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Abstract 

   

In Statistics literature, there are a number of methods to develop the new distributions.  

In this paper, a new distribution is developed using DUS transformation. A number of structural 

properties of this distribution such as moments, moment generating function, mean, median, 

mode, hazard rate and its shape, survival function and reverse hazard rate among others are 

derived. Further, the parameters of the newly developed distribution are estimated using method 

of moments, MLE and through simulation. The newly derived distribution was applied to two 

real data for the real life applications. The distribution will be a viable model for life-length of 

components and systems. 

 

Key words: DUS Transformation; Survival Analysis; Hazard Rate; Cumulative distribution 

function; Maximum likelihood estimation. 

 

 

1. Introduction 

 

There are several methods to propose a new distribution using some baseline distribution.  

For example, Gupta et al. (1998) have proposed the cumulative distribution function (cdf) G1(x) 

of new distribution corresponding to the cdf, F(x) of baseline distribution as, 

 

G1(x) = {F(x)}a                                               

 

where, 𝑎 > 0 is the shape parameter. 

 

Shaw and Buckley (2009) have developed a stimulating method called the quadratic rank 

transmutation map (QRTM) to develop the new distribution. It was used in order to form 

flexible distribution families by adding a new parameter to an existing distribution. Such family 

is called the transmuted extended distribution that holds the parental distribution as a special 

case and offers additional suppleness in order to model the numerous types of data sets. 

  

If G2(x) is the cumulative function of transmuted distribution consistent to the baseline 

distribution having F(x), then  

G2(x) = (1+)F(x)−{F(x)}2                                     

where || ≤ 1. 

         Recently, various generalizations have been introduced based on QRTM such as 

transmuted extreme value distribution [see, Aryal and Tsokos (2011)], transmuted inverse 
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Weibull distribution [see, Khan et al. (2014)], transmuted modified Weibull distribution [see, 

Khan and King (2013)], transmuted log-logistic distribution [see, Aryal (2013)], transmuted 

exponential distribution (Kumar et al. (2015)) and many more. 

g(x)=
1

e-1 
f(x) eF(x)                                                     (1) 

The transformation (1) is known as DUS transformation and is used for generating the 

new distribution. The cumulative function and hazard rate consistent to the g(x) are specified 

in (2) and (3) respectively. 

 

                                                       

G(x)=
1

e-1
[eF(x)-1]                                                            (2) 

 

and                       

                                                 h(x)=
1

e-eF(x) f(x)eF(x)                                                              (3) 

 

2. DUS Transformation of Weibull Distribution 

 

In this section, we have proposed a probability density function of a newly formed 

distribution obtained using DUS transformation technique for Weibull distribution as a baseline 

distribution. The distribution will be useful for lifetime modeling. 

 

Using equation (1) the probability density function of DUSW(k, λ)-distribution is given by 

 

                                                 g(x) =
1

e-1 
f(x) eF(x) (4)  

 

The probability density function of the two parameter Weibull distribution is 

 

                                                  f(x) = 
k

λ
(

x

λ
)

k-1

 e
– (

x

λ
)

k

 (5) 

and 

                                                     F(x) = 1– e
– (

x

λ
)

k

                                                                   (6) 

 

Now, putting f(x) and F(x) in equation (1), we get 

 

                                          g(x) = (
x

λ
)

k-1

e
– (

x

λ
)

k

 e
(1–  e

– (
x
λ
)
k

  )

, x>0, λ>0, k>0  (7) 

 

Equation (7) represents the probability density function of DUSW(k, λ)-distribution (DUS 

transformed Weibull distribution) with k as a shape parameter and λ as a scale parameter. The 

shape of newly developed distribution for various values of parameters is given.  
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Figure 1: Probability density function of DUSW(k, λ)-distribution when k = 2 is fixed and 

λ is varied (λ = 3, 5, 7) 

 

 

Figure 2: Probability density function of DUSW(k, λ)-distribution when k = 3 is fixed and 

scale parameter λ is varied (λ = 2.5, 2.7, 2) 

 

 

Figure 3: Probability density function of DUSW(k, λ)-distribution when k = 5 is fixed and 

scale parameter λ is varied (λ = 3, 5, 7) 

 

The shape of DUS transformed is pretty flexible, including moderately positively skewed, 

approximately symmetric and moderately negatively skewed shapes for different values of 

parameters, the DUSW(k,λ)-distribution seems to be a viable model for life-length of 

components and systems as well as non-negative variables. The cdf of DUSW(k,λ)-distribution 

can be written as 

 

                                             

                                         G(x)=
1

e– 1
(e

(1– e
– (

x
λ
)
k

   )

– 1)           (8) 

 

whereas the survival function of the distribution is obtained as 
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                                                   S(x)=1–  
1

e– 1
(e

(1–  e
– (

x
λ
)
k

  )

– 1)                                   (9) 

 

Using equations (8) and (9), the hazard function is obtained 

                                             

h(x)=

(

 
 
 
 
 
( 

k

λ
(

x

λ
)

k– 1
e

– (
x
λ
)
k

 )e

(1–  e
– (

x
λ
)
k

)

(

 
 
𝑒−e

(1–  e
– (

x
λ
)
k

)

)

 
 

)

 
 
 
 
 

                                         (10) 

 

 

Figure 4: Survival function of DUSW(k, λ)-distribution when k = 3 is fixed and λ is  varied 

(λ = 2.5, 2.7, 2) 

 

 

 

 

 

 

 

Figure 5: Hazard rate of DUSW(k, λ)-distribution when k = 3 is fixed and λ is varied  

(λ = 2.5, 2.7, 2) 

 

The graph of hazard rate shows that at the starting of time, hazard rate has an increasing 

trend whereas after completing its median time (approximately), it drastically goes down to 

zero. 

 

3. Statistical Properties of DUSW(k, λ) Distribution 

 

The mean of DUSW(k, λ) distribution is obtained as 

 

E(x)=∫ x g(x)dx
∞

0
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                                        E(x)=λ
e

e– 1
∑

(– 1)i

i!

∞
i=0 ∑

(– 1)j

j!

∞
j=0 Г (i+

1

k
+1)  

1

j
(i+

1
k
+1) 

               (11) 

 

whereas the median of DUSW(k, λ) distribution is the solution of the following, 

 

G(M) =
 1

2
  

for M and the same is obtained as follows, 

  Median = m = λ (ln (
1

(1– ln(1+(e– 1)0.5))
))  

1

k
  (12) 

 

 

In order to obtain the mode of the distribution, differentiating equation (7) with respect to 

x, we get 

            g'(𝑥)= (
𝑘

λ
) (

1

𝑒−1
)

(

  
(k-1)

λ
(

x

λ
)

k-2

(–
1

λ
)

k 

 e
–(

x

λ
)

k

(1–e
–(

x

λ
)

k

)(–e
(1– e

–(
x
λ
)
k

  )

)

)

  (13) 

 

It is easy to show that g’’(x) is a decreasing function hence the expression for the mode 

may be obtained by putting equation (13) equal to zero. 

 

The harmonic mean of DUSW(k, λ) distribution is obtained by solving the following 

expression and is obtained as 

 
1

H
=∫

1

x
g(x)dx

∞

0

 

 

 

             H = [
1

λ

e

e-1
∑

(–1)i

i!

∞
i=0 ∑

(–1)j

j!

∞
j=0 Г (i–

1

k
+1)  

1

j
(i–

1
k
+1) 
]

-1

                                                   (14) 

 

The variance of DUSW(k, λ) distribution can be obtained as 

 

Var(x) = λ2 e

e-1
∑

(–1)i

i!

∞
i=0 ∑

(–1)j

j!

∞
j=0 Г (i+

2

k
+1)  

1

j
(i+

2
k
+1) 

–(λ
e

e-1
∑

(–1)i

i!

∞
i=0 ∑

(–1)j

j!

∞
j=0 Г (i+

1

k
+1)  

1

j
(i+

1
k
+1) 
)

2

  (15) 

  

The moment generating function of DUSW(k, λ) distribution is obtained as 

 

Mx(t) = E(etx) 
 

                                                 E(etx) = 
e

e-1
 ∑

(–1)i

i!

∞
i=0 [i–

tλ

k
+1]

–1

 (16) 

 

The characteristic function of DUSW(k, λ)-distribution for the variable X is obtained as 
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ϕ
x
(t) = E(eitx) 

 

                                                    

                                                         E(eitx) =
e

e-1
 ∑

(-1)j

j!

∞
j=0 [

j-itλ+1

k
]

-1

           (17) 

 

The raw moments of DUSW(k, λ) distribution are obtained as follow 

 

          

            μ'
r
 = E(xr)=λ

r e

e-1
∑

(–1)i

i!

∞
i=0 ∑

(–1)j

j!

∞
j=0 Г (i+

r

k
+1)  

1

j
(i+

r
k
+1) 

                             (18) 

 

The quantile function for DUSW(k, λ)-distribution is obtained as 

  

                                                xq = λ [ln [
1

1– ln(1+q(e–1))
]]

1

k

             (19) 

 

4.  Estimation of the Parameters of DUSW(k, λ) Distribution 

 

In order to assess the real life application of the DUSW(k, λ) distribution, the parameters 

of the distribution are estimated. We estimate the parameters ‘k’ and ‘λ’ of DUSW(k,λ) 

distribution using the maximum likelihood estimation method. By definition 

 

  

                                     
∂lnL(k;x1,x2,…,xn)

∂k
 = 0      (20) 

and  

  

                                    
∂lnL(λ;x1,x2,…,xn)

∂λ
 = 0      (21) 

 

So solving the equations simultaneously, we have 

 

n

k
+ln [∏ (

𝑥𝑖

λ
)

k–1
n
i=1 ] –∑ (

𝑥𝑖

λ
)

k
n
i=1 ln (

k

λ
) –∑ (e

1–(
𝑥𝑖
λ
)

k

)n
i=1 (∑ (

𝑥𝑖

λ
)

k
n
i=1 ln (

k

λ
))= 0   (22) 

 

  

 –
n

λ
2 +

1–k

λ
+

k

λ
∑ (

𝑥𝑖

λ
)

k
n
i=1 –

k

λ
∑ (e

1–(
𝑥𝑖
λ
)

k

) (
𝑥𝑖

λ
)

k
n
i=1 = 0      (23) 

 

Equations (22) and (23) were difficult to solve analytically, some numerical methods may 

be used to solve the equations simultaneously for k and λ respectively.  In order to estimate the 

parameters analytically, we have estimated the parameters using method of moments. 

Following equations will be solved to estimate the parameters k and λ,  

 

        

𝜇́1= 𝑚1
′  

and 
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𝜇́2=  𝑚2
′  

 

λ̂ = 
𝑥̅

e

(e-1)
∑

(-1)i

i!
∞
i=1  ∑

(-1)j 

j!
∞
j=1  Г

(k(i+1)+1)

k
 

1

j
(
k(i+1)+1

k

    (24) 

for parameter k,  

1

n
(𝐴 (

e–1

e
)𝐵𝐶)  = 0 

where 𝐴 =  𝑛 ∑𝑥𝑖
2 −(∑𝑥𝑖)

2;  𝐵 = (
1

∑
(-1)i

i!
∞
i=1  ∑

(-1)j 

j!
∞
j=1  Г

(k(i+1)+1)

k
 

1

j
(
k(i+1)+1

k

)

2

 and  

𝐶 = ∑
(–1)i

i!

∞
i=1 ∑

(–1)j 

j!

