 
N=20, n=8,  

 

 

Data 2 [Source: Chouhan (2012)] 
x: Area in ‘000 Hectare, y: Productivity (MT/Hectare) 
N=20, n=8,  

 

Data 3 [Source: Murthy (1967), p228] 
x: Fixed capital, y: Output 
N=10, n=4,  

,  

 

We have computed the percent relative efficiencies (PREs) of the suggested estimator 

with respect to , , , and by using the following formulae: 
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    .            (36) 

 
Here we note that for the sake of simplicity we have taken (a, b) = (1, 0) for computing the 
PRE in the suggested estimator . Also for computing the range of we have taken (a, b) = 
(1, 0) in equation (27)-(31). 
 

Table 1: Different ranges of  in which the proposed estimator  is more efficient 
than , , , and  

 

Estimators Data 1 Data 2 Data 3 
 (min)  (max)  (min)  (max)  (min)  (max) 

 0.33333 1.17659 0.33333 0.55604 0.33333 –0.5608 

 –0.33333 1.84326 –0.33333 1.22271 –0.33333 0.10589 

 0.50993 1 –0.11063 1 –1.22745 1 

 0 1.50993 0 0.88937 –0.2274 0 

 0.84326 0.66667 0.22271 0.66667 –0.89411 0.66667 

 0.75946 0.44469 –0.1137 

Table 2: PRE of with respect to  at different values of  
Data 1 Data 2 Data 3 

 PRE  PRE  PRE 
0.33333 100 0.333333 100 –0.56 100.13 

0.4 101.81 0.4 109.77 –0.5 110.33 
0.5 104.04 0.444 111.87 –0.25 150.42 
0.6 105.59 0.55604 100 –0.11372 158.62 
0.7 106.4 0.60 90.88 0 152.82 

0.75 106.52 - - 0.25 114.28 
0.8 106.44 - - 0.3 105.6 
0.9 105.7 - - 0.33333 100 

1 104.22 - - 0.40 89.41 
1.176595 100 - - - - 
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)1(Ŷ dsy d

d d d



176 HOUSILA P. SINGH AND PRAGATI NIGAM [Vol. 20, No. 1 

Table 3: PRE of with respect to at different values of  
 

Data 1 Data 2 Data 3 
 PRE  PRE  PRE 

–0.3333 100 –0.33333 100 –0.33333 100 
-0.25 104.67 -0.25 120.91 -0.3 103.6 

0 118.63 0 234.87 –0.25 108.25 
0.25 131.16 0.25 498.58 –0.2 111.71 

0.5 140.09 0.5 660.16 –0.1 114.08 
0.75 143.42 0.75 359.07 0 109.97 

1 140.34 1 171.93 0.10589 100 
1.25 131.6 1.22271 100 0.15 94.81 

1.5 119.17 1.25 94.26 - - 
1.75 105.23 - - - - 

1.8432 100 - - - - 

Table 4: PRE of with respect to at different values of  
 

Data 1 Data 2 Data 3 
 PRE  PRE  PRE 

0.50993 100 –0.11062 100 –1.22744 100 
0.6 101.31 0 136.61 –1 140.38 
0.7 102.09 0.25 289.99 –0.75 212.03 
0.8 102.13 0.5 383.97 –0.5 322.61 
0.9 101.42 0.75 208.85 –0.25 439.84 

1 100 1 100 0 446.85 
1.25 93.77 1.25 54.83 0.25 334.14 

- - - - 0.5 220.36 
- - - - 0.75 145.48 
- - - - 1 100 

Table 5: PRE of with respect to  at different values of  
 

Data 1 Data 2 Data 3 
 PRE  PRE  PRE 

0 100 0 100 –0.2274 100 
0.25 110.56 0.1 135.36 –0.2 101.58 
0.5 118.08 0.2 183.9 –0.1 103.74 

0.75 120.9 0.25 212.28 0 100 
1 118.29 0.3 241.01 0.1 91.53 

1.25 110.93 0.5 281.08 - - 
1.5099 100 0.6 235.03 - - 

1.65 93.45 0.7 178.14 - - 
- - 0.88937 100 - - 
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Table 6: PRE of with respect to  at different values of  
 

Data 1 Data 2 Data 3 
 PRE  PRE  PRE 

0.66667 100 0.22271 100 –0.89411 100 
0.7 100.17 0.25 107.99 –0.75 127.37 

0.75 100.28 0.3 122.6 –0.5 193.81 
0.8 100.21 0.4 144.41 –0.25 264.23 

0.84326 100 0.5 142.98 0 268.44 
0.90 99.52 0.6 119.56 0.25 200.73 

- - 0.66666 100 0.5 132.38 
- - 0.70 90.62 0.66666 100 

The optimum value of  and the range of  in which the proposed estimator

dominates over the estimators , , , and are displayed in Table 1. 
 

The percent relative efficiencies (PREs) of the suggested estimator with respect to

, , , and for varying values of are presented in Tables 2 to 6, 
respectively. 

 

It is observed from Tables 2 to 6 that the proposed estimator is more efficient than 

the estimators , , , and in certain range of as given in Table 1. 

Further, we observed that there is largest gain in efficiency by using the estimator over the 

estimators , , , and for all the data sets 1, 2 and 3 at the optimum value 
of . 

 

Table 2 exhibits that the proposed estimator is more efficient than the usual unbiased 
estimator for a wider range of for data sets 1 and 3 while it is better than for a shorter 

range of . For data set 3, the gain in efficiency is also substantial by using the estimator 
over . 

 
It is observed from Table 3 that the estimator gives the largest amount of gain in 

efficiency over ratio estimator for a broad range of  for the data sets 1 and 2. While it 
is marginal for a smaller range of for the data set 3. 

 

Table 4 presents that the estimator is more efficient than the product estimator 
for a broader range of with substantial gain in efficiency for data set 3. It also presents 
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dsy

)1(Ŷ
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considerable gain in efficiency by using over the product estimator but for a smaller 
range of for data set 2. The gain in efficiency is marginal for data set 1. 

 

Table 5 demonstrate that the suggested estimator is more efficient than ratio-type 

exponential estimator with substantial gain in efficiency for a wide range of for data 
sets 1 and 2, while it is marginal for data set 3. 

 
It is observed from Table 6 that there is sizable gain in efficiency by using the estimator 

over the product-type exponential estimator for a wide range of for data sets 2 and 
3 while it is marginal in case of population data set 1. 

 
Finally, we conclude from Tables 1 to 6 that even if the scalar deviates from its “exact 

optimum value” the gain in efficiency by using over , , , and is 
considerable. Also, there is enough scope of selecting the values of for obtaining better 
estimators than existing estimators. Thus, we recommend the use of the proposed estimator 

in practice. 
 

6. Discussion 
 
In this article, we have discussed the problem of estimating the population mean using 

auxiliary information in double sampling for stratification. A class of product-cum-ratio-type 
estimators have been developed. Expressions of bias and mean squared error of the 

developed estimator have been derived up to the first order of approximation. Optimum 

condition is derived at which the mean squared error of the proposed estimator is 
minimized. In particular, to demonstrate the utility of the general results, we consider a subclass 

of the developed estimator named as ‘product-cum-ratio-type exponential’ estimator

. Properties of the subclass of estimators have been studied. Regions of preferences have 

been derived in which the suggested subclass of estimators is more efficient than the usual 

unbiased estimator , Ige and Tripathi (1987) ratio estimator and product estimator

, Tailor et al. (2014) ratio-type exponential estimator and product-type exponential 

estimator . We have also carried out an empirical study to demonstrate the performance 

of the proposed estimator over other existing estimators. 
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)1(Ŷ )1(Ŷ
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Abstract 

In this paper, the problem of optimum stratification in stratified sampling is 

considered on a concomitant variable x which is highly correlated with the estimation 

variable y, in the light of a-priori distributions, for the allocation proportional to stratum total 

of the auxiliary variable x. Unlike earlier techniques and approaches, available in literature, 

used in obtaining methods of stratification for the said allocation, the problem is dealt with in 

a different way and hence a distinct set of equations giving optimum points of stratification 

and a few distinct methods for finding approximately optimum points of stratification have 

been obtained. All these proposed methods of stratification are found efficient as well as easy 

to use when examined empirically by illustrating them in several generated data. 

 

Keywords: Allocation; Auxiliary variable; Optimum points of stratification; Probability 

density functions; Simple random sampling with and without replacement. 
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1. Introduction 

 

 In the field of construction of strata in stratified sampling, it was Dalenius (1950) who 

first considered the problem of optimum stratification based on estimation variable for 

Tschuprow (1923) and Neyman (1934) optimum allocation. Since then, the work in this area 

has been being progressively extended by several researchers into various ways, dimensions 

and results. To mention a few pertinent ones, among many, are Dalenius and Gurney (1951), 

Dalenius and Hodges (1959), Taga (1967), Singh and Sukhatme (1969, 1972), Singh and 

Prakash (1975), Singh (1971, 1975 a, b, c) etc., who considered the problem of construction 

of strata for various allocations with different methods of sampling.  

 

Rao (1968) obtained allocation proportional to stratum total of auxiliary variable 

which is highly correlated with estimation variable, auxiliary variable proportional allocation 

(AVPA), under the following superpopulation model: 
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Yadava and Singh (1984) considered the problem of optimum stratification under 

simple random sampling scheme for the abovementioned allocation – AVPA - proposed by 

Rao (1968). They obtained equations giving optimum points of stratification (OPS) and a few 

methods of finding approximately optimum points of stratification (AOPS). Gupt and 

Ahamed (2020) too considered problem of optimum stratification for a generalized AVPA 

obtained by Gupt (2003, 2012), i.e., 

                                 
hh Zn                  (2) 

where h

g

jhh NjXZ ,...,2,1,2/  , provided  
 

h

h
h

Z

x
g


   are equal in all strata h=1, 2, …, L 

under the model (1) when  ii xyV is proportional to
g

ix and g is the level of hetero- 

scedasticity. A particular case of the methods of stratification obtained by the authors when 

g =2 gives the methods of stratification for the allocation AVPA which were also obtained 

by Yadava and Singh (1984).  

 

In this paper too, the problem of optimum stratification for allocation AVPA in the 

light of the priori distributions (1) is considered, but a different technique and procedure is 

used. We obtain equations giving OPS and a few methods for finding AOPS which are quite 

different from the ones obtained by Yadava and Singh (1984), i.e., the particular case of the 

methods obtained by Gupt and Ahamed (2020). The methods of approximation obtained in 

this paper are suitable for practical applications. These proposed methods will hold good for 

stratified simple random sampling without replacement also when finite population correction 

is ignored in each stratum. 

 

In section 2 of this paper, the equations giving OPS and a few methods giving AOPS 

are obtained. In section 3, numerical illustrations of all the proposed methods in this paper by 

using generated data and comparison of the methods with respect to the methods proposed by 

Gupt and Ahamed (2020) for particular case g=2 are carried out. In section 4, conclusion is 

given.  

 

2. Equations Giving OPS and Methods of Finding AOPS 

 

The allocation taken is  

                                       hn 
hX ,                           (3) 

where,
hX is total of thh stratum. The allocation (3) can be written as  

                                 X

XW
n

hh
h  ,               (4) 

where 
hW is the proportion of population units in the hth stratum, hX is the mean for x in hth 

stratum and X is the population mean. Using (4) in the sampling variance for stratified 

sampling in simple random sampling with replacement (SRSWR), i.e.,   
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we get, 
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where, L is total number of strata. 
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Considering the superpopulation model (1), Gupt (2003, 2012) obtained conditional 

expectation of 2

yh  given x as  
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For strata of large sizes, we can consider
h

h

N

N 1
1 , and therefore, we obtain the 

following expression 
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. 

 

The conditional expectation of variance in (6) is partially differentiated with respect to 
hx

(h=1, 2, …, L-1), and the derivative is equated to zero to obtain equations that minimize the 

expected conditional variance. Thus, we proceed as follows: 
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Taking the first term, we get 
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and considering the expression 
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If we consider f(x) is the probability density function for stratification variable x, we have 
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Therefore, we can get  
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Using (10) and (11) in equation (9), we get 
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Again using (10) and (12) in equations (8), we get 
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Similarly,  
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Substituting (13) and (14) in (7), we get 
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where, 
h

xh

xh
X

C


  is the coefficient of variation of x variable in the hth stratum. 

Thus, we have got equations (15) which will give OPS.  

 

For finding methods of approximation, we neglect square of coefficients of variation
2

xhC  in (15) as square of coefficients of variation are expected to be very small quantities 

relatively with unity, then we can get   

                                     1 hhh XXx               (16) 

which will give AOPS.  

  

On the other hand, we may consider 2

xhC are not negligible in all strata, but they are 

approximately equal in two successive strata, ,2

2

2

1 xx CC  ....,, 22

1

2

3

2

2 xLxLxx CCCC    If 

each of 2

xhC  and 
2

)1( xhC  is approximately replaced by their geometric mean in (15), we can get 

                                 
1)1(1  hhxhxhh XXCCx             (17) 

which will also give AOPS. 

 

If we replace 
2

xhC  and 
2

)1( xhC  by their arithmetic mean such as 
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Then, we can again obtain,  
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which will also give AOPS. 
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 It is clearly seen that in terms of analytical justification, our methods obtained in this 

paper do have equally strong ground with that of proposed methods by Yadava and Singh 

(1984) - special case of the Gupt and Ahamed’s (2020) methods. However, the different 

techniques and procedure used in this paper have yielded different methods and results. It is 

also observed that our methods are much easier to use and provide more options for practical 

applications, whereas their methods are complicated and provide less option for practical 

applications, particularly in the practical applications of their approximation methods. Since 

their approximation methods of stratification are presented in the form of definite integrals 

involving known probability density function of the auxiliary variable based on which 

stratification is to be done, if the stratification variable in population does not follow a known 

probability density function, their methods cannot be used. Our methods are free from such 

restriction. 

 

3. Numerical Illustrations 

 

In order to examine the efficiencies of proposed methods - equations (15) giving OPS 

and methods of approximation (16), (17) and (18) giving AOPS - we use all these methods in 

the populations generated by the following probability density functions. 

a) Chi-square distribution:   
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b) Exponential distribution:   xexf x 1,)( 1
 

c) Normal distribution, X ~ N (3, 1): 2

)3( 2

2

1
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x

exf


,  < x <  

d) Right triangular distribution:  21),2(2)(  xxxf  

e) Standard Gamma distribution (Erlang distribution):    xexxf x 1,
2

1
)( 1

 

f) Uniform distribution: 21,1)(  xxf  

 

In the case of generated populations by Chi-square, Exponential and Standard Gamma 

distribution functions, we truncate the distributions such that area under the curve to the right 

of the truncation point is 0.05 whereas normal distribution is truncated at two points such that 

each area under the curve to left and right of truncation points is 0.05. We use equations (15) 

and methods of approximation (16), (17) and (18) in stratifying each of the generated 

populations into numbers of strata L=2, 3, 4, 5, 6 in which OPS and AOPS are found out for 

each number of strata, and hence sampling variances of stratified sampling at optimum points 

and approximately optimum points for each number of strata are calculated. OPS and AOPS 

are found by successive iterations. We also calculate sampling variances of stratified 

sampling for equal interval stratification in each of the populations for each of the considered 

numbers of strata. The relative efficiencies of equations (15) and methods of approximation 

(16), (17) and (18) with respect to equal interval stratification are calculated and shown in 

Tables 1, 2, 3, 4, 5 and 6. 

 

The regression function xxC  )( is taken to be linear with the slope at 450. The 

constant 2  in 
22)|( xxyV  is determined in each case in such a way that 90% of the total 

variation is accounted for by the regression. Secondly, we compare the efficiencies of 

equations (15) and methods of approximations (16), (17) and (18) with the equations giving 

OPS and methods of approximation proposed by Gupt and Ahamed (2020) for particular case 
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g=2, in the three populations of Uniform, Right-triangular and Exponential density functions 

in which the authors illustrated their proposed methods. These comparisons are given in 

Tables 7, 8 and 9. 

 

Table 1: Comparison with equal interval stratification, Chi-square distribution 
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It is seen that in the population of Chi-square distribution, the proposed equations (15) 

and methods of approximation are found to be more efficient than that of equal interval 

stratification for all numbers of strata and relative efficiency is remarkably high for stratum 3. 

Moreover, methods of approximations (16), (17) and (18) are having same efficiencies with 

that of the proposed equations (15) in almost all the numbers of strata. 

 

Table 2: Comparison with equal interval stratification, Exponential distribution 
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In the population of Exponential distribution, all the proposed methods are performing 

with more efficiencies than that of equal interval stratification for all the numbers of strata.  

Moreover, the proposed approximation methods are found in most cases to be performing 

with same efficiencies as or higher than that of proposed equations (15) giving OPS.   
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Table 3: Comparison with equal interval stratification, Normal distribution 
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3.491 

0.222 102 2.349 

3.442 

0.222 102 

 

4 

2.05 

3.00 

3.95 

 

0.139 

2.072 

2.939 

3.783 

 

0.121 

 

115 

2.055 

2.927 

3.759 

 

0.122 

 

114 

2.068 

2.939 

3.783 

 

0.121 

 

115 

2.073 

2.939 

3.783 

 

0.121 

 

115 

 

 

5 

1.86 

2.62 

3.38 

4.14 

 

0.117 

2.068 

2.848 

3.350 

3.884 

 

0.111 

 

106 

1.996 

2.602 

3.085 

3.793 

 

0.112 

 

104 

2.063 

2.847 

3.350 

3.884 

 

0.111 

 

106 

2.069 

2.848 

3.350 

3.884 

 

0.111 

 

106 

 

 

6 

1.733 

2.366 

3.00 

3.633 

4.266 

 

 

0.107 

1.629 

2.239 

2.921 

3.539 

4.095 

 

 

0.103 

 

 

104 

1.602 

2.215 

2.917 

3.536 

4.091 

 

 

0.0959 

 

 

111 

1.626 

2.239 

2.921 

3.539 

4.095 

 

 

0.103 

 

 

104 

1.629 

2.239 

2.921 

3.539 

4.095 

 

 

0.101 

 

 

106 

 

In the population of Normal distribution, the proposed methods perform with higher 

efficiencies than that of equal interval stratification. At the same time, approximation 

methods are performing almost same as or slightly better than that of equations (15) although 

approximation method (16) is performing better than approximation methods (17) and (18) 

for numbers of strata 4, 5 and 6. 

 

Table 4: Comparison with equal interval stratification, Right Triangular distribution 

 
 

 

No. of 

Strata 
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Equal Interval 

Stratification 

Stratification due to 

equations (15) 
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method (16) 
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R
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E
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2 1.50 0.028 1.373 0.022 127 1.355 0.022 127 1.373 0.022 127 1.394 0.022 127 

3 1.334 

1.667 

0.014 1.273 

1.587 

0.013 108 1.269 

1.585 

0.013 108 1.272 

1.587 

0.013 108 1.272 

1.587 

0.013 108 

 

4 

1.25 

1.50 

1.75 

 

0.012 

1.180 

1.386 

1.629 

 

0.009 

 

133 

1.178 

1.390 

1.628 

 

0.009 

 

133 

1.179 

1.386 

1.631 

 

0.010 

 

120 

1.179 

1.387 

1.629 

 

0.010 

 

120 

 

 

5 

1.20 

1.40 

1.60 

1.80 

 

 

0.010 

1.170 

1.370 

1.579 

1.736 

 

 

0.010 

 

 

100 

1.178 

1.380 

1.578 

1.736 

 

 

0.009 

 

 

111 

1.179 

1.379 

1.579 

1.736 

 

 

0.010 

 

 

100 

1.179 

1.379 

1.579 

1.736 

 

 

0.010 

 

 

100 

 

 

6 

1.167 

1.334 

1.499 

1.667 

1.833 

 

 

0.009 

1.145 

1.289 

1.435 

1.589 

1.736 

 

 

0.009 

 

 

100 

1.121 

1.270 

1.430 

1.588 

1.736 

 

 

0.008 

 

 

113 

1.145 

1.290 

1.435 

1.589 

1.736 

 

 

0.009 

 

 

100 

1.145 

1.289 

1.435 

1.589 

1.736 

 

 

0.009 

 

 

100 

 
 In the population of Right-triangular distribution, all the proposed methods of 

stratification are found to be having higher efficiencies than that of equal interval 

stratification except at numbers of strata 5 and 6 at which the proposed equations (15) and 

approximation methods (17) and (18) have same efficiencies with that of equal interval 

stratification. But, proposed method (16) performs better than equal interval stratification.  
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Table 5: Comparison with equal interval stratification, Standard Gamma distribution 
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Stratification 
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equations (15) 
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method (16) 

Stratification due to approx. 
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2 3.00 0.405 2.614 0.373 109 2.539 0.368 110 2.614 0.373 109 2.616 0.373 109 

3 2.33 

3.66 

0.268 1.882 

3.044 

0.205 131 1.902 

3.076 

0.211 127 1.882 

3.043 

0.205 131 1.896 

3.051 

0.205 131 

 

4 

2.00 

3.00 

4.00 

 

0.169 

1.793 

2.780 

3.986 

 

0.161 

 

105 

1.749 

2.673 

3.796 

 

0.161 

 

105 

1.793 

2.780 

3.984 

 

0.161 

 

105 

1.794 

2.781 

3.986 

 

0.161 

 

105 

 

 

5 

1.80 

2.60 

3.40 

4.20 

 

0.145 

1.753 

2.534 

3.268 

4.153 

 

0.143 

 

102 

1.695 

2.396 

3.105 

4.056 

 

0.137 

 

106 

1.752 

2.534 

3.268 

4.152 

 

0.143 

 

102 

1.753 

2.534 

3.268 

4.153 

 

0.143 

 

102 

 

 

 

6 

1.66 

2.32 

2.98 

3.64 

4.30 

 

 

0.129 

1.660 

2.221 

2.862 

3.625 

4.327 

 

 

0.129 

 

 

100 

1.630 

2.170 

2.833 

3.620 

4.326 

 

 

0.128 
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1.644 

2.188 

2.845 

3.624 

4.327 

 

 

0.131 

 

 

99 

1.645 

2.188 

2.846 

3.625 

4.327 

 

 

0.131 

 

 

99 

 

In the population of Standard Gamma distribution, all the proposed methods of 

stratification are stratifying the population more efficiently than equal interval stratification 

except for number of strata 6 at which approximation methods (17) and (18) are having 

slightly less efficiencies than that of equal interval stratification and the proposed equations 

(15) perform with same efficiency as that of equal interval stratification. In this population 

too, the proposed method of approximation (16) is found to be performing with higher 

efficiency than that of equal interval stratification as well as all other proposed methods. 

 

Table 6: Comparison with equal interval stratification, Uniform distribution 
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Strata 
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Equal Interval 

Stratification 

Stratification due to 

equations (15) 
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2 1.50 0.028 1.504 0.028 100 1.498 0.028 100 1.504 0.028 100 1.504 0.028 100 

3 1.334 

1.667 

0.016 1.323 

1.667 

0.016 100 1.318 

1.658 

0.016 100 1.323 

1.666 

0.016 100 1.323 

1.666 

0.016 100 

 

4 

1.25 

1.50 

1.75 

 

0.013 

1.252 

1.475 

1.732 

 

0.013 

 

100 

1.248 

1.469 

1.727 

 

0.0126 

 

101 

1.252 

1.475 

1.732 

 

0.013 

 

100 

1.252 

1.475 

1.732 

 

0.013 

 

100 

 

 

5 

1.20 

1.40 

1.60 

1.80 

 

 

0.0124 

1.212 

1.369 

1.529 

1.743 

 

 

0.0119 

 

 

104 

1.211 

1.368 

1.529 

1.742 

 

 

0.0119 

 

 

104 

1.212 

1.369 

1.529 

1.743 

 

 

0.0119 

 

 

104 

1.212 

1.369 

1.529 

1.743 

 

 

0.0119 

 

 

104 

 

 

6 

1.167 

1.334 

1.499 

1.667 

1.833 

 

 

0.0107 

1.169 

1.318 

1.504 

1.716 

1.873 

 

 

0.0108 

 

 

99 

1.162 

1.303 

1.488 

1.708 

1.873 

 

 

0.0107 

 

 

100 

1.169 

1.318 

1.504 

1.716 

1.873 

 

 

0.0108 

 

 

99 

1.169 

1.318 

1.504 

1.716 

1.873 

 

 

0.0108 

 

 

99 

 
For the population of Uniform distribution, equal interval stratification is generally 

considered to be the best stratification method. We have observed that all the proposed 

methods of stratification work with same efficiencies as that of equal interval stratification in 

almost all the considered numbers of strata except at number of strata 6, the proposed 

equations (15) and methods of approximation (17) and (18) are performing with slightly less 

efficiencies than that of equal interval stratification. But at stratum number 5, our proposed 

methods are performing with slightly higher efficiencies than that of equal interval  
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stratification. Hence it is seen that all our proposed methods of stratification are efficient in 

stratifying the population. The proposed approximation method (16) is found to be most 

credibly stratifying the population to give OPS.  

 

On the other hand, as Yadava and Singh (1984) did not perform numerical 

illustration, we compare our proposed equations and methods of approximation with that of 

Gupt and Ahamed (2020) whose special case gives Yadava and Singh’s (1984) methods. The 

comparisons are shown in Tables 7-9. Gupt and Ahamed (2020) illustrated their proposed 

methods in three generated populations of Exponential, Right-triangular and Uniform 

distribution in the same range of x variable as taken in this paper too, and therefore the 

comparison of our methods with respect to their methods are made in these three populations 

only. 

 

Table 7: Comparison with the methods proposed by Gupt and Ahamed (2020), 

Exponential distribution 
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Approximation Methods 

Comparison of methods (16), (17) and (18) 

w.r.t approximation method proposed by 

Gupt and Ahamed (2020) 
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) 

M
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7

) 

M
et

h
o

d
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8

) Relative 

efficiency 

of (16) 

Relative 

efficiency 

of (17) 

Relative 

efficiency 

of (18) 

2 0.1673 0.167 100 0.1683 0.168 0.167 0.167 100 101 101 

3 0.1029 0.100 103 0.1045 0.100 0.100 0.100 105 105 105 

4 0.0855 0.085 101 0.0729 0.075 0.086 0.086 97 85 85 

5 0.0659 0.066 100 0.0605 0.062 0.066 0.066 98 92 92 

6 0.0535 0.053 101 0.053 0.052 0.053 0.053 102 100 100 

 

In Exponential distribution, our proposed equations (15) are found to be having same 

or slightly higher efficiencies than that of equations giving OPS proposed by Gupt and 

Ahamed (2020). When we compare our proposed methods of approximation with the method 

of approximation proposed by Gupt and Ahamed (2020), for number of strata 2, 3 and 6 our 

approximation methods are slightly better or equal to that of their method, but for number of 

strata 4 and 5, their approximation method is slightly better. But our proposed approximation 

(16) is having almost same efficiency as that of theirs for numbers of strata 4 and 5.  
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Table 8: Comparison with the methods proposed by Gupt and Ahamed (2020), Right-

triangular distribution 
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efficiency 
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Relative 

efficiency 
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efficiency 

of (18) 

2 0.0224 0.022 102 0.0234 0.022 0.022 0.022 106 106 106 

3 0.0130 0.013 100 0.0130 0.013 0.013 0.013 100 100 100 

4 0.0109 0.009 121 0.0102 0.009 0.010 0.010 113 102 102 

5 0.0098 0.010 98 0.0103 0.009 0.010 0.010 114 103 103 

6 0.0088 0.009 98 0.0087 0.008 0.009 0.009 109 97 97 

  

In the population of Right-triangular distribution, the proposed equations (15) are 

having slightly more efficiencies than that of their proposed equations giving OPS for 

numbers of strata 2, 3 and 4. For numbers of strata 5 and 6, the proposed equations (15) are 

having slightly less efficiencies than that of the equations proposed by them. But in the case 

of comparison of the methods of approximations (16), (17) and (18) with their proposed 

method of approximation, our methods are having higher efficiencies except at number of 

strata 6, our proposed methods (17) and (18) are having slightly less efficiencies than that of 

their method of approximation. But, the proposed approximation method (16) is performing 

best of all approximation methods proposed in this paper as well as proposed by them. 

