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Abstract 

The Hierarchical Bayes predictor of small area proportions (HBP) under an area level 

version of generalized linear mixed model with logit link function is widely used in small area 

estimation for binary variable. However, this predictor does not account for the presence of 

spatial effect between contiguous or neighbouring regions. Conditional Autoregressive and 

Simultaneous Autoregressive specifications do incorporate spatial associationship while 

considering the spatial correlation effects among areas. But none of these approaches 

implement the idea of spatially varying covariates through spatially dependent fixed effect 

parameters. Such approach in statistics is known as spatial nonstationarity. This article 

introduces a spatially nonstationary extension to the Hierarchical Bayes predictor of small area 

proportions that accounts for the presence of spatial nonstationarity. The proposed predictor is 

referred as the spatial nonstationary Hierarchical Bayes predictor (HBNSP). The impact of 

survey design information is also explored in the proposed predictor. The empirical results 

from simulation studies using spatially nonstationary data indicate that the HBNSP method 

performs better, in terms of relative bias and relative mean squared error, than the alternative 

HBP method that ignore this spatial nonstationarity. The results further show that use of survey-

weight to incorporate the sampling design appears to be imperative when sample data is 

informative.  
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1.  Introduction 

 

In recent years, small area estimation (SAE) technique has emerged as one of the most 

important topics in survey estimation because of an increasing demand for reliable small area 

statistics by various government and international agencies, see for example, Rao and Molina 

(2015). United Nations Sustainable Development Agenda has also marked the developmental 

strategy through availing and utilizing disaggregate level statistics in the programmes and 

planning aimed at uprooting social and regional inequalities. Sample surveys are generally 

designed so that direct estimators (i.e. estimators that use only the sample data from the domain 

of interest) for larger domains provide reliable estimates for parameters of interest. On many 

occasions, however, the interest is in estimating parameters for domains that contain only a 

small number of sample observations or sometimes no sample observations. The term ‘small 

areas’ is used to describe domains whose sample sizes are not large enough to allow sufficiently 

precise direct estimation. Hereafter, refer to these smaller domains as 'small areas' or simply 

'areas'. When direct estimation is not possible, one must rely on alternative, model-based 
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methods for producing small area estimates. Further, large scale surveys produce reliable 

estimates at higher geographical level and such estimates often mask variations which is 

available at local levels. This restricts targeting of heterogeneity at higher levels of spatial 

disaggregation and limits the scope for monitoring and evaluation of parameters locally within 

and across administrative units. Model-based SAE techniques are now widely used in practice 

to meet the indispensable need of reliable disaggregate level statistics from the existing survey 

data. Such SAE methods depend on the availability of population level auxiliary information 

related to the variable of interest and are commonly referred to as indirect methods. The 

industry standard for SAE is to use unit or area level models (Fay and Herriot, 1979; Battese, 

Harter and Fuller, 1988). In the former case these models are for the individual survey 

measurements and include area effects, while in the latter case these models are used to smooth 

out the variability in the unstable area-level direct estimates. Area-level small area modeling is 

usually employed when unit-level data are unavailable, or, as is often the case, where model 

covariates (e.g. census variables) are only available in aggregate form. In this article solely 

focus is on area (or aggregated) level small area modeling.  

 

Fay-Herriot (FH) model is one of the popular examples of aggregated level small area 

model. For continuous survey variable, this model is widely used in practice and has led the 

phenomenal development of small area literatures based on this model.  However, binary or 

count data is often of interest in many practical applications. In epidemiological, 

environmental, poverty related studies such data is much common, where interest generally 

lies in estimation of proportions. A generalized linear mixed model (GLMM) with logit link 

function (also referred to as logistic linear mixed model) is commonly used for estimation of 

small area proportions. The basic structure of area level small area models includes sampling 

model for direct survey estimates and associated sampling error; linking model to link the 

parameter of interest with area-specific auxiliary variables and random effects. The area 

random effect in small area models explains unstructured heterogeneity between areas. Two 

basic approaches for drawing inferences about the small area parameters of interest are known 

to be popular: The empirical best prediction method is based on frequentist idea to estimate 

unknown model parameters and the hierarchical Bayes (HB) approach assumes particular prior 

distributions for the hyperparameters to obtain posterior quantities of the parameter of interest. 