∞
j=1  Г (

(k(i+1)+2)

k
)  

1

j
(
k(i+1)+2

k

= 0.                                             (25) 

 

As the expression for k may not be solved analytically therefore numerical method may 

be used to estimate the parameters k and λ. A simulation study is carried out taking 1000 

samples of various sizes n drawn from the DUSW(k, λ) distribution for different values of the 

parameters k and λ. For inversion theorem the relation X = F-1(u) is used to generate the random 

values for the variable X with the given distribution function. By definition 

 

F(x) = u 
 

                                                                     𝑥 = F-1(u)    
  

                                       𝑥̂  = λ [ln [
1

1– ln(1+u(e–1))
]]

1/k

      (26) 

 

Hence the above expression is used to generate random samples from the DUSW(k, λ) 

distribution for the given values of the parameters. A computer program is developed to obtain 

the mean values of the DUSW(k, λ)-distribution using R language. For each pair of values (k, 

λ), various values of the mean of means are obtained. For a given data, the mean will be 

calculated and the parameters will be estimated for the given mean using the Tables generated 

for DUS transformed Weibull distribution. The values of the mean of transformed data of the 

DUS Weibull distribution are presented in the Tables 1 to 9 in the Appendix. 

 

5. Real Life Application 

 

To assess the applicability of DUSW(k, λ) distribution, we have considered a real data of 

63 observations related to the strengths of 1.5 cm glass fibers. This set was obtained by workers 

at the UK National Physical Laboratory and was used by Smith and Naylor (1987) whereas the 

second data set was about the hole diameter (Dasgupta, 2011). The first data set is related to the 

strengths of 1.5 cm glass fibers, a total of 63 observations were obtained and are given as 

follows  

 

https://www.hindawi.com/journals/mse/2017/6043169/#B18
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0.55,  0.74,  0.77,  0.81,  0.84,  1.24,  0.93,  1.04,  1.11,  1.13,  1.30,  1.25,  1.27,  1.28,  1.29, 

1.48,  1.36,   1.39,  1.42,  1.48,  1.51,  1.49,   1.49,   1.50,  1.50,  1.55,  1.52,  1.53,  1.54,   1.55, 

1.61,  1.58,  1.59,  1.60,  1.61,  1.63,  1.61,  1.61,  1.62,  1.62,  1.67,  1.64,  1.66,  1.66,  1.66, 

1.70,  1.68,   1.68,  1.69,   1.70,  1.78,  1.73,  1.76,  1.76,  1.77,   1.89,  1.81,  1.82,  1.84,  1.84, 

2.00,  2.01,   2.24. 

 

After arranging the above data, arithmetic mean of the transformed data is calculated 

which comes out to be 1.506. Now searching this value in table 5, we find that the value of the 

mentioned mean is 1.506 for k = 3, λ = 1.5 and n = 63. The DUSW(k, λ) distribution is fitted on 

the data using λ = 1.5 and k = 3. The chi-square goodness of fit test (χ2 = 3.9168, p = 0.86) 

revealed that the DUSW(k, λ) model is a good fit model on the data of strengths of glass fibers. 

Further, the Weibull distribution is fitted on the data for the same choice of the parameters λ = 

1.5 and k = 3. The chi-square goodness of fit revealed that the DUSW(k, λ) distribution is a better 

fit model compared to two-parameter Weibull distribution.  

 

The second data set of 50 observations (in the unit of millimeter) is related to different 

machines under comparison for the similar operations in the same site of a factory and was used 

by Dasgupta (2011). The observations are given below 

 

0.04,  0.02,  0.06,  0.12,  0.14,  0.08,  0.22,  0.12,  0.08,  0.26,  0.24,  0.04,  0.14,  0.16, 0.08, 

0.26,  0.32,  0.28,  0.14,  0.16,  0.24,  0.22,  0.12,  0.18,  0.24,  0.32,  0.16,  0.14,  0.08,  0.16, 

0.24,  0.16,   0.32,  0.18,  0.24,  0.22,  0.16,  0.12,  0.24,  0.06,  0.02,   0.18,  0.22,  0.14,  0.06, 

0.04,  0.14,   0.26,  0.18,   0.16. 

 

After arranging the above mentioned data, its mean is calculated as 0.1632. Now 

searching this value in Table 4, we have found that the value of the mentioned mean is 0.1632 

for k = 1.5, λ = 0.15 and n = 50. The chi-square goodness of fit test (χ2 = 24.8039, p = 0.81) 

concluded that the proposed model is a good fit for the given data set. 

 

6. Conclusion 

 

From the simulation study, it is evident that the proposed DUS transformed Weibull 

distribution is a flexible model for application. The distribution may be used as a lifetime model 

and can be fitted on the life length of various components. 
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APPENDIX 

 

Table 1: Table of the means of (X̅trans weibull) when sample size n = 10 

 

 

Table 2: Table of the means of (X̅trans weibull) when sample size n = 20 

 

 

 

 

 

 

k/λ 2 2.2 2.3 2.4 2.5 2.6 2.7 3 3.4 

1 2.517245 2.811399 2.885155 2.986473 3.137331 3.283466 3.399174 3.787712 4.336345 

1.15 2.376857 2.566277 2.698917 2.861838 2.956662 3.07399 3.183724 3.470086 3.948485 

1.25 2.23171 2.469243 2.583506 2.736134 2.837344 2.939732 3.041505 3.372101 3.849027 

1.5 2.155965 2.33097 2.477656 2.59744 2.696651 2.774533 2.891594 3.204253 3.608331 

1.75 2.076177 2.275707 2.379886 2.484644 2.620812 2.696242 2.805161 3.126713 3.504668 

2 2.023193 2.234959 2.353963 2.440517 2.529771 2.645726 2.742195 3.043873 3.435698 

2.25 2.00609 2.214886 2.310757 2.399094 2.512973 2.591598 2.722587 3.031537 3.392291 

2.5 2.000772 2.182101 2.290734 2.376628 2.49335 2.581597 2.691004 2.97438 3.375509 

3 1.969566 2.158932 2.272332 2.362112 2.460654 2.562589 2.644976 2.961288 3.343580 

k/λ 0.2 0.4 0.45 2 2.3 2.5 3 3.3 3.5 

1 0.251216 0.569388 0.569388 2.504554 2.904909 3.167895 3.755406 4.124498 4.377891 

1.15 0.235446 0.530137 0.530137 2.347480 2.714062 2.929789 3.530666 3.880406 4.109790 

1.25 0.225846 0.511246 0.511246 2.281141 2.614768 2.839802 3.405611 3.718937 3.980987 

1.5 0.214381 0.481564 0.481564 2.149555 2.466677 2.684022 3.214789 3.561088 3.778796 

1.75 0.206709 0.468092 0.468092 2.083877 2.386881 2.599988 3.102101 3.449115 3.610533 

2 0.204347 0.456636 0.456636 2.028692 2.342961 2.523202 3.049356 3.34684 3.555917 

2.5 0.199243 0.447806 0.447806 1.991692 2.284143 2.486346 2.985243 3.272693 3.481387 

3 0.195725 0.443646 0.443646 1.970628 2.262800 2.45306 2.960755 3.261811 3.443872 

3.2 0.189226 0.390668 0.390668 1.894560 2.241700 2.42293 2.46892 3.241709 3.422876 
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Table 3: Table of the means of (X̅trans weibull) when sample size n = 30 

 

k/λ 2 2.3 2.5 2.7 2.8 3 3.3 3.5 

1 2.504009 2.912170 3.171027 3.404401 3.499660 3.746924 4.135979 4.470881 

1.15 2.347347 2.887324 2.949099 3.162511 3.252916 3.554996 3.875747 4.093062 

1.25 2.273302 2.615983 2.832352 3.051734 3.186968 3.396030 3.746377 3.968723 

1.5 2.138868 2.470648 2.685668 2.898625 3.009160 3.225825 3.527038 3.756814 

1.75 2.071820 2.385379 2.599343 2.804341 2.895190 3.112046 3.427742 3.641127 

2 2.038699 2.329662 2.554939 2.746986 2.842897 3.056338 3.365053 3.554760 

2.25 2.003136 2.305109 2.500910 2.707960 2.803177 3.007277 3.308174 3.509270 

2.5 1.986168 2.281053 2.486458 2.674299 2.794896 2.997515 3.268091 3.482483 

3 1.971597 2.267932 2.454803 2.661883 2.754530 2.956542 3.243436 3.436502 

 

 

 

Table 4: Table of the means of (X̅trans weibull) when sample size n = 50 

 

k/λ 0.1 0.15 0.2 0.5 1 1.5 2 2.5 3 

1 0.126208 0.189445 0.252161 0.629009 1.254004 1.898039 2.531597 3.138138 3.777200 

1.15 0.116912 0.176062 0.234553 0.584946 1.175404 1.755803 2.339846 2.929436 3.504400 

1.25 0.113295 0.170105 0.226849 0.565130 1.134217 1.698214 2.281033 2.83516 3.390600 

1.5 0.107107 0.164074 0.214397 0.534685 1.071657 1.609600 2.148722 2.666563 3.208000 

1.75 0.103833 0.160124 0.206910 0.518443 1.040654 1.558920 2.074412 2.594035 3.101780 

2 0.101413 0.158331 0.203733 0.507773 1.015262 1.519897 2.032245 2.540005 3.050230 

2.5 0.099707 0.155434 0.198530 0.498642 0.992869 1.490626 1.993589 2.499018 2.977090 

3 0.098321 0.149604 0.196730 0.491703 0.984630 1.475060 1.970222 2.462718 2.955900 

3.5 0.087644 0.142777 0.192780 0.468930 0.945520 1.439970 1.935520 2.390330 2.909700 

 

Table 5: Table of the means of (X̅trans weibull) when sample size n = 63 

 

k/λ 0.5 0.75 1 1.5 1.75 2 2.5 3 3.5 

0.5 1.399557 2.136622 2.865456 4.554282 4.869946 5.709310 7.132205 8.457595 9.895400 

0.75 0.784859 1.177411 1.561745 2.469169 2.763686 3.141139 3.915627 4.710288 5.481340 

1 0.631977 0.943295 1.256300 1.987784 2.210679 2.528557 3.140937 3.748432 4.414500 

1.5 0.536525 0.803973 1.070778 1.872589 1.890160 2.147369 2.681373 3.225480 3.755600 

1.75 0.519181 0.776352 1.034615 1.685650 1.814858 2.074194 2.594843 3.118343 3.628500 

2 0.507381 0.763716 1.015113 1.605890 1.773439 2.035301 2.542794 3.040332 3.558100 

2.5 0.497888 0.746088 0.995065 1.591450 1.746025 1.987331 2.483504 2.989640 3.486800 

2.75 0.493780 0.741295 0.989270 1.556450 1.729200 1.974721 2.471013 2.965545 3.455800 

3 0.492343 0.739055 0.982879 1.510709 1.728782 1.965731 2.456757 2.955809 3.443000 

3.5 0.489345 0.734759 0.979046 1.480709 1.714510 1.955997 2.44798 2.934148 3.429600 
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Table 6: Table of the means of (X̅trans weibull) when sample size n = 100 

 

k/λ 2 2.3 2.5 2.7 2.8 3 3.3 3.5 

1 2.531597 2.894259 3.138138 3.422545 3.540568 3.777278 4.169518 4.433289 

1.15 2.339846 2.696134 2.929436 3.159015 3.289008 3.504461 3.879313 4.098301 

1.25 2.281033 2.603607 2.83516 3.058677 3.170763 3.390670 3.723769 3.979242 

1.5 2.148722 2.475804 2.666563 2.906334 3.005207 3.208049 3.528592 3.767585 

1.75 2.074412 2.377109 2.594035 2.795645 2.900345 3.101789 3.436162 3.634684 

2 2.032245 2.332237 2.540005 2.735711 2.76723 3.050239 3.34302 3.556535 

2.5 1.993589 2.283756 2.499018 2.687975 2.785568 2.977095 3.277005 3.479074 

3 1.970222 2.267965 2.462718 2.658942 2.749937 2.955899 3.248275 3.438107 

 

