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Abstract

The existence of additive balanced incomplete block (BIB) designs and
pairwise additive BIB designs with λ = 1 has been discussed through direct
and recursive constructions in Matsubara et al. (2006, 2013, 2014) and Sawa et
al. (2007). In this paper, cyclic designs are considered and then the existence
of pairwise additive cyclic BIB designs is investigated for λ = 1.
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1 Introduction

A balanced incomplete block (BIB) design is a system (V,B) with v
points and b blocks each containing k different points, each point
appearing in r different blocks and any two different points appear-
ing in exactly λ blocks (Raghavarao, 1988). This is denoted by
BIBD(v, b, r, k, λ) or B(v, k, λ). Let N = (nij) be the v × b inci-
dence matrix of a BIB design, where nij = 1 or 0 for all i (= 1, ..., v)
and j (= 1, ..., b), according as the ith point occurs in the jth block
or otherwise. Hence the incidence matrix N satisfies the condi-
tions: (i)

∑b
j=1 nij = r for all i, (ii)

∑v
i=1 nij = k for all j, (iii)∑b

j=1 nijni′j = λ for all i, i′ (i 6= i′) = 1, ..., v.
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For a BIB design (V,B), let σ be a permutation on V . For a
block B = {v1, . . . , vk} ∈ B and a permutation σ on V , let Bσ =
{vσ1 , . . . , vσk}. When B = {Bσ|B ∈ B}, σ is called an automorphism
of (V,B). If there exists an automorphism σ of order v = |V |,
then the BIB design is said to be cyclic. For a cyclic B(v, k, λ),
the set V of points can be identified with Zv = {0, 1, . . . , v − 1}.
The block orbit containing B ∈ B is a set of distinct blocks B+ i =
{v1+i, . . . , vk+i} (mod v) for i ∈ Zv. A block orbit is said to be full
or short according as whether |{B+ i|0 ≤ i ≤ v−1}| = v or not. If
a short block orbit contains a block {0, v/k, 2v/k, . . . , (k − 1)v/k},
then it is said to be regular. Choose an arbitrary block from each
block orbit and call it an initial block. Then any B(2t, 2, 1), t ∈ N ,
must have a short initial block {a, a + t}PC(t) with an arbitrary
a ∈ Z2t. This fact will be used in Sections 6 and 7. Throughout the
paper, PC(s) means a partial cycle of order s, i.e., only 0, 1, . . . , s−1
are to be added to the initial block.

Let s = v/k, where s need not be an integer unlike other pa-
rameters. A set of ` BIBD(v, b, r, k, λ) is called ` pairwise additive
BIB designs, denoted by ` PAB(v, k, λ), if ` corresponding inci-
dence matrices N 1, . . . ,N ` (2 ≤ ` ≤ s) of the BIB design satisfy
that N i1 + N i2 is the incidence matrix of a BIBD(v∗ = v = sk,
b∗ = b, r∗ = 2r, k∗ = 2k, λ∗ = 2r(2k − 1)/(sk − 1)) for any dis-
tinct i1, i2 ∈ {1, 2, ..., `}. When ` = s, this is called additive BIB
designs (Matsubara et al., 2006 and Sawa et al., 2007), denoted
by AB(v, k, λ). Furthermore, in ` PAB(v, k, λ), if N 1, . . . ,N ` are
cyclic and the jth initial block of N i1 + N i2 is a set-union of the
jth initial blocks of N i1 and N i2 for any distinct i1, i2 ∈ {1, 2, ..., `}
and 1 ≤ j ≤ db/ve, then the ` PAB(v, k, λ) is said to be cyclic, de-
noted by ` PACB(v, k, λ), where dxe means the smallest integer y
such that x ≤ y. When ` = s, this is called additive cyclic BIB
designs, denoted by ACB(v, k, λ).

In PAB(v, k, λ), it is known (Sawa et al., 2007) that 2λ/(k− 1)
is a positive integer, which implies k = 2 or 3 when λ = 1. Some
classes of ` PAB(v, k, λ) have been constructed by use of direct
and recursive methods in Matsubara et al. (2006, 2013, 2014) and
Sawa et al. (2007). In particular, it has been shown (Matsubara
and Kageyama, 2014) that there are 3 PAB(v, 2, 1) for any v ≥ 6.
However, for example, the existence of ` PAB(12, 2, 1) with ` ∈
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{4, 5, 6} is not known in literature.
The purpose of this paper is devoted to provide some construc-

tions of 2 PACB(v, 2, 1) and to show the existence of 2 PACB(v, 2, 1)
for (i) any odd integer v(≥ 5) such that gcd(v, 9) 6= 3 and (ii)
v = 2mt with any integer m(≥ 2) and any odd integer t(≥ 1) such
that m 6≡ 1 (mod 4) and gcd(t, 27) 6= 3, 9, and to prove the nonexis-
tence of ` PACB(v, 2, 1) for (`, v) = (5, 12), (6, 12), (2, 4m+ 2) with
any positive integer m.

2 Preliminaries

In this section, some arrays with four rows will be introduced for
direct and recursive constructions of 2 PACB(v, 2, 1), and some
properties of the arrays will be discussed.

A nested BIB design, denoted by NB(v; b1, b2; k1, k2), is a triple
(V,B1,B2) with v points, |V | = v, and two systems of blocks, |Bi| =
bi, i = 1, 2, such that (i) the first system is nested within the second,
i.e., each block in B2 is partitioned into e subblocks of size k1 and the
resulting subblocks form B1, here, b1 = eb2 and k2 = ek1, (ii) (V,Bi)
is a BIB design with v points and bi blocks of ki points each (cf.
Preece, 1976). A nested BIB design (V,B1,B2) is said to be cyclic,
denoted by CNB(v; b1, b2; k1, k2), if both of (V,B1) and (V,B2) are
cyclic with respect to the same automorphism σ : i 7−→ i+ 1 (mod
v) (cf. Jimbo, 1993).