The HB approach has the flexibility to deal with complex SAE model as it overcomes the 

difficulties of analytical mean squared error (MSE) estimation in frequentist set up and 

provides quick and easier posterior variance computation based on Markov Chain Monte Carlo 

(MCMC) simulation. Refer Jiang and Lahiri (2001), You and Zhou (2011), Liu et al. (2014), 

Rao and Molina (2015) and Chandra et al. (2018) for frequentist and Bayesian related studies 

and various real life applications. This article in particular focuses on estimation of small area 

proportions in hierarchical Bayes framework. Among the previous literatures, Liu et al. (2014) 

and Anjoy et al. (2019) have applied hierarchical Bayes version of GLMM (HBGLMM) to 

estimate survey-weighted small area proportions considering different cases of known and 

unknown sampling variance structure (denoted by HBP). The linking model of HBP 

incorporates random effect which is assumed to be independent and identically distributed. As 

a result, spatial associationship between geographical areas cannot be described through this 

structure of the model. However, in many small area problems like disease prevalence and 

poverty estimation, spatial contiguity between neighbouring areas is very common. Therefore, 

induction of spatial variability in GLMM can be a way of reducing the variances or Coefficient 

of Variation (CV) in final estimates. One approach to incorporating such spatial dependency 

among the areas is to extend the GLMM to allow for spatially correlated area effects using, for 

example, a Simultaneous Autoregressive (SAR) model (Cressie, 1993). This model allows for 

spatial correlation in the area effects, while keeping the fixed effects parameters spatially 
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invariant (Chandra and Salvati, 2018). There are data situations, where this assumption is 

inappropriate and parameters associated with the model covariates (i.e. the fixed effects 

parameters) vary spatially. This phenomenon is often referred to as spatial nonstationarity 

(Brunsdon et al., 1996). An alternative approach to incorporating spatial information in SAE 

is therefore to assume that the parameters associated with the model covariates vary spatially. 

In frequentist framework, Chandra et al. (2017) has devised the concept of spatial 

nonstationarity in area level version of GLMM (NSGLMM) for estimating small area 

proportions. A key feature of this approach is that it tries to capture spatial variability through 

incorporating spatially varying covariates in the linking model. It is worth noting that Chandra 

et al. (2017) approach does not use the sampling weights or clustering information in estimation 

of small area proportions under NSGLMM. However, use of this sampling information is 

essential for valid inference from survey data collected by complex survey designs. 

Baldermann et al. (2018) has also forwarded spatial nonstationarity concept for explaining 

spatial variability between areas, but their model is for unit-level data. Contrary to the previous 

studies, this article describes a spatial nonstationary version of hierarchical Bayes approach for 

SAE that incorporates the sampling information when estimating small area proportions under 

an area level small area models (denoted by HBNSP). Unlike frequentist approach, the HBNSP 

method offers the flexibility of MSE estimation through posterior variance computation based 

on MCMC simulation.  

 

Standard model-based approaches to the analysis often ignore the sampling mechanism. 

The GLMM technique implicitly considers equal probability sampling (simple random 

sampling with replacement) within each small area and thus ignores the survey-weight 

(Chandra et al., 2019). But, this may result in potentially large biases in the final estimates. In 

FH model for estimation of small area population mean, direct design-based estimators are 

modeled directly and the survey variance of the associated direct estimator is introduced into 

the model via the design-based errors. The Horvitz-Thompson estimator, weighted Hájek 

estimator are the structures here to incorporate survey design information (Hidiroglou and You, 

2016). However, this method for continuous data requires extension for binary or count data 

for estimating more representative small area proportions. Consequently, the strategic idea is 

to modeling survey-weighted proportions (Liu et al., 2014). Hence, the next attempt in this 

article is to check the impact of complex survey design information in HBNSP. In next section, 

two versions of HBNSP predictor denoted as HBNSP1 and HBNSP2 are described, which 

respectively account for HB modeling of unweighted and survey-weighted small area 

proportions. In section 3, empirical evaluation studies first include a model-based simulation 

set up to evaluate the performance of proposed HBNSP as compared to HBP. Secondly, a 

design-based simulation study is carried out for comparing the performance of HBNSP1 and 

HBNSP2 which respectively, ignores and considers the modeling of survey-weighted 

proportions. The article ends with relevant concluding remarks. 

 

2. Methodology 

  
Let us consider a finite population U of size N which is partitioned into D distinct small 

areas or simply areas. The set of population units in area i is denoted as Ui  with known size Ni, 

such that 
1

D

i i
U U


U and 

1

D

ii
N N


 . A sample s of size n is drawn from population U using 

a probabilistic mechanism. This resulted in sample si in area i with size ni, so that 
1

D

i i
s s


 U and 

1

D

ii
n n


 . Assume that y

ij
 be the value of target variable y for unit j (j=1,…,ni) in small area 



218   PRIYANKA ANJOY [SPL. PROC. 

 

i. The target variable with values y
ij

 has binary response, taking value either 1 or 0. Our aim 

is to estimate the small domain proportions 
1

i

iN

i ij

j=1

= N yP   . When the sample s is drawn 

following a complex survey design, with each unit y
ij

 in small area i design weight ijw  is 

attached, which is alternatively known as survey-weights or sampling weights.  