Table 7: Table of the means of (X̅trans weibull) when sample size n = 300 

 

k/λ 2 2.3 2.5 2.7 2.8 3 3.3 3.5 

1 2.524565 2.898132 3.142753 3.403772 3.528445 3.774485 4.156479 4.411083 

1.15 2.346215 2.699438 2.937056 3.174084 3.285149 3.517790 3.878156 4.102618 

1.25 2.272043 2.605824 2.832281 3.063584 3.174093 3.407877 3.748495 3.969933 

1.5 2.148019 2.466352 2.677368 2.896174 2.996944 3.222330 3.540961 3.750759 

1.75 2.076095 2.386813 2.598522 2.802113 2.905126 3.114686 3.425741 3.625521 

2 2.034038 2.336548 2.543534 2.743206 2.845385 3.049329 3.357493 3.556055 

2.5 1.988411 2.288006 2.482313 2.683379 2.782118 2.984053 3.277599 3.482176 

3 1.967270 2.264435 2.460363 2.656226 2.757550 2.949514 3.248816 3.442170 

 

Table 8: Table of the means of (X̅trans weibull) when sample size n = 500 

 

k/λ 2 2.3 2.5 2.7 2.8 3 3.3 3.5 

1 2.518699 2.898791 3.154413 3.399437 3.531351 3.777867 4.154576 4.404194 

1.15 2.345587 2.699761 2.939658 3.166351 3.287146 3.523665 3.877953 4.105032 

1.25 2.268411 2.609544 2.836316 3.063409 3.178322 3.406563 3.743683 3.971175 

1.5 2.143511 2.463945 2.684016 2.892896 3.004482 3.218393 3.536348 3.754384 

1.75 2.075971 2.388087 2.596298 2.801879 2.90648 3.110323 3.423013 3.632914 

2 2.033545 2.33581 2.540464 2.742854 2.846879 3.051042 3.355247 3.556760 

2.5 1.988111 2.286722 2.484683 2.684510 2.782593 2.982218 3.278046 3.480877 

3 1.969891 2.263312 2.461614 2.657846 2.757536 2.950255 3.252892 3.443803 
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Table 9: Table of the means of (X̅trans weibull) when sample size n = 1000 

 

k/λ 2 2.3 2.5 2.7 2.8 3 3.3 3.5 

1 2.519694 2.898938 3.150607 3.398360 3.528852 3.781955 4.159814 4.407745 

1.15 2.344847 2.699903 2.935890 3.168151 3.285946 3.523283 3.872619 4.106633 

1.25 2.271496 2.609546 2.836777 3.063625 3.180062 3.403251 3.744170 3.971481 

1.5 2.146576 2.468929 2.683170 2.896734 3.007135 3.215928 3.538355 3.753207 

1.75 2.076046 2.388072 2.595777 2.801017 2.904149 3.113252 3.424946 3.629920 

2 2.033407 2.340196 2.542027 2.745568 2.845711 3.049193 3.353305 3.556922 

2.5 1.988675 2.285758 2.484805 2.684776 2.782991 2.983072 3.283154 3.479466 

3 1.968194 2.263994 2.460396 2.656330 2.754646 2.952897 3.247433 3.446004 
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Abstract 
 

This paper proposes an algorithm for constructing mixture designs based on orthogonal 

arrays of index unity containing the smallest number of runs for a given number of levels and 

a given strength using mutually orthogonal Latin squares. The algorithm allows the 

generation of cost effective and efficient mixture designs for Scheffé’s canonical 

polynomials. 

 

Key words: Mixture experiments; Mutually orthogonal Latin squares; Restricted region; G-

efficiency. 

 

 

1. Introduction 
 

In experiments with mixtures, the response is a function only of the proportions of the q 

components present in the mixture and not of the total amount of the mixture. If xi is the 

proportion of ith component, i = 1, 2, …, q, then 

 

0 ≤  xi ≤ 1,  ∑ xi
q

i=1 =1        (1) 

 

These restrictions force the factor space of the q components to take form of a (q−1) 

dimensional simplex. The general purpose of mixture experimentation is to estimate the 

properties of an entire multicomponent system from only a limited number of observations. 

These observations are taken at preselected combinations of the components to determine 

which of the combinations in some sense optimize the response. 

 

In many practical situations, one can encounter certain additional constraints that are 

placed on some or all component proportions besides (1). These are of the form 

 

0 ≤ Li ≤ xi ≤ Ui ≤ 1; i = 1, 2, …, q             (2) 

 

where, Li and Ui denote the lower bound and upper bound for the component proportion xi; i 

= 1, 2, …, q. These supplementary restrictions limit the experimentation to some sub-region 

of the simplex, thereby altering the shape of the experimental region from a simplex to an 

irregularly shaped convex polyhedron inside the simplex. In such situations, directing the 

design and modelling only to the sub-region can help in lowering the experimentation cost 

and time and increasing the precision of model estimates. 
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Mixture designs have a variety of applications in several industries. Amongst many 

others, Cafaggi et al. (2003) illustrated the application of a constrained mixture design to a 

pharmaceutical formulation. Mirabedini et al. (2012) discussed the application of mixture 

designs for the formulation of thermoplastic road markings. Schrevens and Cornell (1993) 

analysed the mixture designs for plant nutrition research. Buruk et al. (2016) reviewed the 

recent applications of mixture designs in the food industry.  

 

Scheffé (1958, 1963) was the first to develop simplex lattice and simplex centroid 

designs for fitting the canonical polynomial models: 

 

Linear model: Y=∑ β
i
xi

q

i=1 +ε                             (3) 

Quadratic model: Y=∑ β
i
xi

q

i=1 +∑∑ β
ij
xixj

q

i<j +ε                                    (4) 

Special cubic model: Y=∑ β
i
xi

q

i=1 +∑∑ β
ij
xixj

q

i<j +∑∑∑ β
ijk

xixj
q

i<j<k xk +ε                  (5) 

 

McLean and Anderson (1966) developed extreme vertices designs (EVD) which satisfy 

both the constraints (1) and (2). A partial solution to the restricted exploration problem is the 

work of Thompson and Myers (1968) who considered an ellipsoidal region centred about a 

point of maximum interest. Snee and Marquardt (1974) obtained subsets of the extreme 

vertices which provide precise estimates of the parameters of a linear model. Snee (1975) 

used the computer to develop designs in constrained mixture spaces for the quadratic model. 

Saxena and Nigam (1977) explored the restricted mixture region using symmetric simplex 

design.  Murthy and Murty (1983) discussed a method of construction of mixture designs for 

the exploration of the restricted region using factorials.  

 

Much of the work on Latin squares has been done by various authors, for example, 

Bose (1938), Mann (1942) Parker (1959 a, b), Bose, Shrikhande and Parker (1960), Menon 

(1961) and Wallis (1984), who gave the methods of construction of mutually orthogonal 

Latin squares in various ways.  

 

In this paper, we present an algorithm for constructing orthogonal arrays based mixture 

designs. The orthogonal arrays used in the proposed algorithm are constructed using a 

complete set of mutually orthogonal Latin squares. These orthogonal arrays have index unity 

and contain the smallest number of runs for a given number of levels and a given strength. 

This algorithm, therefore, leads to designs with small number of distinct runs. 

 

We have examined and compared the designs constructed through this algorithm with 

the existing designs based on G-efficiency. The manageable number of design points help in 

reducing the cost and time in statistical experiments. 

 

2. Orthogonal Arrays Based on Mutually Orthogonal Latin Squares 
 

Hypercubes of strength ‘d’ were defined by Rao (1946). Later, Rao (1947) extended the 

definition of hypercubes of strength d to cover a wider class of arrays called orthogonal 

arrays. An N × k array A with entries from S is said to be an orthogonal array OA(N, k, s, t) 

with s levels, strength t and index λ (for some t in the range 0 ≤ t ≤ k) if every N × t sub-array 

of A contains each t-tuple based on S exactly λ times as a row. If λ = 1, then such arrays are 

referred to as orthogonal arrays of index unity. (Bush 1952). Orthogonal arrays can be 

constructed using mutually orthogonal Latin squares. 
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A Latin square arrangement is an arrangement of s symbols in s rows and s columns, 

such that every symbol occurs once in each row and each column. When two Latin squares of 

same order are superimposed on one another, in the resultant array if every ordered pair of 

symbols occurs exactly once, then the two Latin squares are said to be orthogonal. A 

collection of ω Latin squares of order s, every pair of which is orthogonal, is called a set of 

mutually orthogonal Latin squares, and is denoted by MOLS(s, ω).  Such a collection 

constitutes a complete set of mutually orthogonal Latin squares when ω = s − 1. 

 

2.1.    Design criteria 

If X denotes the N × k design matrix, then a useful criterion for evaluating the design is 

the minimum-maximum variance criterion. This refers to minimizing the maximum variance 

of prediction over the experimental region, where the prediction variance at the point x (1 × k 

row vector) is given by σ2υ and υ = x(X'X)
-1
x'. Computation of the maximum variance 

provides a criterion of how close is a design to optimality. The G-efficiency or Global 

efficiency of the design is given by, 

G-efficiency (percent of optimum)= 100p Nd⁄  

where, p is the number of model parameters, N is the number of design points and d is the 

maximum value of υ over the experimental region. 

Wheeler (1972) stated as a practical rule of thumb that any design with a G-efficiency 

≥ 50% could be called good for practical purposes. 

 

3. OABMD Algorithm 
 

Let s be a prime or a power of a prime, then there are (s−1) mutually orthogonal Latin 

squares of order s. Superimpose these (s−1) mutually orthogonal Latin squares on one 

another. Label the rows and columns of this array with 0, 1, …, s−1. Prefix labels of the rows 

and post fix the labels of the columns to the entries of the superimposed mutually orthogonal 

Latin squares. The elements of the resultant give an OA(s2, s+1, s, 2) with the maximum 

number of factors. We now present Orthogonal Array Based Mixture Design (OABMD) 

algorithm for constructing q component mixture designs using mutually orthogonal Latin 

squares. 

 

Step 1: Construct an orthogonal array OA(s2, s+1, s, 2) using the set of (s−1) mutually 

orthogonal Latin squares, with q = (s+1) factors. Denote this matrix by A. 

Step 2: Create a matrix M of order q × q which is symmetrical but not orthogonal, having all 

elements as integers with sum of elements in each row and each column being zero. 

The choice of M is arbitrary and is useful in getting more vertices of the experimental 

region in the design as mentioned by Murthy and Murty (1983). 

Step 3: Identify the minimum value in each column of A × M and subtract it from all the 

entries of that corresponding column to create a new matrix T. 

Step 4: Obtain the row totals for matrix T. Divide the entries of each row of T by its 

corresponding row total to obtain a new matrix Z. The resultant matrix is a mixture 

design satisfying 

0 ≤ zi ≤ 1  and  ∑ zi
q

i=1 =1,  

 zi being the proportion for ith component.  
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Further, if the mixture experiment has to be performed in the restricted region, where 

each component is bounded by lower or upper bounds, or both, then proceed as 

follows: 

Step 5: Rank the components in order of their increasing ranges Ri = (Ui − Li ) such that X1 

has the smallest range and Xq has the largest range, assuming range to be inversely 

proportional to the importance (in terms of cost, effectiveness, etc.) of the components 

in the experiment. 

Step 6: Using the transformation given by Saxena and Nigam (1977), Xi=Li+(Ri×zi), 

compute the entries for the first (q−1) components of the design matrix X. The levels 

of Xq are obtained by Xq=1-∑ Xi
q-1

i=1 . 

Step 7: In case Xq lies beyond the specified bounds, generate candidate design points. There 

may be multiple candidate points corresponding to a given design point. The 

candidate points are generated by adjusting the level of one of the components by a 

quantity equal to the difference between the substituted upper or lower bound and the 

computed value for Xq. Additional points are produced only from those components 

whose adjusted levels remain within the limits of the components. 