 

Table 9: Comparison with the methods proposed by Gupt and Ahamed (2020), Uniform 

distribution 
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Relative 
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of (17) 

Relative 

efficiency of 

(18) 

2 0.0278 0.028 99 0.0283 0.0278 0.028 0.0278 102 101 102 

3 0.0164 0.0164 100 0.0168 0.0162 0.0164 0.0164 104 102 102 

4 0.0127 0.0127 100 0.0128 0.0126 0.0127 0.0127 102 101 101 

5 0.0119 0.0119 100 0.0117 0.0119 0.0119 0.0119 98 98 98 

6 0.0108 0.0108 100 0.0113 0.0107 0.0108 0.0108 106 105 105 

 

In the population of Uniform distribution, the proposed equations (15) perform with 

almost same efficiencies as that of their proposed equations giving OPS. The proposed 

methods of approximation (16), (17) and (18) are performing with higher efficiencies than 

that of approximation method proposed by them except for number of strata 5 at which these 
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proposed methods are performing with slightly less efficiencies than that of approximation 

method proposed by them.  

 

In using the approximation methods, Gupt and Ahamed’s (2020) method is restricted 

to use in stratifying population in which auxiliary variable, based on which stratification is to 

be done, of the study variable follows a known probability density function, but our three 

proposed methods of approximation are free from such restriction. 

 

4. Conclusion 

 

In this paper, it is observed that the proposed equations (15) giving OPS and methods 

of approximation (16), (17) and (18) giving AOPS are found to be different from the 

equations and methods proposed by Yadava and Singh (1984), which could be obtained as 

particular case of the generalised methods proposed by Gupt and Ahamed (2020), although 

allocation used is same in all the cases. The use of different techniques and procedure in the 

same problem in this paper has yielded a distinct set of equations for giving OPS and a few 

methods of obtaining AOPS which are very efficient and fairly suitable for practical 

applications in stratifying various heteroscedastic populations. In all the empirical 

illustrations, the proposed equations and methods of approximation are found to be 

performing better than or as good as methods of stratification proposed by other authors 

considered in this paper. It is also fascinating to learn that all the approximation methods 

proposed in this paper are found almost as efficient as exact equations (15) giving OPS. The 

method of approximation (16) - AOPS between any two consecutive strata are given by 

geometric mean of means of two consecutive strata of the auxiliary variable - is found to be 

the best of all the proposed methods in terms of efficiently stratifying population of all types 

and suitability for practical applications. Therefore, this method is recommended for practical 

application in stratifying populations of the considered level of heteroscedasticity optimally. 
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Abstract 
 

In this paper, we have suggested chain ratio-type estimator, exponential chain ratio-ratio-
type estimator, improved estimator and a general class of estimators in Double sampling for 
stratification for finite population mean. Different conditions were obtained under which the 
proposed estimators perform better than unbiased estimator, ratio-type and product-type 
estimators and ratio and product-type exponential estimators. An empirical study is carried out 
to demonstrate the performance of the proposed estimators over existing estimators. 
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1. Introduction and Notations 

 
When the population is homogeneous, for selecting a representative sample from the 

population, the practitioner usually uses the simple random sampling scheme. However, in 
practice, heterogeneous population are also encountered. In such situation, stratification is one 
of the most widely used procedures in sample survey to provide samples that are 
representatives of major sub-groups of a population and improve precision of estimators, see 
Holt and Smith (1979). In stratified random sampling, it is assumed that strata weights as well 
as sampling frame are available in advance. But there are several situations of practical 
importance where strata weights are known and the frame within strata is not available. For 
example, in a household survey in a city, number of households in different colonies may be 
available, but list of households may not be available, see Tailor et al. (2014). In such a 
situation the technique of post stratification is effectively employed. However, in other 
situations strata weights may not be known exactly as they become outdated with the passage 
of time. Further the information on the stratification variable may not be readily available but 
could be made available by diverting a part of the survey budget, see Tripathi and Bahl (1991, 
p. 2590). Under these situations that procedure of double sampling for stratification (DSS) can 
be employed. 

 
Let be a finite population of size N. let (y, x) be the (study, auxiliary) 

variates respectively. It is desired to estimate the population mean of study variable y and 
consider it desirable to stratify the population based on the values of an auxiliary character x 
but the frequency distribution of x is not known. The sampling frame for different strata, the 

{ }NUUUU ,..., 21=
Y
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strata weights ( being the size of the stratum) are unknown 

although the strata may be fixed in advance, see Ige and Tripathi (1987, p. 192). In such 
situations DSS scheme is used. In DSS scheme we draw a first phase sample of size from 
the population U using simple random sampling without replacement (SRSWOR) scheme and 

observe auxiliary variable x. let  be the x-observations and , the 

sample mean. The sample is then divided into L strata on the basis of information gathered 
for auxiliary variable x through . Let be the number of units in falling into stratum 

h ,  yielding the representation 

where and such that . Subsamples of sizes 

, is known in advance for each h, are then drawn 
independently, using SRSWOR within each stratum and y, the study variable is measured. 

 

Let and denote y observations,

. It is assumed throughout the paper that  is large enough so that 

for all h. 

Further we denote 
First degree of approximation: fda, 
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, are unbiased estimators of the population means and 

respectively, where and . 

  
Now, to obtain the biases and mean squared errors (MSEs) of various estimators of 

population mean  we write 
,  

 
such that and 

, 

, 

, 

, 

. 

 
1.1. Reviewing some existing estimators 
 

The conventional unbiased estimator for population mean [which does not utilize the 
entire information gathered on the first-phase (preliminary large) sample and the stratified sub 
samples] is defined by 

 

                                                    
         (1) 

with mean squared error /variance 
 

                                               ,                                      (2) 

 
is well known [see Rao (1973); Cochran (1977)]. 
 

Based on DSS, utilizing the auxiliary information obtained on the first phase sample both 
at the designing as well as at estimation stages, Ige and Tripathi (1987) proposed the ratio-type 
(RT) and product-type (PT) estimators for respectively as 
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.                 (4) 

To the fda, the MSEs of  and  are respectively given by 
 

                                        
,               (5) 

                                       
.                           (6) 

 
Further, motivated by Bahl and Tuteja (1991), Tailor et al. (2014) suggested RT and PT 

exponential estimators respectively as 
 

                                                   
 ,                          (7) 

                                                   
.                 (8) 

 
The MSEs of RT and PT exponential estimators to the fda are respectively given by 
 

                                          
,               (9) 

                                          
.                    (10) 

From (2), (5), (6), (9) and (10), it is observed that the RT estimator , the PT estimator

, the RT exponential estimator  and the PT exponential estimator are better 

than if the conditions , , and respectively hold good. 

 
2. Proposed Chain-Type Estimators in DSS 

 
2.1. Chain RT estimator 

 

On replacing by in (3), we get chain RT estimator in DSS for population mean 

as 
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                                                    .                                 (12) 
 

We assume that so that the term is expandable. Now, expanding the right 
hand side (RHS) of (12) multiplying out and neglecting terms of ’s having power greater than 
two, we have 

 

                              
.           

(13) 
 

To obtain the bias of to the fda, we take the expectation of both sides of (13) and 
thus  

                                  
             

  
.                                            (14) 

 
which is negligible if sample size is sufficiently large. 

 
Squaring both sides of (13), neglecting terms of ’s having power greater than two, we 

have 
 

                              .             (15) 
 

Taking expectation of both sides of (15) we get the MSE of to the fda as 
 

                                  
.                    (16) 

 
From (2), (5), (9) and (16) it can be shown that 
 

                                         
       

 
if k >1,             (17) 

 

                                               if ,             (18) 

and 
 

                                              
if .                 (19) 

 
Thus, the proposed chain RT estimator  is more efficient than the estimators ,

 and if the conditions (17), (18) and (19) are satisfied respectively. It is also 

observed from (17), (18) and (19) that the condition is sufficient for the proposed 

estimator to be more efficient than the estimators ,  and . 
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2.2. Chain PT estimator 
 

On replacing by in (4), we get a chain PT estimator in DSS for population mean 

as 

                                         
.                         (20) 

 
Inserting and in (20) we have 
 

                     .               (21) 

 
We assume that so that the term is expandable. Now, expanding the 

RHS of (21), multiplying out, neglecting terms of ’s having power greater than two and then 
subtracting from both sides of (21), we have 
  

                     
.         (22) 

 

Taking expectation of both sides of (22) we get the bias of to the fda as  
 

                                                     
.                         (23) 

 
which is negligible if sample size is large enough. 

 
Now, squaring both sides of (22) and neglecting terms of ’s having power greater than 

two we have 
 
                                 .             (24) 

 

Taking expectation of both sides of (24) we get the MSE of to the fda as 
 

                           
.                        (25) 

 
It can be easily observed from (2), (6), (10) and (25) that the suggested chain PT estimator 

is more efficient than the estimators ,  and respectively if the conditions

, and holds good. It is further observed that the condition  is 

sufficient for the proposed chain PT estimator  to be more efficient than the estimators
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2.3. Chain RT exponential estimator 
 

Inserting in place of  in (7), we obtain the chain RT exponential estimator in 
DSS for population mean as 

 

                      
.                  (26) 

 
Expressing (26) in terms of ’s we have 
 

                           
.             (27) 

 
Expanding the RHS of (27), multiplying out, neglecting terms of ’s having power 

greater than two and then subtracting from both sides, we have 
 

                           
.                      (28) 

 
Taking expectation of both sides of (28) we get bias of to the fda as 
 

                                               
 .                   (29) 

 
For sufficiently large , the bias of at (29) is negligible. 

 
Squaring both sides of (28), neglecting terms of ’s having power higher than two and 

taking expectation of both sides, we get the MSE of to the fda as 
 

                         
         

 
.                      (30) 

 

From (5) and (30), it is observed that to the fda, the MSE of RT estimator and the 

MSE of chain RT exponential estimator are same i.e., . 
 

2.4. Chain PT exponential estimator   
 

On replacing by in (8), we obtain the chain PT exponential estimator in DSS 
for population mean as 
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Substituting and in (31) we have 
 

                            
.             (32) 

 
Expanding the RHS of (32) neglecting terms of ’s having power greater than two and 

subtracting from both sides, we have 
 

                            
.                      (33) 

 
Taking expectation of both sides of (33) we get the bias of to the fda as 
 

                                                    
.                          (34) 

 
Squaring both sides of (33), retaining terms of ’s up to second degree and then taking 

expectation of both sides we get the MSE of to the fda as 
 

                               
.                        (35) 

 
which equals to the MSE of  i.e.  . 

 
2.5. Chain Ratio-RT exponential estimator 

 
Chain ratio-RT exponential estimator in DSS for population mean is obtained on 

replacing by in (7) given by 
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the conditions , , and are satisfied. We also conclude that if k is lies 

between , then chain ratio-RT exponential estimator  performs better than the 

estimators ,  and .  
 

2.6.   Chain product-PT exponential estimator 

Inserting  in place of  in (8), we define a chain product-PT exponential 

estimator for population mean  in DSS as 

                              
 .            (39) 

Using the procedure adopted in preceding sections, we get the bias and MSE of the 

to the fda, respectively as 
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It is observed from (2), (6), (10), (25), (35) and (41) that the proposed estimator 
is better than: 

(i) the unbiased estimator if , 

(ii) the PT estimator and the chain PT exponential estimator if , 

(iii) the PT exponential estimator if ;and 

(iv) the chain PT estimator if . 

It is further observed from (i) to (iv) that the proposed estimator is always better 

than the estimators , , , and if . 

 
3. A Class of Chain Ratio-RT Exponential Estimators in DSS 

 
We have suggested a class of chain ratio-RT exponential estimators for population mean 
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,             (42) 

 
where are real constants or known parameters such as standard deviation , 
coefficient of variation , coefficient of skewness , coefficient of kurtosis and 

 associated with auxiliary variable x or coefficient of variation of 

study variable y or , the coefficient of correlation between y and x; are suitably 

chosen design parameters. In particular are to be determined such that MSE of the class 

of chain ratio-RT exponential estimators is minimum. 
 

We note that for different values of scalars a large number of estimators can 

be generated from the suggested class of estimators . 
 

To the fda, the bias and the MSE of the estimator  are respectively given by 
 

                                                    
.                                (43) 

                              
.             (44) 

 

where , . 

 
We note from (43) that the bias of is negligible if the sample size  is sufficiently 

large. The proof of the results in (43) and (44) are simple so omitted. 
 
The MSE of is minimum when 
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Thus, the resulting minimum MSE of  is given by 
 

                                     
.                         (46) 

where . 

Now we state the following theorem: 

( )
( ) þ

ý
ü

î
í
ì

++
-

÷÷
ø

ö
çç
è

æ
+
+

=
yx

wx
yx
yx

l

2'
'exp'ˆ

)(
ds

ds

ds
ds

P
dssCR xx

xx
x
xyY

( ){ }yx ,0¹ xS

xC )(1 xb )(2 xb
( )1)()( 12 --=D xx bb yC

yxr ( )wl,
( )wl,

P
dssCRY )(

ˆ

( )wlyx ,,,
P
dssCRY )(

ˆ

P
dssCRY )(

ˆ

( )
þ
ý
ü

î
í
ì -= k

Xn
RYB xP

dssCR 4'2
ˆ

)(
tqht

( ) ( ) ú
û

ù
ê
ë

é

þ
ý
ü

î
í
ì

-++= kR
n

SYMSE x
yy

P
dssCR 4

4'
1ˆ 2

2
)( thqthqg

yx
xt
+

=
X
X ( )lwh 2+=

P
dssCRY )(

ˆ 'n

P
dssCRY )(

ˆ

)(
2

opt
k h
t

h ==

P
dssCRY )(

ˆ

( ) ( )ú
û

ù
ê
ë

é
-+= 22

)(min 1
'

ˆ r
q

g
n

SYMSE y
y

P
dssCR

xy

yx

qq
q

r =



2022] CHAIN RATIO TYPE IN DOUBLE SAMPLIG STRATIFICATION 203 
 

 
 

Theorem 1: Up to first order of approximation, 

 

with equality holding if . 

3.1.   Efficiency comparison 
 
From (2) and (44), we have that 
 

if 
 

either                                                   ,                          (47) 

or                                                        ,                           (48) 

 
If we set  then the class of estimators  reduces to 
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If we set , then the class of estimators  reduces to 
 

                                            
,              (54) 

where is a constant. 
 

Putting in (43) and (44) we get bias and MSE of the estimator  
respectively as 
 

                                                  
,                        (55) 

                            
.                            (56) 

 
From (44) and (56), we have that 
 

, if 
 

either                                                                (57) 

or                                                   .                          (58) 

 

Thus we conclude that  is better than , and  if the conditions given 
in equations (47) or (48), (52) or (53) and (57) or (58) respectively are satisfied. 

4. Improved Class of Estimators 
 
Motivated by Searls (1964) we consider an improved class of chain RT estimators in DSS 

for population mean as 
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where  
 

, 

. 

 
The  at (61) is minimized for  
 

     , say.                         (62) 

 
Thus, the resulting minimum MSE of  is given by 
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Now we arrived at the following theorem. 

 
Theorem 2: Up to terms of order , 

 

 

with equality holding if 
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to the improved family of estimators are more efficient as compared to the estimators 

belonging to suggested class of estimators .  

5. A General Class of Estimators 
 
Following the procedure adopted by Upadhyaya et al. (1985), we define a generalized 

class of estimators in DSS for population mean  as  
 

                               
,            (66) 

 
where are constants to be determined such that the MSE of is minimum; and the 

scalars are same as defined earlier. 
 
To the fda, the bias and MSE of the generalized class of estimators are respectively 

given by 
 

  
,              (67) 

 
,                    (68) 

 
where 
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and are same as defined previously. 
 

Minimization of (68) with respect to gives 
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After simplification of (69), we get the optimum values of respectively as 
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 ,              

(70) 
where 

 

 

 

 
Thus the resulting minimum MSE of  is given by 
 

                                      
.                      (71) 

 
Theorem 3: Up to terms of order , 

 

 

 
with equality if 
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Now from (63) and (71), we have 
 

 

 
which follows that 
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Combining the inequalities (65) and (72) we have 
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From (73), we infer that the generalized estimator is more efficient than the suggested 

improved estimator and the estimator .  

6. Numerical Illustration 

To demonstrate the performance of the various estimators of the population mean of y, 
we have taken two data sets. Description of the population data sets are given below. 
 
Data 1 [Source: Chouhan (2012)] 
y: Productivity (MT/Hectare), x: Production in ‘000 Tons 
N=20, n=8,  

 

 

Data 2 [Source: Murthy (1967), p228] 
y: Output, x: Fixed capital, 
N=10, n=4,  

,  

. 

We have computed the percent relative efficiencies (PREs) of estimators , ,
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           ,                      (77) 

and findings are displayed in Table 1. 

 The PREs of proposed class of estimators , improved class of estimators 

and generalized class of estimators with respect to have been computed by using the 
formulae: 

                                          

,                (78)    

                              
,                (79) 

                             

             (80) 

for different values of . Results are shown in Table 2. 
 

Table 1: PRE of Different estimators with respect to  
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Table 2: PREs of , and with respect to for different values of scalars 

 
 

 

Values of scalars Data 1 Data 2 

    
PRE

 
PRE

 
PRE

 
PRE

 
PRE

 PRE  

1 0 1 –1 168.4 170.13 177.37 152.82 155.05 160.94 
1 0 0.75 –0.75 154.23 155.77 177.14 142.40 144.46 160.70 
1 0 0.5 –0.5 136.19 137.64 176.92 128.90 130.87 160.49 
1 0 0.25 –0.25 117.44 118.89 176.73 114.28 116.25 160.28 
1 0 1 0 145.18 148.54 178.45 138.96 142.81 161.99 
1 0 0.25 0.25 154.23 155.77 177.14 142.40 144.46 160.70 
1 0 0.5 0.5 172.81 175.27 177.88 157.32 160.24 161.44 
1 0 0.75 0.75 126.45 130.17 178.76 124.98 129.27 162.29 
1 0 0.75 1 121.21 112.2 179.09 110.33 115.00 162.60 

PREs at optimum 
value 175.54 177.66 177.71 158.62 161.26 161.27 

It is observed from Table 1 that the estimators and  are equally efficient. The 

estimators , and are more efficient than the conventional unbiased estimator

with considerable gain in efficiency. The chain estimators and are even 
inferior to the unbiased estimator .  
 

Table 2 shows that the proposed estimators , and are more efficient than 

the usual unbiased estimator for selected values of . The proposed chain 

estimator (at optimum value of ) is more efficient than the estimators , ,

, , and . 
 
Table 2 also exhibits that the generalized estimator is the best (in the sense of having 

least MSE) among all the estimators , , , , , , and 

discussed here. Thus there is enough scope of selecting the scalars involved in the 

proposed class of estimators , and  obtaining better than the estimators , 

, , , and . 
 

So the proposed estimators , and are recommended for their use in 
practice. 
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Abstract 

 The paper analyses a single-server Markovian queueing system having state dependent 

service rates with customer’s balking and feedback subject to catastrophes. Using matrix-

geometric solution method, we obtain steady-state solution for the system. Various measurable 

indicators have been evaluated with the assistance of Maple software and based on these measures; 

we have presented an expected cost and profit analysis. 

 

Key words: Matrix-geometric method; Balking; Feedback; Catastrophes; State-dependent. 
 

1. Introduction 

 

         In such an intense market condition, where attracting and finding a potential customer is very 

difficult, no one wants to bear the cost of customer loss. So, providing quality of service at faster 

rate is very important factor in this fast paced life. Considering parameters like balking, feedback 

and state-dependent service rate provides more pliability for optimal design and finds its 

applicability in communication network, production system, and in various congestion problems. 

Queueing analysis presents an optimal solution by providing suitable suggestions to reduce 

congestion. 

  

         In this paper, we have considered the parameters; balking, feedback, catastrophe and state 

dependent service altogether, to analyse the system performance. These parameters inordinately 

affect the system and its cost function.  

 

         There are many practical situations, where service rates depend on the size of the system. 

Such situations can be seen in hotels or restaurants during rush hours, where waiters and cooks 

work with a faster rate to cope up with the demand, or in hospitals for patients coming to the 

emergency ward etc. Many authors have contributed in the study of state dependent service rates. 

Davingon and Disney (1976) considered single server state dependent feedback queue. Doshi and 

Jangerman (1986) obtained some important performance measures for an M/G/1 queue where, 

balking depended on system size using supplementary variable technique. Abou-El-Ata (1991) 

extended the model of Ancker and Gafarian (1963) to study the state dependent finite queue with 

impatient customers. Such system may also get affected by balking, where customer doesn’t want 

to join the system due to long queue.  

mailto:indra@kuk.ac.in
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         Queueing systems incorporating balking, feedback or both have attracted many researchers. 

They are useful in designing and managing systems like transmission of data, emergency ward of 

health sector where balking is common and chances of rework is more. The perception of customer 

impatience was first appeared in the work of Haight (1957). Tackas (1963) analysed a single server 

queue with feedback. For conceivable uses, the history and contributions of researchers on 

queueing systems with balking and feedback, one may see articles by Santhakumaran and 

Thangaraj (2000), Choudhury and Paul (2005), Kumar et al. (2013), Varalakshmi et al. (2018), 

Bouchentouf et al. (2019). 

 

         Queueing models with catastrophes have gained importance during last few decades because 

of its relevancy in many area viz. computers and telecommunications, health sector, production 

sector, disaster management. Queues with catastrophes have attracted many researchers due to the 

fact; they are very unpredictable in nature and force the customers to leave the system immediately. 

So, including them in modelling makes the model more pragmatic. Thangaraj and Vanitha (2009) 

obtained transient solution of M/M/1 feedback queue with catastrophe using continued fractions.  

Kumar et al. (2014) studied queueing systems subjected to catastrophes and customer’s impatience 

and obtained time-dependent and steady-state probabilities when system is operational as well 

when under repair process. Bura and Bura (2015) analysed finite, single-server markovian-

catastrophic queueing system with restorative effects. 

 

The primary objectives of this paper are: 

 

i. To obtain steady state solutions to aforesaid queueing system using matrix 

geometric method. 

ii. To evaluate important performance measures such as mean number of customers 

in the system and in the queue, probability of ideal, probability of busy, mean 

balking rate etc. and to perform sensitivity analysis. 

iii. To formulate an expected cost and profit functions based on measures obtained.  

iv. Graphical representations showing effect of different parameters on expected cost 

and expected profit functions. 

 

2. Model Assumptions and Descriptions 
 

We consider a markovian queueing system of infinite capacity, where the arrivals and 

departures both follow Poisson process with mean inter-arrival time 
1

𝜆
 and mean inter-service times 

1

𝜇1
 𝑜𝑟

1

𝜇2
 depending upon the system size. Arriving customer may join the queue with probability 

‘𝛽’ if he finds the server non-empty or balk with probability ′1 − 𝛽′ according to some 

predetermined norms. The server decides to operate with two different service rates; ‘slow and 

fast’ subjected to the length of the queue. If it finds the system size is less than or equal to the 

critical value ‘r’, it serves with a slower rate ‘𝜇1’; otherwise with a faster rate ‘𝜇2’. If customer, 

on service completion is satisfied by the service, the customer leaves the system with probability 

‘q’. On contrary the customer re-joins the queue with probability ‘p’ if one finds the service 

dissatisfactory. Occurrence of catastrophes ejects all the customers from the system instantly and 

system becomes inactive momentarily. Catastrophes occur according to Poisson process with rate 
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of occurrence′ 𝜉′, when the system is non-empty. 

 

The infinitesimal generator matrix Q of the system is given by: 
 

 

𝑸 =

(

 
 
 
 
 
 
 

−𝜆 𝜆 0 … … … … … …
(𝑞𝜇1 + 𝜉) −(𝑞𝜇1 + 𝛽𝜆 + 𝜉) 𝛽𝜆 … … … … … …

𝜉 𝑞𝜇1 −(𝑞𝜇1 + 𝛽𝜆 + 𝜉) … … … … … …
: : : … … … … … …
: : : … … … … … …
𝜉 0 0 𝑞𝜇1 −(𝑞𝜇1 + 𝛽𝜆 + 𝜉) 𝛽𝜆 0 … …
𝜉 0 0 … 𝑞𝜇1 −(𝑞𝜇1 + 𝛽𝜆 + 𝜉) 𝛽𝜆 … …
𝜉 0 0 … … 𝑞𝜇2 −(𝑞𝜇2 + 𝛽𝜆 + 𝜉) 𝛽𝜆 …
: : : … … … … … …
: : : … : : : : …)

 
 
 
 
 
 
 

0
1
2
:
…
𝑟 − 1
𝑟

𝑟 + 1
…
…

 

 

Let n(t) ≡ number of customers in the system at time ‘t’. Let ‘n’ be the stationary random variable 

for the number of the customers in the system. We define 𝜋𝑖={n = i}= lim
𝑡→∞

𝑃{𝑛(𝑡) = 𝑖}, where 𝑖 ∈

𝕎 and 𝜋𝑖 represents the stationary probability of i customers in the system. The stationary 

probability vector is given by, 

 

𝝅 = (𝜋0, 𝜋1, 𝜋2, …………… , 𝜋𝑟 , 𝜋𝑟+1, ……… )                                                                         (1) 
 

The steady-state probabilities 𝜋𝑖 are related geometrically to each other as 𝜋𝑖 = 𝜋𝑟𝑅
𝑖−𝑟 ∀𝑖 ≥ 𝑟. 

Here, R is called the rate element and for this system it is given by: 

 

𝑅 =
(𝛽𝜆 + 𝑞𝜇2 + 𝜉) − √(𝛽𝜆 + 𝑞𝜇2 + 𝜉)2 − 4𝛽𝜆𝑞𝜇2

2𝑞𝜇2
                                                          (2) 

 

The steady-state probabilities are obtained by solving the following equations 

𝝅𝑸 = 𝟎                                                                                                                                              (3) 
 

𝝅𝒆 = 𝟏                                                                                                                                               (4) 
 

3. Performance Measures 

 

            We calculate some performance indicators using the probabilities; obtained by employing 

equation (3) and equation (4), for the system as follows.  

i) “Expected number of customers in the system:”                                                                                              

𝑴𝑵𝑺 = ∑𝒏𝝅𝒏

𝒓

𝒏=𝟏

+∑𝒏𝝅𝒓𝑹
𝒏−𝒓

∞

𝒏=𝒓

                                                                           (5) 

ii) “Expected number of customers in the queue:” 
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𝑴𝑵𝑸 = ∑𝒏𝝅𝒏+𝟏

𝒓−𝟏

𝒏=𝟏

+∑𝒏𝝅𝒓𝑹
𝒏+𝟏−𝒓                                                                     (6)

∞

𝒏=𝒓

 

 

iii) Mean Balking Rate (B.R): 

 

𝑩.𝑹 = (𝟏 − 𝜷)𝝀(𝟏 − 𝝅𝟎)                                                                                 (7) 

 

iv) Probability that the server is busy: 

 

𝑷𝒃 = (𝟏 − 𝝅𝟎)                                                                                                      (8) 

 

v) Probability that the server is ideal: 

 

𝑷𝑰 =  𝝅𝟎                                                                                                                (9) 

vi) Expected waiting time in the system: 

𝑴𝑾𝑺 =
𝑴𝑵𝑺

𝝀
                                                                                                  (10) 

vii) Expected waiting time in the queue: 

𝑴𝑾𝑸 = 𝑴𝑾𝑺 −
𝟏 

𝝁𝟐
                                                                                      (11) 

Special Case 

 

If we put 𝛽 = 1, 𝑞 = 1, 𝜉 = 0 and consider only one service rate throughout i.e. 𝜇, then the rate 

element reduces to  

𝑹 =
𝝀

𝝁
 

and 𝝅𝒏is given by: 

𝝅𝒏 = 𝑹
𝒏(𝟏 − 𝑹) 

which is same as the probability of n customers in the system, for classical M/M/1 queue. 