 

2.1.  Estimation of small area proportions 

The area level version GLMM is widely used for estimation of small area proportions to 

improve the precision of direct survey estimates. Consider,
 ip be the direct survey estimator 

for the parameter of interest
iP . In aggregated level model, it is customary to assume that, 

 

; 1,...,i i iP e i Dp    ,                                                                                        

 

where ie ’s are independent sampling error associated with direct estimator 
ip . Sampling error 

ie  is assumed to have zero mean and known sampling variance 2

eiσ . The linking model of 
iP

attempt to relate area-specific auxiliary variables and random effect component, 
 

( ) ; 1,...,i i ig P v i D  x β ,                                                                                    

 

where the linking function ( )g .  is logit for binary data and log for count data, 
ix  represent 

matrix of area-specific auxiliary variables, β  is the regression coefficient or fixed effect 

parameter vector and 
iv being the area-specific random effect, independent and identically 

distributed as  E iv = 0 and  var 2

i vv σ . Random area-specific effects are included in the 

linking model to account for between areas dissimilarities. Working under HB set up, certain 

prior distributions are assumed for the hyperparameters. For estimating small area proportions 

iP , the sampling and linking models of HBP are represented as, 

 
2| ~ ( , ), 1,...,i i i eip P N P i D   and  2 2logit( ) | , ~ ( , ), 1,...,i v i vP N i D  x  .        

Following standard literature, prior choice for β  is usually taken to be )2

0N(0,σ  and for 
2

vσ  

prior choice is 
0 0( , )IG a b , (IG stands for Inverse Gamma) where 

2

0σ is set to be very large (say, 

106)  and very small value for 
0a  and 

0b  (usually 
0 0 0a b  ) to reflect lack of prior 

knowledge about variance parameters (Rao, 2015; You and Zhou, 2011). Then, inferences 

about the small area parameter of interest are drawn from posterior distribution. Posterior mean 

is taken as the point estimate of the parameter and posterior variance as a measure of the 

uncertainty associated with the estimate. However, an inbuilt postulation in HBP is that fixed 

effect parameter or regression coefficient vector β  is spatially invariant, this is what 

customarily known as spatial stationarity. In contrary, spatial nonstationarity approach tends to 

describe/define spatially varying regression parameters, i.e., values of the regression 

coefficients are necessarily different at different spatial locations. Small area estimation of 

proportions in presence of such spatial nonstationarity is described in next subsection. 
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2.2.  Hierarchical Bayes version of spatial nonstationary GLMM 

For spatial nonstationary version of HBGLMM or HBNSP, regression coefficients in the 

small area model may be expressed as explicit functions of the spatial points of the sample 

observations. Unlike HBP, where one restrict to a single global model with fixed parameter, 

HBNSP technique defines local relationships to exist between study and auxiliary variables. 

This approach is quite like the geographically weighted regression (GWR) in a multiple 

regression framework which takes nonstationary auxiliary variables into consideration 

(Brunsdon et al., 1996). Let, 
il  

be the coordinates of an arbitrarily defined spatial location 

(longitude and latitude) for ith small area; generally, this will be its centroid. Consider, 

 1,..., Dl l l  denoting the D component vector of such spatial locations i.e., having available 

longitude and latitude for all the D spatial locations or areas of interest. Assume that 

nonstationarity is characterized by an area specific vector of fixed effects, 

 

 
   ,i i i i il l  x x x γ    

 

where    i il l γ    and      1( ,..., )i i p il l l  γ . 
 
The linking model of 

iP in HBNSP 

attempt to relate nonstationary auxiliary variables and random effect component, 
 

 logit( ) ; 1,...,i i i iP l v i D  x , with 
2~ (0, )i vv N  . 

Aggregating D area level models lead to the population level version of the HBNSP as 
 

( ) ,     Xβ l v e Xβ ΨΘ+ v ep                                                                

where  1
,...,

D
p p p  is the vector of direct survey estimates,  1

,...,
D

 X x x  be D p  matrix 

of auxiliary variates, β  is the fixed effect parameter vector,
  1,..., mv v v  is a vector of 

domain random effects such that  2,
v D

N v 0 I , 
D

I is the unit matrix of dimension D,
 

 1
,...,

D
e e e is the vector of sampling errors with  , ,Ne 0 Ω  where 

 2diag ;1
ei

i D  Ω is the matrix of design variances.     1
,...,

D
diag diag

 Ψ x x is a 

D pD  matrix of known auxiliary data;     1
,...,

D
l l  Θ γ γ is a spatial Gaussian random 

vector of dimension x1pD such that  E | , Θ Ψ l 0
 

and covariance matrix 

 var( | , )


  Θ Ψ l Σ W cc , where denotes the Kronecker product. The matrix 

  1 1 ,
i j

L l l W defines the spatial distances between sample spatial locations  ,
i j

l l , 

specifically distances between centroids of two locations (i, j). In general, the only constraint 

on the vector c is that  
 Σ W cc  is symmetric and non-negative definite. Following 

Chandra et al. (2017), consider 
p

c 1  , where 0   and 
p

1  denotes the unit vector of order 

p. So,  p p
  Σ W 1 1  involves non zero covariance    cov( , )k i h jl l     1 ,i jL l l 

between  k il  and  h jl for sample spatial locations (i, j), with 1,...,k h p  and diagonal 
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elements as . The parameter   denotes the strength of spatial heterogeneity being explained 

by nonstationary auxiliary variables. In particular 0  indicates the situation where the model 

is spatially homogeneous. In HB framework, the sampling and linking models for HBNSP are 

then expressed as 

 

( )| ~ N ,p P P Ω  and Dlogit( ) , ( )2 2

v η v| ,η σ ~ N , σ P β Xβ ΨΣ Ψ I .                                                          

 

The prior for hyper-parameter β is )2

0N(0,σ  and for variance parameters η  and 
2

vσ  prior is

0 0( , )IG a b , where 
2

0σ  
is set to be very large (say, 106) and very small value for 

0a  and 
0b . 