 

We have illustrated the OABMD algorithm for generating designs for three, four and 

five components. These designs have been found to be efficient designs. 

 

4. Mixture Designs For Three, Four And Five Components  
 

4.1.  Three component example 
 

Consider the three-component mixture experiment, where all the components satisfy 

(1). Construct an orthogonal array OA(4, 3, 2, 2) with three factors. Denote it by A. 

 

A
T
=(

0 0 1 1
0 1 1 0
0 1 0 1

) 

 

Multiply it with a symmetric and non-orthogonal matrix, M,  

 

M=(

–2 1 1

1 –2 1

1 1 –2

) 

 

having row sums and column sums as zero, to obtain T, 

 

T=(

1 1 1

3 0 0

0 0 3

0 3 0

) 

 

Using step 4 of the OABMD algorithm, we obtain the design matrix Z for unrestricted 

region as follows: 
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          Z=

(

 

1
3⁄

1
3⁄

1
3⁄

1 0 0

0 0 1

0 1 0 )

      (6) 

 

We observe that 0 ≤ zi ≤ 1 and sum of the elements for each row is unity. This design 

has a G-efficiency of 81.8% for fitting (3). 

 

Next, using step 6 of the OABMD algorithm, we compute the design matrix for the 

constrained region, as discussed below. 

 

Example 1: Consider the following three component mixture experiment, discussed by 

Murthy and Murty (1983), in order of increasing ranges: 

      0.2 ≤ X1 ≤ 0.3 

0.3 ≤ X2 ≤ 0.5 

and 0.2 ≤ X3 ≤ 0.5  

 

The first (q−1) columns of the design matrix X are constructed using Xi=Li+(Ri×zi), 

where zi is the proportion of the ith component of Z in (6). The levels of Xq are obtained by 

Xq=1-∑ Xi
q-1

i=1 . The four design points of the resulting design matrix X are given in (7). 

 

                                            X =(

0.233 0.367 0.4

0.3 0.3 0.4

0.2 0.3 0.5

0.2 0.5 0.3

)                  (7) 

 

This design has a G-efficiency of 81.8% for fitting (3).  

 

Other choices of M and resultant unconstrained and constrained design matrix are listed 

in Table 1. 

 

Table 1: Unconstrained and constrained mixture designs corresponding to different 

choices of M 

 
Choice of M Resultant Z Resultant X 

M1=(
   1  –1     0

  –1   2    –1

    0  –1     1

) Z1=

(

 
 
 

1
4⁄

1
2⁄

1
4⁄

0 3
4⁄

1
4⁄

1
4⁄

3
4⁄ 0

1
2⁄ 0 1

2⁄ )

 
 
 

 X1=(

0.225 0.4 0.375

0.2 0.45 0.35

0.225 0.45 0.325

0.25 0.3 0.45

) 

M2=(
  –1   1   0

   1  –2   1

   0   1  –1

) 
Z2=

(

 
 

1
3⁄

1
3⁄

1
3⁄

2
3⁄ 0 1

3⁄

1
3⁄ 0 2

3⁄

0 1 0 )

 
 

 

 

 

X2=(

0.233 0.367 0.4

0.267 0.3 0.433

0.233 0.3 0.467

0.2 0.5 0.3

) 
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Choice of M Resultant Z Resultant X 

M3=(
   1 –1  0

  –1  0  1

   0  1 –1

) Z3=

(

 
 
 

1
3⁄

1
3⁄

1
3⁄

0 2
3⁄

1
3⁄

1
3⁄ 0 2

3⁄

2
3⁄

1
3⁄ 0 )

 
 
 

 X3=(

0.233 0.367 0.4

0.2 0.433 0.367

0.233 0.3 0.467

0.267 0.367 0.367

) 

M4=(
 –1  1    0

  1  0  –1

  0 –1   1

) Z4=

(

 
 
 

1
3⁄

1
3⁄

1
3⁄

2
3⁄ 0 1

3⁄

1
3⁄

2
3⁄ 0

0 1
3⁄

2
3⁄ )

 
 
 

 X4=(

0.233 0.367 0.4

0.267 0.3 0.433

0.233 0.433 0.333

0.2 0.367 0.433

) 

M5=(
 2 –1 –1

–1  2  –1

–1 –1   2

) Z5=

(

 
 
 

1
3⁄

1
3⁄

1
3⁄

0 1
2⁄

1
2⁄

1
2⁄

1
2⁄ 0

1
2⁄ 0 1

2⁄ )

 
 
 

 X5=(

0.233 0.367 0.4

0.2 0.4 0.4

0.25 0.4 0.35

0.25 0.3 0.45

) 

 

The unconstrained and constrained design matrices obtained using different choices of 

M listed in the table above also yield a G-efficiency of 81.8% for fitting (3).  

 

Example 2: Consider the following three component mixture experiment, discussed by Snee 

and Marquardt (1974) and by Saxena and Nigam (1977), in order of increasing ranges: 

      

0.1 ≤ X1 ≤ 0.6 

0.1 ≤ X2 ≤ 0.7 

and    0 ≤ X3 ≤ 0.7 

Using M,  

 

M=(

–2 1 1

1 –2 1

1 1 –2

) 

 

the four design points of the resulting design matrix X are given in (8). 

 

    X=(

0.267 0.3 0.433

0.6 0.1 0.3

0.1 0.1 0.8

0.1 0.7 0.2

)                                                   (8) 

 

We observe that the limits for the third component of the third design point of (8) lies 

outside the specified bounds, so we shall adjust the run (0.1, 0.1, 0.8), using step 7 of the 

OABMD algorithm, to create two candidate sub-points (0.1, 0.2, 0.7) and (0.2, 0.1, 0.7). 
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Case (a): Four-point design with candidate point (0.1, 0.2, 0.7) 

 

The design matrix in (8) is modified to incorporate the candidate sub-point (0.1, 0.2, 

0.7) to yield the following four design runs. 

 

Xa=(

0.267 0.3 0.433

0.6 0.1 0.3

0.1 0.2 0.7

0.1 0.7 0.2

) 

 

The G-efficiency for the above design matrix for fitting Scheffé’s linear model given in 

(3) is 79.19%.   

 

Case (b): Four-point design with candidate point (0.2, 0.1, 0.7) 

 

The design matrix in (8) is adjusted to include the candidate sub-point (0.2, 0.1, 0.7) to give 

the following four design runs. 

 

Xb=(

0.267 0.3 0.433

0.6 0.1 0.3

0.2 0.1 0.7

0.1 0.7 0.2

) 

 

The G-efficiency for the above design matrix for fitting Scheffé’s linear model given in 

(3) is 78.65%. 

 

4.2.   Four component example 

 

To construct a mixture design in four components satisfying (1), construct an 

orthogonal array with four factors, say, A = OA(9, 4, 3, 2) and a symmetric and non-

orthogonal matrix, M as 

 

A
T =(

0 0 0 1 1 1 2 2 2

0 1 2 1 2 0 2 0 1

0 1 2 2 0 1 1 2 0

0 1 2 0 1 2 0 1 2

)  and M =

(

 
 

  –3    1    1    1

    1   –3    1    1

    1    1   –3    1

    1     1     1  –3)

 
 

 

 

The unconstrained mixture design Z, is 

 

Z =

(

 
 
 
 
 
 

0.2 0.27 0.27 0.26

0.4 0.2 0.2 0.2

0.6 0.13 0.13 0.14

0.2 0.27 0 0.53

0.2 0 0.53 0.27

0.2 0.53 0.27 0

0 0.07 0.33 0.6

0 0.6 0.07 0.33

0 0.33 0.6 0.07)

 
 
 
 
 
 

          (9) 
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Consider the constrained four component mixture experiment as discussed by McLean 

and Anderson (1966). In manufacturing one particular type of flare the chemical constituents 

are magnesium (x1 ), sodium nitrate (x2 ), strontium nitrate (x3 ), and binder (x4 ). Engineering 

experience has indicated that the following constraints (in order of increasing ranges) on a 

proportion by weight basis should be utilized: 

 

0.03 ≤ X1 ≤ 0.08 

0.40 ≤ X2 ≤ 0.60 

 0.10 ≤ X3 ≤ 0.50 

   and 0.10 ≤ X4 ≤ 0.50 

 

Using the OABMD algorithm, the constrained mixture design, X, is 

 

X =

(

 
 
 
 
 
 

0.04 0.453 0.207 0.3

0.05 0.44 0.18 0.33

0.06 0.427 0.153 0.36

0.04 0.453 0.1 0.407

0.04 0.4 0.313 0.247

0.04 0.506 0.207 0.247

0.03 0.413 0.233 0.324

0.03 0.52 0.127 0.323

0.03 0.467 0.34 0.163)

 
 
 
 
 
 

                  (10) 

 

The design matrix Z in (9) as well as matrix X in (10) have a G-efficiency of 72.72% 

for fitting (3). The design matrix achieved using OABMD algorithm proves to be more 

economical in terms of number of design points and exploration of the constrained region 

than the XVERT algorithm. 

 

If limitation of resources demands a reduction in the number of design points, we may 

use the method of normalization, as discussed by McLean and Anderson (1966). The 

operative idea is to compute a normalized distance dij between points of the design and 

randomly omit points that are less than a certain minimum distance from other design points. 

 

dij =(∑ (
xir-xjr

br-ar

)
2q

r=1

)

1

2

 

 

The design matrices, Z1* and X1*, corresponding to the unrestricted and restricted 

region, consisting of just four design points, obtained using the above-mentioned technique 

are: 

Z1* =(

0.6 0.13 0.13 0.13

0.2 0.27 0 0.53

0 0.07 0.33 0.6

0 0.6 0.07 0.33

)                      (11) 

and 

X1* =(

0.06 0.427 0.153 0.36

0.04 0.453 0.1 0.407

0.04 0.4 0.313 0.247

0.03 0.52 0.127 0.323

)                      (12) 
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The design matrix Z1* in (11) as well as matrix X1* in (12) have a G-efficiency of 100% 

for fitting (3). To allow estimation of error variance, we may add another design point, (0, 

0.33, 0.6, 0.07) to the design matrix Z1*in (11), then the resultant design consisting of five 

runs has a G-efficiency of 84.89% for fitting (3). Similarly, adding one point of the restricted 

region, say, (0.03, 0.467, 0.34, 0.163) to the design matrix X1* in (12) yields a G-efficiency of 

80% for fitting (3). 

 

In practical situations, fitting linear model is not always suitable. A higher model may 

provide a better fit to the given design. Consider the design matrices, Z and X, given in (6) 

and (7). Further, in addition to these points, we may add the boundary points, centroids or the 

extreme vertices to facilitate the computation of G-efficiency for fitting higher order models 

as stated in (4) and (5). Addition of three centroid points to the unconstrained design matrix Z 

of (6) and corresponding design points in X of (7) yield two 7-point designs, both of which 

have a G-efficiency of 85.7% for fitting Scheffé quadratic model specified in (4). Similarly, 

adding one more point to the 7-point design of Z and X gives an 8-point design, both of 

which have a G-efficiency of 87.5% for fitting Scheffé cubic model mentioned in (5). 

Likewise, adding boundary points to the unconstrained and constrained design matrices, for 

any choice of M, as stated in Table 1, yield a G-efficiency of 85.7% and 87.5% for fitting (4) 

and (5) respectively. 

 

Similarly, for the four-component example, 11-point designs obtained by adding two 

boundary points, (0, 1, 0, 0) and (0, 0, 1, 0) to (9) and adding the points (0.03, 0.4, 0.1, 0.47) 

and (0.08, 0.6, 0.1, 0.22) to (10) yield a G-efficiency of 90.90% for fitting (4). This value of 

G-efficiency is computed using XE in place of X, where XE given below is the extended 

design matrix for model (4). 