 

 

Particular Cases 

 

We obtain stationary probabilities when r = 1 and r =2 in the following section. 

 

Case-I: When r = 1 

 

The infinitesimal generator matrix Q of the system is given by: 

𝑸 = (

−𝜆 𝜆 0 … … …
(𝑞𝜇1 + 𝜉) −(𝑞𝜇1 + 𝛽𝜆 + 𝜉) 𝛽𝜆 0 … …

𝜉 𝑞𝜇2 −(𝑞𝜇2 + 𝛽𝜆 + 𝜉) 𝛽𝜆 0 …
: : : … … …

) 
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Using (3) and (4) we have, 

 

𝜋0 =
𝑞𝜇1(1 − 𝑅) + 𝜉

𝑞𝜇1(1 − 𝑅) + 𝜆 + 𝜉
                                                                                                          (12) 

 

𝜋1 =
𝜆(1 − 𝑅)

𝑞𝜇1(1 − 𝑅) + 𝜆 + 𝜉
                                                                                                          (13) 

 

The other steady state probabilities are obtained by 𝜋𝑖 = 𝜋1𝑅
𝑖−1 ∀ 𝑖 ≥ 2 

 

Case-II: When r = 2 

 

The infinitesimal generator matrix Q of the system is given by: 

 

𝑸 =

(

 
 

−𝝀 𝝀 𝟎 … … …
(𝒒𝝁𝟏 + 𝝃) −(𝒒𝝁𝟏 + 𝜷𝝀 + 𝝃) 𝜷𝝀 … … …

𝝃 𝒒𝝁𝟏 −(𝒒𝝁𝟏 + 𝜷𝝀 + 𝝃) … … …

𝝃 𝟎 𝒒𝝁𝟐 −(𝒒𝝁𝟐 + 𝜷𝝀 + 𝝃) 𝜷𝝀 …
: : : … … …)

 
 

 

 

Using (3) and (4) we have, 

𝜋0 =
(𝑞𝜇1 + 𝜉)(𝑞𝜇1 + 𝛽𝜆 + 𝜉 − 𝑞𝜇2𝑅) + 𝛽𝜆𝜉(1 − 𝑅)

−1

(𝑞𝜇1 + 𝜉 + 𝜆)(𝑞𝜇1 + 𝛽𝜆 + 𝜉 − 𝑞𝜇2𝑅) + 𝛽𝜆𝜉(1 − 𝑅)−1 + 𝛽𝜆2(1 − 𝑅)−1
        (14) 

 

𝜋1 =
(𝑞𝜇1 + 𝛽𝜆 + 𝜉 − 𝑞𝜇2𝑅)𝜆

(𝑞𝜇1 + 𝜉 + 𝜆)(𝑞𝜇1 + 𝛽𝜆 + 𝜉 − 𝑞𝜇2𝑅) + 𝛽𝜆𝜉(1 − 𝑅)−1 + 𝛽𝜆2(1 − 𝑅)−1
        (15) 

 

𝜋2 =
𝛽𝜆2

(𝑞𝜇1 + 𝜉 + 𝜆)(𝑞𝜇1 + 𝛽𝜆 + 𝜉 − 𝑞𝜇2𝑅) + 𝛽𝜆𝜉(1 − 𝑅)−1 + 𝛽𝜆2(1 − 𝑅)−1
        (16) 

 

The remaining probabilities are obtained by 𝜋𝑖 = 𝜋2𝑅
𝑖−2 ∀ 𝑖 ≥ 3. 

 

4. Cost Model and Profit Model 

 

            Constructing an expected cost function for a system which not only get affected by varying 

arrival and service rates but also by balking, feedback, and catastrophes is very difficult. Here, we 

confine ourselves in determining the optimum value of ‘r’ which minimizes the cost. Let C1 be the 

cost associated with a customer present in the queue, C2 be the cost associated with a customer 

when server is busy, C3 be the cost associated with a customer loss, and C4 be the cost associated 

with server when it is ideal. So, we have the expected cost function as, 
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Total Expected Cost (𝐓𝐄𝐂)  =  𝑪𝟏 ∗ 𝐌𝐍𝐐 + 𝑪𝟐 ∗ 𝑷𝒃 + 𝑪𝟑 ∗ 𝐁. 𝐑 + 𝑪𝟒 ∗ 𝑷𝑰           (17) 
 

Similarly, for an expected profit function, we have 

 

Total Expected Profit (𝐓𝐄𝐏) =   𝛒 ∗ 𝐌𝐍𝐒 − 𝐓𝐄𝐂                                                              (18) 
where 𝛒 is the revenue. 

 

Though the cost function may appeared to be simple but it is highly non-linear and complex in 

nature which makes it difficult in optimizing the value of ‘r’. In order to arrive at a decision, we 

carry out sensitivity analyses by substituting different values for the parameters. 

 

5. Sensitivity Analysis 

 

            Sensitivity analyses have been performed to compare the systems r = 1 and r = 2, by 

changing values of the parameters involved. For calculation, let C1 =100, C2 =150, C3 =200, and 

C4 =250. The measurable indicators are computed coupled with total expected cost and total 

expected profit. These measures have guided in deciding the optimal value of ‘r’ in order to 

minimize its expected cost and maximize the expected profit. Different Cost and profit graphs have 

been plotted by varying the parameters under consideration. These graphs are illustrated and 

discussed below. 

 

 
Figure 1(a) 
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Figure 1(b) 

In figures 1(a) and 1(b), we fix 𝜇1 = 3, 𝜇2 = 5, = 0.5, 𝜉 = 0.01, and 𝑞 = 0.8 and display the 

expected cost and expected profit by varying arrival rates for both the systems r = 1, and r = 2. It 

is clear from the graph that expected cost for both the systems are almost same and increases as 

arrival increases. Same trend can be seen for profit as well and if arrival rate becomes same or 

greater than the slow service rate, it is beneficial to use the faster rate to maximize the profit. 

 

 

Figure 2(a) 
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Figure 2(b) 

In figures 2(a) and 2(b), we fix 𝜆 = 1, 𝜇2 = 6, 𝛽 = 0.5, 𝜉 = 0.01, and 𝑞 = 0.8 and display the 

expected cost and expected profit by varying slow service rate for both the systems r = 1, and r = 

2. It is clear from the graph that expected cost for both the systems decreases as service rate 

increases. But the decrement is more rigorous for system r = 2 than for r = 1. Same trend can be 

seen for profit as well. This is because the server remains ideal for rest of the time. 

 

 

Figure 3(a) 

 



  2022]              COST AND PROFIT ANALYSIS OF STATE-DEPENDENT FEEDBACK QUEUE                  221 

 

          

 

Figure 3(b) 

 

In figures 3(a) and 3(b), we fix 𝜆 = 1, 𝜇1 = 2, 𝛽 = 0.5, 𝜉 = 0.01, and 𝑞 = 0.8 and display the 

expected cost and expected profit by varying fast service rate for both the systems r = 1, and r = 

2. It is clear from the graph that expected cost for both the systems decreases as service rate 

increases. Same trend can be seen for profit as well. Varying fast service rate rarely affects the 

expected cost and slightly affects the expected profit.  

 

 

Figure 4(a) 
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Figure 4(b) 

In figures 4(a) and 4(b), we fix 𝜆 = 1, 𝜇1 = 3, 𝜇2 = 5, 𝜉 = 0.01, and 𝑞 = 0.8 and display the 

expected cost and expected profit by varying joining probability for both the systems r = 1, and r 

= 2. It is clear from the graph that expected cost for both the systems decreases as joining 

probability increases, whereas expected profit increases as joining probability increases. Thus, 

profit could be maximized by encouraging the customers to join the system.  

 

 

Figure 5(a) 
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Figure 5(b) 

In figures 5(a) and 5(b), we fix 𝜆 = 1, 𝜇1 = 3, 𝜇2 = 5, 𝛽 = 0.5, and 𝑞 = 0.8 and display the 

expected cost and expected profit by varying catastrophic rate for both the systems r = 1, and r = 

2. It is clear from the graph that expected cost for both the systems decreases as catastrophic rate 

increases. Same trend can be seen for profit as well. Increasing catastrophic rate barely affects the 

cost and profit function. 

 

 

 

Figure 6(a) 
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Figure 6(b)  

In figures 6(a) and 6(b), we fix 𝜆 = 1, 𝜇1 = 3, 𝜇2 = 5, 𝛽 = 0.5, and 𝜉 = 0.01 and display the 

expected cost and expected profit by varying disperse probability for both the systems r = 1, and r 

= 2. It is clear from the graph that expected cost for both the systems decreases as probability of 

leaving the system increases. Same trend can be seen for profit as well. Intuitively, increment in 

feedback probability will increase the cost. 

 

 

Figure 7(a) 
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In figure 7(a), we fix 𝜇1 = 3, 𝜇2 = 5, 𝛽 = 0.5, 𝜉 = 0.01, and 𝑞 = 0.8 and display the expected 

waiting time by varying arrival rates for both the systems r = 1, and r = 2. It is clear from the graph 

that expected waiting time for both the systems increases as arrival increases.  

 

 

Figure 7(b) 

 

In figure 7(b), we fix 𝜆 = 1, 𝜇2 = 6, 𝛽 = 0.5, 𝜉 = 0.01, and 𝑞 = 0.8 and display the expected 

waiting time by varying slow service rate for both the systems r = 1, and r = 2. It is clear from the 

graph that expected waiting time for both the systems decreases as service rate increases. But the 

decrement is more rigorous for system r = 2 than for r = 1.  

 

 

Figure 7(c) 



226                                                      A.R. CHOWDHURY AND INDRA                                             [Vol. 20, No.1 

 

In figure 7(c), we fix 𝜆 = 1, 𝜇1 = 2, 𝛽 = 0.5, 𝜉 = 0.01, and 𝑞 = 0.8 and display the expected 

waiting time by varying fast service rate for both the systems r = 1, and r = 2. It is clear from the 

graph that expected waiting time for both the systems decreases as service rate increases.  

 

6. Conclusions 

 

            We have presented a detailed study of a queueing system with various parameters. We 

come across many situations where customer’s impatience, dissatisfaction or sudden occurrence 

of any calamity may cause customer loss and affect the system profit as well. We have incorporated 

balking, catastrophes, feedback and state dependent service rate altogether to make the model more 

applicable in real life situations. Many practical congestion situations that we normally encounter 

such as manufacturing system, call center, communication and telecommunication systems, and 

health sector may remodel their systems to improve the output by using the results so obtained as 

tools. Using matrix-geometric solution method, we have analysed the steady-state behaviour of 

the system and evaluated various performance indicators for the same. An expected cost and profit 

analysis for the system has been presented and discussed with different set of parameters. From 

the graphs, it is clear that the optimal value for ‘r’ is 1. Also, we conclude that server can opt for 

a faster rate if the arrival rate dominates the initial service rate.  

 

7. Future Considerations 

 

Many real life congestion problems which have special structural properties can be easily 

solved using matrix-geometric technique even if the dimensions are of higher order. The work can 

be further extended for markovian and non-markovian queueing networks by considering different 

parameters along with their transient solutions.  
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ABSTRACT 

Bayesian approach is considered by several authors in mixture models under Type – I, 

Type – II and other censoring schemes in the area of life testing and survival analysis. In this 

paper we consider the estimation of parameters of a mixture of log logistic distributions under 

classical and Bayesian setup. The estimation is done based on progressive Type – II censored 

sample and the squared error loss function, K- loss function and precautionary loss function 

are used as loss functions under Bayesian approach. A simulation study is conducted to 

examine the performance of the proposed estimators based on mean squared error. Bayes 

estimators under the three types of loss functions are compared using posterior risk too. The 

results are also compared based on Progressive Type – II censoring and Type – II censoring 

schemes. Additionally a real life data is considered to determine whether the estimators have 

similar behavior as seen in simulation study. 

Key words: Maximum likelihood; Gamma prior; Log logistic distribution; Posterior risk; 

Importance sampling. 

1. Introduction 
 

The concept of censoring is generally used in life testing experiments and survival 

analysis since partial or complete destruction of the testing unit becomes quite expensive and 

time consuming. In literature there are many censoring schemes available, which are mainly 

based on Type – I or Type – II censoring schemes. When life test is terminated as soon as the 

pre-determined time is observed, such censoring scheme is known as Type – I censoring, where 

as in Type - II censoring the test is terminated as soon as pre-determined number of failures 

observed. 

One of the significant shortcoming of conventional censoring schemes is that other than 

the terminal point of the experiment they do not allow removal of the experimental units at any 

other points. A censoring scheme in which some of the experimental units are withdrawn 

during the test and test is continued after the withdrawal is known as progressive censoring 

scheme. Based on Type – I & Type – II censoring schemes progressive censoring schemes can 

be formulated as progressive Type – I & progressive Type – II censoring schemes. For detailed 

study of progressive censoring scheme one may refer Balakrishnan and Aggarwala (2000). The 

progressive Type – II censoring scheme became very popular among the researchers. Some of 

the references are Wu et al. (2006), Patel and Patel (2007), Gajjar and Patel (2008), Saraçoğlu 

et al. (2010) and Ahmed (2014). 
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Various types of lifetime models are available in the literature like Exponential, Weibull, 

Rayleigh, Power function, etc. Some of the works available in literature under progressive 

censoring for above mentioned lifetime models are considered by Fernández (2004), Jung and 

Chung (2011), Kim and Han (2009), etc. In the recent years, the estimation under Bayesian 

setup for log logistic distribution for progressive censoring is studied by Abbas and Tang 

(2016), Al-Shomrani et al. (2016), Kumar (2018), Yahaya and Ibrahim (2019), etc. 

In life testing experiments failure of unit may occur due to more than one causes for e.g. 

failure of an electrical component may occur due to fluctuations in voltage or its operating 

environment or a mechanical shock. Similarly death of a person may occur due to heart attack 

or old age or any other reason. In such situations a lifetime model based on multiple causes is 

considered which is known as mixture model. Suppose there are 𝑘 causes of failure of an 

experimental unit and 𝑝𝑖 be the probability of failure of a unit due to 𝑖𝑡ℎ cause such that 

∑ 𝑝𝑖
𝑘
𝑖=1 = 1 and 𝑓𝑖(𝑥) be the probability density function or probability mass function of 

lifetime of the failure units due to 𝑖𝑡ℎ cause then the mixture model is defined as  

𝑓(𝑥) = ∑ 𝑝𝑖 𝑓𝑖(𝑥)𝑘
𝑖=1                                                         (1) 

 

The mixture model is found useful in engineering, medical, agriculture, and many more fields. 

Pearson (1894) introduced a statistical model based on finite mixtures of distributions to 

analyse crab morphometry data. Based on their causes of failures Mendenhall and Hader (1958) 

studied a population of failures by dividing them in two sub-populations. For estimating the 

parameters of a mixture of Rayleigh distribution Saleem and Aslam (2009) have used Bayesian 

procedure. Bayesian estimation was considered by Kazmi et al. (2012) for a mixture of 

Maxwell distribution under Type-I censoring scheme. Bayesian estimation of mixture of power 

function distributions using Type – II censored sample was discussed by Bhavsar and Patel 

(2019). Complete and Type – I censored sample are considered by Saleem et al. (2010) for 

estimation of parameters of the mixture of power function distributions. Very few works are 

available in the area of estimation of mixture model of the log logistic distribution under 

Bayesian setup based on progressive censoring. This has motivated us to consider a problem 

of estimation for mixture of log logistic distribution under progressive Type – II censoring 

scheme. 

In this article, an estimation of the parameters of mixture of two log logistic distributions 

is carried out using the progressive Type – II censored sample considering the maximum 

likelihood estimation and Bayesian approach, and their respective mean squared errors and 

posterior risks are studied. The prior considered for the parameters 𝛽1 and 𝛽2 is gamma prior 

and uniform prior is considered for proportion parameter 𝑝 of the mixture model. The squared 

error loss function, K – loss function and precautionary loss function are considered to obtain 

the Bayes estimates and a comparison between them based on MSE & posterior risk is done. 

A simulation study is carried out to obtain some interesting conclusions and a real life data is 

also considered. The rest of the article is structured as follows. In section 2, a two-component 

mixture model for log logistic distribution and likelihood function under progressive Type – II 

censoring is described. In section 3, the parameter estimation is carried out using the maximum 

likelihood estimation approach and the estimators are derived along with their asymptotic 

variances. Section 4 covers the estimation carried out under the Bayesian setup considering 

three different loss functions. MSE and posterior risks are obtained for the Bayes estimators. 

A simulation study is conducted to compare the performance of the proposed estimators in 

section 5. In section 6, some discussion on the numerical results are presented. Section 7 gives 
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an idea about the behavior of the estimators for real life data under classical and Bayesian setup. 

The final conclusion is given in Section 8. 
 

2. Mixture Model 
 

The two - component mixture model for log logistic distribution is defined as follows 

                                              

𝑓(𝑥) = 𝑝𝑓1(𝑥) + (1 − 𝑝)𝑓2(𝑥)          (2) 

where 𝑓𝑖(𝑥) =  
𝛽𝑖𝑥

𝛽𝑖−1

(1+𝑥𝛽𝑖)2
,   𝑥 > 0, 𝛽𝑖 > 0 ,0 < 𝑝 < 1;  

is the probability density function of log logistic distribution and corresponding distribution 

function is  

𝐹𝑖(𝑥) =  
𝑥𝛽𝑖

(1+𝑥𝛽𝑖)
;         𝑖 = 1,2           (3) 

Here 𝛽1, 𝛽2 are unknown parameters of the log logistic distributions and 𝑝 is unknown mixing 

proportion with mixing weight 𝑝 ∶ 1 − 𝑝. 

The life testing experiment under progressive censoring can be conducted as follows. Let 

us suppose that 𝑛 experimental units are put on test and as soon as the 𝑚𝑡ℎ failure is observed 

the test is terminated. Considering a mixture model an experimental unit may fail due to cause 

1 or cause 2. The failed unit can easily be identified whether it is from sub population 1 (which 

failed due to cause 1) or sub population 2 (which failed due to cause 2). Since this is progressive 

censoring scheme, as soon as the 1st failure occurs 𝑅1 units are removed from the test which 

has remaining (𝑛 − 1) units on the test and the test is continued with (𝑛 − 1 − 𝑅1) units. 

Similarly on the (𝑚 − 1)𝑡ℎ failure 𝑅𝑚 units are withdrawn from the remaining units on the test 

and test is continued with (𝑛 − 𝑚 − 1 − ∑ 𝑅𝑖
𝑚−1
𝑖=1 ) units. The test is finally terminated as soon 

as the 𝑚𝑡ℎ failure is observed. 

Thus depending upon the cause of failure, we can identify the number of failures 𝑚1 due 

to cause 1 and 𝑚2 due to cause 2 from the 𝑚(= 𝑚1 + 𝑚2) observed failures. The remaining 

(𝑛 − 𝑚 − ∑ 𝑅𝑖
𝑚−1
𝑖=1 ) units are censored which provide no information about the sub population 

and survive beyond the time 𝑋(𝑚), the observed time of the 𝑚𝑡ℎ failure. 

To produce precise inferences a mixture model must be identifiable and in our model we 

have only shape parameters 𝛽1 and 𝛽2. Suppose 𝑥1𝑖 and 𝑥2𝑖 are the 𝑖𝑡ℎ failure time due to cause 

1 and cause 2 respectively. The general form of likelihood function for the two – component 

mixture distribution under progressive Type – II censoring is given by: 

𝐿(𝛽1, 𝛽2, 𝑝|𝑥) ∝  ∏ 𝑝. 𝑓1(𝑥1𝑖)
𝑚1
𝑖=1  ∏ (1 − 𝑝) 𝑓2 (𝑥2𝑖)

𝑚2
𝑖=1   

                           ∏  [1 − 𝑝𝑥𝑖
𝛽1  − (1 − 𝑝)𝑥𝑖

𝛽2]
𝑅𝑖𝑚

𝑖=1                                              (4) 

3. Maximum Likelihood Estimation (MLE) 
 

Using Eq. (2) and (4), the likelihood function under progressive Type – II censoring for 

mixture model is obtained as, 

 

𝐿 ∝  𝑝𝑚1𝛽1
𝑚1 ∏

(𝑥1𝑖)
𝛽1−1

(1+𝑥1𝑖
𝛽1)

2
𝑚1
𝑖=1 (1 − 𝑝)𝑚2𝛽2

𝑚2 ∏
(𝑥2𝑖)

𝛽2−1

(1+𝑥2𝑖
𝛽2)2

𝑚2
𝑖=1 ×   
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         ∏  [1 − 𝑝
𝑥𝑖

𝛽1

1+𝑥𝑖
𝛽1

 − (1 − 𝑝)
𝑥𝑖

𝛽2

1+𝑥𝑖
𝛽2

]
𝑅𝑖

𝑚
𝑖=1                                                (5) 

 

log 𝐿 ∝ 𝑚1𝑙𝑜𝑔𝑝 + 𝑚1𝑙𝑜𝑔𝛽1 + (𝛽1 − 1)∑ 𝑙𝑜𝑔𝑥1𝑖 − 2∑ log(1 + 𝑥1𝑖
𝛽1)

𝑚1
𝑖=1 +

𝑚1
𝑖=1

               𝑚2log (1 − 𝑝) + 𝑚2𝑙𝑜𝑔𝛽2 + (𝛽2 − 1)∑ 𝑙𝑜𝑔𝑥2𝑖 
𝑚2
𝑖=1 − 2∑ log(1 + 𝑥2𝑖

𝛽2)
𝑚1
𝑖=1  +

               ∑ 𝑅𝑖 log [1 − 𝑝
𝑥𝑖

𝛽1

1+𝑥𝑖
𝛽1

 − (1 − 𝑝)
𝑥𝑖

𝛽2

1+𝑥𝑖
𝛽2

] 𝑚
𝑖=1                              (6) 

 

The first derivatives of equation Eq. (6) with respect to 𝛽1, 𝛽2 and 𝑝 are 

 

𝜕𝑙𝑜𝑔𝐿

𝜕𝛽1
= 

𝑚1

𝛽1
+ ∑ 𝑙𝑜𝑔𝑥1𝑖

𝑚1
𝑖=1 − 2∑

𝑥1𝑖
𝛽1 log𝑥1𝑖

1+𝑥1𝑖
𝛽1

 
𝑚1
𝑖=1   

            + ∑ 𝑅𝑖
𝑚
𝑖=1  

1

[1−𝑝
𝑥𝑖

𝛽1

1+𝑥𝑖
𝛽1

 −(1−𝑝)
𝑥𝑖

𝛽2

1+𝑥𝑖
𝛽2

]

 (−𝑝
𝑥𝑖

𝛽1  𝑙𝑜𝑔𝑥𝑖

(1+𝑥𝑖
𝛽1)2

)                           (7)  

𝜕𝑙𝑜𝑔𝐿

𝜕𝛽2
= 

𝑚2

𝛽2
+ ∑ 𝑙𝑜𝑔𝑥2𝑖

𝑚2
𝑖=1 − 2∑

𝑥2𝑖
𝛽2 log𝑥2𝑖

1+𝑥2𝑖
𝛽2

 
𝑚2
𝑖=1   

 + ∑ 𝑅𝑖
𝑚
𝑖=1   

1

[1−𝑝
𝑥𝑖

𝛽1

1+𝑥𝑖
𝛽1

 −(1−𝑝)
𝑥𝑖

𝛽2

1+𝑥𝑖
𝛽2

]

(−(1 − 𝑝)
𝑥𝑖

𝛽2  𝑙𝑜𝑔𝑥𝑖

(1+𝑥𝑖
𝛽2)2

)       (8) 

𝜕𝑙𝑜𝑔𝐿

𝜕𝑝
= 

𝑚1

𝑝
− 

𝑚2

(1−𝑝)
− ∑ 𝑅𝑖

𝑚
𝑖=1 ( 

1

[1−𝑝
𝑥𝑖

𝛽1

1+𝑥𝑖
𝛽1

 −(1−𝑝)
𝑥𝑖

𝛽2

1+𝑥𝑖
𝛽2

]

+
𝑥𝑖

𝛽1  

(1+𝑥𝑖
𝛽1)

− 
𝑥𝑖

𝛽2  

(1+𝑥𝑖
𝛽2)

 )    (9) 

On equating the Eq. (7), (8) and (9) with respect to 0, we get the likelihood equations for 𝛽1, 

𝛽2 and 𝑝 as 

𝛽1 =
𝑚1

− ∑ 𝑙𝑜𝑔𝑥1𝑖
𝑚1
𝑖=1

+2∑
𝑥1𝑖

𝛽1 log𝑥1𝑖

1+𝑥1𝑖
𝛽1

 
𝑚1
𝑖=1

 − ∑ 𝑅𝑖
𝑚
𝑖=1  

1

[1−𝑝
𝑥𝑖

𝛽1

1+𝑥𝑖
𝛽1

 −(1−𝑝)
𝑥𝑖

𝛽2

1+𝑥𝑖
𝛽2

]

 (−𝑝
𝑥𝑖

𝛽1 𝑙𝑜𝑔𝑥𝑖

(1+𝑥𝑖
𝛽1)2

)

 

             (10) 

 

𝛽2 =
𝑚2

−  ∑ 𝑙𝑜𝑔𝑥2𝑖
𝑚2
𝑖=1

+2∑
𝑥2𝑖

𝛽2 log𝑥2𝑖

1+𝑥2𝑖
𝛽2

 
𝑚2
𝑖=1

 
 − ∑ 𝑅𝑖

𝑚
𝑖=1   

1

[1−𝑝
𝑥𝑖

𝛽1

1+𝑥𝑖
𝛽1

 −(1−𝑝)
𝑥𝑖

𝛽2

1+𝑥𝑖
𝛽2

]

 (−(1−𝑝)
𝑥𝑖

𝛽2 𝑙𝑜𝑔𝑥𝑖

(1+𝑥𝑖
𝛽2)2

)

             (11) 

 

𝑝 =  

𝑚1−(𝑝 − 𝑝2)+∑ 𝑅𝑖
𝑚
𝑖=1 (

  
1

[1−𝑝
𝑥𝑖

𝛽1

1+𝑥𝑖
𝛽1

 −(1−𝑝)
𝑥𝑖

𝛽2

1+𝑥𝑖
𝛽2

] +
𝑥𝑖

𝛽1 

(1+𝑥𝑖
𝛽1)

− 
𝑥𝑖

𝛽2 

(1+𝑥𝑖
𝛽2)

  

) 

𝑚
               (12) 

 

which can be solved by any method of iteration and we get the MLEs 𝛽1̂, 𝛽2̂ and �̂�. 