Note that HBNSP reduces to HBP when 0  . Gibbs sampling method is implemented to 

estimate posterior mean  E |
i

P p  and posterior variance  var |
i

P p . The required full 

conditional distribution of parameters under HBP and HBNSP models are given in Section 2.3.  

 

2.3.  Survey-weighted estimation 
 

The HB modeling of respectively unweighted and survey-weighted small area 

proportions is a way to check the impact of complex survey design information in the resultant 

estimates. Survey-weighted direct estimates used for HB modeling purpose have the 

potentiality to reduce the bias or design error of the final estimates. Consider sample s of size 

n is drawn from population U using a complex design or at least unequal probability scheme. 

Let ijp  be the selection probability attached to jth sampling unit ijy in the area i. The basic 

design weight can be given by 1( ) .ij i ijw n p   These weights can be adjusted to account for non-

response and/or auxiliary information (Hidiroglou and You, 2016). Normalized survey-weights 

ijd  may also be constructed,  
1

ij ij ijj
d w w



  . Liu et al. (2014) and Anjoy et al. (2019) have 

considered HB modeling of survey-weighted small area proportions, where GLMM structure 

was used for estimation of area proportions. But the effects of taking informative samples were 

not discussed. Here, two alternative models of HBNSP are definedto study the impact of design 

informativeness while aim is to estimate small area proportions in presence of spatial 

nonstationary auxiliary variables using the above furnished HBNSP technique. Let, i.uwp  be 

the direct survey unweighted estimator for small area proportion 
iP ,  

 

         

 
1

in

i.uw i ij

j=1

= n yp


 and the variance of 
i.uwp  is given as 

2 1

. (1- ).ei uw i i in P P     

The survey-weighted estimator denoted as,
i.swp and its variance is expressed as,  

          

1

.

1 1

i in n

i sw ij ij ij

j j

w w yp



 

 
 
 
  and    

2
2 2

. 1 1
( 1)( ) .

i iN N

ei sw ij ij ij ij ij j
w w w y P



 
                                               

Two HBNSP methods are explored for the impact of complex survey deign, denoted as 

HBNSP1 and HBNSP2. These models are furnished below: 

 

HBNSP1: Does not incorporate survey-weight 

Sampling model: 
( )uw uw| ~ N ,p P P Ω
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Linking model: Dg( ) , ( )2 2

v η v| ,η σ ~ N , σ P β Xβ ΨΣ Ψ I
                               

 

HBNSP2: Incorporate survey-weight  

Sampling model: ( )sw sw| ~ N ,p P P Ω                                                                  

Linking model: Dg( ) , ( )2 2

v η v| ,η σ ~ N , σ P β Xβ ΨΣ Ψ I    
 

The required full conditional distributions of HBNSP1 and HBNSP2 under Gibbs 

sampler are given as below. Within the Gibbs sampler, particularly Metropolis-Hastings (M-

H) algorithm is used for drawing random samples from full conditional distributions of 

posterior quantities. For HBP model, the full conditional distributions for the Gibbs sampler 

are given as, 

 

    
22

ilog it
,

2 2(1 )

ii i2

i v i 2 22 2
ei vi i ei v

PP1
P | ,σ , exp

σ σP P σ σ

p
p

 
   
   

x β
β   

    -1 -1( ) log it( ), ( ) ,2 2

i v v|P ,σ ~ N σ  β XX X P XX and  

  

 log it( )

, .
2 2

D
2

i
2 i=1
v i

P -
D

σ | ,P ,~ IG a+ b+

 
 

 
 
 
 

 i
x β

β

 
 

For HBNSP model, the full conditional distributions for the Gibbs sampler are given as, 

     

     

1 1

12 2
D

1

D

1
, , , | | | | exp[ {

2

log it( )
log it( ) log it( ) }] ,

2 2

v η v

2

η v

| η σ σ

σ

 




    

    


P β p ΨΣ Ψ I Ω p P Ω p P

P
P Xβ ΨΣ Ψ I P Xβ

P

 

      
1 1

1 1 1

D, , MVN log it( ) , ,2 2

v v η| η σ ~ σ
 

      
  

β P XΠ X XΠ P I ΨΣ Ψ XΠ X  

   
0 0

log it( ) log it( )
, , IG , ,

2 2

2

v

D
η| σ ~ a + b +

    
 
 
 

P Xβ v P Xβ v
β P and 

   
1 1

log it( ) log it( )
, , IG , .