 

XE =

(

 
 
 
 
 
 
 
 

0.04 0.453 0.207 0.3 0.018 0.008 0.012 0.093 0.136 0.062

0.05 0.44 0.18 0.33 0.022 0.009 0.016 0.079 0.145 0.059

0.06 0.427 0.153 0.36 0.025 0.009 0.021 0.065 0.153 0.055

0.04 0.453 0.1 0.407 0.018 0.004 0.016 0.045 0.184 0.041

0.04 0.4 0.313 0.247 0.016 0.012 0.009 0.125 0.098 0.077

0.04 0.506 0.207 0.247 0.020 0.008 0.009 0.104 0.125 0.051

0.03 0.413 0.233 0.324 0.012 0.007 0.009 0.096 0.134 0.075

0.03 0.52 0.127 0.323 0.015 0.003 0.009 0.066 0.168 0.041

0.03 0.467 0.34 0.163 0.014 0.010 0.005 0.158 0.076 0.055

0.03 0.4 0.1 0.47 0.012 0.003 0.014 0.04 0.188 0.047

0.08 0.6 0.1 0.22 0.048 0.008 0.017 0.06 0.132 0.022)

 
 
 
 
 
 
 
 

 

 

 The G-efficiency values of Z and X for fitting (3) and (4) for different choices of M are 

listed in Table 2.  
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Table 2: G-efficiency of unconstrained and constrained mixture designs corresponding 

to different choices of M 

 

Choice of M 

G-efficiency for 

fitting (3) 

G-efficiency for 

fitting (3) 

G-efficiency for 

fitting (4) 

9-point design 5-point design 11-point design 

Z X Z X Z X 

M1=(

   1   –1     0    0

  –1    2  –1    0

    0  –1   2   –1

    0    0  –1    1

) 72.72% 72.72% 80% 80% 90.90% 90.90% 

M2  = −M1 72.72% 72.72% 80% 80% 90.90% 90.90% 

M3=(

  1   –1    0    0

–1    0    1    0

  0     1    0   –1

  0     0  –1    1

) 72.72% 72.72% 84.89% 80% 90.90% 90.90% 

M4  = −M3 72.72% 72.72% 84.89% 80% 90.90% 90.90% 

M5  = −M 72.72% 72.72% 84.89% 80% 90.90% 90.90% 

 

4.3.   Five component example 

 

We may extend the application of our OABMD algorithm to five component 

constraints. To construct a mixture design, Z, in five components satisfying (1), construct an 

orthogonal array with five factors, A = OA(16, 5, 4, 2). 

 

A
T =

(

 
 

0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3

0 1 2 3 1 0 3 2 2 3 0 1 3 2 1 0

0 1 2 3 2 3 0 1 3 2 1 0 1 0 3 2

0 1 2 3 3 2 1 0 1 0 3 2 2 3 0 1

0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3)

 
 

 

 

and a symmetric and non-orthogonal matrix, M as 

 

M =

(

 
 
 

–4    1    1    1    1

  1   –4    1    1    1

  1     1   –4    1    1

  1     1     1   –4    1

  1     1     1     1  –4)

 
 
 

 

 

to give the unconstrained mixture design Z, 
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Z =

(

 
 
 
 
 
 
 
 
 
 
 
 
 

0.158 0.210 0.210 0.211 0.211

0.264 0.184 0.184 0.184 0.184

0.368 0.158 0.158 0.158 0.158

0.474 0.132 0.132 0.131 0.131

0.211 0.263 0.131 0 0.395

0.211 0.395 0 0.131 0.263

0.211 0 0.395 0.263 0.131

0.211 0.131 0.263 0.395 0

0.105 0.158 0.026 0.289 0.422

0.105 0.026 0.158 0.422 0.289

0.105 0.422 0.289 0.026 0.158

0.105 0.289 0.422 0.158 0.026

0 0.053 0.316 0.184 0.447

0 0.184 0.447 0.053 0.316

0 0.316 0.053 0.447 0.184

0 0.447 0.184 0.316 0.053)

 
 
 
 
 
 
 
 
 
 
 
 
 

                           (13) 

 

Using step 6 of the OABMD algorithm, we compute the design matrix of the 

constrained region. Consider the five-component example, discussed by Snee and Marquardt 

(1974). The gasoline blending model for a five-component system, namely, Butane (X1), 

Alkylate (X2), Lt. St. Run (X3), Reformate (X4) and Cat Cracked (X5), with the following 

component ranges: 

 

0.00 ≤ X1 ≤ 0.10 

0.00 ≤ X2 ≤ 0.10 

 0.05 ≤ X3 ≤ 0.15 

 0.20 ≤ X4 ≤ 0.40 

   and 0.40 ≤ X5 ≤ 0.60 

 

Using the OABMD algorithm, the design matrix, X is as follows: 

 

X =

(

 
 
 
 
 
 
 
 
 
 
 
 
 

0.0158 0.0211 0.0710 0.2421 0.6500

0.0263 0.0184 0.0684 0.2369 0.6500

0.0368 0.0158 0.0658 0.2316 0.6500

0.0473 0.0132 0.0632 0.2263 0.6500

0.0211 0.0263 0.0632 0.2000 0.6894

0.0211 0.0394 0.0500 0.2263 0.6632

0.0211 0.0000 0.0895 0.2526 0.6368

0.0211 0.0132 0.0763 0.2789 0.6105

0.0105 0.0158 0.0526 0.2579 0.6632

0.0105 0.0026 0.0658 0.2842 0.6369

0.0105 0.0421 0.0789 0.2053 0.6632

0.0105 0.0289 0.0921 0.2316 0.6369

0.0000 0.0053 0.0816 0.2368 0.6763

0.0000 0.0184 0.0948 0.2105 0.6763

0.0000 0.0316 0.0552 0.2895 0.6237

0.0000 0.0447 0.0684 0.2632 0.6237)

 
 
 
 
 
 
 
 
 
 
 
 
 

                    (14) 

 

The design matrix X in (14) has many points, particularly of the fifth component, which 

lie beyond the specified limits of the component. Using step 7 of the OABMD algorithm, we 
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adjust the matrix X in (14) to obtain the design matrix X*, given in (15), which has all the 

design points within the permissible limits of the components involved in the five-component 

example. 
 

X
*=

(

 
 
 
 
 
 
 
 
 
 
 
 
 

0.0158 0.0211 0.0710 0.2921 0.6000

0.0263 0.0184 0.0684 0.2869 0.6000

0.0368 0.0158 0.0658 0.2816 0.6000

0.0473 0.0132 0.0632 0.2763 0.6000

0.0211 0.0263 0.0632 0.2894 0.6000

0.0211 0.0394 0.0500 0.2895 0.6000

0.0211 0.0000 0.0895 0.2894 0.6000

0.0211 0.0132 0.0763 0.2894 0.6000

0.0105 0.0158 0.0526 0.3211 0.6000

0.0105 0.0026 0.0658 0.3211 0.6000

0.0105 0.0421 0.0789 0.2685 0.6000

0.0105 0.0289 0.0921 0.2685 0.6000

0.0000 0.0053 0.0816 0.3131 0.6000

0.0000 0.0184 0.0948 0.2868 0.6000

0.0000 0.0316 0.0552 0.3132 0.6000

0.0000 0.0447 0.0684 0.2869 0.6000)

 
 
 
 
 
 
 
 
 
 
 
 
 

                    (15) 

 

The design matrix X* in (15), computed using the OABMD algorithm, has a G-

efficiency of 58.10% for fitting (3). The design matrix X*
 in (15) is space filling and allows 

for the greater exploration of the interior of the restricted region in contrast to the only 

extreme vertices generated by the XVERT algorithm.  

 

Other choices of M with corresponding G-efficiency values of Z and X for fitting (3) 

and (4) are listed in Table 3. 

  

Table 3: G-efficiency of unconstrained and constrained mixture designs corresponding 

to different choices of M 

 

Choice of M 
G-efficiency for fitting (3) G-efficiency for fitting (4) 

Z X* Z X* 

M1 =

(

 
 

   1 –1     0    0    0

  –1  2  –1    0    0

    0 –1   2 –1    0

    0    0  –1  2  –1

    0    0     0 –1    1)

 
 

 73.96% 88.57% 93.75% 92.20% 

M2  = −M1  73.96% 74.55% 93.75% 39.70%* 

M3  =

(

 
 

   1   –1    0    0    0

  –1    0    1    0    0

    0     1    0   –1    0

    0     0   –1    0    1

    0     0    0    1   –1)

 
 

 73.96% 76.34% 93.75% 87.93% 

M4  = −M3  73.96% 72.88% 93.75% 49.98%** 
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Choice of M 
G-efficiency for fitting (3) G-efficiency for fitting (4) 

Z X* Z X* 

M5   = −M 73.96% 70.42% 93.75% 94.26% 

M6=

(

 
 

   0    1 –1 –1    1

   1    0  1 –1   –1

  –1    1   0  1  –1

  –1   –1   1  0    1

   1   –1  –1  1    0)

 
 

 73.96% 81.76% 93.75% 81.39% 

M7  =−M6  73.96% 80.64% 93.75% 86.95% 

*indicates non G-efficient designs as per the thumb rule stated by Wheeler (1972) and should not be used for 

fitting the quadratic model 

**the value is almost equal to 50% and hence the design can be used for practical purposes, as suggested by 

Wheeler (1972) 

 

5. Conclusion 

The orthogonal arrays with index unity have been considered in our proposed OABMD 

algorithm. The designs, hence, constructed have the smallest number of runs for a given 

number of levels, thereby allowing higher cost efficiency. Furthermore, the flexibility in 

choice of matrix M allows for enhanced variety of design points. The manageable number of 

distinct design points help in reducing the cost and time in statistical experiments. 

 

When the region of interest is pre-defined, the proposed OABMD algorithm can be 

customized to explore the restricted space. The constructed designs have a sufficiently high 

G-efficiency that make them suitable for practical purposes. 
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Abstract 
 

Cloud Computing is the trending topic in the field of research as well as in commercial 

environment. Currently there has been a focus on cloud storage and cloud security. Cloud 

computing model facilitates data backup, minimised cost, data centralization, free storage, 

data sharing capabilities and many more which leads to company’s high performance. The 

purpose of this paper is to study the proportion of people’s awareness on cloud storage, 

investigate the factors contributing to the usage of cloud storage, predicting the future scope 

of cloud storage usage using Multinomial Logistic Regression and to provide an overall 

security perspective of cloud computing and highlight the security concerns needed to be 

addressed. A survey based on questionnaire was used to gather data from determined sample 

size and some relevant hypothesis were derived and tested. Chi-square test for Multiple 

Response Analysis to study the data was done. Statistical Package for Social Sciences (SPSS) 

software and R- Programming was used for statistical analysis. 

 

Key words: Cloud storage; Cloud security; Multinomial logistic regression; Multiple response 

analysis. 

 

1.  Introduction  
 

In an era of information technology and globalisation, the great computing power is 

expected to develop business insights and competitive benefit. A customary way for 

enterprises to process their data is to use the computing power provided by their own in-

house data centres. However, intervening a private data centre to keep up with rapidly 

growing data processing requests can be complicated and costly. Cloud computing vanishes 

the complexity of IT infrastructure to physically store data and manage huge data which is 

time consuming and demands huge man power. The challenge nowadays is to acquire, store 

and manage the data generating at every second. Cloud storage is the service model which 

not only maintains the data but also manages the data by storing the data on the internet via 

the cloud computing provider that operates and manages data storage as a service. It also 

provides anytime and anywhere data access facility. It assures to provide on-demand 

computing power with quick implementation, low maintenance, fewer IT staff, and 

consequently lower cost. Among the various definitions, the one by the National Institute of 

Standards and Technology (NIST) has gained recent recognition and popularity. Yang et al. 