 

To obtain Variance-Covariance matrix of ML estimators, we find second derivatives of 𝑙𝑜𝑔𝐿 

with respect to the parameters 𝛽1, 𝛽2 and 𝑝 as 

 

 
𝜕2𝑙𝑜𝑔𝐿

𝜕𝛽1
2 = 

−𝑚1

𝛽1
2 − 2∑ log 𝑥1𝑖  [

(1+𝑥1𝑖
𝛽1)𝑥1𝑖

𝛽1 log𝑥1𝑖− 𝑥1𝑖
𝛽1𝑥1𝑖

𝛽1 log𝑥1𝑖

(1+𝑥1𝑖
𝛽1)

2 ]
𝑚1
𝑖=1 − 
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                𝑝 ∑ 𝑅𝑖 log 𝑥𝑖
𝑚
𝑖=1 [(1 − 𝑝

𝑥𝑖
𝛽1

1+𝑥𝑖
𝛽1

 − (1 − 𝑝)
𝑥𝑖

𝛽2

1+𝑥𝑖
𝛽2

) (1 + 𝑥𝑖
𝛽1)

2
𝑥𝑖

𝛽1  𝑙𝑜𝑔𝑥𝑖 − 

 

                𝑥𝑖
𝛽1  {

2(1 + 𝑥𝑖
𝛽1)𝑥𝑖

𝛽1  𝑙𝑜𝑔𝑥𝑖 − 𝑝(𝑥𝑖
𝛽1  𝑙𝑜𝑔𝑥𝑖 + 𝑥𝑖

2𝛽12 𝑙𝑜𝑔𝑥𝑖) −

(1 − 𝑝)
𝑥𝑖

𝛽2

1+𝑥𝑖
𝛽2

 𝑥𝑖
𝛽1  𝑙𝑜𝑔𝑥𝑖  2(1 + 𝑥𝑖

𝛽1) 
} ×  

 

                 (1 − 𝑝
𝑥𝑖

𝛽1

1+𝑥𝑖
𝛽1

 − (1 − 𝑝)
𝑥𝑖

𝛽2

1+𝑥𝑖
𝛽2

)−2(1 + 𝑥𝑖
𝛽1)

−4
]                                                (13)         

     
 

𝜕2𝑙𝑜𝑔𝐿

𝜕𝛽2
2 = 

−𝑚2

𝛽2
2 − 2∑ log 𝑥2𝑖  [

(1+𝑥2𝑖
𝛽2)𝑥2𝑖

𝛽2 log𝑥2𝑖− 𝑥2𝑖
𝛽2𝑥2𝑖

𝛽2 log𝑥2𝑖

(1+𝑥2𝑖
𝛽2)

2 ] −
𝑚2
𝑖=1      

             (1 − 𝑝)∑ 𝑅𝑖 log 𝑥𝑖
𝑚
𝑖=1  [(1 − 𝑝

𝑥𝑖
𝛽1

1+𝑥𝑖
𝛽1

 − (1 − 𝑝)
𝑥𝑖

𝛽2

1+𝑥𝑖
𝛽2

) (1 + 𝑥𝑖
𝛽2)

2
𝑥𝑖

𝛽2 𝑙𝑜𝑔𝑥𝑖  – 

                                        

                 𝑥𝑖
𝛽2  {

2(1 + 𝑥𝑖
𝛽2)𝑥𝑖

𝛽2 𝑙𝑜𝑔𝑥𝑖 − (1 − 𝑝)(𝑥𝑖
𝛽2  𝑙𝑜𝑔𝑥𝑖 + 𝑥𝑖

2𝛽22 𝑙𝑜𝑔𝑥𝑖) −

(1 − 𝑝) (
𝑥𝑖

𝛽1

1+𝑥𝑖
𝛽1

 𝑥𝑖
𝛽2  𝑙𝑜𝑔𝑥𝑖  2(1 + 𝑥𝑖

𝛽2))
} ×              

                (1 − 𝑝 𝑥𝑖
𝛽1

1+𝑥𝑖
𝛽1

 − (1 − 𝑝)
𝑥𝑖

𝛽2

1+𝑥𝑖
𝛽2

)

−2

(1 + 𝑥𝑖
𝛽1)

−4
]                                                                   (14) 

 

𝜕2𝑙𝑜𝑔𝐿

𝜕𝛽1𝜕𝛽2
 =  −𝑝 (1 − 𝑝) ∑ [

𝑅𝑖 𝑥𝑖
𝛽1  𝑥𝑖

𝛽2  (log𝑥𝑖)
2

(1+𝑥𝑖
𝛽1)

2
 (1+𝑥𝑖

𝛽2)
2
 (1−𝑝

𝑥𝑖
𝛽1

1+𝑥𝑖
𝛽1

 −(1−𝑝)
𝑥𝑖

𝛽2

1+𝑥𝑖
𝛽2

)

2]
𝑚
𝑖=1               (15) 

 

𝜕2𝑙𝑜𝑔𝐿

𝜕𝛽1𝜕𝑝
= ∑

𝑅𝑖 

(1−𝑝
𝑥𝑖

𝛽1

1+𝑥𝑖
𝛽1

 −(1−𝑝)
𝑥𝑖

𝛽2

1+𝑥𝑖
𝛽2

)

2
𝑚
𝑖=1 −

𝑥𝑖
𝛽1

1+𝑥𝑖
𝛽1

+ 
𝑥𝑖

𝛽2

1+𝑥𝑖
𝛽2

− 
𝑥𝑖

𝛽1 log𝑥𝑖

(1+𝑥𝑖
𝛽1)

2              (16) 

 

𝜕2𝑙𝑜𝑔𝐿

𝜕𝛽2𝜕𝑝
= ∑

𝑅𝑖 

(1−𝑝
𝑥𝑖

𝛽1

1+𝑥𝑖
𝛽1

 −(1−𝑝)
𝑥𝑖

𝛽2

1+𝑥𝑖
𝛽2

)

2
𝑚
𝑖=1 −

𝑥𝑖
𝛽1

1+𝑥𝑖
𝛽1

+ 
𝑥𝑖

𝛽2

1+𝑥𝑖
𝛽2

− 
𝑥𝑖

𝛽2 log𝑥𝑖

(1+𝑥𝑖
𝛽2)

2                 (17) 

𝜕2𝑙𝑜𝑔𝐿

𝜕𝑝2 = − 
𝑚1

𝑝2  −  
𝑚2

(1−𝑝)2
∑

𝑅𝑖 

(1−𝑝
𝑥𝑖

𝛽1

1+𝑥𝑖
𝛽1

 −(1−𝑝)
𝑥𝑖

𝛽2

1+𝑥𝑖
𝛽2

)

2
𝑚
𝑖=1 −

𝑥𝑖
𝛽1

1+𝑥𝑖
𝛽1

+ 
𝑥𝑖

𝛽2

1+𝑥𝑖
𝛽2

              (18) 

The Variance – Covariance matrix of MLEs of the parameters is given by, 

𝑉 =  

[
 
 
 
 
 −𝐸 [

𝜕2𝑙𝑜𝑔𝐿

𝜕𝛽1
2  ] −𝐸 [

𝜕2𝑙𝑜𝑔𝐿

𝜕𝛽2𝜕𝛽1
] −𝐸 [

𝜕2𝑙𝑜𝑔𝐿

𝜕𝑝𝜕𝛽1
]

−𝐸 [
𝜕2𝑙𝑜𝑔𝐿

𝜕𝛽2𝜕𝛽1
] −𝐸 [

𝜕2𝑙𝑜𝑔𝐿

𝜕𝛽2
2 ] −𝐸 [

𝜕2𝑙𝑜𝑔𝐿

𝜕𝑝𝜕𝛽2
]

−𝐸 [
𝜕2𝑙𝑜𝑔𝐿

𝜕𝑝𝜕𝛽1
] −𝐸 [

𝜕2𝑙𝑜𝑔𝐿

𝜕𝑝𝜕𝛽2
] −𝐸 [

𝜕2𝑙𝑜𝑔𝐿

𝜕𝑝2 ]]
 
 
 
 
 
−1
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According to Lawless (2003) the estimate of variance covariance matrix is given as  

�̂� =  

[
 
 
 
 
 −

𝜕2𝑙𝑜𝑔𝐿

𝜕𝛽1
2 −

𝜕2𝑙𝑜𝑔𝐿

𝜕𝛽2𝜕𝛽1
−

𝜕2𝑙𝑜𝑔𝐿

𝜕𝑝𝜕𝛽1

−
𝜕2𝑙𝑜𝑔𝐿

𝜕𝛽2𝜕𝛽1
−

𝜕2𝑙𝑜𝑔𝐿

𝜕𝛽2
2 −

𝜕2𝑙𝑜𝑔𝐿

𝜕𝑝𝜕𝛽2

−
𝜕2𝑙𝑜𝑔𝐿

𝜕𝑝𝜕𝛽1
−

𝜕2𝑙𝑜𝑔𝐿

𝜕𝑝𝜕𝛽2
−

𝜕2𝑙𝑜𝑔𝐿

𝜕𝑝2 ]
 
 
 
 
 
−1

(𝛽1,𝛽2,𝑝)=(�̂�1,�̂�2,𝑝)

                (19) 

The variances of 𝛽1̂, 𝛽2̂ and �̂� are given by diagonal elements of the matrix 𝑉. 

The mean squared error is calculated for each of the above parameter using the below equation 

Mean squared error (𝜃) = Variance (𝜃)  + (𝜃  −  𝜃)2 ,    𝜃 = (𝛽1, 𝛽2, 𝑝)             (20) 

4. Bayes Estimation 
 

The Bayesian approach considers prior information along with the information available 

from the data to form a posterior distribution which is used for Bayesian inference. 

Comparatively less sample data is required in Bayesian method than in classical sampling 

theory, which makes it more preferable in life testing and reliability estimation where sample 

data is costly and hard to obtain. 
 

Under Bayesian estimation, a joint distribution function 𝜙(𝜃, 𝑥) is obtained using the 

likelihood function and the specified prior distribution of the unknown parameters. A marginal 

distribution 𝑚(𝑥) is derived on integrating the joint distribution function over the range of its 

parameters. The joint posterior distribution 𝑔(𝜃|𝑥) is obtained by taking a ratio of joint 

distribution of 𝛽1, 𝛽2, 𝑝 and 𝑥 and marginal distribution 𝑚(𝑥). The marginal posterior 

distribution is derived by integrating joint posterior distribution over the range of its 

parameters. In this section, Bayes estimates of the parameters are obtained using the marginal 

posterior distributions of the parameters and their corresponding mean squared errors and 

posterior risks are also obtained. 

 

Consider the gamma priors for the parameter 𝛽1 and 𝛽2, and uniform prior for the parameter 𝑝. 
 

Π1(𝛽1) =  
𝑎1

𝑏1  𝛽1
𝑏1−1 𝑒−𝑎1𝛽1

Γ𝑏1
 , 𝛽1 > 0; 𝑎1, 𝑏1 > 0                  (21) 

 

Π2(𝛽2) =  
𝑎2

𝑏2  𝛽2
𝑏2−1 𝑒−𝑎2𝛽2

Γ𝑏2
 , 𝛽2 > 0; 𝑎2, 𝑏2 > 0                 (22) 

 

Π3(𝑝) = 1,   0 < 𝑝 < 1                    (23) 

Using the likelihood function in Eq. (5) and prior distributions in Eq. (21), (22) and (23), the 

joint distribution of parameters and sample becomes 
 

𝜙(𝛽1, 𝛽2, 𝑝, 𝑥)  ∝  𝐿 Π1 (𝛽1) Π2 (𝛽2) Π3 (𝑝)                  (24) 

 

𝜙(𝛽1, 𝛽2, 𝑝, 𝑥) ∝   𝑝𝑚1𝛽1
𝑚1 ∏

(𝑥1𝑖)
𝛽1−1

(1 + 𝑥1𝑖
𝛽1)2

𝑚1

𝑖=1

 (1 − 𝑝)𝑚2𝛽2
𝑚2 ∏

(𝑥2𝑖)
𝛽2−1

(1 + 𝑥2𝑖
𝛽2)2

𝑚2

𝑖=1
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∏ [1 − 𝑝
𝑥𝑖

𝛽1

1+𝑥𝑖
𝛽1

 − (1 − 𝑝)
𝑥𝑖

𝛽2

1+𝑥𝑖
𝛽2

]
𝑅𝑖

𝑚
𝑖=1  

𝑎1
𝑏1  𝛽1

𝑏1−1 𝑒−𝑎1𝛽1

Γ𝑏1
  

𝑎2
𝑏2  𝛽2

𝑏2−1 𝑒−𝑎2𝛽2

Γ𝑏2
             (25) 

 

The joint posterior distribution of 𝛽1, 𝛽2 and 𝑝 can be obtained as 

 

𝑔(𝛽1, 𝛽2, 𝑝|𝑥) =  
𝜙(𝛽1,𝛽2,𝑝,𝑥)

𝑚(𝑥)
                    (26) 

 

where 𝑚(𝑥) is the marginal distribution of 𝑥 that can be derived from the joint distribution as 

 

𝑚(𝑥) =  ∫ ∫ ∫ 𝜙(𝛽1, 𝛽2, 𝑝|𝑥) 𝑑𝑝 𝑑𝛽2 𝑑𝛽1𝑝𝛽2𝛽1
                 (27) 

 

Using the equations Eq. (25) and (27) the joint posterior distribution can be written as 

 

𝑔(𝛽1, 𝛽2, 𝑝|𝑥) ∝ 𝑝𝑚1(1 − 𝑝)𝑚2𝛽1
𝑚1+𝑏1−1𝑒−𝛽1 (𝑎1− ∑ 𝑙𝑜𝑔𝑥1𝑖

𝑚1
𝑖=1

)𝛽2
𝑚2+𝑏2−1

  

                           𝑒−𝛽2 (𝑎2− ∑ 𝑙𝑜𝑔𝑥2𝑖
𝑚2
𝑖=1 ) 𝑒

∑ 𝑅𝑖 log[1−𝑝
𝑥𝑖

𝛽1

1+𝑥𝑖
𝛽1

 −(1−𝑝)
𝑥𝑖

𝛽2

1+𝑥𝑖
𝛽2

]𝑚
𝑖=1

 𝑒−2∑ log(1+𝑥1𝑖
𝛽1)

𝑚1
𝑖=1   

                           𝑒−2∑ log(1+𝑥2𝑖
𝛽2)

𝑚2
𝑖=1 𝑒−∑ 𝑙𝑜𝑔(𝑥1𝑖)

𝑚1
𝑖=1 𝑒−∑ 𝑙𝑜𝑔(𝑥2𝑖)

𝑚2
𝑖=1  

𝑎1
𝑏1

Γ𝑏1
 
𝑎2

𝑏2

Γ𝑏2
               (28) 

 

The marginal posterior distribution of 𝛽1, 𝛽2 and 𝑝 can be determined by integrating with 

respect to the other parameters. The marginal posterior distribution of prior 𝛽1 is given by 

 

ℎ1(𝛽1|𝑥) =  ∫ ∫ 𝑝𝑚1  (1 − 𝑝)𝑚2  𝛽1
𝑚1+𝑏1−1 𝑒−𝛽1 (𝑎1− ∑ 𝑙𝑜𝑔𝑥1𝑖

𝑚1
𝑖=1 ) 𝛽2

𝑚2+𝑏2−1 
𝑝𝛽2

  

 𝑒−𝛽2 (𝑎2− ∑ 𝑙𝑜𝑔𝑥2𝑖
𝑚2
𝑖=1 )  𝑒

∑ 𝑅𝑖 log[1−𝑝
𝑥𝑖

𝛽1

1+𝑥𝑖
𝛽1

 −(1−𝑝)
𝑥𝑖

𝛽2

1+𝑥𝑖
𝛽2

]𝑚
𝑖=1

 𝑒−2∑ log(1+𝑥1𝑖
𝛽1)

𝑚1
𝑖=1   

𝑒−2∑ log(1+𝑥2𝑖
𝛽2)

𝑚2
𝑖=1 𝑒−∑ 𝑙𝑜𝑔(𝑥1𝑖)

𝑚1
𝑖=1 𝑒−∑ 𝑙𝑜𝑔(𝑥2𝑖)

𝑚2
𝑖=1  

𝑎1
𝑏1

Γ𝑏1
 
𝑎2

𝑏2

Γ𝑏2
  𝑑𝑝 𝑑𝛽2               (29) 

Similarly the marginal posterior distribution of prior 𝛽2 and 𝑝 are given by 

ℎ2(𝛽2|𝑥) =  ∫ ∫ 𝑝𝑚1  (1 − 𝑝)𝑚2  𝛽1
𝑚1+𝑏1−1 𝑒−𝛽1 (𝑎1− ∑ 𝑙𝑜𝑔𝑥1𝑖

𝑚1
𝑖=1 ) 𝛽2

𝑚2+𝑏2−1 𝑝𝛽1
  

  𝑒−𝛽2 (𝑎2− ∑ 𝑙𝑜𝑔𝑥2𝑖
𝑚2
𝑖=1

) 𝑒
∑ 𝑅𝑖 log[1−𝑝

𝑥𝑖
𝛽1

1+𝑥𝑖
𝛽1

 −(1−𝑝)
𝑥𝑖

𝛽2

1+𝑥𝑖
𝛽2

]𝑚
𝑖=1

 𝑒−2∑ log(1+𝑥1𝑖
𝛽1)

𝑚1
𝑖=1   

𝑒−2∑ log(1+𝑥2𝑖
𝛽2)

𝑚2
𝑖=1  𝑒−∑ 𝑙𝑜𝑔(𝑥1𝑖)

𝑚1
𝑖=1 𝑒−∑ 𝑙𝑜𝑔(𝑥2𝑖)

𝑚2
𝑖=1  

𝑎1
𝑏1

Γ𝑏1
 
𝑎2

𝑏2

Γ𝑏2
 𝑑𝑝 𝑑𝛽1              (30) 

 

ℎ3(𝑝|𝑥) =  ∫ ∫ 𝑝𝑚1  (1 − 𝑝)𝑚2  𝛽1
𝑚1+𝑏1−1 𝑒−𝛽1 (𝑎1− ∑ 𝑙𝑜𝑔𝑥1𝑖

𝑚1
𝑖=1

) 𝛽2
𝑚2+𝑏2−1  

𝛽2𝛽1
  

𝑒−𝛽2 (𝑎2− ∑ 𝑙𝑜𝑔𝑥2𝑖
𝑚2
𝑖=1 )  𝑒

∑ 𝑅𝑖 log[1−𝑝
𝑥𝑖

𝛽1

1+𝑥𝑖
𝛽1

 −(1−𝑝)
𝑥𝑖

𝛽2

1+𝑥𝑖
𝛽2

]𝑚
𝑖=1

 𝑒−2∑ log(1+𝑥1𝑖
𝛽1)

𝑚1
𝑖=1    

 𝑒−2∑ log(1+𝑥2𝑖
𝛽2)

𝑚2
𝑖=1  𝑒−∑ 𝑙𝑜𝑔(𝑥1𝑖)

𝑚1
𝑖=1 𝑒−∑ 𝑙𝑜𝑔(𝑥2𝑖)

𝑚2
𝑖=1  

𝑎1
𝑏1

Γ𝑏1
 
𝑎2

𝑏2

Γ𝑏2
 𝑑𝛽2 𝑑𝛽1              (31) 
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It is not possible to obtain the above mentioned marginal posterior distributions in closed 

form, which makes it difficult to obtain Bayes estimators directly using marginal posterior 

distributions. In literature, there are various methods like numerical integration method, 

Lindley approximation, importance sampling, MCMC technique etc. that are useful in such 

cases. We have used here the importance sampling method used by Kundu and Pradhan (2009) 

to obtain Bayes estimates of the parameters in any kind of loss functions such as SELF, KLF, 

PLF etc. This method is discussed in many other articles also, some of them are Sultana et al. 

(2020), Madi and Raqab (2009) and Sultana et al. (2018). 

Based on theory of Bayes estimation a loss function gauges the difference between the 

estimate 𝜃 and the parameter 𝜃 and there is no particular procedures to select any loss functions. 

A posterior risk is the expected value of loss function and the posterior risks associated with 

the estimators are compared to evaluate the performances of the Bayes estimators. The loss 

functions used in this paper are described below: 

Squared Error loss function (SELF): The Squared error loss function is given by 𝑙(𝜃, 𝜃) =

(𝜃 − 𝜃)2. 

The Bayes estimate and the posterior risk are defined as 

𝜃 =  𝐸(𝜃|𝑥)                      (32) 

and 

𝜌(𝜃) = 𝐸(𝜃 − 𝜃)2                     (33) 

K – loss function (KLF): The K – loss function was proposed by Wasan (1970), is defined as 

 𝑙(𝜃, 𝜃) = (𝜃 − 𝜃)2/ 𝜃𝜃. 

The Bayes estimate and the posterior risk are defined as 

𝜃 =  √𝐸(𝜃|𝑥)/𝐸(𝜃−1|𝑥)                    (34) 

and 

𝜌(𝜃) = 2 {𝐸(𝜃|𝑥)𝐸(𝜃−1|𝑥) − 1}                   (35) 

respectively. 

Precautionary loss function (PLF): The Precautionary loss function was proposed by 

Norstrom (1996), is defined as 𝑙 (𝜃, 𝜃) = (𝜃 − 𝜃)2 / 𝜃.  

The Bayes estimate and the posterior risk are defined as 

𝜃 = {𝐸(𝜃2|𝑥)}
1

2                     (36) 

and  

𝜌(𝜃) = 2[{𝐸(𝜃2|𝑥)}
1

2  − 𝐸(𝜃|𝑥)]                   (37) 

respectively. 

To employ importance sampling method for Bayes estimation we rewrite the joint posterior 

distribution given in Eq. (28) as  

𝑔(𝛽1, 𝛽2, 𝑝|𝑥)  ∝  𝑝𝑚1  (1 − 𝑝)𝑚2  𝛽1
𝑚1+𝑏1−1 𝑒−𝛽1𝐴1  𝛽2

𝑚2+𝑏2−1 𝑒−𝛽2𝐴2   

𝑒−2∑ log(1+𝑥1𝑖
𝛽1)

𝑚1
𝑖=1   𝑒−2∑ log(1+𝑥2𝑖

𝛽2)
𝑚2
𝑖=1  𝑒

∑ 𝑅𝑖 log[1−𝑝
𝑥𝑖

𝛽1

1+𝑥𝑖
𝛽1

 −(1−𝑝)
𝑥𝑖

𝛽2

1+𝑥𝑖
𝛽2

]𝑚
𝑖=1
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 𝑒−∑ 𝑙𝑜𝑔(𝑥1𝑖)
𝑚1
𝑖=1 𝑒−∑ 𝑙𝑜𝑔(𝑥2𝑖)

𝑚2
𝑖=1  

𝑎1
𝑏1

Γ𝑏1
 
𝑎2

𝑏2

Γ𝑏2
                  (38) 

where 𝐴1 = 𝑎1 − ∑ log 𝑥1𝑖
𝑚1
𝑖=1      and     𝐴2 = 𝑎2 − ∑ log 𝑥2𝑖

𝑚2
𝑖=1   

The above form can also be written as  

𝑔(𝛽1, 𝛽2, 𝑝|𝑥)  ∝ 𝑔1( 𝑝 | 𝑚1, 𝑚2) 𝑔2( 𝛽1 | 𝑥,𝑚1) 𝑔3( 𝛽2 | 𝑥,𝑚2) Ψ(𝑝, 𝛽1, 𝛽2 | 𝑥,𝑚)            (39) 

where 

𝑔1( 𝑝 | 𝑚1, 𝑚2) is the probability density function of 𝑏𝑒𝑡𝑎 (𝑚1 + 1,𝑚2 + 1) distribution 

𝑔2( 𝛽1 | 𝑥,𝑚1) is the probability density function of 𝑔𝑎𝑚𝑚𝑎 (𝑚1 + 𝑏1, 𝐴1) distribution 

𝑔3( 𝛽2 | 𝑥,𝑚2) is the probability density function of 𝑔𝑎𝑚𝑚𝑎 (𝑚2 + 𝑏2, 𝐴2) distribution 

Ψ(𝑝, 𝛽1, 𝛽2 | 𝑥,𝑚) =

 𝑒−2∑ log(1+𝑥1𝑖
𝛽1)

𝑚1
𝑖=1   𝑒−2∑ log(1+𝑥2𝑖

𝛽2)
𝑚2
𝑖=1  𝑒

∑ 𝑅𝑖 log[1−𝑝
𝑥𝑖

𝛽1

1+𝑥𝑖
𝛽1

 −(1−𝑝)
𝑥𝑖

𝛽2

1+𝑥𝑖
𝛽2

]𝑚
𝑖=1

, a function of 

𝛽1, 𝛽2, 𝑝 and 𝑥. 

The hyper parameters used in the prior distributions are determined as follows: 

 Find means & variances of the MLEs of parameters 𝛽1, 𝛽2 and 𝑝 and considered them 

as prior information of the parameters. 

 These estimates are compared with theoretical mean & variance of the prior 

distribution. 

 Solving them we obtain estimates of the hyper parameters. 

Algorithm-1 

The steps of importance sampling to obtain Bayes estimates are as follows:  

Step - 1: Decide the values of 𝛽1, 𝛽2, 𝑝 and 𝑅1, 𝑅2, …𝑅𝑚 such that ∑ 𝑅𝑖 = (𝑛 − 𝑚)𝑚
𝑖=1 . 

Step - 2: Generate  

               𝑥1𝑖 ; 𝑖 = 1, 2, ……… ,𝑚1    and    𝑥2𝑖; 𝑖 = 1, 2, ……… ,𝑚2 

Step - 3: Generate  

𝑁 values of 𝑝 from 𝑏𝑒𝑡𝑎 (𝑚1 + 1,𝑚2 + 1) as (𝑝1, 𝑝2, … , 𝑝𝑁) 

𝑁 values of 𝛽1 from 𝑔𝑎𝑚𝑚𝑎 (𝑚1 + 𝑏1, 𝐴1) as (𝛽11, 𝛽12, … , 𝛽1𝑁) 

𝑁 values of 𝛽2 from 𝑔𝑎𝑚𝑚𝑎 (𝑚2 + 𝑏2, 𝐴2) as (𝛽21, 𝛽22, … , 𝛽2𝑁) 

Step - 4: Calculate the 𝐸(𝜃|𝑥) using the formula:  

      𝐸(𝜃|𝑥) =  
∑ 𝜃𝑖.Ψ(𝜃𝑖|𝑥,𝑚)𝑁

𝑖=1

∑ Ψ(𝜃𝑖|𝑥,𝑚)𝑁
𝑖=1

                                                                                                (40) 

Step - 5: Calculate 𝐸(𝑝|𝑥), 𝐸(𝑝2|𝑥), 𝐸 (
1

𝑝
|𝑥), 𝐸(𝛽1|𝑥), 𝐸(𝛽1

2|𝑥), 𝐸 (
1

𝛽1
|𝑥),         

             𝐸(𝛽2|𝑥), 𝐸(𝛽2
2|𝑥), 𝐸 (

1

𝛽2
|𝑥) using the Eq. (40) to calculate the estimate, PR, and  

             MSE using the squared error loss function, K – loss function and precautionary loss   

             function. 
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5. Simulation Study 
 

A simulation study is setup to check the performance of ML estimators and Bayes 

estimators obtained in the earlier sections. We have used the following inputs. 