2 2

2

v

D
σ | η ~ a + b+

    
 
 
 

P Xβ ΨΘ P Xβ ΨΘ
β P

 

where, 2

v D .η
  Π ΨΣ Ψ I Ω

 
Recall that  p p

  Σ W 1 1
 

with distance matrix

  1 1 ,
i j

L l l W . 

For HBNSP1 model, the full conditional distributions for the Gibbs sampler are given as, 
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     

     

1 1

12 2
D

1

D

1
, , , | | | | exp[ {

2

log it( )
log it( ) log it( ) }] ,

2 2

v uw η v uw uw uw uw

2

η v

| η σ ~ σ

σ

 




    

    


P β p ΨΣ Ψ I Ω p P Ω p P

P
P Xβ ΨΣ Ψ I P Xβ

P

 

      
1 1

1 1 1

D, , MVN log it( ) , ,2 2

v uw uw v η uw| η σ ~ σ
 

      
  

β P XΠ X XΠ P I ΨΣ Ψ XΠ X  

   
0 0

log it( ) log it( )
, , IG , ,

2 2

2

v

D
η| σ ~ a + b +

    
 
 
 

P Xβ v P Xβ v
β P and 

   
1 1

log it( ) log it( )
, , IG , .

2 2

2

v

D
σ | η ~ a + b+

    
 
 
 

P Xβ ΨΘ P Xβ ΨΘ
β P     

where,
 

 1. .
,...,

uw uw D uw
p p p ;

 
 2

.
diag ;1

uw ei uw
i D  Ω and 2

v D .uw η uw
  Π ΨΣ Ψ I Ω

  
 

For HBNSP2 model, the full conditional distributions for the Gibbs sampler are given as, 

     

     

1 1

12 2
D

1

D

1
, , , | | | | exp[ {

2

log it( )
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3.  Empirical Evaluations 
 

This section reports the empirical results on the comparative performances of different 

estimators of the small area proportions which have been described previously. In particular, 

empirical performance of the proposed small area estimator HBNSP as compared to HBP is 

evaluated. Further, empirical performance of HBNSP1 and HBNSP2 also has been evaluated. 

Two types of simulation studies are used here. Section 3.1 describes the model-based 

simulation set up to evaluate the performance of HBNSP and HBP. In model-based simulation, 

population data is generated using a specified model. In section 3.2, a design-based simulation 

study is presented for comparing the performance of nonstationary process HBNSP1 and 

HBNSP2 which respectively, ignores and considers the modeling of survey-weighted 

proportions. Here, the aim is to explore impact of the incorporation of complex survey 
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information. Simulation studies have been implemented in R. Different performance indicators 

considered for comparison of small area estimators are as below. Let t is the subscript for T 

simulations. 

 

         
1

1 1

1 1

ˆRB 100
T T

t t t

i i i i
t t

T P T P P


 

 

     is the percentage relative bias (RB) for ith small 

area, where  ˆ t

i
P

 
is the estimate of true population mean 

 t

i
P  for ith for small area at tth 

simulation.  

 
       

1 2
1 1

1 1

ˆRRMSE 100
T T

t t t

i i i i
t t

T P T P P


 

 

 
    

 
 is the percentage relative root mean 

squared error (RRMSE) for ith for small area. 

 
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    is the percentage coverage rate (CR) for ith 

small area, where 
  ˆ t

i
LB P and 

  ˆ t

i
UB P  are respectively Lower Bound (LB) and Upper 

Bound(UB) of the estimated population mean  ˆ t

i
P . I(.) indicates an indicator function 

which takes values 1 if true parameter value 
 t

i
P  is within the computed interval, otherwise 

it takes value 0. This CR% particularly demonstrate the credible interval property of HB 

models. 

 

 For design-based simulation, 
 t

i
P  is equal to 

i
P  or true population mean. A better model 

should show smaller values for all the performance indicators expect CR. Higher the CR better 

is the model. 

 

3.1.  Model-based simulations 

 

In model-based simulations the data were generated using both stationary and 

nonstationary processes. In stationary data generation process (SDGP), the regression 

coefficients are spatially invariant. The aim of this simulation set is to examine how HBNSP 

performs when the data follows spatial stationary process. Here, data is generated via the 

linking model:  

 

logit( ) 1 , 1,..., 100.
i i i

P x v i D      

In case of nonstationary data generation process (NSDGP), data is generated from the 

following model: 

  

    1 2
logit( ) 1 , 1,..., 100

i i i i i i
P x l l x v i D           

Here the values of ix  were independently drawn from the uniform distribution 

~ [0,1]
i

x Uniform and area random effects independently drawn as 
2~ (0, 0.0625)

i v
v N   . 