(2012) define cloud storage is a model for enabling convenient, on-demand network access to 
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a shared pool of configurable computing resources (e.g., networks, servers, applications, 

storage, and services) that can be rapidly provisioned and released with minimal management 

effort or service provider interaction. It also suggested that a cloud computing model should 

be composed of five vital characteristics, three service levels, and four deployment models. 

Those five essential characteristics are on-demand self-service, broad network access, 

resource pooling, rapid elasticity and measured service. The service levels are software as a 

service (SaaS), platform as a service (PaaS) and infrastructure as a service (IaaS). And the 

deployment models are public cloud, private cloud, hybrid cloud and community cloud.  

 

In this paper, from the questionnaire-based survey, the proportion of the people’s 

awareness about cloud storage was found using proportion test and multinomial logistic 

regression was used to predict whether the user would go for paid cloud storage or not.  

 

2.  Review of Literature 

 

Mohd Rahul et al. (2012) defines cloud computing as a concept where files and 

applications are hosted on a “cloud” consisting of thousands of computers and servers, all 

linked together and accessible via the Internet. Further he says a cloud is a pool of virtualized 

computer resources. Cloud Computing is the long-held dream of computing as a utility, has 

the embryonic to transform a large part of the IT industry, making software even more 

attractive as a service and framing the way for designing IT hardware. Cloud Computing can 

be considered as a pay and use service. More you Pay, more services you get. It has become 

the 5th essential utility (after water, electricity, gas, and telephone) with its growing features 

and demands the day is not far when the world would become the slave of cloud computing. 

Tinani et al. (2019) observes that cloud computing provides a surrounding for resource 

sharing in terms of ascendance frameworks, middleware’s and application development 

platforms, and business applications. The operation models of cloud computing grasp free 

infrastructure services with value another platform services, subscription-based infrastructure 

services with supplemental application services, and free services for sellers. Pankaj Sareen 

(2013) concluded cloud computing infrastructures are next generation platforms that can 

provide tremendous value to companies of any size. Cloud computing provides platform, 

software, infrastructure, storage, security, data, test environment etc. as a service. Clients or 

customer would be able to access their applications and data from anywhere at any time. Data 

wouldn’t be enclosing to a hard drive on one user’s computer or even a corporation’s internal 

network. It would also lead hardware costs down. You would not need a huge hard drive 

because you would store all your information on a remote computer. However, the substantial 

concerns about cloud computing are security and privacy. Since the idea of handling over 

significant data to another company worries some people. With the rapid development of 

cloud storage technology and applications, it has broken through the single point of the 

original IaaS (Infrastructure as a Service) layer definition. It establishes a technical system, 

contains three layers of cloud computing infrastructure services (IaaS, PaaS, SaaS). At 

present, cloud computing services are mainly concentrated in the IaaS and SaaS layers. The 

contents of IaaS and SaaS are not the same. From the viewpoint of IaaS, cloud storage 

provides a service for data storage, archiving, and backup. From the SaaS point of view, 

cloud storage service is very diverse, the service has online backup document notes save 

network disk business photo preservation and sharing home video. Cloud storage is the small 

layer of cloud computing system which supports the service of the other layers above it. In 

addition, it is an important way to save and manage large data. So, it occupied even more 

attentions from some researchers. Cloud storage is catering for pervasive storage 

requirements and massive storage wishes. The persistency and operation are supported by the 
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storage systems. Programs, texts, data, pictures, videos, etc. are all needed to accumulate in 

the storage systems. Mobile terminals, PC, consume electronics such as smart phones, 

cameras; MP3/MP4, etc. are all need more and more storage resources. Usually, local storage 

is not sufficient to store, and lost easily. Therefore, the necessary and pervasiveness of 

storage requirements results to that the properties of cloud storage must be low cost, easy 

maintenance, reliable, security, recoverable, etc. Spoorthy et al. (2014) defined importance of 

cloud storage as no need to invest any capital on storage devices, no need for technical expert 

to maintain the storage, backup, replication and importantly disaster management, grant 

others to access your data will result with collaborative working style instead of individual 

work. Aized Amin Soofi (2014) discussed about data security which plays major concern for 

the users who want to use cloud computing. Proper security measures are expected to be 

taken in order to eliminate this concern. It was found that many of the cloud services users 

have concerns about their private data that it may be used for other purposes or sent to other 

cloud service providers.  

 

3.  Problem Statement 

 

This research study is aimed to identify the various factors which affect the usage of 

public cloud storage. The research is further aimed to find the proportion among users of 

cloud storage in different area, to find the association among those factors, finding most 

influencing factors among all those factors, developing model whether the user will use paid 

version or not and potential risk for the user. 

 

4.  Objectives 

 

The objective of this paper is to gain insight about the usage patterns of public cloud 

storage by the people of Vadodara city. To know the facilities which are mostly used by 

people gender wise, age wise, profession wise. 

a) To check whether the proportion of cloud storage users is same in 6 wards of 

Vadodara city. 

b) To check whether any association between specific cloud storage facilities usage on    

cloud company.  

c) To check whether use of different cloud storage facilities depends on profession or 

not. 

d) To predict whether the user will use paid version cloud storage or not. 

e) To gain insight whether users are aware of the associated potential risk or not with 

respect to gender wise and profession. 

 

5.  Research Methodology  

 

The research is done by the methods of survey, based on the questionnaire which gives 

the quantitative and qualitative data such as age, gender, education, profession of users, the 

cloud storage facilities they use, the cloud service provider they prefer and other related 

questions. The review held with explicit sampling technique and sample size determination 

technique. Sample Size determination is technique used to choose the number of observations 

to include in a statistical sample study. It is significant for any statistical study to make 

inference about the population based on a sample. Practically sample size is usually 

determined based on the cost, time or method of collecting the data and the need for it to 
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offer sufficient statistical power. For our research study the sample size is dependent on the 

pilot survey results. In the pilot survey study, the sample of size 30 was selected, from the 

pilot survey study the proportion of cloud storage users were 0.7 and of non-users was 0.3. 

The sample size is estimated from the pilot survey by proportion method where p = 

proportion of users = 0.7 and q = proportion of non-users taking margin of error e = 0.05, 

thus sample size of the main survey study was 364. For this study the primary data was 

collected and investigated using the questionnaire. This research survey was conducted in 6 

clusters which were selected randomly in Vadodara city i.e., Raopura, Karelibaug, 

Waghodiya, Akota, Harni and Alkapuri. Two stage sampling technique was used for 

collecting the data. The population of Vadodara city was divided into 13 clusters based on 

wards. In the first stage cluster sampling and in the second stage probability proportion to 

size (PPS) sampling method were used. To draw a sample with PPS, cumulative total method 

was used to determine the number of samples selected from each ward. Thus, as a result we 

got the sample size 29 out of 43555 population from Raopura, the sample size 62 out of 

98723 population from Karelibaug, the sample size 72 out of 236097 population from 

Waghodiya, the sample size 41 out of 130715 population from Akota, the sample size 89 out 

of 122741 population from Harni and the sample size 71 out of 177287 population from 

Alkapuri. 

 

6.  Data Visualization 

 

 

 
Figure 1: People’s perception on cloud storage data access by  

                                        government without their consent 
 

From the above graph we observe that 38% of people don’t know whether government can 

access their cloud storage data without their consent or not. Further 37% of people says 

government access their data without their consent. 

 

Don't know

38%

No

25%

Yes

37%

People's perception on whether the government can 

access their data without concent 
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Figure 2: People’s perception on security of their cloud storage  

                                       data from market researchers 

 

From Figure 2 we observe that 38% of people in our study says our cloud storage data is 

secure from market researchers and further follows that 36% of people don’t know about it. 

 

7.  Results and Discussion  
 

7.1.  Proportion test Analysis 
 

a) Objective: To check whether the proportion of cloud storage users is same in 6 

wards of Vadodara city 
 

In our research study, based on sample size we consider 6 areas of Vadodara city that is 

Raopura, Karelibaug, Waghodiya, Akota, Harni, and Alkapuri.  There is total 178 users out of 

364 total sample size. We observe that there are 11 users in Raopura out of 29 samples, 37 

users in Karelibaug out of 62 samples, 27 users in Waghodiya out of 72 samples, 26 users in 

Akota out of 41 samples, 42 users in Harni out of 89 samples and 35 users in Alkapuri out of 

71 samples.  Hence to check equality of users proportion of 6 wards of Vadodara city we use 

proportion test in R programming by the function prop.test ().  

 

H0: P1 =P2 = P3 = P4 =P5 = P6 

H1:  at least one may differ significantly. 

#Proportion test is done using R programming. 

#List of cloud storage users from each of 6 wards. 

users <- c (11,37,27,26,42,35) 

 

#List of total number of samples from each of 6 wards. 

total <- c (29,62,72,41,89,71) 

 

#Using prop.test function to perform multiple proportion test. 

#syntax of prop.test function 

 

Don't know

36%

No

26%

Yes

38%

People's perception on security of data from market 

researchers



 KHIMYA TINANI, ET AL. [Vol. 19, No. 2 32 

str(prop.test) 

## function (x, n, p = NULL, alternative = c("two.sided", "less", "greater"),  

##     conf.level = 0.95, correct = TRUE) 

prop.test(x = users, n = total, alternative = "two.sided") 

##  

##  6-sample test for equality of proportions without continuity 

##  correction 

##  

## data:  users out of total 

## X-squared = 11.588, df = 5, p-value = 0.04089 

## alternative hypothesis: two.sided 

## sample estimates: 

##    prop 1    prop 2    prop 3    prop 4    prop 5    prop 6  

## 0.3793103 0.5967742 0.3750000 0.6341463 0.4719101 0.4929577 

 

Since p-value < alpha (0.05) there is sufficient evidence to reject the null hypothesis (H0) and 

hence we conclude that proportion of users is not same in all the wards. We observe that 

maximum proportion of cloud storage users are in ward 4 that is in Akota. 

  

7.2.  Chi-square test for multiple response analysis  

 

b) Objective: To check whether any association between specific cloud storage 

facilities usage on cloud company 

 

Q1)  which public cloud company you use? (Allow to tick multiple answers)  

       (a) Google Drive (b) Dropbox (c) One Drive (d) iCloud (e) Others (specify)---------- 

Q2)  which are the cloud storage drive facilities you mostly use? (Allow to tick multiple 

ans.) 

        (a) Sync folder (b) Selective Sync (c) Folder sharing (d) Mobile Apps (e) Deleted file  

             retention (f) File Editing (g) Versioning (h) others [specify]---------- 

H0: There is no association between Cloud Company and specific cloud storage facilities 

usage. 

H1: There is association between Cloud Company and specific cloud storage facilities usage. 

 

 

Facilities 
Company 

Google Drive Dropbox OneDrive iCloud Other company 

 Sync Folder 74 32 26 27 7 

Selective sync 46 13 17 16 2 

Folder sharing 65 32 20 17 3 

Mobile apps 84 32 21 26 3 

Deleted file retention 40 22 17 18 0 

File editing 38 19 15 17 1 

Versioning 5 5 5 2 0 

Others 2 0 0 1 0 
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Since p-value < alpha (0.05) the test provides enough evidence to reject the null hypothesis 

(H0) and hence we conclude that there is association between cloud company and specific 

cloud storage facilities usage. 

 

7.3.  Chi-square test for multiple response analysis  
 

c) Objective: To check whether the use of different cloud storage facilities depends 

on profession or not. 

Q1)  What is your profession?  

       (a) Student (b) Job (c) Business (d) Unemployed 

Q2)  Which are the cloud storage drive facilities you mostly use? (Allow to tick multiple 

answers) 

        (a) Sync folder (b) Selective Sync (c) Folder sharing (d) Mobile Apps (e) Deleted file 

retention (f) File Editing (g) Versioning (h) others [specify]----------- 

 

H0: There is no association between profession and different cloud storage facilities usage. 

H1:  There is association between profession and different cloud storage facilities usage.  
 