Denote Z∗v = {1, 2, . . . , v− 1}. Let a multiset Z∗(v,λ) = {1, . . . , 1,
2, . . . , 2, . . . , v − 1, . . . , v − 1} that contains each element of Z∗v λ
times, Z ′v be a subset of Z∗v such that Z∗v = {a,−a|a ∈ Z ′v} (mod
v) (hence |Z ′v| = (v − 1)/2), and a multiset Z ′(v,λ) be a subset of

Z∗(v,λ) such that Z∗(v,λ) = {a,−a|a ∈ Z ′(v,λ)} (mod v) (hence |Z ′(v,λ)| =
(v − 1)λ/2).

A perpendicular array (PA), denoted by PAd(g, v), is a matrix
of g rows and d

(
s
2

)
columns with entries from Zv such that each

column has g distinct entries, and each set of 2 rows contains each
set of 2 distinct entries of Zv as a column precisely d times (cf.
Bierbraner, 2007). When d = 1, it is simply written as PA(g, v). If
(t1 + 1, t2 + 1, . . . , tg + 1)T (mod v) is a column of the PA(g, v) for
any column (t1, t2, . . . , tg)

T of the PA(g, v), then the PA(g, v) is said
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to be cyclic, denoted by CPA(g, v). Choose an arbitrary column
from each set of columns (t1 + i, t2 + i, . . . , tg + i)T , 1 ≤ i ≤ g, and
call it an initial column.

Now, let v be an odd integer and (v − 1)/2 initial columns of a
CPA(4, v) be (a(1, n), a(2, n), a(3, n), a(4, n))T , 1 ≤ n ≤ (v − 1)/2,
with a(m,n) ∈ Zv for 1 ≤ m ≤ 4. Then it is shown that

Z ′v = {a(i, n)− a(j, n) (mod v)|1 ≤ n ≤ v − 1

2
} (2.1)

for each of 1 ≤ i < j ≤ 4.
A cyclic difference matrix on Zv, denoted by CDM(4, v), is de-

fined as a 4 × v array (a(m,n)), a(m,n) ∈ Zv, 1 ≤ m ≤ 4, that
satisfies

Zv = {a(i, n)− a(j, n) (mod v)|1 ≤ n ≤ v} (2.2)

for each of 1 ≤ i < j ≤ 4 (cf. Ge, 2005).
Next, let v ≡ 1 (mod 4) and (v − 1)/4 initial blocks of a

CNB(v; (v − 1)/2, (v − 1)/4; 2, 4) which contains no short orbit be
{a(1, n), a(2, n)|a(3, n), a(4, n)}, 1 ≤ n ≤ (v− 1)/4, with a(m,n) ∈
Zv for 1 ≤ m ≤ 4. Then it is shown that

Z ′v = {a(1, n)− a(2, n), a(3, n)− a(4, n)|1 ≤ n ≤ v − 1

4
}, (2.3)

Z ′(v,2) =
⋃

i∈{1,2},j∈{3,4}

{a(i, n)− a(j, n)|1 ≤ n ≤ v − 1

4
}. (2.4)

For v ≡ 1 (or 0) (mod 4), a whist tournament Wh(v) is a
schedule of v(v − 1)/4 games (a, b, c, d), where the unordered pairs
{a, c}, {b, d} are called partners, the pairs {a, b}, {c, d} opponents
of the first kind, and the pairs {a, d}, {b, c} opponents of the second
kind, such that (i) the games are arranged into v (or v − 1) rounds
of (v − 1)/4 (or v/4) games each, (ii) each player plays in exactly
one game in each round, (iii) each player has every other player as
a partner exactly once, and (iv) each player has every other player
as an opponent exactly twice. A triplewhist tournament TWh(v)
is a Wh(v) with, in the stead of the above condition (iv), another
condition (v) such that each player has every other player as an
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opponent of the first kind exactly once, and that of the second kind
exactly once (cf. Anderson and Finizio, 2007).

Note (Anderson and Finizio, 2007) that a necessary and suffi-
cient condition for the existence of a Wh(v) is v ≡ 0, 1 (mod 4).
When v ≡ 1 (mod 4), the Wh(v) is said to be Z-cyclic if the play-
ers are the elements of Zv and the round i+ 1 is obtained from the
round i by adding 1 (mod v) to each element. Since each of players
and each of games can be seen as an element and a block, respec-
tively, it can be seen that any Z-cyclic Wh(v) with v ≡ 1 (mod 4)
itself shows a CNB(v; v(v−1)/2, v(v−1)/4; 2, 4) with initial blocks
{a, c|b, d}. On the other hand, Z-cyclic Wh(v) with v ≡ 0 (mod
4) are introduced in Anderson and Finizio (2007). However, since
its point set is {0, 1, . . . , v − 2} ∪ {∞} and each of initial blocks is
developed on Zv−1, such designs cannot be cyclic. Hence this case
is not discussed in this paper.