Again, the sampling model part is considered as ; 1,...,
i i i

P e i Dp    . The independent 

sampling errors 
i

e  are generated from N(0,
2

eiσ ) with 
2

eiσ  taking values 0.01,0.02,0.03 and 0.04 

respectively for equal number of areas. To define 
i

longitude
 
and 

i
latitude of spatial locations, 
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it is assumed that observations have been drawn from a two-dimensional grid consist of a 

 xD D  points uniformly spaced between -1 to 1 with a distance of  2 1D   between 

any two neighbouring points along the vertical and horizontal axes. The D points or spatial 

locations are arranged in such a way that 
1

k varies from –1 to 1 for each given
2
,k  which also 

then varies from −1 to 1. For example, when D=100, the set  1 2
,k k  is, 

 1 2
1, 0.77, 0.55, 0.33, 0.11,0.11,0.33, 0.55, 0.77, 1 .,k k       Further,    1 2( , )i il l   has 

been defined as a random draw from N(0,
2

W I ) with   1 1 ,
i j

L l l W  being the distance 

matrix between spatial locations  ,
i j

l l . The values of   have been used as 0.5,1, 2, 4 in this 

study. This simulation set up is followed from Chandra et al. (2017).  

 

The process of generating data and estimation of small area proportions by implementing 

HBP and HBNSP methods was independently replicated T = 500 times from both stationary 

and nonstationary data generation process. The empirical performance and relative efficiency 

of the proposed HBNSP is compared with the HBP which excludes spatial nonstationarity 

structure. Performance of the small area HB estimators under each model is compared with 

respect to different prior cases for variance parameter 
2

vσ . Specifically, IG(0.01,0.01) and 

IG(0.1,0.1) prior cases were taken up for such sensitivity analysis with respect to prior for 

variance parameter 
2

vσ  . However, the result from prior IG(0.1, 0.1) are only reported. As 

inferences based on different non-informative priors were found to be similar. The prior for 

hyperparameter βwas taken as N(0,106). The prior for   was taken to be same as 
2

vσ . To 

implement the Gibbs sampler, three independent chains are used each of length 10000. The 

first 5000 iterations are deleted as “burn-in” periods. Further, following Gelman and Rubin 

(1992), potential scale reduction factor ( R̂ ) is used to monitor the convergence of the M–H 

within Gibbs sampler. The R̂  value close to 1 is expected and equal to 1 implies stationarity. 

 

Table 1 shows the average values of relative biases (RB), relative root mean squared 

errors (RRMSE) and coverage rates (CR) for HBP and HBNSP methods investigated in model-

based simulations. In Table 1 these values are presented as percentage and averages over the 

small areas of interest (D = 100). Summary statistics of RB, RRMSE and CR for HBP and 

HBNSP methods for different values of   under NSDGP for D = 64 and 100 areas are reported 

in Appendix (Table A1-A2). The differences between two small area predictors HBP and 

HBNSP in Table 1 are essentially as one would expect. When the underlying data is stationary 

(i.e., data generated through SDGP), with identical value of RB, value of RRMSE of HBP is 

marginally smaller than the HBNSP. In contrast, in presence of nonstationarity in data (i.e., 

data generated through NSDGP), the HBNSP method performs consistently better than the 

HBP method both in terms of RB and RRMSE for all values of nonstationarity parameter  . 

Additionally, HBNSP has shown better coverage properties. Noncoverage rate is marginally 

higher for HBP method.  
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Table 1: The average values of percentage relative biases (%RB), percentage relative root 

mean squared errors (%RRMSE) and percentage coverage rates (%CR) for 

HBP and HBNSP methods in model-based simulation. Averaged D=100 areas 

 

3.2.   Design-based simulations 

As in real life small area applications, one cannot be confident that our data ideally follow 

an assumed model, rather a working model is fitted. The endeavor of design-based simulation 

is to evaluate the performance of different SAE methods in the context of a realistic population, 

where a model assumption is essentially an approximation. For this simulation study, debt-

investment survey (AIDIS-2013) data of National Statistical Office for rural areas of the state 

of Karnataka in India is used. The sample size of AIDIS-2013 is 2340 units (rural households 

including both indebted and non-indebted) spread over 30 districts of Karnataka. The AIDIS 

sample data is considered as fixed population of size 2340 units (or households) and 30 districts 

as small areas. Population size of small areas ranges between a minimum of 55 to a maximum 

of 112 with an average of 78 households. The variable of interest y
ij

 is binary which takes 

value 1 if a household is indebted and 0 otherwise. The aim is to estimate the proportions of 

indebted farm households (i.e. or incidence of indebtedness in farm households) at the district 

level. Here, Probability Proportional to Size with Replacement (PPSWR) samples were drawn 

independently within each small area instead of Simple Random Sampling to take into account 

the effect of varying sampling weights. Motivated from the simulation set up in Hidiroglou and 