Facilities 
Profession 

Student Job Business Unemployed 

Sync Folder 31 47 8 9 

Selective sync 14 25 5 9 

Folder sharing 28 42 5 2 

Mobile apps 29 51 10 10 

Deleted file retention 9 24 7 5 

File editing 13 25 5 3 

Versioning 3 2 0 0 

Others 1 0 1 0 

 

 

 

 

 

 

 

Since p-value < alpha (0.05) the test provides enough evidence to reject null hypothesis (H0) 

and hence we conclude that there is association between profession and use of different cloud 

storage facilities. 

 

Pearson Chi-Square Tests 

Facilities Company 

 Chi-square 143.442 

Df 40 

Sig. 0.000 

Pearson Chi-Square Tests 

Facilities Profession 

 Chi-square 41.243 

Df 24 

Sig. 0.016 



 KHIMYA TINANI, ET AL. [Vol. 19, No. 2 34 

7.4.  Multinomial Logistic Regression analysis 

 

d) Objective: To predict whether the user will use paid version cloud storage or not. 

 

As per our domain knowledge the factors which may affect for the usage of paid 

version of cloud storage are: Income, profession, cloud storage usage, type of data on cloud, 

etc. 

Using survey data, the response variable and 15 explanatory variables are as follows: 

Y = Use of paid version (1 = Yes, 2 = No, 3 = May be) 

X1 = Income (1= No, 2 = Below one lac, 3 = 1-3 lac, 4 = 3-6 lac, 5 = 6-9 lac, 6 = Above 9 

lac), X2 = Profession (1 = Student, 2 = Job, 3 = Business, 4 = Unemployed),  

X3= Upload videos (1 = Yes, 2 = No), X4 = Upload songs (1 = Yes, 2 = No),  

X5 = Upload images (1 = Yes, 2 = No), X6 = Upload documents (1 = Yes, 2 = No),  

X7 = How frequently they use cloud (1 = (once in a week), 2 = (twice in a week), 3 = (thrice 

in a week), 4 = (four times in a week), 5 = (five times in a week)),   

X8= Apps backup on cloud (1= Yes with media, 2 = Without media, 3 = No),  

X9 = Apps media backup on cloud (1= Yes with media, 2 = Without media, 3 = No), 

X10 = No. of cloud accounts they have (1 = 1, 2 = 2, 3 = 3, 4 = More than 3),  

X11 = It provides me extra space (1 = Strongly disagree, 2 = Disagree, 3 = Neutral, 4 = Agree, 

5=Strongly agree),  

X12 = Easy and convenient (1 = Strongly disagree, 2 = Disagree, 3 = Neutral, 4 = Agree, 5=  

Strongly agree), X13 = I can access my data from anywhere from any device (1 = Strongly 

disagree, 2 = Disagree, 3 = Neutral, 4 = Agree, 5=Strongly agree),  

X14 = I can easily share information with others (1 = Strongly disagree, 2 = Disagree,  

3 = Neutral, 4 = Agree, 5=Strongly agree),  

X15 = I won’t loss my data if my computer fails (1 = Strongly disagree, 2 = Disagree,  

3 = Neutral, 4 = Agree, 5=Strongly agree) 

 

In order to predict whether user will use paid version cloud storage or not, Multinomial 

logistic regression was used.  

For multinomial logistic Regression, Y: Yes = 1, May be = 2 and No = 3. 

No = 3 is taken as the base with ascending order of categories. 

Model is fitted by using forward stepwise multinomial logistic regression.  

Step Summary 

 

Model Action Effect(s) Model Fitting 

Criteria 

Effect Selection Tests 

–2 Log Likelihood Chi-Squarea Df Sig. 

0 Entered Intercept 372.201 .   

1 Entered X15 346.012 26.189 8 0.001 

2 Entered X11 327.889 18.122 8 0.020 

3 Entered X1 308.477 19.412 10 0.035 

Stepwise Method: Forward Entry 

a. The chi-square for entry is based on the likelihood ratio test. 
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The fitted model gives the following hypothesis results. 

H0: No significance between null model (model with only intercept) and final model (model     

with all variable) 

H1: Significance between null model (model with only intercept) and final model (model 

with all variables) 

 

Model Fitting Information 

Model Model Fitting Criteria Likelihood Ratio Tests 

–2 Log Likelihood Chi-Square Df Sig. 

Intercept 372.201    

Final 308.477 63.724 26 0.000 

 

Here p-value < alpha (0.05) therefore the data provides enough evidence to reject null 

hypothesis (H0) at 5% level of significance, thus the fitted model is significant. 

 

 

 

Here Cox and Snell = 0.301, 30.1% of variation in Y is explained by fitted model. 

Since the probability is smaller than 0.05, hence it can be concluded that the three variables 

are significantly different from zero at 5 % level of significance. 

 

 

 

 

 

 

Pseudo R-Square 

Cox and Snell 0.301 

Nagelkerke 0.343 

McFadden 0.171 

 

Likelihood Ratio Tests 

Effect Model Fitting Criteria Likelihood Ratio Tests 

–2 Log Likelihood of 

Reduced Model 

Chi-Square df Sig. 

Intercept 308.477a 0.000 0 0.000 

X15 333.134 24.657 8 0.002 

X11 326.186 17.709 8 0.024 

X1 327.889 19.412 10 0.035 



 KHIMYA TINANI, ET AL. [Vol. 19, No. 2 36 

Parameter Estimation 

Future use B Std. Error Wald DF P-value 

Yes 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Intercept 0.372 1.157 0.103 1 0.748 

[X15 = 1] 2.744 1.486 3.411 1 0.065 

[X15 = 2] -0.134 1.096 0.015 1 0.902 

[X15 = 3] 1.798 1.02 3.107 1 0.078 

[X15 = 4] -0.805 0.612 1.73 1 0.188 

[X15 = 5] 0 - - 0 - 

[X11 = 1] -1.886 1.206 2.447 1 0.118 

[X11 = 2] -2.104 1.387 2.301 1 0.129 

[X11 = 3] -2.429 1.079 5.067 1 0.024 

[X11 = 4] 0.648 0.781 0.688 1 0.407 

[X11 = 5] 0 - - 0 - 

[X1 = 1] 1.173 1.047 1.256 1 0.262 

[X1 = 2] 1.915 1.198 2.555 1 0.11 

[X1 = 3] 0.584 1.071 0.297 1 0.586 

[X1 = 4] 0.893 1.124 0.631 1 0.427 

[X1 = 5] 1.471 1.806 0.663 1 0.415 

[X1 = 6] 0 - - 0 - 

May be 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Intercept 2.831 0.927 9.327 1 0.002 

[X15 = 1] 2.692 1.665 2.615 1 0.106 

[X15 = 2] -3.314 1.614 4.214 1 0.04 

[X15 = 3] 0.814 0.979 0.692 1 0.406 

[X15 = 4] -0.936 0.572 2.675 1 0.102 

[X15 = 5] 0 - - 0 - 

[X11 = 1] -4.159 1.441 8.334 1 0.004 

[X11 = 2] -0.618 1.49 0.172 1 0.679 

[X11 = 3] -1.878 0.934 4.041 1 0.044 

[X11 = 4] -1.149 0.731 2.466 1 0.116 

[X11 = 5] 0 - - 0 - 

[X1 = 1] -0.161 0.809 0.04 1 0.842 

[X1 = 2] -0.672 1.071 0.394 1 0.53 

[X1 = 3] -1.13 0.85 1.766 1 0.184 

[X1 = 4] -0.512 0.907 0.318 1 0.573 

[X1 = 5] 1.892 1.441 1.726 1 0.189 

[X1 = 6] 0 - - 0 - 
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Classification 

Observed Predicted 

Yes Maybe No Percent 

Correct 

Yes 22 27 6 40.0% 

Maybe 9 69 7 81.2% 

No 3 20 15 39.5% 

Overall Percentage 19.1% 65.2% 15.7% 59.6% 

 

59.6% times the fitted model does the correct classification. 

Fitted Model in Logit Form 

P: Whether user will use paid version in future or not. 

= “Yes” or “May be “or “No”                                   

Let A = Yes, B = May be, C = No  

First logistic function is A with C 

𝑙𝑜𝑔 (
𝑃(𝐴)

1 − 𝑃(𝐴)
) = 0.372 + 1.173𝑋11 + 1.915𝑋12 + 0.584𝑋13 + 0.893𝑋14 + 1.471𝑋15 − 1.886𝑋111  

−2.104𝑋112 − 2.429𝑋113 − 0.648𝑋114 + 2.744𝑋151 − 0.134𝑋152 + 1.798𝑋153 − 0.805𝑋154 

where Xi j  is the value of ith variable at jth level, 

𝑙𝑜𝑔 (
𝑃(𝐴)

𝑃(𝐶)
) = 𝑃(𝐴𝑅𝐻𝑆) 

Then logit function is written for B with C, 

𝑙𝑜𝑔 (
𝑃(𝐵)

1 − 𝑃(𝐵)
) = 2.831 − 0.161𝑋11 − 0.672𝑋12 − 1.130𝑋13 − 0.512𝑋14 + 1.892𝑋15 − 4.159𝑋111 

−0.618𝑋112 − 1.871𝑋113 − 1.149𝑋114 + 2.692𝑋151 − 3.314𝑋152 + 0.814𝑋153 − 0.936𝑋154 

𝑙𝑜𝑔 (
𝑃(𝐵)

𝑃(𝐶)
) = 𝑃(𝐵𝑅𝐻𝑆) 

𝑃(𝐴) =
𝑃(𝐴𝑅𝐻𝑆)

1 + 𝑃(𝐴𝑅𝐻𝑆) + 𝑃(𝐵𝑅𝐻𝑆)
 

𝑃(𝐵) =
𝑃(𝐵𝑅𝐻𝑆)

1 + 𝑃(𝐴𝑅𝐻𝑆) + 𝑃(𝐵𝑅𝐻𝑆)
 

𝑃(𝐶) =
1

1 + 𝑃(𝐴𝑅𝐻𝑆) + 𝑃(𝐵𝑅𝐻𝑆)
 

 

The equation P(A) can be used to calculate the probability that whether the cloud storage user 

will use paid version in future or not. 
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7.5.  Frequency analysis for security related issues 

 

e) To gain insight whether users are aware of the associated potential risk or not with 

respect to gender wise and profession 

 
Sr.

No. 

Security 

related issue 

Category GENDER PROFFESSION 

Male Female Business Job Student 
Unemploy-

ment 

1. People’s 

perception 

on Security 

of data from 

market 

research 

YES 
39% 35% 30% 67% 35% 17% 

NO 
27% 25% 4g5% 33% 24% 8% 

DON’T 

KNOW 

34% 40% 25% 0% 41% 75% 

2. People’s 

perception 

whether the 

government 

can access 

their data 

without their 

consent 

YES 
40% 30% 45% 100% 38% 17% 

NO 
26% 24% 25% 0% 26% 0% 

DON’T 

KNOW 

34% 46% 30% 0% 36% 83% 

NO 
110 52 18 2 52 12 

DON’T 

KNOW 

- - - - - - 

 

8.  Conclusions 

 

From the survey and above analysis, it can be concluded that proportion of users is not 

same in all the wards. We observe that maximum proportion of cloud storage users are in 

ward 4 that is in Akota. Usage of different cloud storage facilities depends on the cloud 

company. From multiple response analysis we observe that there is association between 

profession and different cloud storage facilities usage. In multinomial logistic regression, 

from equation P(A), P(B), P(C) we can predict whether the user will use paid version of 

cloud in future or not. We observe that perception of males and females on the security of 

data are nearby same, business profession are less aware about the risk of data on cloud, and 

IT profession people are more aware about the risk of data on cloud.  
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Abstract

We propose a new frailty distribution named as the generalized Lindley frailty distribution
with generalized Weibull and exponential power as baseline distributions. To estimate the pa-
rameters in the models, the Bayesian paradigm of the Markov Chain Monte Carlo technique was
designed. Bayesian comparison techniques have been performed for the comparison of models.
We analyze kidney infection data and suggest a better model.