Furthermore, let initial blocks of a Z-cyclic TWh(4t + 1) be
{a(1, n), a(2, n)|a(3, n), a(4, n)}, 1 ≤ n ≤ t, with a(m,n) ∈ Zv for
1 ≤ m ≤ 4. Then it is shown that

Z ′v = {a(1, n)− a(2, n), a(3, n)− a(4, n)|1 ≤ n ≤ t} (2.5)

= {a(1, n)− a(3, n), a(2, n)− a(4, n)|1 ≤ n ≤ t} (2.6)

= {a(1, n)− a(4, n), a(2, n)− a(3, n)|1 ≤ n ≤ t}. (2.7)

Also, letting v be an odd integer and (v − 1)/2 initial blocks of
N 1 and N 2 of 2 PACB(v, 2, 1) be {a(1, n), a(2, n)} and {a(3, n),
a(4, n)}, 1 ≤ n ≤ (v − 1)/2, with a(m,n) ∈ Zv for 1 ≤ m ≤ 4,
respectively, it follows that

Z ′v = {a(1, n)− a(2, n)|1 ≤ n ≤ v − 1

2
} (2.8)

= {a(3, n)− a(4, n)|1 ≤ n ≤ v − 1

2
}, (2.9)

Z ′(v,4) =
⋃

i∈{1,2},j∈{3,4}

{a(i, n)− a(j, n)|1 ≤ n ≤ v − 1

2
}. (2.10)

Finally, a special array on Zv for an odd integer v, denoted by
SA(4, v), is defined as a 4× (v−1)/2 array (a(m,n)), a(m,n) ∈ Zv,
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1 ≤ m ≤ 4, that satisfies

Z ′v = {a(1, n)− a(2, n)|1 ≤ n ≤ v − 1

2
} (2.11)

= {a(3, n)− a(4, n)|1 ≤ n ≤ v − 1

2
}, (2.12)

Z∗v = {a(1, n)− a(3, n), a(2, n)− a(4, n)|1 ≤ n ≤ v − 1

2
} (2.13)

= {a(1, n)− a(4, n), a(2, n)− a(3, n)|1 ≤ n ≤ v − 1

2
}. (2.14)

Then it follows from (2.8) to (2.14) that the initial blocks {a(1, n),
a(2, n)} and {a(3, n), a(4, n)} yield 2 PACB(v, 2, 1).

3 Direct construction

Some direct constructions are presented in this section. It has been
shown (Matsubara and Kageyama, 2013) that the existence of a
PA(g, v) implies the existence of bg/2c PAB(v, 2, 1), where bxc
means the greatest integer y such that y ≤ x. Similarly, a class
of 2 PACB(v, 2, 1) can be constructed through CPA(4, v) as the
following shows.

Theorem 3.1 The existence of a CPA(g, v) implies the existence
of bg/2c PACB(v, 2, 1).

Proof. Let initial columns of the CPA(g, v) be (a(1, n), . . . , a(g, n))T

with 1 ≤ n ≤ (v−1)/2. It can be shown by (2.1) that the following
incidence matrices yield the required bg/2c PACB(v, 2, 1):

N 1 : {a(1, n), a(2, n)} mod v

N 2 : {a(3, n), a(4, n)} mod v
...

...

N b g
2
c : {a(2bg

2
c − 1, n), a(2bg

2
c, n)} mod v

for 1 ≤ n ≤ (v − 1)/2. �

Lemma 3.2 Let v ≥ 5 and gcd(v, 6) = 1. Then there exists a
CPA(4, v).
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Proof. Since v ≥ 5 and gcd(v, 6) = 1 imply that

{2i|1 ≤ i ≤ v − 1

2
} = {3i|1 ≤ i ≤ v − 1

2
} = Z ′v,

the following columns on Zv can be seen to be initial columns of
the required CPA(4, v).

(0, i, 2i, 3i)T , 1 ≤ i ≤ v − 1

2
.

�

Theorem 3.3 Let v ≥ 5 and gcd(v, 6) = 1. Then 2 PACB(v, 2, 1)
exist.

Proof. Because of the existence of a CPA(4, v) shown by Lemma
3.2, the proof is complete by applying Theorem 3.1. �

Next, some individual examples (Examples 3.4, 3.6, 3.7, 3.8,
3.9 and 3.10 next) which can be obtained by use of a computer
are provided. Each of such examples cannot be obtained by the
construction methods presented in this paper.

In each example except for Example 3.5, the following proce-
dure of checking PACB properties will be taken. For two incidence
matrices N 1 with initial blocks B

(1)
h = {ah, bh} and N 2 with initial

blocks B
(2)
h = {ch, dh} for 1 ≤ h ≤ bv/2c, it can be checked that

N 1 + N 2 with initial blocks {ah, bh, ch, dh} is the incidence matrix
of a B(v, 4, 6). In fact, (i) for a full initial block {a, b} ∪ {c, d}, let
a multiset ∆f ({a, b}, {c, d}) = {e − f, f − e|e ∈ {a, b}, f ∈ {c, d}}
on Zv, and (ii) for a short initial block {a, b} ∪ {c, d}, let a multi-
set ∆s({a, b}, {c, d}) = {a − f, f − a|f ∈ {c, d}} on Zv. If every

nonzero element of Zv occurs 4 times in
⋃(v−1)/2
h=1 ∆f (B

(1)
h , B

(2)
h ) for

an odd integer v or every nonzero element of Zv occurs 4 times in⋃(v−2)/2
h=1 ∆f (B

(1)
h , B

(2)
h ) ∪∆s(B

(1)
v/2, B

(2)
v/2) for an even integer v, then

N 1+N 2 forms the incidence matrix of a B(v, 4, 6). In Example 3.5,
PACB properties can be checked by a similar procedure as above
for N i + N j with any 1 ≤ i < j ≤ 4.

These symbols ∆f for full initial blocks and ∆s for short initial
blocks will play an important role in Section 7.
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Example 3.4 Developing the following blocks on Z4 yields an
ACB(4,2,1):

N 1 : {0, 1}, {0, 2}PC(2) mod 4

N 2 : {2, 3}, {1, 3}PC(2) mod 4.

Example 3.5 Developing the following blocks on Z8 yields an
ACB(8,2,1):

N 1 : {0, 1}, {0, 2}, {0, 3}, {0, 4}PC(4) mod 8

N 2 : {4, 5}, {1, 3}, {2, 5}, {2, 6}PC(4) mod 8

N 3 : {3, 6}, {6, 7}, {1, 7}, {1, 5}PC(4) mod 8

N 4 : {2, 7}, {4, 5}, {4, 6}, {3, 7}PC(4) mod 8.