 

To simulate samples from 2 component mixture of log logistic distributions, we have used the 

following algorithm with the inputs: 𝑆=5000 which is number of simulations,  𝑛 = 60 and 𝑚 = 

15 (25% censored) with censoring scheme 𝑅 = (0, 5, 2, 8, 0, 2, 5, 3, 0, 6, 4, 9, 1, 0, 0); 𝑚 = 25 

(42% censored) with censoring scheme 𝑅 = (0, 2, 5, 3, 2, 3, 0, 0, 0, 1, 4, 1, 1, 1, 2, 0, 0, 5, 2, 0, 

1, 0, 0, 2, 0) and 𝑚 = 35 (58% censored) with censoring scheme 𝑅 = (0, 0, 2, 0, 1, 0, 0, 3, 0, 1, 

1, 1, 1, 1, 2, 0, 0, 2, 2, 0, 1, 0, 0, 2, 0, 0, 2, 0, 0, 1, 0, 0, 0, 2, 0). The values of the prior parameters 

are considered as 𝛽1= (0.9, 1.9), 𝛽2 = (2.0, 3.5) and 𝑝 = (0.7, 0.35) based on the method 

described before the algorithm-1. A Type – II censored sample is also generated using the 

above mentioned inputs to observe a comparison between performances of estimators using 

the progressive Type – II censoring and Type – II censoring. 

To generate the progressive Type – II censored sample for the mixture model we use the 

following algorithm. 
 

 

Algorithm-2 

Step - 1: A uniform random number (𝑢) is generated from 𝑈(0, 1) and if 𝑢 ≤ 𝑝 (mixture 

proportion parameter) then select first sub-population 𝑓1(𝑥) having parameter 𝛽1, otherwise 

second sub-population 𝑓2(𝑥) having parameter 𝛽2.  

Step - 2: To generate say 𝑟 observations from first or second sub-population (𝑟 = 𝑚1 𝑜𝑟 𝑚2), 

generate 𝑟 uniform random numbers 𝑢1, 𝑢2, … , 𝑢𝑟  ∼ 𝑈(0, 1) 

Step - 3: Set 𝜉𝑖 = ln(1 − 𝑢𝑖) ; 𝑖 = 1,… , 𝑟   

Step - 4: Let 𝑦1 = 
𝜉1

𝑟
 and  𝑦𝑖 = 𝑦𝑖−1 + 

𝜉𝑖

𝑛−∑ 𝑅𝑗−𝑖+1𝑖−1
𝑗=1

; 𝑖 = 2, 3, … , 𝑟 with ∑ 𝑅𝑖 = 𝑛 − 𝑟𝑟
𝑖=1  

Step - 5:  𝑥𝑖 = (1 − 𝑒−𝑦𝑖)
1

𝛽; 𝑖 = 1, 2, … , 𝑟 where 𝛽 = 𝛽1 or 𝛽2. 

Step - 6: Calculate ML estimates and Bayes estimates of parameters 𝑝, 𝛽1 and 𝛽2 using the 

respective formulas from section. 

Step - 7: Repeat the steps 1 - 5 for 𝑆 times, thus we have 𝛽1�̂�, 𝛽2�̂� and 𝑝�̂�, 𝑖 = 1,2, … , 𝑆. 

Step - 8: Calculate Bayes estimates of 𝛽1, 𝛽2, and 𝑝 by taking average of the S values in step 

7. 

Step - 9: Calculate Root Mean Square Error and PR, using the formula, 

𝑀𝑆𝐸 =
∑ (𝜃�̂� − 𝜃)2𝑆

𝑖=1

𝑆
 

The outputs obtained from the simulations are presented in Table A.1 to Table A.6. 

6. Discussion of Numerical Results 

From Table A.1 to Table A.6 we observe the following conclusions: 

i. The Bayes estimates are better compared to ML estimates based on MSE for both the 

censoring schemes that are considered. 

ii. For the considered values of the parameters 𝛽1, 𝛽2 and 𝑝 as 𝑚 increases, the MSE of 

the estimates decreases for both the censoring schemes for MLEs as well as Bayes 

estimators. 
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iii. The Bayes estimator under the K-loss function performs better with respect to MSE 

compared to squared error loss function for all the values of 𝛽1 and 𝛽2 under both types 

of censoring schemes adopted. 

iv. As the values of the parameters 𝛽1 and 𝛽2 increases, the MSE also increases, for 

Progressive Type - II censoring scheme. 

v. ML estimates and Bayes estimates give almost similar amount of bias. 
 

7. Real Life Example 

In this section the analysis of real-life dataset of failure of electrical cables is performed 

which is presented by Lawless (2003). The test involved 20 cables each with two types of 

insulations which are considered as Population – I and Population – II respectively. The 

purpose is to determine whether the estimators have the similar behavior for real life data as it 

was for simulated data. 

The Kolmogorov-Smirnov test is performed to determine whether the data follows log 

logistic distribution. The calculated value of KS test statistic is 0.1868 for Population – I and 

0.0715 for Population – II. The degrees of freedom for Population – I and Population – II are 

20 and the test is performed at 5% level of significance. The KS tabulated value for one sample 

test at 5% level of significance and 20 degrees of freedom is 0.294. The results clearly indicate 

that the Population – I and Population – II fits well to the log logistic distribution. 

From the original data we have prepared progressive type – II censored sample with 

𝑛 = 40, 𝑝 = 0.5,𝑚1 = 13,𝑚2 = 12, 𝑅 = (1,0,0,0,1,1,0,2,0,0,1,0,0,0,0,2,0,0,0,2,0,0,0,0,5). 

The censored mixture data is:  

Population – I: 32.0, 35.4, 39.8, 41.2, 45.5, 46.0, 46.2, 46.5, 47.3, 47.3, 49.2, 50.4, 56.3  

and  

Population – II: 45.3, 49.2, 51.3, 53.2, 53.2, 55.5, 57.1, 57.5, 59.2, 62.4, 63.8, 67.7.  

 

The results are obtained using Bayes and Maximum Likelihood Estimation approaches for 

the above mentioned real-life dataset and are given in the Table A.7. 

 

The analysis under real-life data supports the findings obtained from the simulation study. 

The Bayes estimates are better compared to the ML estimates and all the three loss functions 

SELF, KLF and PLF give similar results. This gives us more confidence to suggest the use of 

Bayes estimation for Progressive Type - II Censored Data using Mixture of Log Logistic 

Distributions. 

8. Conclusion 
 

In this paper, a two component mixture model based on log logistic distributions has been 

proposed. Maximum likelihood and Bayesian estimation have been used to estimate the 

parameters of mixture model under progressive Type – II censoring. Three types of loss 

functions namely, SELF, KLF and PLF are used. The posterior likelihood based on progressive 

Type – II censoring has no closed form due to which it is not possible to apply numerical 

integration. Importance sampling method was used to solve this. Finally, we observe that for 

precise estimation of the unknown parameters of log logistic distribution, Bayes estimation is 

preferable over maximum likelihood estimation under all the three types of loss functions and 

this holds true for real life data as well. 
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Appendix A 

Table A.1: MLE & Bayes Estimates, PR and MSE for (𝒏,𝒎,𝜷𝟏, 𝜷𝟐, 𝒑) =
(𝟔𝟎, 𝟏𝟓, 𝟎. 𝟗, 𝟐. 𝟎, 𝟎. 𝟕) 

 

MLE / Bayes Statistic 𝜷�̂� 𝜷�̂� �̂� Type of Censoring 

MLE Estimate 1.14 2.98 0.60 Progressive Type - II 

MLE MSE 0.11 1.18 0.02 Progressive Type - II 

SELF Estimate 1.11 2.86 0.59 Progressive Type - II 

SELF PR 0.05 0.20 0.03 Progressive Type - II 

SELF MSE 0.07 0.80 0.03 Progressive Type - II 

KLF Estimate 1.08 2.82 0.56 Progressive Type - II 

KLF PR 0.08 0.05 0.20 Progressive Type - II 

KLF MSE 0.06 0.76 0.03 Progressive Type - II 

PLF Estimate 1.13 2.90 0.61 Progressive Type - II 

PLF PR 0.04 0.07 0.04 Progressive Type - II 

PLF MSE 0.07 0.84 0.02 Progressive Type - II 

MLE Estimate 1.03 3.69 0.49 Type - II 

MLE MSE 0.05 3.11 0.06 Type - II 

SELF Estimate 0.97 3.48 0.53 Type - II 

SELF PR 0.04 0.24 0.02 Type - II 

SELF MSE 0.02 2.31 0.04 Type - II 

KLF Estimate 0.95 3.45 0.50 Type - II 

KLF PR 0.08 0.04 0.21 Type - II 

KLF MSE 0.02 2.25 0.05 Type - II 

PLF Estimate 0.99 3.52 0.55 Type - II 

PLF PR 0.04 0.07 0.04 Type - II 

PLF MSE 0.03 2.36 0.04 Type - II 
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Table A.2: MLE & Bayes Estimates, PR and MSE for (𝒏,𝒎,𝜷𝟏, 𝜷𝟐, 𝒑) =
(𝟔𝟎, 𝟏𝟓, 𝟏. 𝟗, 𝟑. 𝟓, 𝟎. 𝟑𝟓) 

 

MLE / Bayes Statistic 𝜷�̂� 𝜷�̂� �̂� Type of Censoring 

MLE Estimate 2.63 4.66 0.28 Progressive Type - II 

MLE MSE 0.68 1.94 0.01 Progressive Type - II 

SELF Estimate 2.55 4.52 0.31 Progressive Type - II 

SELF PR 0.15 0.60 0.02 Progressive Type - II 

SELF MSE 0.46 1.32 0.01 Progressive Type - II 

KLF Estimate 2.52 4.45 0.26 Progressive Type - II 

KLF PR 0.05 0.06 0.84 Progressive Type - II 

KLF MSE 0.43 1.24 0.01 Progressive Type - II 

PLF Estimate 2.58 4.59 0.35 Progressive Type - II 

PLF PR 0.06 0.13 0.06 Progressive Type - II 

PLF MSE 0.49 1.39 0.01 Progressive Type - II 

MLE Estimate 2.25 5.22 0.25 Type - II 

MLE MSE 0.27 3.44 0.01 Type - II 

SELF Estimate 2.19 4.96 0.28 Type - II 

SELF PR 0.14 0.48 0.02 Type - II 

SELF MSE 0.12 2.40 0.01 Type - II 

KLF Estimate 2.16 4.91 0.24 Type - II 

KLF PR 0.06 0.04 0.77 Type - II 

KLF MSE 0.11 2.33 0.02 Type - II 

PLF Estimate 2.22 5.01 0.31 Type - II 

PLF PR 0.06 0.10 0.06 Type - II 

PLF MSE 0.14 2.47 0.01 Type - II 
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Table A.3: MLE & Bayes Estimates, PR and MSE for (𝒏,𝒎,𝜷𝟏, 𝜷𝟐, 𝒑) =
(𝟔𝟎, 𝟐𝟓, 𝟎. 𝟗, 𝟐. 𝟎, 𝟎. 𝟕) 

 

MLE / Bayes Statistic 𝜷�̂� 𝜷�̂� �̂� Type of Censoring 

MLE Estimate 1.02 2.40 0.68 Progressive Type - II 

MLE MSE 0.04 0.45 0.01 Progressive Type - II 

SELF Estimate 1.01 2.34 0.67 Progressive Type - II 

SELF PR 0.02 0.25 0.02 Progressive Type - II 

SELF MSE 0.02 0.20 0.01 Progressive Type - II 

KLF Estimate 1.00 2.29 0.66 Progressive Type - II 

KLF PR 0.04 0.09 0.08 Progressive Type - II 

KLF MSE 0.02 0.18 0.01 Progressive Type - II 

PLF Estimate 1.02 2.40 0.68 Progressive Type - II 

PLF PR 0.02 0.11 0.02 Progressive Type - II 

PLF MSE 0.02 0.23 0.01 Progressive Type - II 

MLE Estimate 1.01 2.62 0.66 Type - II 

MLE MSE 0.03 0.81 0.01 Type - II 

SELF Estimate 0.98 2.50 0.66 Type - II 

SELF PR 0.02 0.33 0.02 Type - II 

SELF MSE 0.02 0.38 0.01 Type - II 

KLF Estimate 0.97 2.43 0.65 Type - II 

KLF PR 0.04 0.11 0.08 Type - II 

KLF MSE 0.01 0.33 0.01 Type - II 

PLF Estimate 0.99 2.56 0.67 Type - II 

PLF PR 0.02 0.13 0.02 Type - II 

PLF MSE 0.02 0.42 0.01 Type - II 
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Table A.4: MLE & Bayes Estimates, PR and MSE for (𝒏,𝒎,𝜷𝟏, 𝜷𝟐, 𝒑) =
(𝟔𝟎, 𝟐𝟓, 𝟏. 𝟗, 𝟑. 𝟓, 𝟎. 𝟑𝟓) 

MLE / Bayes Statistic 𝜷�̂� 𝜷�̂� �̂� Type of Censoring 

MLE Estimate 2.41 3.97 0.34 Progressive Type - II 

MLE MSE 0.44 0.69 0.01 Progressive Type - II 

SELF Estimate 2.32 3.92 0.35 Progressive Type - II 

SELF PR 0.16 0.40 0.02 Progressive Type - II 

SELF MSE 0.22 0.34 0.01 Progressive Type - II 

KLF Estimate 2.29 3.87 0.32 Progressive Type - II 

KLF PR 0.06 0.05 0.36 Progressive Type - II 

KLF MSE 0.20 0.31 0.01 Progressive Type - II 

PLF Estimate 2.35 3.97 0.37 Progressive Type - II 

PLF PR 0.07 0.10 0.04 Progressive Type - II 

PLF MSE 0.25 0.37 0.01 Progressive Type - II 

MLE Estimate 2.25 4.16 0.33 Type - II 

MLE MSE 0.29 0.98 0.01 Type - II 

SELF Estimate 2.18 4.03 0.35 Type - II 

SELF PR 0.15 0.44 0.02 Type - II 

SELF MSE 0.13 0.50 0.01 Type - II 

KLF Estimate 2.14 3.98 0.32 Type - II 

KLF PR 0.06 0.06 0.35 Type - II 

KLF MSE 0.11 0.46 0.01 Type - II 

PLF Estimate 2.21 4.08 0.37 Type - II 

PLF PR 0.07 0.11 0.04 Type - II 

PLF MSE 0.14 0.53 0.01 Type - II 
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Table A.5: MLE & Bayes Estimates, PR and MSE for (𝒏,𝒎,𝜷𝟏, 𝜷𝟐, 𝒑) =
(𝟔𝟎, 𝟑𝟓, 𝟎. 𝟗, 𝟐. 𝟎, 𝟎. 𝟕𝟎) 

MLE / Bayes Statistic 𝜷�̂� 𝜷�̂� �̂� Type of Censoring 

MLE Estimate 0.96 2.31 0.70 Progressive Type - II 

MLE MSE 0.02 0.40 0.00 Progressive Type - II 

SELF Estimate 0.96 2.32 0.69 Progressive Type - II 

SELF PR 0.01 0.27 0.01 Progressive Type - II 

SELF MSE 0.01 0.24 0.01 Progressive Type - II 

KLF Estimate 0.96 2.27 0.68 Progressive Type - II 

KLF PR 0.03 0.10 0.05 Progressive Type - II 

KLF MSE 0.01 0.22 0.01 Progressive Type - II 

PLF Estimate 0.97 2.38 0.70 Progressive Type - II 

PLF PR 0.01 0.12 0.02 Progressive Type - II 

PLF MSE 0.01 0.26 0.01 Progressive Type - II 

MLE Estimate 0.97 2.24 0.73 Type - II 

MLE MSE 0.02 0.58 0.00 Type - II 

SELF Estimate 0.96 2.14 0.72 Type - II 

SELF PR 0.01 0.35 0.01 Type - II 

SELF MSE 0.01 0.16 0.01 Type - II 

KLF Estimate 0.96 2.06 0.71 Type - II 

KLF PR 0.03 0.16 0.05 Type - II 

KLF MSE 0.01 0.14 0.01 Type - II 

PLF Estimate 0.97 2.22 0.72 Type - II 

PLF PR 0.01 0.16 0.01 Type - II 

PLF MSE 0.01 0.18 0.01 Type - II 
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Table A.6: MLE & Bayes Estimates, PR and MSE for (𝒏,𝒎,𝜷𝟏, 𝜷𝟐, 𝒑) =
(𝟔𝟎, 𝟑𝟓, 𝟏. 𝟗, 𝟑. 𝟓, 𝟎. 𝟑𝟓) 

MLE / Bayes Statistic 𝜷�̂� 𝜷�̂� �̂� Type of Censoring 

MLE Estimate 2.07 3.83 0.35 Progressive Type - II 

MLE MSE 0.14 0.43 0.01 Progressive Type - II 

SELF Estimate 2.07 3.84 0.36 Progressive Type - II 

SELF PR 0.10 0.29 0.01 Progressive Type - II 

SELF MSE 0.06 0.25 0.01 Progressive Type - II 

KLF Estimate 2.04 3.81 0.34 Progressive Type - II 

KLF PR 0.05 0.04 0.23 Progressive Type - II 

KLF MSE 0.06 0.24 0.01 Progressive Type - II 

PLF Estimate 2.09 3.88 0.38 Progressive Type - II 

PLF PR 0.05 0.07 0.03 Progressive Type - II 

PLF MSE 0.07 0.27 0.01 Progressive Type - II 

MLE Estimate 2.14 3.69 0.37 Type - II 

MLE MSE 0.16 0.39 0.01 Type - II 

SELF Estimate 2.11 3.64 0.38 Type - II 

SELF PR 0.09 0.30 0.01 Type - II 

SELF MSE 0.07 0.13 0.01 Type - II 

KLF Estimate 2.09 3.60 0.36 Type - II 

KLF PR 0.04 0.05 0.23 Type - II 

KLF MSE 0.06 0.12 0.01 Type - II 

PLF Estimate 2.13 3.68 0.40 Type - II 

PLF PR 0.04 0.08 0.03 Type - II 

PLF MSE 0.07 0.14 0.01 Type - II 

  

Table A.7: MLE & Bayes Estimates, PR and MSE for (𝒏,𝒎,𝜷𝟏, 𝜷𝟐, 𝒑) =
(𝟒𝟎, 𝟐𝟓, 𝟎. 𝟒𝟎𝟓𝟒𝟖𝟗𝟔, 𝟎. 𝟑𝟖𝟒𝟎𝟔𝟓𝟐, 𝟎. 𝟓) 

MLE / Bayes Statistic 𝜷�̂� 𝜷�̂� �̂� 

MLE Estimate 0.27960 0.26342 0.51278 

SELF Estimate 0.41468 0.39288 0.52065 

SELF PR 0.00005 0.00007 0.00228 

KLF Estimate 0.41462 0.39280 0.51853 

KLF PR 0.00058 0.00090 0.01640 

PLF Estimate 0.41474 0.39298 0.52284 

PLF PR 0.00013 0.00018 0.00438 
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Abstract
In this article, we propose a shifted version of widely-used Lindley distribution. Some

statistical properties such as stochastic ordering, moment generating function, reliability
characteristic etc. are studied for this new distribution. For estimating unknown param-
eters, two types of estimation method viz. method of moments and maximum likelihood
method are explored. A simulation study for several choices of parameters is executed. Fi-
nally, a real data application illustrates the performance of our proposed distribution.

Key words: Lindley distribution; Stochastic ordering; Parameter estimation; Continuous
distribution; Maximum likelihood estimate.

AMS Subject Classifications: 60E05; 62G30; 62E10

1. Introduction

Lifetime distribution tries to capture, mathematically, the length of the life of a system
or a device. These distributions have relevance in the fields like environmental sciences,
medicine, engineering etc. To analyze lifetime data, gamma, Weibull, Rayleigh etc., distri-
butions are widely used in statistical literature. Chief advantage of these distributions is
that they only have more general mathematical closed form compared to the exponential
distribution with one additional parameter. Some applied areas such as finance, lifetime
analysis and insurance sometimes demand the extended forms of these distributions because
there still remain many important problems involving real data in these areas, which do
not fit to any of the existent classical statistical models. As a consequence, several classes
of generalized distributions have been formed by extending well-known continuous distribu-
tions. These generalized distributions entend more flexibility by adding new parameters to
the baseline model.

Since last decade, Lindley distribution, proposed by Lindley (1958), has been abruptly
acknowledged in different setup by many authors. Pretty recently, in the context of Bayesian
statistics as a counter example of fiducial statistics, the Lindley distribution has bagged
considerable attention because of its flexibility. Ghitany et al.(2008) discussed the various
statistical properties of Lindley distribution and showed its applicability over the exponen-
tial distribution. They established that in reliability analysis Lindley distribution performs
better than exponential model. One of the main reasons to consider the Lindley distribution
over the exponential distribution is its time dependent/increasing hazard rate.
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A random variable X is said to have Lindley distribution with parameter θ if its prob-
ability density function (PDF) is defined as:

f(x; θ) = θ2

1 + θ
(1 + x)e−θx, x > 0, θ > 0 (1)

and corresponding (cumulative density function) (CDF) is given by

F (x; θ) = 1 − θ + 1 + θx

1 + θ
e−θx, x > 0, θ > 0 (2)

Of late a lot of research articles came out on the extension of Lindley distribution. The
motivation for all these extension stems on the flexibility of the distribution to accommo-
date more complex data. Some of the advances in the literature of Lindley distribution are
given by Ghitanyet al. (2011) who has introduced a two-parameter weighted Lindley dis-
tribution. Generalized Poisson Lindley distribution has been proposed by Mahmoudi et al.
(2010). Bakouch et al. (2012) came up with extended Lindley (EL) distribution, Adamidis
et al. (1998) introduced exponential geometric (EG) distribution. Shanker et al. (2013)
introduced two-parameter Lindley distribution. Following a footstep Ghitany (2013) pro-
posed inferential problems stemmed from power Lindley. Zakerzadeh et al. (2012) idealized
a new two parameter lifetime distribution: model and properties. Hassan (2014) introduced
convolution of Lindley distribution. Ghitany et al. (2015) worked on the estimation of the
reliability of a stress-strength system from power Lindley distribution. Elbatal et al.(2013)
proposed a new generalized Lindley distribution. However all these extensions were based
on introducing more parameters in the constant part of the base Lindley.

The paper is organized as follows: Section 2 introduces a shifted Lindley distribution
and presents its basic properties including the behaviour of the density and some results
on stochastic orderings, moments, reliability characteristics. Distribution of the sum of iid
random variables has also been discussed. In Section 3, estimation process of parameters is
demonstrated at length. Monte Carlo simulation study is carried out in Section 4 followed
by a real data analysis in Section 5. This paper concludes with some discussions in Section
6.

2. The Shifted Lindley distribution

The extension, proposed in this article, is completely different. We define.

f(x; θ, µ) = θ2

1 + θ(1 + µ)(1 + x)e−θ(x−µ), x > µ > 0 (3)

as a Shifted Lindley distribution with parameters (θ, µ). It will be denoted by SL(θ, µ). The
CDF of a Shifted Lindley distribution with parameters (θ, µ) is given by

F (x; θ, µ) = 1 − 1 + θ(1 + x)
1 + θ(1 + µ)e−θ(x−µ), x > µ > 0 (4)

Note that if we put µ = 0 in equations (3) and in (4), these equations become the PDF and
CDF, respectively, of a Lindley distribution with a single parameter θ.
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The shape of shifted Lindley distribution depends on its parameters. Figure 1 shows
the pdf and cfd of shifted Lindley distribution for some choices of µ and θ. This figure reveals
that for smaller θ shifted Lindley pdf exhibits right skewed while for larger θ it looks as an
inverted J, more specifically tapering to a standard exponential curve.

Figure 1: The PDF’s of various Shifted Lindley distributions for different values
of parameters

2.1. Stochastic orders

One of the main objectives of statistics is the comparison of random quantities. These
comparisons are mainly based on the comparison of some measures associated to these ran-
dom quantities. Stochastic ordering of positive continuous random variables is an important
tool for judging such comparative behavior. Suppose Xi is distributed as SL(µi, θi), i = 1, 2.
Let Fi denote the cumulative distribution of Xi and fi denote the probability density function
of Xi. A random variable X1 is said to be smaller than a random variable X2 in the

• Stochastic order (X1 ≤st X2) if F1(x) ≥ F2(x) for all x.

• Hazard rate order (X1 ≤hr X2) if h1(x) ≥ h2(x) for all x.

• Likelihood ratio order (X1 ≤Lr X2) if f1(x)
f2(x) decreases in x.

In order to establish stochastic ordering of distributions we refer the following result from
Shaked et al. (1994).

X1 ≤LR X2 =⇒ X1 ≤hr X2 =⇒ X1 ≤st X2.

Taking a cue from this above-mentioned result, a pair of theorems are proposed regarding
the stochastic ordering pattern of SL(θ, µ) for different choices of (θ, µ).
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Figure 2: The CDF’s of various Shifted Lindley distributions for different values
of parameters

Theorem 1: Let X1 ∼ SL(θ1, µ1) and X2 ∼ SL(θ2, µ2). If µ1 = µ2 and θ2 < θ1, then
X1 ≤Lr X2 and hence X1 ≤hr X2 and X1 ≤st X2.

Proof:
Assume µ1 = µ2. Then δ

δx
lnf1(x)

f2(x) = θ2 − θ1. So δ
δx

lnf1(x)
f2(x) < 0 if θ2 < θ1 implying

f1(x)
f2(x) ↓ x.
This means that X1 ≤Lr X2 and hence X1 ≤hr X2 and X1 ≤st X2.

Theorem 2: Let X1 ∼ SL(θ1, µ1) and X2 ∼ SL(θ2, µ2). If θ1 = θ2 = θ > 0 and µ1 > µ2;
then X1 ≥st X2.

Proof:
The ratio of two pdf’s does not involve x. So the technique adopted in checking of

likelihood ratio ordering fails. Therefore, we would head to investigate via ratio of two
corresponding distribution functions and hence directly infering on stochastic ordering of
the distribution.

F1(x)
F2(x) =

1 − 1+θ(1+x)
1+θ(1+µ1)e

−θ(x−µ1)

1 − 1+θ(1+x)
1+θ(1+µ2)e

−θ(x−µ2)
=

1 −
[
1 + θ(x−µ1)

1+θ(1+µ1)

]
e−θ(x−µ1)

1 −
[
1 + θ(x−µ2)

1+θ(1+µ2)

]
e−θ(x−µ2)

.

Assume µ1 > µ2. Then 1 + θ(1 + µ1) > 1 + θ(1 + µ2) and θ(x − µ1) < θ(x − µ2)

θ(x − µ1)
1 + θ(1 + µ1)

<
θ(x − µ2)

1 + θ(1 + µ2)

1 + θ(x − µ1)
1 + θ(1 + µ1)

< 1 + θ(x − µ2)
1 + θ(1 + µ2)

. (5)
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Also
−e−θ(x−µ1) < −e−θ(x−µ2) (6)

Combining (5) and (6) we have

1 −
[
1 + θ(x − µ1)

1 + θ(1 + µ2)

]
e−(x−µ1) < 1 −

[
1 + θ(x − µ2)

1 + θ(1 + µ2)

]
e−(x−µ2)

which results F1 < F2 upon further simplification. Consequently X1 ≥st X2.
Therefore if µ1 > µ2, X1 ≥st X2 and vice-versa.