You (2016), PPSWR sampling was employed as follows: a size measure ijz is defined for a 

given unit y
ij

. Using these ijz  values, selection probabilities  
1

ij ij ijj
p z z



  are computed 

and used to select PPSWR samples of equal size ni from each small area. Then PPSWR samples 

of sizes ni = 10, 15, 20 and 25 were drawn from each small area based on selection probabilities

ijp . This selection probability, computed from a size measure ijz  is a linear combination of 

two auxiliary variables, namely Household size and Area operated (in hectare). The basic 

design weight calculated as, 1( )ij i ijw n p  . Further, two cases were considered for fitting 

HBNSP models. Case 1- No auxiliary variable is included in the HB models and linking model 

contains only intercept and random effect (i.e., random mean form of model). Case 2-Available 

auxiliary variable (Area operated, in hectare) is used as covariate in the HB models and linking 

model contains intercept, one auxiliary variable and random effect (i.e., random intercept form 

of model). The prior for hyperparameter β  was N (0,106). The prior for   and 
2

vσ  was taken 

to be IG (0.1,0.1). Gibbs sampling method is implemented with three independent chains each 

of length 10000; the first 5000 iterations are deleted as “burn-in” periods. To monitor the 

convergence success potential scale reduction factor R̂  is observed. The R̂ value close to 1 

determines that the MCMC sampler converged very well. 

 

Criterion  
SDGP 

NSDGP 

 =0.5  =1  =2  =4 

HBP HBNSP HBP HBNSP HBP HBNSP HBP HBNSP HBP HBNSP 

RB 0.065 0.065 -0.974 -0.478 -0.891 -0.402 -0.747 -0.359 -0.602 -0.403 

RRMSE 4.289 4.447 5.636 4.635 5.130 4.242 4.593 4.047 4.622 4.281 

CR 71 86 81 92 89 95 93 95 93 94 
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Table 2 presents the average values of RB, RRMSE and CR for the small area predictors 

defined by HBNSP1 and HBNSP2 methods investigated in design-based simulations under 

case 1. The average values of RB, RRMSE and CR for HBNSP1 and HBNSP2 under case 2 

are reported in Table 3. Figure 1 plots the average values of bias for HBNSP1 and HBNSP2 

methods in design-based simulations under case-1 (left side) and case-2 (right side). From these 

results, it is evident that design bias of survey-weighted predictor HBNSP2 is smaller than 

HBNSP1. Further, the values of RB for survey-weighted predictor reduces with sample size, 

which shows the property of design consistency of small area predictor HBNSP2. The RRMSE 

values are also smaller for HBNSP2 and having the same decreasing trend with increment of 

small area sample sizes. Investigation on coverage properties of both the models shows that 

noncoverage rate is higher for HBNSP1 model as compared to the other. As number of areas 

increases, HBNSP2 shows the better coverage percentage.  

 

Table 2: The average values of percentage relative biases (%RB), percentage relative root 

mean squared errors (%RRMSE) and percentage coverage rates (%CR) for 

HBNSP1 and HBNSP2 methods in design-based simulation under case 1 

 

 

Table 3: The average values of percentage relative biases (%RB), percentage relative root 

mean squared errors (%RRMSE) and percentage coverage rates (%CR) for 

HBNSP1 and HBNSP2 methods in design-based simulation under case 2 

 

Criterion Method ni = 10 ni = 15 ni = 20 ni = 25 

RB 
HBNSP1 3.45 3.77 4.90 4.88 

HBNSP2 2.41 1.67 1.02 1.07 

RRMSE 
HBNSP1 28.03 24.64 25.52 25.34 

HBNSP2 24.42 17.00 15.41 13.25 

CR 
HBNSP1 85 84 80 77 

HBNSP2 91 95 96 97 

  

Criterion Method ni = 10 ni  = 15 ni = 20 ni = 25 

RB 
HBNSP1 2.52 3.28 4.15 4.10 

HBNSP2 1.97 1.74 1.45 1.35 

RRMSE 
HBNSP1 24.23 23.02 23.80 24.08 

HBNSP2 23.37 15.57 13.35 12.73 

CR 
HBNSP1 89 87 83 76 

HBNSP2 91 96 97 97 
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Figure 1: Comparison of bias of HBNSP1 and HBNSP2 (HBNSP1: Solid line, HBNSP2: 

Dash line) under case 1 (left side) and case 2 (right side) 
 

 

4.  Concluding Remarks 
 

The article describes a spatial nonstationary extension of the area level version of the 

hierarchical Bayes generalized linear mixed model and considers SAE of proportions under 

this model. The corresponding predictor is referred to as the spatial nonstationary hierarchical 

Bayes predictor (HBNSP) for small area proportions. This predictor can account for the 
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presence of spatial nonstationarity in the data where the parameters associated with the model 

covariates vary spatially.  

 

Empirical results based on simulation studies provide evidence that the proposed HBNSP 

predictor is more efficient than the alternative hierarchical Bayes predictor under the area level 

generalized linear mixed model when there is a spatial nonstationarity in the data. The MSE 

estimation of the HBNSP predictor derived from associated posterior variance also performed 

reasonably well, with good coverage performance for nominal confidence intervals based on 

it. It is worth noting that in this article empirical studies were also carried out using survey 

weights to incorporate the sampling design in SAE. This seems more realistic to implement 

survey weighted estimation than assuming that the sampling design is customary non-

informative. 