Here, the additive property is pointed out in Matsubara et al.
(2006), while the cyclic property is checked directly.

Example 3.6 Developing the following blocks on Z9 yields 2
PACB(9,2,1):

N 1 : {0, 1}, {0, 2}, {0, 3}, {0, 4} mod 9

N 2 : {2, 3}, {4, 6}, {2, 6}, {5, 8} mod 9.

Example 3.7 Developing the following blocks on Z12 yields 2
PACB(12,2,1):

N 1 : {0, 1}, {0, 2}, {0, 3}, {0, 4}, {0, 5}, {0, 6}PC(6) mod 12

N 2 : {3, 6}, {4, 9}, {2, 4}, {7, 8}, {2, 6}, {1, 7}PC(6) mod 12.

Example 3.8 Developing the following blocks on Z15 yields 2
PACB(15,2,1):

N 1 : {0, 1}, {0, 2}, {0, 3}, {0, 4}, {0, 5}, {0, 6},
{0, 7} mod 15

N 2 : {5, 10}, {4, 13}, {1, 2}, {8, 12}, {10, 12}, {9, 12},
{1, 8} mod 15.
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Example 3.9 Developing the following blocks on Z16 yields 2
PACB(16,2,1):

N 1 : {0, 1}, {0, 2}, {0, 3}, {0, 4}, {0, 5}, {0, 6}, {0, 7},
{0, 8}PC(8) mod 16

N 2 : {3, 8}, {3, 9}, {4, 5}, {7, 10}, {1, 15}, {8, 12}, {5, 12},
{3, 11}PC(8) mod 16.

Example 3.10 Developing the following blocks on Z24 yields 2
PACB(24,2,1):

N 1 : {0, 1}, {0, 2}, {0, 3}, {0, 4}, {0, 5}, {0, 6}, {0, 7}, {0, 8},
{0, 9}, {0, 10}, {0, 11}, {0, 12}PC(12) mod 24

N 2 : {15, 18}, {1, 7}, {5, 6}, {11, 16}, {21, 8}, {2, 10}, {11, 15},
{13, 15}, {3, 10}, {6, 15}, {13, 23}, {2, 14}PC(12) mod 24.

Next, take the following 4× 13 array quoted from Abel and Ge
(2005): 18 24 8 9 5 25 16 7 21 12 17 2 20

19 26 11 13 10 4 23 15 3 22 1 14 6
2 1 26 17 8 11 22 16 20 9 7 23 18
4 21 3 14 24 19 12 25 5 15 6 10 13

 = (a(m,n)),

say. This is an SA(4, 27) that satisfies (2.11) to (2.14). Hence the
following example can be further presented.

Example 3.11 Developing the following blocks on Z27 yields 2
PACB(27,2,1):

N 1 : {a(1, n), a(2, n)} mod 27

N 2 : {a(3, n), a(4, n)} mod 27

for 1 ≤ n ≤ 13.

Remark 3.12 The existence of ACB(v, 2, 1) is only known for v =
4, 8 as in Examples 3.4 and 3.5. In this paper, the nonexistence
of ACB(v, 2, 1) for v = 12 and v ≡ 2 (mod 4) will be discussed in
Section 7.
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4 Construction by cyclic nested BIB

designs

At first it is pointed out that there are some classes of CNB(4t+ 1;
2t(4t+ 1), t(4t+ 1); 2, 4) as follows.

Lemma 4.1 (Anderson and Finizio, 2007) For 3 ≤ t ≤ 37, there
exists a CNB(4t+ 1; 2t(4t+ 1), t(4t+ 1); 2, 4).

Lemma 4.2 (Anderson and Finizio, 2005) For any integer m ≥ 2,
there exists a CNB(32m; 32m(32m − 1)/2, 32m(32m − 1)/4; 2, 4).

On the other hand, it has been shown (Matsubara and Kageyama,
2014) that 3 PAB(v, 2, 1) can be constructed by an NB(v; v(v −
1)/2, v(v−1)/6; 2, 6). Similarly, it will be shown that 2 PACB(v, 2, 1)
can be obtained from a cyclic nested BIB design.

Theorem 4.3 The existence of a CNB(v; v(v−1)/2, v(v−1)/4; 2, 4)
implies the existence of 2 PACB(v, 2, 1).

Proof. Let the nth initial blocks of the CNB(v; (v − 1)/4, (v −
1)/2; 2, 4) be

{a(1, n), a(2, n)|a(3, n), a(4, n)}, 1 ≤ n ≤ v(v − 1)

4
.

Then it follows from (2.3) and (2.4) that the following incidence
matrices yield the required 2 PACB(v, 2, 1):

N 1 : {a(1, n), a(2, n)}, {a(3, n), a(4, n)} mod v

N 2 : {a(3, n), a(4, n)}, {a(1, n), a(2, n)} mod v

for 1 ≤ n ≤ v(v − 1)/4. �

Hence Theorem 4.3 with Lemma 4.2 can produce the following.

Corollary 4.4 There are 2 PACB(32m, 2, 1) for any integer m ≥ 2.
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5 Construction by cyclic relative

difference family

A (vg, g, k, λ) cyclic relative difference family, denoted by (vg, g, k,
λ)-CDF, is a family F of k-subsets of Zvg with the property that
a multiset of differences ∪B∈F∆B is Z∗(vg,λ)\vZ∗(vg,λ), where ∆B =

{xi − xj, xj − xi|0 ≤ i < j ≤ k − 1} for B = {x0, . . . , xk−1} and
vZ∗(vg,λ) is a multiset which contains each element of {v, 2v, . . . , vg}
λ times (cf. Chang, 2004).

Some classes of (vg, g, 4, 1)-CDF are known as follows.

Lemma 5.1 (Chang and Miao, 2003, Chang, 2004) There exist a
(243, 27, 4, 1)-CDF and a (2s+4, 2s, 4, 1)-CDF for any integer s ≥ 2.