2.2. Moments

In applications, moments are necessary and very important. Through moments, it is
possible to study many of the interesting characteristics and features of a distribution. The
mean of the distribution can be obtained as:

µ′
1 = E(X) = θ2

1 + θ(1 + µ)

� ∞

µ

x(1 + x)e−θ(x−µ)dx

= µ + 2
θ

− 1 + µ

1 + θ(1 + µ) (7)

To find all higher order moment we will use the following result:

Theorem 3: For k ≥ 0, the recurrence relation for the higher order moments are

µ′
k+1 = µ′

1µ
′
k − d

dθ
µ′

1 (8)

Proof:

d

dθ
µ′

k =
� ∞

µ

xk(1 + x)
[

θ2

1 + θ(1 + µ)(−1)(x − µ)e−θ(x−µ)

+ e−θ(x−µ)
[ 2θ

1 + θ(1 + µ) − θ2(1 + µ)
(1 + θ(1 + µ))2

] ]

= − θ2

1 + θ(1 + µ)

� ∞

µ

xk+1(1 + x) e−θ(x−µ) dx

+ µ
θ2

1 + θ(1 + µ)

� ∞

µ

xk(1 + x) e−θ(x−µ) dx

+
[ 2θ

1 + θ(1 + µ) − θ2(1 + µ)
(1 + θ(1 + µ))2

] � ∞

µ

xk(1 + x) e−θ(x−µ) dx

= −µ′
k+1 + µ′

1µ
′
k

i.e.

µ′
k+1 = µ′

1µ
′
k − d

dθ
µ′

k
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Hence the proof.

Putting k = 1 we get,

µ′
2 =

(
µ + 2

θ
− 1 + µ

1 + θ(1 + µ)

)
µ′

1 − d

dθ
µ′

1

=
(

µ + 2
θ

− 1 + µ

1 + θ(1 + µ)

)2
−
[

− 2
θ2 + (1 + µ)2

(1 + θ(1 + µ))2

]

and hence

µ2 = µ′
2 − µ′2

1

= 2
θ2 − (1 + µ)2

(1 + θ(1 + µ))2

Putting µ = 0 will imply

µ2 = 2
θ2 − 1

(1 + θ)2

which is the variance of a Lindley distribution with parameter θ. Similarly it can be shown
that, for a SL(µ, θ) distribution

µ3 = 4
θ3 − 2(1 + µ)3

(1 + θ(1 + µ))3

and

µ4 = 24
θ4 − 3(1 + µ)4

(1 + θ(1 + µ))4 − 12(1 + µ)2

θ2(1 + θ(1 + µ))2

In reference to the moments of shifted Lindley distribution, next we present heat plot
(Figure 3) which unravels the intertwining effect of parameters µ and θ on mean, variance,
skewness and kurtosis. Heat plot (or heatmap) is a data visualization technique that shows
impact of variables in terms of intensity of color in two dimensions. The variation in color
exhibits obvious visual clues about the relationship between two categories. From the matrix
layout with color and shading of heat plot furnished here, it comes up that the mean and
variance drop as both the parameters increase while the skewness and kurtosis shoot up with
the increase of both parameters.
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Figure 3: The mean, variance, skewness and kurtosis (from left to right) of the
shifted Lindley distributions with respect to the parameters µ and θ.

2.3. Moment generating function (MGF)

In this subsection, we derived the MGF of SL(µ, θ) distribution.

Theorem 4: If X ∼ SL(µ, θ), then the moment generating function MX(t) has the following
form:

MX(t) = θ2 [1 + (θ − t)(1 + µ)]
(θ − t)2[1 + θ(1 + µ)]e

tµ, |t| < θ (9)
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Proof:

MX(t) = E(etX)

= θ2

1 + θ(1 + µ)

� ∞

µ

etX(1 + x)e−θ(x−µ)dx

= θ2

1 + θ(1 + µ)

� ∞

µ

(1 + x)e−θ(x−µ)+txdx

= θ2

1 + θ(1 + µ)

� ∞

µ

(1 + x)e−(θ−t)(x−µ)etµdx

= θ2

1 + θ(1 + µ)etµ

� ∞

µ

(1 + x)e−(θ−t)(x−µ)dx

= θ2

1 + θ(1 + µ)etµ 1 + (θ − t)(1 + µ)
(θ − t)2

= θ2 [1 + (θ − t)(1 + µ)]
(θ − t)2[1 + θ(1 + µ)]e

tµ

So, when µ = 0

MX(t) = θ2[1 + (θ − t)]
(θ − t)2(1 + θ)

= 1
1 + θ

[
θ2

(θ − t)2 + θ2

(θ − t)

]
which coincides the MGF of a Lindley distribution with parameter θ.

In the same way the characteristic function of the shifted Lindley distribution becomes
as follows.

ϕX(t) = MX(it) = θ2

1 + θ(1 + µ)

[ 1
(θ − it)2 + (1 + µ)

(θ − it)

]
eitµ (10)

where i =
√

−1 is the unit imaginary number.

2.4. Quantile function

Let X denotes a random variable with the probability distribution function Eq. (4).
The quantile function , say Q(p), defined by F (Q(p)) = p is the root of the equation

1 + θ(1 + Q(p))
1 + θ(1 + µ) e−θ(Q(p)−µ) = 1 − p (11)

for 0 < p < 1. On further simplification of the equation (11),

1 + θ(1 + Q(p))e−θ(Q(p)−µ) = [1 + θ(1 + µ)](1 − p)

(1 + Q(p))e−θQ(p) =
[
{1 + θ(1 + µ)}1 − p

θ
− 1

θ

]
e−θµ
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Substituting Z(p) = 1 + Q(p) in the above

Z(p)e−θZ(p)eθ =
[
{1 + θ(1 + µ)}1 − p

θ
− 1

θ

]
e−θµ

(−θZ(p))e−θZ(p) = −θe−θ
[
{1 + θ(1 + µ)}1 − p

θ
− 1

θ

]
e−θµ

So, the solution for Z(p) is

Z(p) = −1
θ

W
(

− θe−θ
[
{1 + θ(1 + µ)}1 − p

θ
− 1

θ

]
e−θµ

)

for 0 < p < 1, where W (.) is the Lambert W function (see Corless et al. (1996)). Inverting
the above equation in Z(p)

Q(p) = −1
θ

W
(

[1 − {1 + θ(1 + µ)}(1 − p)] e−θ(µ+1)
)

− 1,

for 0 < p < 1.

2.5. Distribution of the sum of iid RVs

Theorem 5: If X1, X2, · · · , Xn are IID RVs from SL(µ, θ), then the pdf of Z = X1 + X2 +
· · · + Xn is

g(z; n, θ, µ) =
n∑

k=0
pk,n(θ, µ)fSG(z; 2n − k, µ, θ) (12)

where pk,n(θ, µ) =
(

n
k

)
(θ(1+µ))k

(1+θ(1+µ))n and fSG(z; k, µ, θ) = θ[θ(x−µ)]k−1

Γk
e−θ(x−µ) , the pdf of a shifted

gamma (SG) distribution (or Pearson type III) with parameters (k, µ, θ).

Proof: Recall that, if X1 ∼ SL(µ, θ) then the pdf of X1 is

fX1(x; θ, µ) = θ2

1 + θ(1 + µ)(1 + x)e−θ(x−µ) = (1 + µ)θ
1 + θ(1 + µ)fSG(x;1,θ,µ) + 1

1 + θ(1 + µ)fSG(x;2,θ,µ)

Next let us have the following lemma to expedite the proof.

Lemma 6: If X ∼ SG(k, µ, θ) then moment generating function of X is given by

MX(t) = (1 − t/θ)−k etµ.
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Proof:

MX(t) = θk

Γk

� ∞

µ

(x − µ)k−1 etx−θx+θµdx

= θk

Γk

� ∞

0
zk−1 e−θz+tz+tµdz put(x − µ) = z

= θk

Γk
etµ

� ∞

0
zk−1 e−(θ−t)zdz

= θk

Γk
etµ Γk

(θ − t)k
= θk

(θ − t)k
etµ

= 1
(1 − t/θ)k

etµ = (1 − t/θ)−k etµ

The moment generating function (MGF) for X1 for |t| < θ is

MX1(t) = E(etX1) =
(

θ(1 + µ)
1 + θ(1 + µ)(1 − t/θ)−1 + 1

1 + θ(1 + µ)(1 − t/θ)−2
)

e(tµ)

Hence the MGF of Z for |t| < θ is

Mz(t) = E(etZ) =
(

θ(1 + µ)
1 + θ(1 + µ)(1 − t/θ)−1 + 1

1 + θ(1 + µ)(1 − t/θ)−2
)n

e(ntµ)

=
[ 1
(1 + θ(1 + µ))

]n[
θ(1 + µ)(1 − t/θ)−1 + (1 − t/θ)−2

]n
e(ntµ)

=
[ 1
(1 + θ(1 + µ))

]n

(1 − t/θ)−2n
[
θ(1 + µ)(1 − t/θ) + 1

]n
e(ntµ)

=
[ 1
(1 + θ(1 + µ))

]n

(1 − t/θ)−2n
n∑

k=0

(
n

k

)[
θ(1 + µ)(1 − t/θ)

]k
e(ntµ)

=
[ 1
(1 + θ(1 + µ))

]n n∑
k=0

(
n

k

)
(θ(1 + µ))k(1 − t/θ)−(2n−k)e(tnµ)

Using the Lemma stated above, Theorem 5 follows.

2.6. Reliability characteristics of shifted Lindley distribution

In present section, we consider shifted Lindley distribution as a lifetime model and
study different reliability characteristics. The reliability function of the SL(µ, θ) distribution
is given by:

R(t) = P (X > t) = 1 − F (t) (13)

The mean time to system failure (MTSF) is same as: We know that the hazard function
h(x) can be computed as

h(t) = f(t; θ, µ)
1 − F (t; θ, µ)
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which implies

h(t) = θ2(1 + t) (14)

The cumulative hazard function H(x) is defined as

H(x) = − log(1 − F (x; θ, µ)) = − log
(θ + 1 + θx

1 + θ
e−θx

)
= − log(R(x))

and the failure rate average (fra) is defined by FRA(x) = H(x)/x, where x > µ. The
conditional survival of t is:

R(x|t) = R(x + t)
R(t) ; θ, R(.) > 0; t, x > µ, µ > 0

2.7. Rényi entropy

Entropy is used to measure the randomness of systems, and it is widely used in areas
like physics, molecular imaging of tumors and sparse kernel density estimation. If X has the
probability distribution function f(.), Rényi entropy is defined by

Iδ(x) = 1
1 − δ

log
( � ∞

0
f δ(x) dx

)
, δ > 0, δ ̸= 1.

Using equation (3), it is observed that

f δ(x) = θ2δ

[1 + θ(1 + µ)]δ (1 + x)δe−θδ(x−µ)

= θ2δ

[1 + θ(1 + µ)]δ
δ∑

i=0

(
δ

i

)
xie−θδ(x−µ)

After some algebra, the Rényi entropy of X is reduces to

Iδ(x) = 1
1 − δ

log(
δ∑

i=0
ei)

where, ei = 1
(θδ)i+1 Γ(i + 1, θδµ), Γ(.) is the incomplete Gamma function.

3. Estimation

Here, we consider two estimation methods: the methods of moments and maximum
likelihood estimation. We provide expressions for the associated Fisher information matrix.
Suppose X1, X2, · · · , Xn is a random sample from equation (3). For the moments estimation,
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let m1 = (1/n)∑n
i=1 Xi and m2 = (1/n)∑n

i=1(Xi − m1)2. By equating the theoretical
moments of equation (3) with the sample moments, the following equations are obtained.

m1 = µ + 2
θ

− 1 + µ

1 + θ(1 + µ) (15)

m2 = 2
θ2 − (1 + µ)2

[1 + θ(1 + µ)]2 (16)

Solving (15), (16) we can estimate the parameters µ and θ.

3.1. Maximum likelihood (ML) estimation of parameters

The likelihood function for a random sample X1, X2, ...., Xn which is taken from SL(µ, θ)
distribution is:

L(X, µ, θ) = θ2n

(1 + θ(1 + µ))n

[ n∏
i=1

(1 + xi)
]
e−θ

∑n

i=1(xi−µ) (17)

It is to be noted that mle of µ is

µ̂mle = min
i

Xi = X(1) (18)

Differentiating the log-likelihood w.r.t. θ, we get the following equation:

2n

θ
− n(1 + µ̂mle)

1 + θ(1 + µ̂mle)
−

n∑
i=1

(Xi − µ̂mle) = 0 (19)

which needs to be solved using some iterative procedure.

4. Simulation Study

It may be noted that it is not possible to generate samples from shifted Lindley dis-
tribution using the inversion of the CDF. It has already been established that an SL(µ, θ)
distribution can be viewed as a mixture of two shifted gamma distributions. This property
is devised to generate random sample from simulation study. In R, function rgamma3 of
package FAdist generates samples from a shifted gamma distribution. Using the aforesaid
function a convenient sampling scheme for data generation can be framed as follows.

To estimate the parameters µ and θ, we have generated 10, 000 samples from the shifted
Lindley distribution. We have considered four different combinations of the parameter to
study their influence. Then using the sample moments and equations (15) and (16), we
obtain the moment estimates of µ and θ. We have replicated these processes 50, 100 and
500 times and computed standard error of corresponding estimates. The ML estimates are
obtained by using the equations (18) and (19) and respective standard errors have been
computed using the above techniques.



2022] ESTIMATION IN SHIFTED LINDLEY DISTRIBUTION 259

Algorithm
1. Select values of θ and µ

2. Calculate weight w = (1+µ)θ
1+θ(1+µ)

3. Generate U from U(0, 1)
4. If U < w, generate a sample from fSG(x;1,θ,µ) else from fSG(x;2,θ,µ)
using rgamma3(1, shape, scale, thres)

The simulation study is carried out with N = 10, 000 sample size for (µ, θ) = (0.5, 0.3),
(1.5, 1.1), (0.5, 1.1), (1.5, 0.3) and replication n = (50, 100, 500). The following measures are
calculated to asses the simulation results:
θ̂ and µ̂, estimates obtained through both of the case along with the corresponding standard
error of estimates (SE), Biasµ =

n∑
i=1

µ̂j−µ

n
, magnitude of relative error = MREµ =

n∑
i=1

µ̂j/µ

n
,

mean square error MSEµ =
n∑

i=1

(µ̂j−µ)2

n
, Biasθ =

n∑
i=1

θ̂j−θ

n
, MREθ =

n∑
i=1

θ̂j/θ

n
, MSEθ =

n∑
i=1

(θ̂j−θ)2

n
. Results against the parameter θ are shown in Table 3 and that of parameter µ in

Table 4. Both of the tables are placed in Appendix at the end of this article.
From Table 3 and Table 4, it may be observed that moment estimators for both are also
performing well in terms of small biases. As expected the MRE values are found close to 1,
whereas the MSE values are tending close to 0. This study also reveals that moment and
ML estimators are equally efficient.

5. Real Data Analysis

The proposed distribution is fitted for a data set available in Duffy et al.(1993). The
data consists of measurements on strength of the sintered silicon nitride after four-point
bend system is applied. On four point bend specimen, the support span of test fixture was
40.373 mm and the inner load span of 19.622 mm. All specimens are subjected to pure
four-point bending. Number of complete specimens in the data set is found to be 27. We
apply Lindley and shifted Lindley in order to fit this data. Subject to the fitting of shifted
Lindley distribution on the data we figure out estimates of the parameters θ and µ by both
moment and maximum likelihood method. Estimates alongwith standard errors (SE) are
given in Table 1. For the shifted Lindley distribution,it can be seen that both the methods
are producing different estimates.

Table 1: Parameter estimates for the four point bend data

Distribution µ̂ML µ̂MOM θ̂ML θ̂MOM

(SE) (SE) (SE) (SE)
Lindley 0 0 0.0027 0.0027

(-) (-) (0.0001) (0.0001)
shifted Lindley 613.9 654.873 0.0096 0.014

(0.0006) (0.0531) (0.0001) (0.0001)

For further comparison between two distributions fitted to the data, we also report some
model selection criteria— Akaike information criterion (AIC), Bayesian information Crite-
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Table 2: Model selection criteria for the four point bend data

Distribution KS(p-value) AIC BIC CAIC HQIC

Lindley 2.4(0.823) 391.7628 393.0586 391.9109 392.1481
Shifted Lindley 0.632(0.001) 315.8982 318.49 316.36 316.669

rion (BIC), Corrected AIC (CAIC) and Hannan and Quinn information criterion (HQIC).
The definitions used for these selection tools are as: AIC= −2ln L(θ)+2k, CAIC= −2ln L(θ)+
2k n

n−k−1 ; BIC= −2ln L(θ) + k ln(n); and HQIC= −2ln L(θ) + 2k ln{ln(n)}, where lnL(θ)
denotes log likelihood, n being the number of observations and k being the number of param-
eters of the distribution. These are reported in Table 2. Considering all the model selection
criteria, reported in Table 2, we found that shifted Lindley fits the data well compared to
Lindley distribution. The Kalmogorov-Smirnoff (KS) statistic for shifted Lindley is found
to be 0.632 with a p-value of 0.001 confirming the claim of better fit.

6. Conclusion

In this study we have proposed a new distribution called shifted Lindley distribution.
Some mathematical properties along with estimation issues are addressed. The hazard rate
function of shifted Lindley distribution shows that the subject distribution can be used to
model reliability data as well. We derived the moment and maximum likelihood estimates
of the parameters along with the biases, mean square error and mean relative errors. A
real data application of the shifted Lindley distribution projects that it could provide a
meaningful fit than a set of usual statistical distributions, while being considered specially
in life time data analysis. A further extension of shifted Lindley might be thought in the
context of power Lindley distribution, thereby a comparative study on relative quality of
statistical models for a given set of data can be delved into.

7. Acknowledgement

We would like to thank the editor and an anonymous referee for pointing out some
important issues which have undoubtedly enhanced the quality of the work. The authors
are indebted to Dr. Kashinath Chatterjee for his inputs.

References

Adamidis, K. and Loukas, S. (1998). A lifetime distribution with decreasing failure rate.
Statistics and Probability Letters, 39, 35-42.

Bakouch, H. S., Al-Zahrani, B. M., Al-Shomrani, A. A., Marchi, V. A. and Louzada, F.
(2012). An Extended Lindley distribution. Journal of the Korean Statistical Society,
41, 75-85.

Corless, R. M., Gonnet, G. H., Hare, D. E. G., Jeffrey D. J. and Knuth D. J. (1996). On
the Lambert W function. Advanced Computational Math, 5, 329-59.

Duffy, F. S., Powers, L. M. and Starlinger, A. (1992). Reliability analysis of structural
ceramic components using a three parameter Weibull distribution, Civil and Environ-
mental Engineering faculty publications, 3.

Elbatal, I., Merovci, F. and Elgarhy, M. (2013). A New Generalized Lindley Distribution.
Mathematical Theory and Modeling, 3(13), 30-47.



2022] ESTIMATION IN SHIFTED LINDLEY DISTRIBUTION 261

Ghitany, M. E., Atieh, B. and Nadarajah, S. (2008). Lindley Distribution and its application,
Mathematics and computers in simulation, 78(4), 36-38.

Ghitany, M. E., Al-Mutairi, D. K., Balakrishnan, N. and Al-Enezi, L. J. (2013). Power Lind-
ley distribution and associated inference. Computational Statistics and Data Analysis,
64, 20-33.

Ghitany, M. E., Alqallaf, F., Al-Mutairi, D. K. and Hussain, H. A. (2011). A Two Parameter
Weighted Lindley Distribution and Its Applications to Survival Data, Mathematics and
Computers in Simulation, 81(6), 1190-1201.

Ghitany, M. E., Al-Mutairi, D. K. and Aboukhamseen, S. M. (2015). Estimation of the
Reliability of the Stress-Strength System from Power Lindley Distributions, Commu-
nications in Statistics-Simulation and Computations, 44(1), 118-136.

Hassan, M. K. (2014). On the Convolution of Lindley Distribution. Columbia International
Publishing Contemporary Mathematics and Statistics, 2(1), 47-54.

Mahmoudi, E. and Zakerzadeh, H. (2010). Generalized Poisson Lindley distribution. Com-
munications in Statistics:Theory and Methods, 30, 1785-1798.

Lindley, D. V. (1958). Fiducial distributions and Bayes’ theorem. Journal of the Royal
Statistical Society B, 20, 102–107.

Shaked, M. and Shanthikumar, J. G. (1994). Stochastic Orders and Their Applications,
Academic Press, Boston (USA).

Shanker, R., Sharma, S. and Shanker, R. (2013). A Two-Parameter Lindley Distribution for
Modeling Waiting and Survival Times Data. Applied Mathematics, 4, 363-368.

Zakerzadeh, H. and Mahmoudi, E. (2012). A new two parameter lifetime distribution: model
and properties. arXiv:12014:4248 VI [Stat.CO].



262 SARAN I. MAITI, SOURAV RANA AND ARINDOM CHAKRABORTY [Vol. 20, No. 1

ANNEXURE

Table 3: Estimate, SE, Bias, MSE and MRE of (θ) based on the Moment and
ML estimation methods
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Table 4: Estimate, SE, Bias, MSE and MRE of (µ) based on the Moment and
ML estimation methods
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Abstract 

 

This paper aims to provide a comprehensive overview of the Bayesian estimation 

methodology for the multiple covariate vector autoregressive (MC-VAR) model, in both 

methodology and application point of view. In that respect, conditional posterior distributions 

are derived to obtain the Bayesian estimators and influence based on covariate is analyzed by 

posterior odds ratio. Due to multiple integrations, the Gibbs sampler method is employed for 

the estimation of the MC-VAR model. Our approach is applied on both simulation and real 

data series to show the applicability of the proposed model. The real data result is useful for 

analyzing the relationship of covariates in economic time series. 

 

Key words: Bayesian inference; Covariate; Vector autoregressive model. 
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1. Introduction 

 

The VAR model is continuously attracting the researchers to depict the behavior of a 

variable over time (Al-hajj et al. (2017), Sharma et al. (2018)). In the VAR model, present 

value of the variable is expressed as a linear function of past values and a random error (Fuller 

(1985)). For the analysis of multivariate time series data, VAR is frequently used model see 

Fuller (1985), Juselius (2006), Tsay (2014) and Lutkepohl (2005). VAR is most preferred and 

equally popular model for understanding the behavior of financial and economical data in 

various literatures see Wei (1990), Lutkepohl (2005), Al-hajj et al. (2017) and Sharma et al. 

(2018). VAR model is/was also used for structural analysis. In structural analysis, causal 

impacts of the variables are observed when certain hypotheses are imposed and resultant causal 

impacts are précised in Granger causality and impulse response function (IRF) in Wei (1990), 

Hamilton (1994), Lutkepohl (2005), etc. In the VAR model, when one includes exogenous 

variables, the VAR model extended to a covariate vector autoregressive (CVAR) model and 

allows those variables in the dataset to be modeled jointly over present and past time periods 

as considered in Hamilton (1994) and Tsay (2015).  

 

The main motive behind the study of time series model with covariate is to make precise 

inferences about the impact of covariates on the response series under Bayesian framework. 

There are so many articles to explore the covariate in various univariate and multivariate time 

series model. Hansen (1995) developed covariate augmented Dickey-Fuller (CADF) unit root 

test with some stationary covariates for autoregressive parameter. This CADF test further 

extended to a point optimal covariate (POC) unit root test by Elliott and Jansson (2003). 
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Costantini and Lupi (2013) developed panel data model with stationary covariate which is the 

extension of Hansen (1995) model. Chaturvedi et al. (2017) discussed the Bayesian unit root 

hypothesis for covariate autoregressive model. Chang et al. (2017) developed bootstrap unit 

root tests with covariate method to the CADF test to deal the nuisance parameter dependency 

and provided a valid basis for inference based on the CADF test. Anggraeni et al. (2017) 

discussed performance of autoregressive integrated moving average with explanatory variable 

(ARIMAX) with VAR model using Indonesia economic data sets. Based on MAPE results, 

observed that performance of ARIMAX model is better than VAR model. Kumar et al. (2018) 

discussed Bayesian estimation and testing procedure for panel autoregressive time series model 

with covariate. Recently, Ji Linying et al. (2019) implemented VAR model with non-ignorable 

missingness in dependent variables and covariates under Bayesian framework. They 

introduced a Bayesian model which simultaneously represents the time dependency in 

multivariate and multiple subject time series data via VAR model.   

 

The purpose of present paper is to make inference of multiple covariate-vector 

autoregressive (MC-VAR) model under Bayesian framework. We use Monte Carlo simulation 

method to estimate the parameters using conditional posterior distributions and then testing the 

impact of stationary covariate using posterior odds ratio. A simulation study has been carried 

out to validate the theoretical results. An empirical study of GDP series with export and import 

series as covariates is carried out to evaluate the performance of proposed model and obtained 

the Bayes estimators. 

 

2. Model Description 
 

In this section, we begin with vector autoregressive (VAR) model that captures the 

complex dynamics behaviour of multiple time series and their interactions and provides 

multiple series in a systematic manner. The basic form of VAR model represents a vector of 

N-dimensional time series measured at a particular time period. Let {Yt, t = 1,2,…,T} be a VAR 

process expresses as a linear combination of past observations at lag p. Then, model is defined 

as 

 .2211 tptpttt YAYAYAY      (1) 

Generally, influence regarding the observation is based not only the study variables but 

also other associated variables. If these associated variables are also included in the process, 

then efficiency of the process may be increased. So, we include K stationary covariates (Wt, t 

= 1,2,…,T) in the model that having dependence with its own past observations up to lag q then 

it can be written as 
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The final model in terms of matrix notation as 

   ZXY  (3) 

where N is the numbers of variables under study, K is the number of covariates, tY  and ηt are 1 

x N, Aij is N x N. The disturbances ηt are unobservable random variable with E(ηt) = 0 and 

VAR(ηt) = Σ. The model is multiple covariate-vector autoregressive of order p time series 

model. 
 

 

3. Bayesian Inference
 

 

The following prior distributions are considered for Bayesian analysis. We consider a 

basic prior distribution that enables analytical derivation of the posterior distribution and, thus, 

fast computations. The matrix variate normal conditional prior distribution is considered for θ 

and δ.  An inverse Wishart marginal prior distribution is assumed for Σ. Let us assume the 

following prior distributions for the parameters used in the models 

   ,,0;,,,~ 1010  VVMN   (4) 

   ,,0;,,,~ 2020  VVMN   (5) 

   .1;0,,~  NvSSIWN   (6) 

Here MN and IW denote matrix variate normal distribution and inverse Wishart distribution, 

respectively. The joint prior probability of all parameters    ,, for MC-VAR model is 

determined using the equations (4) to (6) 
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The likelihood function of the model is 
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The posterior distribution is expressed as the product of likelihood function given in equation 

(8) and joint prior distribution given in equation (7) 
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(9) 

where K is the normalizing constant which is given by    


  dPYLK |1 .  