 

The Census in India, like in other countries, usually has limited scope in collection of 

data. It focuses mainly on basic social and demographic information and that too at decennial 

interval. On the other hand, NSSO conducts regular surveys on several socio-economic 

indicators, but outcome is restricted to generate national and state level estimates, not 

administrative units below state because of small sample sizes for such units. Due to emphasis 

on disaggregate level Sustainable Development Goal indicators, Government of India as well 

as different State Governments are now struggling with generation of disaggregated level 

statistics. The SAE is only indispensable alternative to meet the growing demand for such 

disaggregated level statistics needed for decentralized policy planning. The SAE methodology 

discussed in this article can be used for calculating disaggregate level estimates of prevalence 

and proportions which is common in most of the socio-economic and health surveys.   
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APPENDIX  

Table A1: Summary statistics of percentage relative biases (%RB), percentage relative 

root mean squared errors (%RRMSE) and percentage coverage rates (%CR) 

for HBP and HBNSP methods in model-based simulations for different values 

of   under spatial nonstationary data generation process for D= 100 small 

areas.  

Criterion RB RRMSE CR 

HBP HBNSP HBP HBNSP HBP HBNSP 

 =0.5 

Minimum –9.50 –8.26 2.11 1.88 22 39 

Q1 –3.70 –2.46 4.28 3.41 76 91 

Mean –0.97 –0.48 5.64 4.63 81 92 

Median –0.83 –0.50 5.39 4.38 86 95 

Q3 0.76 1.09 6.46 5.47 93 98 

Maximum 22.30 17.34 23.72 18.52 100 100 

 =1 

Minimum –9.30 –8.01 1.60 1.477 33 41 

Q1 –3.48 –2.17 3.53 2.86 85 95 

Mean –0.89 –0.40 5.13 4.24 89 95 

Median –0.86 –0.32 4.72 4.03 94 98 

Q3 0.79 1.00 6.06 5.16 98 99 

Maximum 23.08 17.11 25.24 18.30 100 100 

 =2 

Minimum –8.73 –7.63 1.36 1.22 39 44 

Q1 –3.25 –2.21 2.93 2.62 91 95 

Mean –0.75 –0.36 4.59 4.05 93 95 

Median –0.58 –0.06 4.25 3.73 98 99 

Q3 0.79 0.89 5.63 5.05 99 100 

Maximum 23.17 19.33 25.13 20.66 100 100 

 =4 

Minimum –8.17 –7.57 1.28 1.15 43 49 
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Q1 –3.14 –2.56 2.90 2.69 91 94 

Mean –0.60 –0.40 4.62 4.28 93 94 

Median –0.35 –0.24 4.27 3.75 98 99 

Q3 0.78 0.83 5.72 5.28 99 99 

Maximum 37.61 34.28 39.94 36.31 100 100 

  

Table A2: Summary statistics of percentage relative biases (%RB), percentage relative 

root mean squared errors (%RRMSE) and percentage coverage rates (%CR) 

for HBP and HBNSP methods in model-based simulations for different values 

of   under spatial nonstationary data generation process for D= 64 small areas 

Criterion RB RRMSE CR 

HBP HBNSP HBP HBNSP HBP HBNSP 

 =0.5 

Minimum –8.21 –6.54 1.61 1.62 64 79 

Q1 –2.16 –1.52 3.19 3.12 97 98 

Mean –0.34 0.00 4.18 4.10 97 98 

Median 0.23 0.08 4.32 4.05 99 99 

Q3 1.34 1.86 4.86 4.71 100 100 

Maximum 5.76 5.66 8.63 7.13 100 100 

 =1 

Minimum –7.79 –6.35 1.39 1.49 68 81 

Q1 –1.99 –1.45 2.98 2.37 98 99 

Mean –0.26 0.08 3.91 3.83 98 98 

Median 0.35 0.29 4.05 3.83 100 99 

Q3 1.33 1.86 4.61 4.61 100 100 

Maximum 5.30 5.19 8.19 7.29 100 100 

 =2 

Minimum –7.35 –6.25 1.42 1.45 67 77 

Q1 –1.76 –1.29 2.87 2.09 99 99 

Mean –0.20 0.12 3.86 3.83 98 98 

Median 0.37 0.28 4.08 3.69 100 100 

Q3 1.26 1.73 4.72 4.54 100 100 

Maximum 4.92 4.54 7.77 7.28 100 100 

 =4 

Minimum –7.02 –5.88 1.58 1.55 68 72 

Q1 –1.58 –1.09 3.26 3.42 97 98 

Mean 0.30 0.28 4.40 4.36 98 98 

Median 0.40 0.36 4.32 4.11 99 99 

Q3 1.39 1.44 5.24 4.94 100 100 

Maximum 6.25 5.80 9.48 9.45 100 100 

 

 

 