On the other hand, 2 PACB(v, 2, 1) will be obtained from some
cyclic relative difference family.

Theorem 5.2 The existence of a (vg, g, 4, 1)-CDF and 2 PACB(g,
2, 1) implies the existence of 2 PACB(vg, 2, 1).

Proof. Let 4-subsets of the (vg, g, 4, 1)-CDF on Zvg be

{ai, bi, ci, di}, 1 ≤ i ≤ (v − 1)g

12

and let initial blocks of 2 PACB(g, 2, 1) on vZvg = {0, v, 2v, . . . , (g−
1)v} be

N 1 : {xj, yj}, 1 ≤ j ≤ bg
2
c

N 2 : {zj, wj}, 1 ≤ j ≤ bg
2
c.

Then it follows that developing the following initial blocks on Zv
yields the required 2 PACB(v, 2, 1):

N 1 : {ai, bi}, {ai, ci}, {ai, di}, {ci, bi}, {bi, di}, {di, ci},
{xj, yj} mod vg

N 2 : {ci, di}, {di, bi}, {bi, ci}, {di, ai}, {ci, ai}, {bi, ai},
{zj, wj} mod vg
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for 1 ≤ i ≤ (v − 1)g/12 and 1 ≤ j ≤ bg/2c. �

Finally, a class of 2 PACB(v, 2, 1) can be given by use of Theo-
rem 5.2.

Theorem 5.3 There are 2 PACB(2m, 2, 1) for any positive integer
m 6≡ 1 (mod 4).

Proof. There exist (2s+4, 2s, 4, 1)-CDF for s ≥ 2 on account of
Lemma 5.1. Hence Theorem 5.2 shows that the existence of 2
PACB(2s, 2, 1) implies the existence of 2 PACB(2s+4, 2, 1) for s ≥ 2.
On the other hand, 2 PACB(2t, 2, 1) with t = 2, 3 and 4 are obtained
as in Examples 3.4, 3.5 and 3.9. Thus, the proof is complete. �

Remark 5.4 If 2 PACB(25, 2, 1) could be constructed, then the
condition on m in Theorem 5.3 would be removed.

6 Recursive construction

At first an existence of cyclic difference matrices is reviewed.

Lemma 6.1 (Ge, 2005) There exists a CDM(4, v) for any odd in-
teger v ≥ 5 and gcd(v, 27) 6= 9.

Some recursive constructions of cyclic BIB designs with some
regular short orbits and of cyclic nested BIB designs with no short
orbit are provided by using a CDM(g, v) in Jimbo (1993). Next,
some similar methods are presented.

Theorem 6.2 Let v ≥ 5 and v′ ≥ 5 be odd integers. Then the
existence of 2 PACB(v, 2, 1), 2 PACB(v′, 2, 1) and a CDM(4, v′)
implies the existence of 2 PACB(vv′, 2, 1).

Proof. Let sets of initial blocks of 2 PACB(v, 2, 1) and 2 PACB(v′, 2,
1) be

{{x(h)i , y
(h)
i }|1 ≤ i ≤ v − 1

2
},{{z(h)j , w

(h)
j }|1 ≤ j ≤ v′ − 1

2
}, h = 1, 2,

respectively. Let A be the CDM(4, v′) with a(m,n) as the (m,n)-
entry for 1 ≤ m ≤ 4 and 1 ≤ n ≤ v′. Then, since each block
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orbit of 2 PACB(v, 2, 1) and 2 PACB(v′, 2, 1) is full for odd integers
v ≥ 5 and v′ ≥ 5, it can be shown by (2.2) that the following two
incidence matrices yield the required 2 PACB(v, 2, 1) on Zvv′ :

N 1 : {x(1)i + a(1, n)v, y
(1)
i + a(2, n)v}, {z(1)j v, w

(1)
j v} mod vv′

N 2 : {x(2)i + a(3, n)v, y
(2)
i + a(4, n)v}, {z(2)j v, w

(2)
j v} mod vv′

for 1 ≤ i ≤ (v − 1)/2, 1 ≤ j ≤ (v′ − 1)/2 and 1 ≤ n ≤ v′. �

Now, Theorem 6.2 produces a new class of 2 PACB(v, 2, 1).

Corollary 6.3 There are 2 PACB(3m, 2, 1) for any integer m ≥ 2.

Proof. Examples 3.6 and 3.11 show the existence of 2 PACB(9, 2, 1)
and 2 PACB(27, 2, 1), respectively. Corollary 4.4 and Lemma 6.1
can produce 2 PACB(32s, 2, 1) with s ≥ 2 and a CDM(4, 27), re-
spectively. Now, for v = 9 · 27, 32s · 27 (s ≥ 2), Theorem 6.2
yields 2 PACB(v, 2, 1). Hence 2 PACB(v, 2, 1) can be constructed
for v = 32, 33, 32s, 35, 32s+3 with s ≥ 2. �

Theorem 6.4 Let v ≥ 5 and gcd(v, 6) = 1. Then there are 2
PACB(3mv, 2, 1) for any integer m ≥ 2.

Proof. Because of the existence of 2 PACB(3m, 2, 1) and 2 PACB(v,
2, 1) shown by Corollary 6.3 and Theorem 3.3, the proof is complete
by applying Theorem 6.2 with the CDM(4, v) given by Lemma 6.1.
�

Unfortunately, the above method of construction can be applied
only for 2 PACB(v, 2, 1) with no short orbit, that is, for v being an
odd integer. Note that the recursive construction given in Jimbo
(1993) of cyclic BIB designs with some regular short orbits cannot
also be applied for the construction of 2 PACB(v, 2, 1) with an even
integer v. Next, another recursive construction of 2 PACB (2t, 2, 1)
with short initial blocks will be considered.