 

3.1. Bayesian estimation 

 

For Bayesian estimation, the estimator of the parameter is derived by using loss function 

and the posterior distribution. We consider two loss functions, one is symmetric known as 

quadratic loss or squared error loss and other one is asymmetric, entropy loss function. The 

Bayes estimators of any parametric function, say ϕ(Θ) under squared error loss function 

(SELF), entropy loss function (ELF) and precautionary loss function (PLF) are defined by 

          ,||| 


 dYPKYEYSELF    (10) 
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It is to be noticed here that a major difficulty in the implementation of Bayes procedure 

is the evaluation of the ratio of two integrals as described in equations (10) to (12) for which 

closed expression is not easy to obtain analytically. Therefore, we use Gibbs sampler algorithm 

to obtain the posterior samples from posterior distribution. For this, expression of full 

conditional posterior distribution are obtained 

    ,,,~,, 11   ABAMNY   (13) 

    ,,,~,, 11   CDCMNY   (14) 

    ,,~,, ** vSIWY    (15) 
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Using the generated samples from the above conditional posterior distributions, Bayes 

estimates of the parameters are evaluated under different loss functions. Bayes estimate under 

SELF, ELF and PLF is the posterior mean,    11 |
 YE and  YE |2 respectively. 

3.2. Bayesian testing procedure 

 

Under Bayesian perspective, posterior odds ratio (POR)/ Bayes Factor (BF) is used in 

decision making for hypothesis testing problem/model selection procedure. POR (β01) is 

product of prior odds ratio with Bayes factor (BF01) of the null (H0) and alternative (H1) 

hypothesis. Here, the null hypothesis considers that covariates do not impact the study series, 

i.e., H0: δ = 0 against the alternative hypothesis assumes that there is a significant relationship 

exists between study variable and covariates, i.e., H1: δ ≠ 0.  The model under null and 

alternative hypothesis is  

 

  XY  :Under H0  

  ZXY  :Under H1  

Then, β01 is expressed as  
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where O(Ho) is the prior odds ratio, i.e., it is the ratio of prior probability under null is p0 and 

alternative is (1 − p0). 

 

The decision is taken to reject H0 if POR is less than one, otherwise accept. So, the posterior 

probability under null and alternative hypothesis is computed as 
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Then, the POR is constructed as 
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4. Simulation Study 

 

This section discusses the appropriateness of the testing of hypothesis and record the 

performance of the estimators in the proposed model using the simulation study. For simulation 

purpose, a bivariate VAR(2) model with single covariate is generated from equation (2) with 

starting value of observed series is Y = (4 6)  and covariate series is W = (2 3). The results are 

obtained based on R-language version 3.6.2. We have considered different sizes of the time 

series T = c (200, 300). For series generation, fixed arbitrarily values are defined for the model 

parameters in the equation (19). 
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 (19) 

where η.t is a normally distributed random variable. To get more appropriate results, process is 

repeated 1000 times and each time 5000 posterior samples are generated using the Gibbs 

sampling procedure. For the different sizes of the series, average estimates (AE) and its 

standard deviation (SD) are summarized in Tables 1-2 (given in Appendix). For comparison 
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between the different estimators, average absolute bias (AB) and average mean square error 

(MSE) of the estimators of the parameters are recorded in Tables 3-4 (given in Appendix).  

 

Tables 1-2 conclude that average estimates are near to the true value of the parameters 

and standard deviation is also small that shows less variability in the estimation of the 

parameters.  From Tables 3-4, we observed that size of the ser1ies increases, MSE and AB 

decreases from near to bottom of the series. In comparison of different loss functions, ELF 

performance better as compared to other estimators because MSE and AB is minimum. The 

next target for this study is to determine the significant affect of the covariate in the time series. 

For that, hypothesis testing for the presence or absence of covariate is carried out and records 

the POR results in Table 5 for different sizes of series and different number of covariates. From 

Table 5, we reject the null hypothesis as the POR values are less than one for different sizes of 

simulated series. This concludes that including the covariates in the model, better inference is 

drawn from the given series. Here, we also notice that number of covariates depends upon the 

series size since it does not much explain the small series with higher covariate as seen in T = 

100 and K = 3.  

                

  Table 5: Posterior odds ratio with T and K 

 

T K=1 K=2 K=3 

100 1.47E-05 3.74E-02 2.17E+00 

200 1.54E-23 2.82E-21 3.70E-18 

300 2.25E-47 2.63E-36 1.69E-31 

400 4.07E-66 5.22E-45 3.68E-42 

500 1.06E-103 2.50E-65 4.01E-57 

 

5. Real Data Analysis 

 

A macroeconomic data set is taken to illustrate the performance of proposed model. We 

use yearly series on gross domestic product (GDP), export and import for the period 1962 to 

2018 from IMF’s International Financial Statistics as well as The World Bank data source 

(http://datahelp.imf.org/ and https://data.worldbank.org/). For analysis purpose, most 

developing countries India and China is considered as vector form where GDP is the study 

variable and export and import are two covariates.  The reason behind the selection of these 

two countries is that most of the Indian market is depended upon the import material of China 

product so this impacts the GDP of both countries. First, we determine the best suitable order 

of each variable using the in-built function in R-language and display in Table 6.  Based on 

Table 6, we observe that GDP series have VAR order two (p = 2) model whereas import and 

export series obtain VAR order one (q = 1) model.   

  

http://datahelp.imf.org/
https://data.worldbank.org/


 U. AFIFA, V. AGIWAL AND J. KUMAR [Vol. 20, No. 1 

 

 

272 

 

Table 6:  Order selection based on various selection criterion 

  

Series Order (lag) 1 2 3 

GDP 

AIC 5.0812 4.6713 4.7246 

HQ 5.1670 4.8142 4.9248 

SC 5.3043 5.0430 5.2451 

Import 

AIC 1.9540 2.0192 2.0602 

HQ 2.0397 2.1621 2.2603 

SC 2.1770 2.3909 2.5806 

Export 

AIC 1.3716 1.4176 1.4832 

HQ 1.4574 1.5605 1.6834 

SC 1.5947 1.7893 2.0037 

 

Once, we get the order of the series, estimation of model parameters are carried out using 

the proposed methodology and then obtain the consequence of covariate(s) in the response 

series.  Here, we analyze the inference of the proposed model based on one and two covariates, 

i.e., show the suitable impact of GDP versus import or export or both series. As per simulation 

study, we recorded that the best estimated values of the parameters of the proposed model is 

obtained through ELF estimators. So, we only estimate the MC-VAR model parameters under 

ELF and recorded in equations (20)-(22) for single and bivariate covariates. 
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(22) 

  

The calculated POR for the proposed model under study are recorded in Table 7 that 

shows the suitable covariate is necessary to analyze the growth of the GDP series.  We see that 
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individual covariate has an impact on GDP series as compared when both covariates are jointly 

analyzed because it does not reject the null hypothesis.  

  

Table 7: POR value based on real data series 

 

Covariate  Export Import Both Export and Import  

POR 0.9266 0.4488 1241.5250 

 

6. Conclusion 

 

In this paper, we develop a Bayesian approach for analyzing vector autoregressive (VAR) 

model with multiple covariates. The model is estimated by deriving the conditional posterior 

distribution and Bayesian estimators are obtained under different loss functions. We also test 

the association of covariates in the VAR model using the derived posterior odds ratio. Based 

on our simulation and empirical results, indicates that Bayesian estimators appropriate 

estimates the parameter values and import and export variables are related to GDP series 

individually. 
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APPENDIX 
 

Table 1: AE and SD of C-Var(2) model at T = 200 

 

Estimator SELF ELF PLF 

Parameter 

(True Value) 
AE SD AE SD AE SD 

1 (1) 0.6718 0.1224 0.6624 0.1358 0.6929 0.1198 

2  (2) 1.6965 0.0896 1.5995 0.1067 1.6833 0.0874 

)1(

11 (0.2) 0.2017 0.0573 0.1835 0.0701 0.2085 0.0554 

)1(

12 (0.3) 0.3203 0.0424 0.3146 0.0433 0.3230 0.0420 

)2(

11 (0.15) 0.1468 0.0492 0.1340 0.0634 0.1542 0.0462 

)2(

12 (0.15) 0.1646 0.0458 0.1495 0.0562 0.1706 0.0425 

)1(

21 (0.25) 0.2464 0.0965 0.2635 0.0854 0.2629 0.0886 

)1(

22 (0.15) 0.1523 0.0695 0.1671 0.0932 0.1591 0.0615 

)2(

21 (0.2) 0.2101 0.0872 0.2100 0.0821 0.2249 0.0794 

)2(

22 (0.1) 0.1198 0.0830 0.0971 0.0692 0.0973 0.0639 

)11(

11 (0.3) 0.3062 0.0217 0.3050 0.0218 0.3068 0.0217 

)11(

12 (0.15) 0.1524 0.0216 0.1499 0.0220 0.1536 0.0214 

)11(

21 (0.2) 0.2117 0.0391 0.2066 0.0406 0.2141 0.0386 

)11(

22 (0.1) 0.1070 0.0373 0.0947 0.0735 0.1119 0.0355 

11 (0.09) 0.0739 0.0073 0.0725 0.0072 0.0747 0.0075 

12 (0.01) 0.0085 0.0670 0.0085 0.0652 0.0086 0.0681 

21 (0.01) 0.0085 0.0670 0.0085 0.0652 0.0086 0.0681 

22 (0.25) 0.1972 0.0195 0.1936 0.0191 0.1994 0.0198 
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Table 2: AE and SD of MC-Var(2) model at T = 300 

 

Estimator SELF ELF PLF 

Parameter 

(True Value) 
AE SD AE SD AE SD 

1 (1) 0.7122 0.1338 0.7194 0.1530 0.7304 0.1309 

2  (2) 1.8086 0.0600 1.7557 0.0760 1.7909 0.0620 

)1(

11 (0.2) 0.1974 0.0476 0.1843 0.0600 0.2026 0.0462 

)1(

12 (0.3) 0.3168 0.0387 0.3126 0.0392 0.3189 0.0384 

)2(

11 (0.15) 0.1529 0.0410 0.1524 0.3054 0.1581 0.0393 

)2(

12 (0.15) 0.1625 0.0404 0.1506 0.0563 0.1668 0.0391 

)1(

21 (0.25) 0.2483 0.0773 0.2374 0.0606 0.2596 0.0731 

)1(

22 (0.15) 0.1507 0.0596 0.1561 0.0756 0.1533 0.0557 

)2(

21 (0.2) 0.2126 0.0690 0.1893 0.1131 0.2226 0.0653 

)2(

22 (0.1) 0.1162 0.0650 0.1032 0.0451 0.1136 0.0511 

)11(

11 (0.3) 0.3009 0.0182 0.3000 0.0182 0.3013 0.0181 

)11(

12 (0.15) 0.1536 0.0171 0.1518 0.0173 0.1544 0.0170 

)11(

21 (0.2) 0.2022 0.0289 0.1986 0.0295 0.2040 0.0287 

)11(

22 (0.1) 0.1089 0.0272 0.1010 0.0359 0.1121 0.0263 

11 (0.09) 0.0810 0.0065 0.0800 0.0063 0.0815 0.0065 

12 (0.01) 0.0098 0.0634 0.0099 0.0607 0.0099 0.0651 

21 (0.01) 0.0098 0.0634 0.0099 0.0607 0.0099 0.0651 

22 (0.25) 0.2128 0.0176 0.2103 0.0173 0.2142 0.0178 
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Table 3: MSE and AB of MC-Var(2) model at T = 200 

 

Estimator SELF ELF PLF 

Parameter 

(True value) 

(True Value) 

MSE AB MSE ABS MSE ABS 

1 (1) 0.3728 0.5515 0.3405 0.5093 0.3870 0.5674 

2  (2) 0.2655 0.2466 0.2683 0.2848 0.2530 0.2722 

)1(

11 (0.2) 0.2121 0.2193 0.2180 0.2193 0.2104 0.2203 

)1(

12 (0.3) 0.2246 0.2752 0.2248 0.2715 0.2246 0.2770 

)2(

11 (0.15) 0.2308 0.2252 0.2445 0.2311 0.2282 0.2227 

)2(

12 (0.15) 0.2427 0.2236 0.2481 0.2297 0.2408 0.2219 

)1(

21 (0.25) 0.2066 0.2432 0.2841 0.3032 0.2037 0.2455 

)1(

22 (0.15) 0.2525 0.2398 0.2642 0.2541 0.2481 0.2375 

)2(

21 (0.2) 0.2170 0.2202 0.2561 0.2443 0.2119 0.2215 

)2(

22 (0.1) 0.2789 0.2551 0.2540 0.2393 0.2650 0.2377 

)11(

11 (0.3) 0.1965 0.2558 0.1965 0.2549 0.1965 0.2562 

)11(

12 (0.15) 0.2464 0.2149 0.2472 0.2155 0.2460 0.2146 

)11(

21 (0.2) 0.2022 0.2141 0.2031 0.2131 0.2018 0.2146 

)11(

22 (0.1) 0.2653 0.2342 0.2753 0.2493 0.2631 0.2311 

11 (0.09) 0.2869 0.2632 0.2876 0.2642 0.2865 0.2626 

12 (0.01) 0.2462 0.2440 0.2475 0.2462 0.2454 0.2427 

21 (0.01) 0.2927 0.2734 0.2942 0.2755 0.2918 0.2721 

22 (0.25) 0.2023 0.1969 0.2029 0.1963 0.2019 0.1974 
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Table 4: MSE and AB of MC-Var(2) model at T = 300 

 

Estimator SELF ELF PLF 

Parameter 

(True Value) 
MSE ABS MSE ABS MSE ABS 

1 (1) 0.3874 0.5755 0.4016 0.5442 0.3612 0.5897 

2  (2) 0.2441 0.2555 0.2493 0.2821 0.2331 0.2768 

)1(

11 (0.2) 0.2244 0.2179 0.2231 0.2204 0.2280 0.2181 

)1(

12 (0.3) 0.2118 0.2686 0.2118 0.2657 0.2118 0.2701 

)2(

11 (0.15) 0.2342 0.2178 0.2325 0.2368 0.3262 0.2162 

)2(

12 (0.15) 0.2351 0.2157 0.2337 0.2198 0.2401 0.2149 

)1(

21 (0.25) 0.2190 0.2421 0.2170 0.2340 0.2201 0.2467 

)1(

22 (0.15) 0.2352 0.2253 0.2319 0.2775 0.2257 0.2276 

)2(

21 (0.2) 0.2223 0.2269 0.2200 0.2353 0.2381 0.2274 

)2(

22 (0.1) 0.2546 0.2431 0.2258 0.2331 0.2425 0.2279 

)11(

11 (0.3) 0.2093 0.2561 0.2092 0.2555 0.2093 0.2564 

)11(

12 (0.15) 0.2380 0.2136 0.2377 0.2139 0.2385 0.2134 

)11(

21 (0.2) 0.2237 0.2139 0.2233 0.2134 0.2246 0.2142 

)11(

22 (0.1) 0.2534 0.2328 0.2520 0.2386 0.2572 0.2308 

11 (0.09) 0.2661 0.2476 0.2658 0.2483 0.2665 0.2472 

12 (0.01) 0.2682 0.2558 0.2677 0.2572 0.2691 0.2550 

21 (0.01) 0.2728 0.2584 0.2723 0.2599 0.2737 0.2576 

22 (0.25) 0.2197 0.2147 0.2195 0.2140 0.2202 0.2151 
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Abstract
The Uniform Truncated Poisson distribution defined on the interval [0, 1] is studied in

detail and has shown that this distribution is derivable in three different ways. Analytical
properties of this distribution are derived and estimation problems are addressed. Real data
sets are modeled using this distribution. Generalization of the distribution on any finite
interval is also considered and properties are studied.
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1. Introduction

Theoretical probability distribution gives us a law according to which different values
of the random variables are distributed with specified probabilities which can be expressed
mathematically. Recent studies on probability distributions are mainly concerned with sup-
port either in the real line or positive real line. Distributions on finite intervals are less
considered by the researchers. But we know that many of our real data sets are lying in
finite intervals. Moreover many of the organisms in biology, experimental results in physics,
chemistry, etc. show a uniform pattern in [0, 1]. Some recent distributions defined on [0, 1]
are available in the research papers, Altawil (2019) and Hassan et al. (2020). Rescaling a
data into [0, 1] is useful in machine learning and image processing. The most elegant and
common method widely used in these fields are min-max scaling procedure. This is an alter-
native method to z-score normalization. By the min-max transformation discussed in this
paper any random variable with support on a real line can be transformed into [0, 1] and
further analysis can be done. Also in neural networks [0, 1] data is required for normalizing
pixel intensities. As mentioned in Weigend and Gershenfeld (1993) and Yu et al. (2006)
normalization has an important role in the data management. By this transformation all
the features are kept same, but it results in smaller standard deviations of the observations,
which minimizes the outlier effect. So an attempt is made to study a distribution with
support on [0, 1] which was mentioned in Hao and Godbole (2014). More recently a new
distribution with support on [0, 1] called unifed distribution has been introduced in Qui-
jano Xacur (2019) which can be used as the response distribution for a generalized linear
model. When the index parameter is unity this family gives the distribution we study in this
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paper. We further explore this distribution by introducing it in another way and bringing
together the relevant properties and results concerning it. We used a compounding method
for the derivation of this distribution. Derivations of new discrete and continuous distribu-
tions compounding two distributions have been discussed by several authors, see for instance
uniform-geometric distribution in Akdogan et al. (2016), binomial-Poisson distribution in
Hu et al. (2007), and Weibull-power series distribution in Morais and Barreto-Souza (2011).
Similar distributions can also been seen in Adamidis and Loukas (1998), Kus (2007), Tah-
masbi and Rezaei (2008), and Chahkandi and Ganjali (2009). We have some well-known
distributions like beta distribution and power function distribution with support on [0, 1].
These distributions are found to have useful applications in several real life situations in
reliability, time series, etc. So we have made a comparison of the distribution studied in this
paper with these well known distributions. We could also use this new distribution in the
modeling of time series data. So an advanced level model diagnosis in non-linear and volatile
time series data using this distribution will be quite interesting in the near future.

This paper is organized as follows. In Section 2, uniform truncated Poisson distribution
is introduced and its properties are studied. Transformations are considered and correspond-
ing distributions are derived in Section 3. The estimation of the parameter is done in Section
4 and numerical illustrations are given therein. Asymptotic properties of the estimators are
also delineated in the same section. A generalization of this new distribution with support
on any finite interval is done in Section 5. Application to real data sets is given in Section
6 followed by a concluding Section.

2. Uniform Truncated Poisson Distribution

Distributions defined on [0,1] are not very common in literature and the most widely
used distributions belonging to this category are power function distribution and beta dis-
tribution. Several applications of the distributions defined on [0,1] have been portrayed in
the introduction part. The applications of such distributions in neural networks, pixel in-
tensities, artificial intelligence, physics, engineering, time series etc. are the motivation for
this present study. Also for the variates in [0,1] like percentages or fractions, we have only
few studies on regression/time series models. In this context some of the notable works are
Kieschnick and McCullough (2003), Jara et al. (2013), Ristic and Popovic (2000), Rocha
and Cribari-Neto (2009) and Bayer et al. (2018). So the distribution studied in this paper
may be applied in the advanced fields of the areas mentioned above even though we have
illustrated some of the applications in the last section of this paper. Now we consider the
distribution on [0,1] mentioned in Hao and Godbole (2014) and propose its construction in
three different ways. These methods are described below.

Method 1: We consider a transformation of the truncated uniform distribution to form
a new random variable defined on [0,1]. Let U be a random variable following truncated
uniform distribution with probability density function (pdf),

g (u) = 1
eθ − 1 , 0 ≤ u ≤ eθ − 1.

Consider the transformation,
X = log (1 + U)

θ
. (1)
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Then the probability density function of X is

f (x) = 1
eθ − 1θeθx, 0 ≤ x ≤ 1, θ ̸= 0. (2)

It may be noted that when θ = 0 the distribution is uniform in [0,1].

Method 2: The distribution specified in (2) can be derived as a solution of the first order
differential equation as given below. We have used this method keeping in mind that the
radioactive decay is associated with a differential equation and an exponential random vari-
able is an example for it. So we are trying to construct a distribution with an initial value
at time zero as a function of θ but the limit of the initial value function at time point zero
is 1. This initial value function θ

eθ−1 is monotone decreasing in θ. Let
dy

dx
− θy = θ

eθ − 1 (3)

be the first order differential equation and choose y = F (x).
That is

dF (x)
dx

− θF (x) = θ

eθ − 1 .

Solving we get

F (x) = eθx − 1
eθ − 1

F̄ (x) = 1 − F (x) = eθ − eθx

eθ − 1
and hence f (x) is of the form (2). So this distribution is the solution of the first order
differential equation

dy

dx
− θy = θ

eθ − 1 .

Method 3: Random minimum or maximum of N independent and identically distributed
(i.i.d) random variables are studied in Louzada et al. (2011), Kus (2007), Cancho et al.
(2011) and several other papers. It may be noted that Hao and Godbole (2014) has intro-
duced the uniform-Poisson model, deriving it as given below. They have applied the method
mentioned above and considered only a few properties in that paper. So using the procedure
used there, assuming the random variable N to be truncated Poisson with probability mass
function

P (N = n) = e−θθN

N !(1 − e−θ) , N = 1, 2, ...

and X1, X2, ..., XN i.i.d U [0, 1] with distribution function F(.), the distribution of
X = min1≤i≤N(Xi) is,

g (X = x) = f (x)
∞∑

n=1
n (F (x))N−1 P (N = n)

which is exactly the same as (2). Hence we call this random variable X with pdf (2) as
Uniform Truncated Poisson distribution (θ) denoted as UTPD(θ).

It is quite interesting to note that UTPD(θ) is derived in three different ways. Now we
look at the properties of this new distribution.
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2.1. Properties

1. The survival function is eθ−eθx

eθ−1 .

2. The hazard function, h (x) = f(x)
F (x) = θeθx

eθ−eθx = θ
eθ(1−x)−1 .

It can be seen that for all θ values, the distribution has an increasing failure rate (IFR).

3. The characteristic function, ϕX (t) = θ

(eθ−1)
1

(θ+it)

(
eθ+it − 1

)
.

4. The rth moment of UTPD is given by

E(Xr) = eθ

eθ − 1

[
1 − r

θ
+ r(r − 1)

θ2 − r(r − 1)(r − 2)
θ3

+ r(r − 1)(r − 2)(r − 3)
θ4 − ... + (−1r)r(r − 1)(r − 2)(r − 3)...1

θr

]

+ 1
eθ − 1(−1)r+1 r(r − 1)(r − 2)(r − 3)...1

θr
, for r=1, 2, ...

5. Mean= eθ(θ−1)+1
θ(eθ−1) .

6. Variance= eθ

eθ−1

(
1 − 2

θ
+ 2

θ2

)
− 2

θ2(eθ−1) −
(

eθ(θ−1)+1
θ(eθ−1)

)2
.

For θ = 1, Mean= 1
(e−1) , V ariance = e2−3e+1

(e−1)2 .

7. The pth quantile is given by xp = 1
θ

log
{
1 + p

(
eθ − 1

)}
, 0 ≤ p ≤ 1.

8. Entropy, a measure of the uncertainty associated with the random variable is given by
H (X) = −θ

θ−1

{
ln θeθ

θ
− ln θ

(
1
θ

)
+ eθ

θ
− 1

θ2

(
eθ − 1

)
− ln

(
eθ − 1

)}
.

9. Odds ratio : Odds ratios are often used in the medical literature.

(a) The odds ratio of surviving beyond time, ϕ+ = F̄ (X)
F (X) = eθ−eθx

eθx−1 .

(b) The odds ratio of failure by time, ϕ− = F (X)
F̄ (X) = eθx−1

eθ−eθx .

The density function, distribution function, and the hazard function for different values
of θ are plotted in Figures 1 to 3 respectively. From the density plots, it is clear
that the positive value of the parameter θ confirms the left-skewed behavior and a
negative value indicates the right-skewed behavior. So it is a distribution on [0, 1],
which can be used for modeling left or right skewed data sets. When the value of θ is
positive and increases the density function becomes more peaked but less left-skewed.
But the behavior is just the opposite when θ is negative. Even though from Figure
3 it is clear that the distribution has IFR for different values of θ, the behavior of
the hazard function doesn’t vary much. The nature of this distribution is actually
very similar to the power function distribution. It means a comparison with power
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function distribution will be quite interesting. For illustrating this, the density plots
of UTPD and power function distribution are drawn together in Figure 4. As θ > 0
and increases UTPD coincides with power function distribution. A comparison with
beta distribution is also interesting since beta distribution is a flexible distribution
with wide applications. But we know that the failure rate function of the beta (p, q)
distribution is increasing only if p ≥ 1, and the comparison will be meaningful only
under this particular case. So we have not given much importance to this part in this
study.

Figure 1: Density plots of UTPD for various values of θ

Figure 2: Distribution function of UTPD for various values of θ

10. Skewness and Kurtosis
Using the quantile function given in property 7, the first, second and third quantiles
are x0.25, x0.50, x0.75 respectively.
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Bowley’s measure of skewness,

S = x0.75 + x0.25 − 2x0.50

x0.75 − x0.25

=
log[

1
16 ((3eθ+1)(eθ+3)

( 1
2 (eθ+1))2 ]

log[3eθ+1
eθ+3 ]

.

The kurtosis is measured by the method introduced by Moors (1988). He derived this
measure using octiles, where the octiles Ei are defined as,

P (X < Ei) ≤ i

8
and

P (X > Ei) ≤ 1 − i

8 .

Using octiles the measure of kurtosis,

K = (E7 − E5) + (E3 − E1)
E6 − E2

.

These two measures are given in Table 1 and the observations we made from the density
plots regarding skewness and kurtosis are very well established numerically in this table. It
is clear that the distribution is symmetric for θ, and the values of the kurtosis are the same
for both the negative and positive values of the parameter.

Table 1: Skewness and Kurtosis

Parameter:θ Skewness Kurtosis
0.5 -0.0613 1.0114
2 -0.1953 1.1385
5 -0.2579 1.2925
8 -0.2616 1.3055

-0.5 0.0613 1.0114
-2 0.1953 1.1385
-5 0.2579 1.2925
-8 0.2616 1.3055

Remark 1: This distribution is useful in machine learning specifically for the normalization
used for the data representation, further processing and accuracy. The usual transformation
used for this purpose is

xi − min(xi)
max(xi) − min(xi)

. (4)

Later in our real data analysis part described in the last section of this paper, we
explain the use of this distribution in such transformations.
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Figure 3: Hazard function of UTPD for various values of θ

2.2. Distribution of order statistics

Assume that X1, X2, X3, ..., Xn are independent random variables following UTPD with
parameter θ. The pdf of min (X1, X2, X3, ..., Xn) is given by

fX(1) (x) = nθeθx

(eθ − 1)n

(
eθ − eθx

)n−1

and the pdf of max (X1, X2, X3..., Xn) is given by

fX(n) (x) = nθeθx

(eθ − 1)n

(
eθx − 1

)n−1
.

In the next section, we describe some transformed distributions, which seems very
similar to some familiar distributions but with different domains.

3. Transformed Distributions

Here we consider some random variables generated through the transformations of (2)
and derive their distributions.

Result 1: Considering the transformation

U = − log X,

where X follows UTPD with density function given in (2), the pdf of U is

g(u) = θ

eθ − 1e−ueθe−u

, 0 ≤ u < ∞, (5)

which is the Weibull-Poisson distribution by Morais and Barreto-Souza (2011).