Theorem 6.5 The existence of 2 PACB(2t, 2, 1) and an SA(4, v)
implies the existence of 2 PACB(2tv, 2, 1) for any integer t ≥ 2 and
any odd integer v ≥ 5 with gcd(t, v) = 1.
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Proof. Let a set of initial blocks of 2 PACB(2t, 2, 1) on Z2t be

{{x(h)i , y
(h)
i }|1 ≤ i ≤ t− 1} ∪ {z(h), z(h) + t}PC(t), h = 1, 2,

and let columns of the SA(4, v) on Zv be

(a(1, n), a(2, n), a(3, n), a(4, n))T , 1 ≤ n ≤ v − 1

2
.

Then it can be shown by (2.11) to (2.14) that developing the fol-
lowing initial blocks on Z2t × Zv yields 2 PAB(2tv, 2, 1) with 2tv
elements denoted by (z, w) for 0 ≤ z ≤ 2t− 1 and 0 ≤ w ≤ v − 1:

N 1 : {(x(1)i , 0), (y
(1)
i , 0)}, {(0, a(1, n)), (0, a(2, n))},

{(x(1)i , a(1, n)), (y
(1)
i , a(2, n))},

{(x(1)i , a(2, n)), (y
(1)
i , a(1, n))},

{(z(1), a(1, n)), (z(1) + t, a(2, n))},
{(z(1), 0), (z(1) + t, 0)}PC (t, v) mod (2t, v)

N 2 : {(x(2)i , 0), (y
(2)
i , 0)}, {(0, a(3, n)), (0, a(4, n))},

{(x(2)i , a(3, n)), (y
(2)
i , a(4, n))},

{(x(2)i , a(4, n)), (y
(2)
i , a(3, n))},

{(z(2), a(3, n)), (z(2) + t, a(4, n))},
{(z(2), 0), (z(2) + t, 0)}PC (t, v) mod (2t, v)

where 1 ≤ i ≤ t−1, 1 ≤ n ≤ (v−1)/2 and PC(t, v) means a partial
cycle of order tv on Z2t × Zv, i.e., only (s, u), 0 ≤ s ≤ t − 1 and
0 ≤ u ≤ v − 1 are to be added to the initial block.

Since gcd(2t, v) = 1, the required 2 PACB(2tv, 2, 1) on Z2tv

can be constructed by corresponding the element j to (z, w) for
0 ≤ j ≤ 2tv − 1, where j ≡ z (mod 2t) and j ≡ w (mod v). �

The following example illustrates Theorem 6.5 with t = 2 and
v = 5.

Example 6.6 Consider an SA(4, 5) on Z5:(
0 1 4 2
0 2 3 4

)T
.
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Since there are 2 PACB(4, 2, 1) as in Example 3.4, 2 PACB(20, 2, 1)
are provided by developing the following initial blocks on Z4 × Z5:

N 1 : {(0, 0), (1, 0)}, {(0, 0), (0, 1)}, {(0, 0), (0, 2)}, {(0, 0), (1, 1)},
{(0, 0), (1, 2)}, {(0, 1), (1, 0)}, {(0, 2), (1, 0)}, {(0, 0), (2, 1)},
{(0, 0), (2, 2)}, {(0, 0), (2, 0)}PC(2, 5) mod (4, 5)

N 2 : {(2, 0), (3, 0)}, {(0, 4), (0, 2)}, {(0, 3), (0, 4)}, {(2, 4), (3, 2)},
{(2, 3), (3, 4)}, {(2, 2), (3, 4)}, {(2, 4), (3, 3)}, {(1, 4), (3, 2)},
{(1, 3), (3, 4)}, {(1, 0), (3, 0)}PC(2, 5) mod (4, 5).

Hence 2 PACB(20, 2, 1) on Z20 can be obtained by corresponding
the element j to (z, w) for 0 ≤ j ≤ 19, where j ≡ z (mod 4) and
j ≡ w (mod 5). In fact, the following initial blocks on Z20 yield 2
PACB(20, 2, 1):

N 1 : {0, 5}, {0, 16}, {0, 12}, {0, 1}, {0, 17}, {16, 5},
{12, 5}, {0, 6}, {0, 2}, {0, 10}PC(10) mod 20

N 2 : {10, 15}, {4, 12}, {8, 4}, {14, 7}, {18, 19}, {2, 19},
{14, 3}, {9, 7}, {13, 19}, {5, 15}PC(10) mod 20.

7 2 PACB(v, 2, 1) with v ≡ 2 (mod 4)

By considering all possible combinations of initial blocks, it is easily
seen that there are no 2 PACB(6,2,1). However, for a given integer
v, whether ` PACB(v, 2, 1) exist or not is a difficult problem for
general ` ≤ v/2. In this section, it will be shown that there are
no 2 PACB(v, 2, 1) for any v ≡ 2 (mod 4) and, incidentally, no `
PACB(12, 2, 1) for ` ∈ {5, 6}.

Theorem 7.1 There are no 2 PACB(v, 2, 1) for any v ≡ 2 (mod
4).

Proof. Assume that there exist 2 PACB(v = 2t, 2, 1) (V,B) with
incidence matrices N 1 and N 2, where t is an odd integer. Since
B = {{v1, v2}| v1, v2 ∈ V, v1 6= v2} for any B(v, 2, 1), without loss of
generality, let initial blocks of N 1 can be

B
(1)
i = {0, i}, 1 ≤ i ≤ t− 1, B

(1)
t = {0, t}PC(t) mod 2t,
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initial blocks of N 2 can be

B
(2)
i = {ai, bi}, B(2)

t = {c, c+ t}PC (t) mod 2t

and initial blocks of N 1 + N 2 can be

{0, i, ai, bi}, {0, t, c, c+ t}PC (t) mod 2t,

where 1 ≤ i ≤ t − 1. Further let ∆f (B
(1)
i , B

(2)
i ) and ∆s(B

(1)
t , B

(2)
t )

be multisets on Z2t (see Section 3 for the meaning of notations).
Then every nonzero element of Z2t occurs 4 times in the multiset

∆ = ∆f (B
(1)
1 , B

(2)
1 ) ∪ . . . ∪∆f (B

(1)
t−1, B

(2)
t−1) ∪∆s(B

(1)
t , B

(2)
t ).

In other words, the number of even elements of Zv in ∆ must
be a multiple of 4. It is seen that exact 2 even elements oc-
cur in ∆s(B

(1)
t , B

(2)
t ) and the number of even elements in each of

∆f (B
(1)
i , B

(2)
i ), 1 ≤ i ≤ t− 1, is one of 0, 4 or 8. Hence the number

of even elements in ∆ is not a multiple of 4, which is a contradic-
tion. �

Incidentally, another nonexistence will be shown.

Theorem 7.2 There are no 5 PACB(12, 2, 1) and no ACB(12, 2, 1).

Proof. Assume that there are 5 PACB(12, 2, 1) with incidence ma-

trices N 1, . . . ,N 5. Let B
(h)
i , 1 ≤ i ≤ 5 and 1 ≤ h ≤ 5, be the ith

initial block of Nh and B
(h)
6 = {ch, ch + 6}, ch ∈ Z12, 1 ≤ h ≤ 5,

be a short initial block of Nh. Then, without loss of generality, we
can let c1 = 0, c2 = 2, c3 = 4, c4 = 1 and c5 = 3 by choosing an
arbitrary block from the short block orbit with some replacement
of subscripts.

Let ∆f (B
(h)
i , B

(h′)
i ) and ∆s(B

(h)
6 , B

(h′)
6 ) be multisets on Zv sim-

ilarly to Section 3. Then the number of even elements in ∆s(B
(h)
6 ,

B
(h′)
6 ) is (i) 4 if h, h′ (h 6= h′) ∈ {1, 2, 3} and (ii) 0 if h ∈ {1, 2, 3}

and h′ ∈ {4, 5}.
An initial block B

(h)
i is said to be even or odd, according as the

difference of the two elements in B
(h)
i is even or odd. Then it is clear

that each Nh includes exact 3 even initial blocks and the number
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of even elements in ∆f (B
(h)
i , B

(h′)
i ), 1 ≤ h < h′ ≤ 5, is (i) 0 or 8 if

both two blocks are even and (ii) 4 if either of them is odd.
Now, every nonzero element of Zv must occur 4 times, that is,

there are 24 even elements and 20 odd elements in the multiset

∆f (B
(h)
1 , B

(h′)
1 ) ∪ . . . ∪∆f (B

(h)
5 , B

(h′)
5 ) ∪∆s(B

(h)
6 , B

(h′)
6 )

for 1 ≤ h < h′ ≤ 5. Let G = (g(m,n)) be a matrix of order 5 and
xs, 1 ≤ s ≤ 5, be the sth row vector of G, where g(m,n) = 1 or 0,
according as the nth initial block of Nm is even or odd. Then

xs · xt =


2 if s = t,
0, 2 if s ∈ {1, 2, 3} and t ∈ {4, 5},
1 otherwise,

(7.1)

where · is the usual inner product among row vectors.
The first three rows of G satisfying (7.1) must be one of the

following under some permutation of columns: 1 1 0 0 0
1 0 1 0 0
1 0 0 1 0

 ,

 1 1 0 0 0
1 0 1 0 0
0 1 1 0 0

 ,

and then the first four rows of G satisfying (7.1) can be further
reduced only to the following:

1 1 0 0 0
1 0 1 0 0
0 1 1 0 0
0 0 0 1 1

 .

It can be seen that there is no x5 such that x5 · xs = 0 or 2 and
x5 · x4 = 1 for any s ∈ {1, 2, 3}. This implies that there does not
exist the required matrix G satisfying (7.1). Hence there is no 5
PACB(12, 2, 1) and then it is shown by the definition of additive
cyclic BIB designs that there is no ACB(12, 2, 1). �

8 2 PACB(v, 2, 1) with v 6≡ 2 (mod 4)

In this section, the existence of such PACB(v, 2, 1) will be discussed.
At first, some classes of SA(4, v) are provided to apply the recursive
construction given in Theorem 6.5.
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Lemma 8.1 Let v ≥ 5 and gcd(v, 6) = 1. Then there exists an
SA(4, v).

Proof. Since v ≥ 5 and gcd(v, 6) = 1 imply that

{±i|1 ≤ i ≤ v − 1

2
} = {±2i|1 ≤ i ≤ v − 1

2
} = Z∗v ,

the following columns on Zv can be seen to form the SA(4, v):

(0, i,−i, 2i)T , 1 ≤ i ≤ v − 1

2
.

�

Next, an SA(4, 4t+ 1) can be obtained from a Z-cyclic TWh(v)
with v = 4t + 1 as in Lemma 8.2. Furthermore, an SA(4, v) can
be obtained from a cyclic relative difference family as in Lemma
8.4. Especially, the SA(4, 81) and the SA(4, 243) constructed in
Lemmas 8.3 and 8.5 below are utilized for the recursive construction
of SA(4, v).

Lemma 8.2 The existence of a Z-cyclic TWh(4t + 1) implies the
existence of an SA(4, 4t+ 1).

Proof. Let t games of the Z-cyclic TWh(4t+ 1) be

(a(1, n), a(2, n), a(3, n), a(4, n)), 1 ≤ n ≤ t.

Then it is shown by (2.5) to (2.7) that the following columns yield
an SA(4, 4t+ 1):(

a(1, n) a(2, n) a(3, n) a(4, n)
a(4, n) a(3, n) a(2, n) a(1, n)

)T
for 1 ≤ n ≤ t. �

Now, on account of Lemma 8.2 the Z-cyclic TWh(81) given in
Abel and Ge (2005) can produce the following.