286 KRISHNARANI S. D. and VIDYA V. P. [Vol. 20, No. 1

Figure 4: Comparison of UTPD and power function distribution

Result 2: When we take a power transformation

V = X
1
β (6)

the density function of V becomes

g(v) = θβ

eθ − 1vβ−1eθvβ

, 0 ≤ v ≤ 1, (7)

which has the form of the Weibull distribution, but domain is quite different.

Result 3: The probability density function of W = 1
X

, where X follows UTPD is

h(w) = θ

eθ − 1e
θ
w

1
w2 , 1 ≤ w < ∞. (8)

Estimation of the parameter of the UTPD is done in the next section.
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4. Estimation of the Parameter

For the estimation of the parameter, we employ the maximum likelihood (ML) method
and the method of moments (MM), and comparisons are made with numerical illustrations.

4.1. Maximum likelihood estimation (MLE)

Suppose a sample of size n is taken from UTPD with pdf (2). By taking logarithm
of the likelihood function and finding the derivative with respect to θ, we have a nonlinear
equation

∂ log L

∂θ
= 0 ⇒ n

θ
− neθ

eθ − 1 +
n∑

i=1
xi = 0,

which can be solved numerically to estimate the parameter.

4.2. Method of moments

Another method used for the estimation of the parameter is the method of moments.
Equating the first raw moment to the corresponding sample moment, the following equation
is obtained, and solving the same for θ results in the estimate.∑n

i=1 xi

n
= eθ (θ − 1) + 1

θ (eθ − 1) .

4.3. Large sample properties

The asymptotic properties of the ML estimators, assuming the usual regularity condi-
tions are provided in this section.

Property 1: The ML estimator θ̂ is asymptotically normally distributed with mean θ and
variance 1

nI(θ) where I(θ) is the well known information matrix.

Proof: We have the log likelihood function

log L = n log θ − n log
(
eθ − 1

)
+ θ

n∑
i=1

xi.

Then
∂2logL

∂θ2 = −n

θ2 + neθ

(eθ − 1)2 .

If we denote the gradient of log L, the score statistic as S(θ), and −∂2logL
∂θ2 as K(θ), then the

above equation can be written as,

K(θ) = −S ′(θ) = n

θ2 − neθ

(eθ − 1)2 .

Also we know that,

S(θ) = ∂logL
∂θ

= ∑n
i=1

∂logf(Xi,θ)
∂θ

and
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K(θ) = ∑n
i=1 K(Xi, θ).

Then, E(K(θ)) = nI(θ) where I(θ) = E[∂logf(Xi,θ)
∂θ

]2, the information matrix.

Using Taylor’s formula,

0 = S(θ̂) = S(θ) − K(θ)(θ̂ − θ) + R, where R tends to zero.

And finally after adjusting the terms,
√

n(θ̂ − θ) = S(θ)/
√

n
K(θ)/n

.

By Slutsky’s theorem θ̂ converges in distribution to N(θ, 1
nI(θ)).

Now the consistency property of θ̂ is stated below, the proof of which readily follows as in
Kale (2007).

Property 2: The likelihood equation admits a consistent solution and the consistent esti-
mator is essentially unique.

4.4. Numerical examples

Simulated samples of sizes 20, 60 and 100 from the population following UTPD for
selecting the better method of estimation. For the comparison purpose of the two methods
discussed above, each sample is generated 1000 times. The estimate of θ, standard error (SE),
mean square error (MSE), 95% confidence intervals (CI) for the parameters and the coverage
probabilities (CP) are shown in Table 2. All the simulation works and other computations
are done using R-programming and the R codes are presented in the Annexure. The SE
and MSE are decreasing with an increase in sample size. The coverage probabilities are
increasing when the sample size is increasing. But for smaller sample sizes, the coverage
probabilities of the parameters estimated using the ML method are lesser than that generated
by MM. From the table, it is clear that both the ML method and MM are equally good for
estimation purposes based on the MSE. Both the methods give us approximately equal values
as parameter estimates.

In the next section, an attempt is made to generalize the UTPD into a general finite
interval (a,b).

5. Generalized UTPD

In this section, we construct a generalization of UTPD. As we have seen in the definition
of UTPD, the domain is [0, 1]. This can be generalized to a distribution defined on a finite
interval (a, b). Let X be a continuous random variable defined on (a, b). The probability
density function of X is given by

f (x) = θ

eθb − eθa
eθx, a < x < b, θ ̸= 0.

When θ = 0, it becomes the uniform distribution defined on (a,b).
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Properties

1. The kth raw moment is given by

E(Xk) = C{bkeθb − akeθa

θ
− k

θ2 (bk−1eθb − ak−1eθa) + (k − 1)k
θ3 (bk−2eθb − ak−2eθa)

+... + (−1)k(1.2.3...k)
θk+1 (eθb − eθa)},

where C = θ
(eθb−eθa) .

2. Mean= beθb−aeθa

(eθb−eθa) − 1
θ
.

3. Variance= θ

(eθb−eθa)
{

b2eθb−a2eθa

θ
− 2

θ2

(
beθb − aeθa

)
+ 2

θ3

(
eθb − eθa

)}
−

(
beθb−aeθa

(eθb−eθa) − 1
θ

)2
.

4. The hazard rate function, h (x) = θeθx

eθb−{eθx} .

5. The mean residual life function (MRL), µ(t) = 1
eθb−eθa−eθt−eθa

{
eθb (b − t − 1) + etb

}
.

6. The quantile function is x = 1
θ

ln
[
eθa (1 − u) + ueθb

]
.

More interesting features are the topics for further studies.

6. Applications

In this section, the application of the distribution is illustrated by fitting the UTPD to
four data sets. As mentioned in Section 2, we are comparing the UTPD and power function
distributions for all these data sets.

Data Set 1: This data set is obtained from the Los Angeles Department of Water and Power
(LADWP) solar incentive program, which offers incentives to offset the cost of installing
a solar rooftop system in the homes/business of the people of Los Angeles. This metric
measures the Net Energy Metering (NEM) installed capacity (Kilowatts), which is available
in https://catalog.data.gov/dataset. The data consists of the observations from 2016 to 2018,
which describes the application of UTPD in time series as well as physics. As mentioned in
Remark 1, the data can be transformed using (4) to bring the data into the range [0,1]. Now
we try to fit the power function and UTPD to this transformed data. By the Kolmogorov-
Smirnov (K-S) distance measure and p-value given in Table 3, it is clear that both these
distributions are good fit for this data set. The p value is greater than 0.05, confirming that
the UTPD and power function distribution are good approximations. But we may conclude
that UTPD is a better fit for this data since K-S distance is lesser but p-value is greater
when compared with power function distribution.

Data Set 2: Data set 2 is the total tax and non-tax revenue of Egypt from 2002 to 2018
available in https://stats.oecd.org and these are time series observations from financial sector.
Transform the data using (4) and here also we obtain the power function and UTPD as



290 KRISHNARANI S. D. and VIDYA V. P. [Vol. 20, No. 1

suitable fit for this data based on K-S distance and p-value given in Table 3. In the light
of these two values we could identify that UTPD is a better fit for this data than power
function distribution.

Figure 5: Density plots of fitted data sets
Data Set 3: Now we consider another time series data for describing the applications of
UTPD. This is a set of observations of Japan consumer confidence index from January 2014
to March 2021. (Ref: https://stats.oecd.org). Again after suitable transformation we get
the power function and UTPD as suitable fit for this transformed data from the values in
Table 3. But since the p-value is higher and K-S distance is lesser for UTPD than power
function, it is clear that UTPD is a better fit.

Data Set 4: The fourth data set we consider is the ball bearing data taken from Lawless
(2003) to employ it in the engineering field. The data are the number of million revolutions
before failure for each of the 23 ball bearings in the life test and they are 17.88, 28.92, 33.00,
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41.52, 42.12, 45.60, 48.80, 51.84, 51.96, 54.12, 55.56, 67.80, 68.64, 68.64, 68.88, 84.12, 93.12,
98.64, 105.12, 105.84, 127.92, 128.04, and 173.40. As mentioned in Remark 1, the data can
be transformed using (4) to [0, 1]. The K-S distance and p-value given in Table 3, reveal
that UTPD is a better fit for this data than power function distribution.

The densities of the original data sets together with the fitted densities plotted in Figure 5
reveal that UTPD is a good fit for all the data sets considered.

Table 2: Parameter Estimates

Sample size (n) Parameter (θ) Method Estimate (θ̂) SE MSE CI CP
20 4 MLE 4.12 1.110 1.307 (3.15,5.09) 0.627

MM 4.10 0.252 1.288 (1.88,6.37) 0.957
60 MLE 4.07 0.625 0.385 (3.12,5.02) 0.880

MM 4.03 0.080 0.394 (2.80,5.26) 0.948
100 MLE 4.01 0.482 0.234 (3.07,4.96) 0.955

MM 4.02 0.048 0.246 (3.06,4.98) 0.954
20 3 MLE 3.06 0.968 1.020 (2.21,3.91) 0.620

MM 3.09 0.233 1.098 (1.05,5.14) 0.938
60 MLE 3.06 0.553 0.303 (2.22,3.90) 0.876

MM 3.04 0.072 0.312 (1.95,4.13) 0.950
100 MLE 3.01 0.424 0.183 (2.18,3.84) 0.950

MM 3.01 0.043 0.190 (2.15,3.86) 0.947
20 1.5 MLE 1.56 0.835 0.740 (0.83,2.29) 0.622

MM 1.54 0.196 0.770 (-0.17,3.26) 0.950
60 MLE 1.50 0.475 0.231 (0.78,2.22) 0.861

MM 1.55 0.063 0.147 (0.79,2.23) 0.942
100 MLE 1.50 0.367 0.147 (0.78,2.22) 0.942

MM 1.49 0.036 0.130 (0.78,2.20) 0.947
20 0.5 MLE 0.52 0.792 0.653 (-0.16,1.22) 0.610

MM 0.51 0.180 0.653 (-1.07,2.09) 0.950
60 MLE 0.50 0.452 0.209 (-0.18,1.19) 0.868

MM 0.50 0.058 0.208 (-0.38,1.40) 0.957
100 MLE 0.49 0.349 0.125 (-0.20,1.16) 0.949

MM 0.48 0.034 0.119 (-0.18,1.16) 0.950
20 -2 MLE -2.06 0.870 0.780 (-2.83,-1.31) 0.631

MM -2.10 0.203 0.840 (-3.89,-0.31) 0.954
60 MLE -2.04 0.495 0.263 (-2.79,-1.28) 0.865

MM -2.04 0.062 0.234 (-2.98,-1.09) 0.948
100 MLE -2.01 0.382 0.148 (-2.78,-1.26) 0.941

MM -2.03 0.036 0.132 (-2.74,-1.33) 0.952
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Table 3: Fitting of real data sets

Distribution Parameter K-S distance p-value
Dataset 1 UTPD 0.75 0.0967 0.9991

Power function 1.28 0.1290 0.9634
Dataset 2 UTPD 2.29 0.1176 0.9999

Power function 2.08 0.1764 0.7631
Dataset 3 UTPD 3.64 0.0919 0.8585

Power function 3.04 0.1149 0.6164
Dataset 4 UTPD 1.91 0.1421 0.7657

Power function 1.86 0.2173 0.6487

7. Conclusion

In this paper, we have studied in detail the uniform truncated Poisson distribution
as the solution of a first order differential equation and derived the same from the trun-
cated uniform distribution. Comparisons with some well known distributions are done.
The expressions for moments, distributions of the order statistics, etc. are further derived.
Some transformed distributions are also studied. Some of the estimation procedures of the
parameter are discussed. The newly constructed distribution is applied on real data. Char-
acterizations and further applications of UTPD in time series, regression and reliability are
the topics for further studies.
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ANNEXURE

A1: R Code for simulation studies using MLE method

m=1000
n=20
para=4
x<−l i s t (mode = ” vecto r ” , length = m)
z<−l i s t (mode = ” vecto r ” , length = m)
z<−l i s t (mode = ” vecto r ” , length = m)
out<−l i s t (mode = ” vecto r ” , length = m)
e s t<−l i s t (mode = ” vecto r ” , length = m)
dut<−function (x , a=4)(( a/ (exp( a ) −1))∗exp( a∗x ) )
put<−function (x , a=4)(1−(1/ (exp( a)−1)∗ (exp( a)−exp( a∗x ) ) ) )
qut<−function (u , a =4)((1/a )∗ log (1+u∗ (exp( a ) −1)))
rut<−function (n , a=4)qut ( runif (n ) , a )
for ( i in 1 :m)
{
x [ [ i ] ]<−runif (n)
z [ [ i ] ]<−qut (x [ [ i ] ] )
fn <− function ( theta )
sum( log ( ( exp( theta )−1)/ theta )− theta∗z [ [ i ] ] )
out [ [ i ] ]<−nlm( fn , theta<−0 . 1 , he s s i an=TRUE)
out
}
w<−vector (mode = ” numeric ” , length = m)
se the ta=vector (mode=” numeric ” , length = m) #standard error o f t h e t a
for ( j in 1 :m)
{
w[ j ]=out [ [ j ] ] $ es t imate
s e the ta [ j ]=sqrt ( diag ( solve ( out [ [ j ] ] $ he s s i an ) ) )
}
#Confidence i n t e r v a l s
l c l a<−vector (mode = ” numeric ” , length = m)
uc la<−vector (mode = ” numeric ” , length = m)
for ( i in 1 :m)
{
l c l a [ i ] <− (w[ i ] − 1 .96∗ s e the ta [ i ] )
uc la [ i ] <− (w[ i ] + 1 .96∗ s e the ta [ i ] )
}
#Coverage P r o b a b i l i t y
covera<−vector (mode = ” numeric ” , length = m)
for ( i in 1 :m)
{
covera [ i ] <− ( l c l a [ i ]<=4)&( uc la [ i ]>=4)
}
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A2: R Code for simulation studies using the method of moments
for ( i in 1 :m)
{
x [ [ i ] ]<−runif (n)
z [ [ i ] ]<−qut (x [ [ i ] ] )
z [ [ i ] ]<−na . omit ( z [ [ i ] ] )
func=function ( theta ){
(sum( z [ [ i ] ] ) /n)− ( ( exp( theta )∗ ( theta −1)+1)/ ( theta∗ (exp( theta ) −1)))
}

Result [ [ i ] ]= BFfzero 2( func , −10 ,100)
}
# w1<−vec t o r (mode = ”numeric ” , l e n g t h = m)
sew1<−vector (mode = ” numeric ” , length = m)
for ( j in 1 :m)
{
w1 [ j ]= Result [ [ j ] ] $ root
}
#Confidence i n t e r v a l s
l c l aw1<−vector (mode = ” numeric ” , length = m)
uclaw1<−vector (mode = ” numeric ” , length = m)
for ( i in 1 :m)
{
l c l aw1 [ i ] <− (w1 [ i ] − 1 .96∗sqrt ( var (w1 ) ) )
uclaw1 [ i ] <− (w1 [ i ] + 1 .96∗sqrt ( var (w1 ) ) )
}
#Coverage P r o b a b i l i t y
coveragew1<−vector (mode = ” numeric ” , length = m)
for ( i in 1 :m)
{
coveragew1 [ i ]<−( l c law1 [ i ]<=4)&( uclaw1 [ i ]>=4)
}
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Abstract 

Various self-similar traffic models proposed earlier are asymptotic. In this connection, 

many Markovian models are proposed, but the performance analysis was possible only when 

the system is in steady state, and such  traffic models are not realistic. In this paper, a procedure 

is proposed to fit Markov Modulated Poisson Process (MMPP) with time dependent sinusoidal 

arrival rates that emulates self-similar traffic. This is done by matching the variance of the 

both during prescribed time scales. Numerical results represent what extent MMPP could 

reproduce self-similar traffic in specified time scales.  

Key words: Self-similar traffic; Variance-time; Markovain Modulated Poisson process 

(MMPP); Interrupted  Poisson process (IPP). 

 

1.  Introduction 

The pivotal studies at AT&T Bell labs (Leland, et al. 1994; Paxson and Flyod, 1995) 

revealed that IP packet traffic over LAN and WWW internet traffic (Crovella and Bestavros,  

1997) are self-similar (fractal like behavior), and this behavior effects efficiency of network 

nodes such as routers or switches (Misra, et al. 2012). Many traffic models such as Chaotic 

maps, FARIMA, and FBM are proposed to emulate the self-similar behavior. These models 

are parsimonious, but are asymptotic, hence they are not practically useful (Erramilli, et al. 

1996; Norros, 1994). Andersen and Nielsen (1998) used Markovian Arrival Process (MAP) in 

particular Switched Poisson Process (SPP) to model the Long Range Dependent (LRD) 

characteristics (statistical definition of self-similarity) of traffic over different time scales, and 

proposed a fitting procedure wherein covariance of second-order self-similar process, and that 

of resultant MAP (superposition of several SPPs) are equated.  Kasahara, et al. (2001) proposed 

a method based on variance of second-order self-similar traffic using Interrupted Poisson 

Process (IPP). Later, Reddy, et al. (2005) extended the work by making modulating parameters 

of each IPP unequal, and investigated the relation between traffic parameters, time scale, and 

parameters of fitting.  In all the above, resultant MAP is homogeneous and the arrival rates 

were not functions of time, and queueing behavior of traffic nodes was investigated in the 

steady state. Steady state outcomes never give actual queueing behavior, since it relies on a 

prolonged performance of system to nullify the initial conditions (Kelton and Law, 1985). In 

real time, network traffic is not homogeneous over all time scales, and the modeled system by 

no means attains steady state. Because of these reasons, necessity of time dependent (transient) 

analysis is warranted. Abate and Whitt (1988) analyzed M/M/1 queue in transient with Poisson 

arrivals using Laplace transforms. Eick, et al. (1993) studied the Mt /G/  queue with time 
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dependent arrival rates, and determined the number of  busy servers at time .t  Different 

methods were developed by Jennings and Massey (1997) for analysis blocking in circuit 

switched networks with transient arrival traffic. Massey (2002) proposed canonical queueing 

models with time-varying rates, and derived necessary mathematical tools for analysis. Qian 

and Tipper (2004)  proposed a framework for adaptively determining optimal channel 

allocation scheme, and evaluated performance of the scheme under time varying loads. Liu and 

Whitt (2014) developed an algorithm to find number of servers required to preserve the 

prerformance in a multi server queue with time varying arrival rates for extension of feed-

forward netwoks. Pant and Ghimire (2016) determined the expected queue length and waiting 

time of the customers at time t  using transient arrival rates. In the papers cited above, authors 

worked with various queueing systems using time based sinusoidal arrival rates to address 

issues in various domains. These models are based on the fact that many real time arrival 

phenomenons are almost periodic in nature. In this paper, procedure to fit Markovian Arrival 

Process (MAP) with sinusoidal arrival rates that emulates self-similar traffic over prescribed 

time scales is proposed. Variance of  number of arrivals due to self-similar traffic, and that of 

resultant MAP (superposition of  IPPs with sinusoidal arrival rates) are equated at certain time 

points in order to compute the MAP parameters. 

 

The remaining part is arranged in the following way. In section 2, outline of second-order 

self-similar process and sinusoidal IPP are presented. In section 3, fitting procedure with time 

dependent sinusoidal arrival rates is given. Numerical results are demonstrated in section 4. 

Finally, some conclusions are given in section 5. 

 

2.  Second-Order Self-Similar and Sinusoidal IPP Processes 

Self-similarity is a property, wherein a certain feature of the object is maintained with 

respect to scaling in space and time. It is statistically defined as follows.  Let X  be a second 

order process with variance ,2  and the time axis is splitted into disjoint sub intervals of unit 

length. Let  ,.....3,2,1/  tXX t  be the points (packet arrivals) in tht interval. Let  )()( r

t

r XX    be 

a new sequence obtained by averaging the original sequence over non-overlapping blocks of 

size r . i.e., 
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The obtained sequence is a second order process, and is called exactly second order self-

similar with Hurst Parameter, ,2/1 H  if 
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This feature can be emulated by Markov Modulated Poisson Process (MMPP) over the 

desired time scale (Reddy, et al. 2005). For the reason mentioned in the introduction, a special 

type of two-state IPP is proposed using time dependent arrival rates. The proposed IPP is given 

as follows: 
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In the above, Q  is transition rate matrix with two distinct parameters and )(tR  is arrival 

rate matrix, which says that, when Markov process is in state 1, arrival process is with 

sinusoidal arrival rate )sin()( tbat  , where ba,  are the constants, and 10,  ab  

(Eick, et al. 1993), and when the Markov process in state 2, there are no arrivals. The number 

of arrivals in ],0( t  of the said IPP is denoted by 
tN , and tJ  be the state of Markov process at 

time .t  The Generating function ),( tzP  obtained by forward Chapman-Kolmogorov 

equations with time dependent Markovian process (Fischer and  Hellstern,  1993) is given by 

                                          .)()1(),(
0
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The mean value of tN  is given by (Heffes and Lucantoni, 1986) 
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Differentiating with respect to z, and solving above equation (Neuts, 1979; Coddington and 

Levinson, 1987), one can obtain as 
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The variance of tN  is given by (Heffes and Lucantoni, 1986)  
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After differentiating with respect to z, and by applying some algebraic manipulation (Neuts, 

1979; Coddington and Levinson, 1987), one can obtain as 
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where Π   is steady state vector of Markov chain, e  is the vector of appropriate dimension 

with each entry as 1, and 
t

dttRtR
0

.)()(  

The Index of Dispersion for Counts (IDC) is  
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NVar
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By using Eqs. (4) and (5), one can have 
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One can derive the following results: 

i. ,1)( tIDC  as 0t  (i.e., MMPP move towards to a Poisson process).

 

ii. 
2

21

1

)(

2
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dd

ad
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  , a constant, as t . 

3.  Fitting Procedure 

Variance based fitting procedure is to obtain the MMPP parameters using time dependent 

arrival rates. From earlier, (Reddy, et al. 2005; Kasahara, et al. 2001) it is known that modelling 

of self-similar traffic involves superposition of number of two-state MMPPs (in particular 

IPPs), and the fundamental requirements for fitting process are  

i)  maxmin , rr : Minimum, maximum limits of the time scale range. 

ii)  )(tw  : Arrival rate of  whole process at time .t  

iii)  n  : Number of superposed two-state IPPs. 

iv)  H  : Hurst parameter. 

v)  2 : Variance. 

The thj IPP of the process is given by
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where jba ,  are the constants and .10,  jjj ab 
 
In this context, a  is assumed that, it is 

equal to the whole arrival rate. The superposition of n  IPPs, and a Poisson process is stated as 

                                   
,21 nQQQQ  
 

                                  
).()()()()()( 321 ttRtRtRtRtR pn                                 (9)

 

Here, time dependent arrival rate of classical Poisson Process is denoted by )(tp , and 

  indicates the kronecker’s sum, where the resultant of above sum is also an MMPP. The 

arrival rate of whole process at time t  is given by  
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Let tY  be the number of arrivals in whole Markovian process, and the arrivals from thj  

IPP and Poisson process are denoted by  tpj,t NN ,,
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The variance of thj  IPP  and Poisson process are given as  
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From Eqs. (11), (12), (13), and using the fact that variance of a resultant process is 

preserved by the superposition of distinct sub-processes, the following relation is obtained. 
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Using (1) and (14), at n  different points njrj ,..,3,2,1,   variance  of both processes are 

equated. The time scale over which self-similarity of traffic exhibits is taken as ],[ maxmin rr  (i.e., 

maxmin rrr  ), then jr
 
is given by 
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Consider  that  2,1 21 ldrldr jj   and make use of  inequality given below in Eq. (15), 
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The above assumptions are based on the fact that self-similar process is identical for all 

time scales. Now the parameters to be obtained are 11d , .21d  Once their values are obtained, 

then the values of jd1  
and jd 2

 can be generated using (18).  By using these values, )(tp  
can 

be obtained from (10). Finally, the required transition parameters 2111, dd  can be determined, 

such that the value of the integral   drYVarXVar
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is  minimum.

 

 

4.  Numerical Results 

 

Accuracy of fitting (self similar traffic as of MMPP) is presented using different samples 

given in Table 1. The samples are pertaining to seminal studies at AT& T Bell labs (Leland, et 

al. 1994). The number of  superposed IPPs n  is taken to be 4. The sinusoidal arrival rates are 

given in Table 2. The variance versus time curves of resultant MMPPs and self-similar traffic 

are shown in Figs.1-12 for n 4 in the time scale ranges ],10,10[ 4

 ],10,10[ 52

 ],10,10[ 62

 ].10,10[ 72  

The n  is taken to be 3 in typical time scale range ]10,10[ 52  to represent the effect of the 

number of superposed components, and the pertinent results are presented in Figs.13-15. The 

results exhibit good agreement with that of self-similar traffic.  

 

Table 1:  Fitting data of samples in time scale range [102, 105] 

 

Sample 

Number 

Parameter Values n=4 n=3 

d11 d21 d11 d21 

Sample 1 H ,7.0 )(tw 1 , and 2 6.0  
0.22 0.001 0.09 0.0924 

Sample 2 H ,8.0 )(tw 1 , and 2 6.0  
0.5 0.0359 0.385 0.025 

Sample 3 H ,9.0 )(tw 1 , and 2 6.0  
0.040015 0.005 0.202 0.001 

Source: Leland, et al. 1994 (for samples) 
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Table 2:  Sinusoidal arrival rates 

 

Arrival rate Value 

)(11 t  )sin(1.01 t  

)(12 t  )sin(3.01 t  

)(13 t  )sin(5.01 t  

)(14 t
 

)sin(7.01 t  

 

 

 

Figure 1: Variance versus time curves with n 4  for sample 1during time scale ]10,10[ 4
 

 

 

Figure 2: Variance versus time curves with n 4  for sample2 during time scale ]10,10[ 4
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Figure 3: Variance versus time curves with n 4  for sample3 during time scale ]10,10[ 4
 

 

 

 

Figure 4: Variance versus time curves with n 4  for sample1 during time scale ]10,10[ 52
 

 

Figure 5: Variance versus time curves with n 4  for sample2 during time scale ]10,10[ 52
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Figure 6: Variance versus time curves with n 4 for sample3 during time scale ]10,10[ 52
 

 

Figure 7: Variance versus time curves with n 4 for sample1 during time scale ]10,10[ 62
 

 

Figure 8: Variance versus time curves with n 4 for sample2 during time scale ]10,10[ 62
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Figure 9: Variance versus time curves with n 4 for sample3 during time scale ]10,10[ 62
 

 

Figure 10: Variance versus time curves with n 4 for sample1 during time ]10,10[ 72
 

 

Figure 11: Variance versus time curves with n 4 for sample2 during time ]10,10[ 72
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Figure 12: Variance versus time curves with n 4  for sample3 during time ]10,10[ 72
 

 

 

 
Figure 13: Variance vs time curves with n 4,3  over time-scale ]10,10[ 52

 for sample1 

Figure 14: Variance vs time curves with n 4,3 over time-scale ]10,10[ 52
 for sample2 
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Figure 15: Variance vs time curves with n 4,3 over time-scale ]10,10[ 52
 for sample3 

 

 

5.  Conclusion 

 

Self-similar traffic models proposed earlier are independent of time (homogeneous), and 

they do not work for time dependent queueing analysis. Here, variance based Markovian fitting 

procedure is presented using time dependent arrival rates. For the validation of fitting variance–

time curves are presented, which show how the resultant MMPPs exhibit legitimate agreement 

with that of self-similar traffic in specified time scales. In addition, it is seen that the accuracy 

improved as number of MMPPs in superposition increases. This model is useful for time 

dependent queuing based performance analysis.  
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