Lemma 8.3 There exists an SA(4, 81).
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Lemma 8.4 The existence of (vg, g, 4, 1)-CDF and an SA(4, g) im-
plies the existence of an SA(4, vg).

Proof. Let initial blocks of the (vg, g, 4, 1)-CDF on Zvg be

{ai, bi, ci, di}, 1 ≤ i ≤ (v − 1)g

12

and let columns of the SA(4, g) on vZg = {0, v, 2v, . . . , (g− 1)v} be

(a(1, n), a(2, n), a(3, n), a(4, n))T , 1 ≤ n ≤ g − 1

2
.

Then it follows from (2.11) to (2.14) that the following columns
yield the SA(4, vg):

ai ai ai ci bi di a(1, n)
bi ci di bi di ci a(2, n)
ci di bi di ci bi a(3, n)
di bi ci ai ai ai a(4, n)

 mod vg

for 1 ≤ i ≤ (v − 1)g/12 and 1 ≤ n ≤ bg/2c. �

Thus, Lemmas 5.1 and 8.4 with the SA(4, 27) displayed in Sec-
tion 3 can produce the following.

Lemma 8.5 There exists an SA(4, 243).

Now, a class of SA(4, v) can be given by the recursive construc-
tion which is similar to Theorem 6.2.

Lemma 8.6 The existence of an SA(4, v) and an SA(4, v′) implies
the existence of an SA(4, vv′).

Proof. Let columns of the SA(4, v) and the SA(4, v′) be

(a(1, n), a(2, n), a(3, n), a(4, n))T , 1 ≤ n ≤ v − 1

2
,

(a′(1, n′), a′(2, n′), a′(3, n′), a′(4, n′))T , 1 ≤ n′ ≤ v′ − 1

2
,
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respectively. Then the following columns yield the SA(4, v):
a(1, n) a′(1, n′)v a(1, n) + a′(1, n′)v a(1, n) + a′(2, n′)v
a(2, n) a′(2, n′)v a(2, n) + a′(2, n′)v a(2, n) + a′(1, n′)v
a(3, n) a′(3, n′)v a(3, n) + a′(3, n′)v a(3, n) + a′(4, n′)v
a(4, n) a′(4, n′)v a(4, n) + a′(4, n′)v a(4, n) + a′(3, n′)v


for 1 ≤ n ≤ (v − 1)/2 and 1 ≤ n′ ≤ (v′ − 1)/2. �

Lemma 8.7 There are SA(4, 3m) for any integer m ≥ 3.

Proof. For m = 3, 4, 5, SA(4, 3m) are given as in Section 3 and
Lemmas 8.3 and 8.5. Hence, applying Lemma 8.6 repeatedly with
v = 33, 34, 35 and v′ = 33 shows the existence of SA(4, 3m) for any
integer m ≥ 3. �

Finally, the main results of this paper are established.

Theorem 8.8 There are 2 PACB(v, 2, 1) for any odd integer v(≥
5) such that gcd(v, 9) 6= 3.

Proof. Let v(≥ 5) be an odd integer such that gcd(v, 9) 6= 3. When
gcd(v, 9) = 1, since gcd(v, 6) = 1, Theorem 3.3 shows the existence
of 2 PACB(v, 2, 1). When gcd(v, 9) = 9, we can put v = 3nt with
integers n(≥ 2) and t(≥ 1) such that gcd(t, 6) = 1. Then Corollary
6.3 and Theorem 6.4 show the existence of 2 PACB(v, 2, 1). Thus,
the proof is complete. �

Theorem 8.9 There are 2 PACB(v, 2, 1) with v = 2mt for any
integer m(≥ 2) and any odd integer t(≥ 1) such that m 6≡ 1 (mod
4) and gcd(t, 27) 6= 3, 9.

Proof. Let t(≥ 1) be an odd integer such that gcd(t, 27) 6= 3, 9.
Then we can put t = 3nt′ with a nonnegative integer n 6= 1, 2 and
an odd integer t′(≥ 1) such that gcd(t′, 6) = 1. Now there are 2
PACB(2m, 2, 1) for any positive integer m 6≡ 1 (mod 4) (see The-
orem 5.3). Also there are SA(4, 3n) for n ≥ 3 (see Lemma 8.7).
Hence Theorem 6.5 shows the existence of 2 PACB(2m3n, 2, 1) for
any positive integer m 6≡ 1 (mod 4) and any nonnegative inte-
ger n 6= 1, 2. By Lemma 8.1, when t′ ≥ 5, there are SA(4, t′),
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since gcd(t′, 6) = 1. Hence Theorem 6.5 shows the existence of
2 PACB(2m3nt′, 2, 1) for any integer m(≥ 2) and any odd integer
3nt′(≥ 1) such that m 6≡ 1 (mod 4) and gcd(3nt′, 27) 6= 3, 9. Thus,
the proof is complete. �

Remark 8.10 If the existence of 2 PACB(3p, 2, 1), 2 PACB(25, 2,
1), 2 PACB(3 · 2m, 2, 1) and 2 PACB(9 · 2m, 2, 1) for any prime
p ≥ 5 and any integer m ≥ 2 could be shown, then it would follow
that the necessary and sufficient conditions for the existence of 2
PACB(v, 2, 1) are v ≥ 4 and v ≡ 0, 1, 3 (mod 4). In fact, some
individual 2 PACB(v, 2, 1) for several v of the above cases are ob-
tained. For example, we can find v = 12, 15, 24 as in Examples 3.7,
3.8 and 3.10, and also v = 21, 33, 57, 69, 93, 129, 141 obtained by
Lemma 4.1 and Theorem 4.3. As of today, the smallest value of v
such that the existence of 2 PACB(v, 2, 1) is not known is 32(= 25).
Furthermore, the existence of ` PACB(v, 2, 1) for some ` may be
difficult to be determined.
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