Key words: Bayesian estimation; Exponential power distribution; Generalized Lindley frailty;
Generalized Weibull distribution; MCMC; Random censoring.

1. Introduction

In survival data, a common approach is that each individual under study experiencing the
same risk factors which act as multiplicatively. Sometimes, in real-life situations risk (hazard rate)
changes from one family to another family, one group to another group, one cluster to another
cluster. Heterogeneity in the population exists, because of the mixture of groups of individuals with
different risk factors. This heterogeneity is called as a frailty. Ignoring frailty may have adverse
consequences. A random impact that is unobservable risk shared by the subject characterized as
frailty which was introduced by Vaupel et al. (1979). To handle such kind of problems, many
models have been derived in survival analysis. Since the establishment of the proportional hazard
model given by Cox (1972), survival function has been dominated by hazard rate models. The
reason behind the popularity of this model is, the significance of known covariates can be tested,
also a relationship between lifetimes and covariates can be incorporated. Cox (1972) gave the
following proportional hazard model or multiplicative hazard model as

φ(t|K) = φ0(t)eK
′
β0 (1)

where, φ(t|K) stands for conditional hazard rate given the covariates, φ0(t) stands for baseline
hazard rate. K

′
= (K1j, K2j, ..., Kmj) are vector of known covariate and β0 is the vector of

Corresponding author: David D. Hanagal
E-mail: david.hanagal@gmail.com
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regression parameters of orderm corresponding toK. Augmentation of Cox’s proportional hazard
model provided away to introduce the unknown covariates,

φ(t|V ) = φ0(t)eK
′
β0+V

′
β1

or

φ(t|w) = wφ0(t)eK
′
β0 (2)

where, V
′

= (V1j, V2j, ..., Vmj) are considered as the vector of unknown covariates respectively,
β1 are indicated as the vector of regression coefficients of order m corresponding to V . w = eV

′
β1

called as frailty random effect. The conditional cumulative hazard function is given by

Φ(t|w) = wΦ0(t)eK
′
β0 (3)

where Φ0(t) =
∫ t

0
φo(t)dt. The conditional survival function is given by

S(t|w) = exp
(
−wΦ0(t)eK

′
β0
)

(4)

Frailty models firstly introduced by Vaupel et al. (1979) in univariate survival models that
can be separated into multiplicative components. It has been assumed that the baseline hazard
function has a multiplicative effect of frailties. Several frailty models had been proposed by Oakes
(1989). As a frailty distribution, gamma, inverse Gaussian, positive stable distributions had been
claimed by Hougaard (1986). Hougaard (1985, 1991, 2000) had discussed the different aspects
of frailty on a broad scale. Log-normal distribution was proposed as frailty distribution by Flinn
and Hackman (1982). In the last decade, frailty regression models in mixture distribution have
been discussed by Hanagal (2008). Hanagal and Dabade (2013, 2015) proposed modeling of the
inverse Gaussian frailty model and comparison of different frailty models for analyzing kidney
infection data. Modeling kidney infection data for inverse Gaussian shared frailty was done by
Hanagal and Pandey (2014a). Gamma frailty models for bivariate survival data were given by
Hanagal and Pandey (2015a). Hanagal and Pandey (2017a) were used the shared inverse Gaussian
frailty models based on additive hazard. For reversed hazard rate setup, Hanagal and Pandey
(2014b, 2015b, 2016a, 2016b, 2017b) have contemplated gamma and inverse Gaussian shared
frailty models with different baseline distribution functions. Hanagal and Sharma (2013, 2015a,
2015b, 2015c) analyzed acute leukemia data, kidney infection data and diabetic retinopathy data
using shared gamma and inverse Gaussian frailty models for the multiplicative model. Compound
Poisson frailty was used by Hanagal and Kamble (2015) for Bayesian estimation. Analysis of
kidney infection data and Australian twin data were done by Hanagal and Bhambure (2014, 2015,
2016) with different frailty distributions. Hanagal (2011, 2017, 2019) gave extensive literature
review on different shared frailty models.

The main aim of this article has three objectives. First, generalized Lindley (GL) shared
frailty models for hazard rate with generalized Weibull and exponential power as baseline dis-
tributions have been introduced. Second, Bayesian approach of estimation has been employed
to estimate the unknown parameters under random censoring. Third, simulation study and data
analysis have been done for the kidney infection data set.
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2. Generalized Lindley Frailty Model

Lindley (1958) proposed a distribution with one parameter. Because of having only one
parameter, the Lindley distribution does not provide enough flexibility for modeling purposes. It
will be useful to consider further alternatives of this distribution. Zakerzadeh and Dolati (2009)
proposed generalized Lindley distribution which generalizes Lindley distribution and includes ex-
ponential and gamma distributions as special cases. For a frailty distribution, generalized Lindley
(GL) distribution has been considered in this paper. This distribution is the mixture of two gamma
distributions G(θ,µ) and G(θ,η) with mixing coefficient θ/(θ+1). That is the reason why GL frailty
model is more adaptable in comparison with gamma frailty model. Probability density function of
GL distribution has been specified below:

fW (w) =

{
1

(1+θ)

[
θµ+1wµ−1

Γµ
+ θηwη−1

Γη

]
e−θw ;w ∈ IR+, µ, η, θ ∈ IR+

0 ; otherwise

with mean E[W ] = 1
1+θ

[
µ+ η

θ

]
. And corresponding variance is,

V (W ) =
1

(1 + θ)

[(
µ2 +

η2

θ

)(
1

θ(1 + θ)

)
+

(
µ+ η

θ

)
−
(

2µη

θ(1 + θ)

)]
after applying identifiability property, i.e., E[W ] = 1 we get a relation between parameters
η = θ (1 + θ − µ) > 0. Consequently, the density function, Laplace transformation and variance
for GL reduced to,

fW (w) =

{
1

(1+θ)

[
θµ+1wµ−1

Γµ
+ θθ(1+θ−µ)wθ(1+θ−µ)−1

Γθ(1+θ−µ)

]
e−θw ; w, θ ∈ IR+, µ ∈ (0, 1 + θ)

0 ; otherwise.

LW (s) =
1

(1 + θ)

[
θµ+1

(s+ θ)µ
+

θθ(1+θ−µ)

(s+ θ)θ(1+θ−µ)

]
(5)

V (W ) =
θ4 − θ3µ+ 3θ2(1 + θ)− 4θ2µ+ 3θµ(µ− 1) + µ2

θ(1 + θ)2
(6)

n objects are postulated to be under study. (T1j, T2j) are contemplated as first and second survival
time of ith(i = 1, 2) component of jth(j = 1, 2, ..., n) objects. The unconditional bivariate survival
function at time t1j ∈ IR+ and t2j ∈ IR+ can be written as,

S(t1j, t2j) =

∫
wj∈IR+

S(t1j, t2j|wj)fW (wj)dwj

=

∫
wj∈IR+

e−Wj(Φ01(t1j)+Φ02(t2j))ρjfW (wj)dwj

= LWj
[(Φ01(t1j) + Φ02(t2j)) ρj] (7)
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where, LWj
(.) is Laplace transformation of frailty variable Wj . Φ0(.) stands for cumulative base-

line hazard rate and ρj = eK
′
jβj is the therm containing the regression coefficients corresponding

to known covariates. To get unconditional survival function, using equations (5) and (7),

S(t1j, t2j) =
1

(1 + θ)

[
θµ+1

(θ + ρ(Φ01(t1j) + Φ02(t2j)))µ
+

θθ(1+θ−µ)

(θ + ρ(Φ01(t1j) + Φ02(t2j)))θ(1+θ−µ)

]
(8)

corresponding cross-ratio function given by Clayton (1978) and Oakes (1989) is given by,

θ∗ (t1j, t2j) =
A ∗B(

θθ(θ+1)(−µ+ θ + 1) (C ∗ ρ+ θ)µ + µθµ(θ+1) (C ∗ ρ+ θ)θ(−µ+θ+1)
)2

where,
A = θµθ−1

(
θθ(−µ+θ+1) ((Φ01(t1j) + Φ02(t2j)) ρ+ θ)µ

+θµ+1
((
eλ1t1j

α1 + eλ2t2j
α2 − 2

)
ρ+ θ

)θ(−µ+θ+1)
)

B =
(
θθ

2+θ+1 (µ2 − 2µ(θ + 1) + θ(θ + 2) + 2)− (µ− 1)θθ(θ+1)
)

((Φ1(t1) + Φ2(t2)) ρ+ θ)µ

+ µ(µ+ 1)θµ(θ+1) ((Φ1(t1) + Φ2(t2)) ρ+ θ)θ(−µ+θ+1)

C = ((Φ01(t1j) + Φ02(t2j))
in the absence of frailty effect, model in the hazard rate setup will be,

S(t1j, t2j) = exp (−ρj(Φ01(t1j) + Φ02(t2j))) (9)

One can have different baseline distributions for T1 and T2. After substituting different cumulative
hazard functions in (8), we get different generalized Lindley frailty distributions.

3. Baseline Distributions

3.1 Generalized Weibull distribution

Here, the generalized Weibull distribution has been postulated as a baseline distribution. If
a continuous random variable T follows the generalized Weibull distribution then the survival,
hazard, and cumulative hazard function, are respectively,

S(t) =

{
1−

(
1− e−δtξ

)ζ
; t ∈ IR+, δ, ζ, ξ ∈ IR+

1 ; otherwise
(10)

φ0(t) =

 ξζδtξ−1e−δt
ξ(1−e−δt

ξ
)ζ−1

1−(1−e−δtξ)
ζ ; t ∈ IR+, δ, ζ, ξ ∈ IR+

1 ; otherwise
(11)

Φ0(t) =

 − log

(
1−

(
1− e−δtξ

)ζ)
; t ∈ IR+, δ, ζ, ξ ∈ IR+

0 ; otherwise
(12)
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3.2 Exponential power distribution

Another baseline distribution we considered is exponential power distribution. A continu-
ous random variable T is said to follow exponential power distribution if survival, hazard, and
cumulative hazard function is,

S(t) =

{
e(1−eδtζ ) ; t ∈ IR+, δ, ζ ∈ IR+

1 ; otherwise
(13)

φ0(t) =

{
ζδtζ−1eδt

ζ
; t ∈ IR+, δ, ζ ∈ IR+

0 ; otherwise
(14)

Φ0(t) =

{
eδt

ζ − 1 ; t ∈ IR+, δ, ζ ∈ IR+

0 ; otherwise
(15)

Kolmogorov–Smirnov (K–S) statistic for goodness of fit shows that both baseline distributions are
fitting well to kidney infection data set(see section 7, Figure 1-4).

4. Proposed Model

Due to group variation or frailty and individual variation described by the hazard function, a
shared frailty model can be considered as a mixture model in survival analysis. After substituting
cumulative hazard function for generalized Weibull and exponential power baseline distributions
in equations (8) and (9), we get the following four survival functions.

S(t1j , t2j) =
1

(1 + θ)

 θµ+1[
θ +

{
log

(
1−

(
1− eδ1t

ξ1
1j

)ζ1)
+ log

(
1−

(
1− eδ2t

ξ2
2j

)ζ2)}
ρ

]µ+

θθ(1+θ−µ)[
θ +

{
log

(
1−

(
1− eδ1t

ξ1
1j

)ζ1)
+ log

(
1−

(
1− eδ2t

ξ2
2j

)ζ2)}
ρ

]θ(1+θ−µ)


(16)

S(t1j, t2j) = e
ρj

log

1−

(
1−eδ1t

ξ1
1j

)ζ1+log

1−

(
1−eδ2t

ξ2
2j

)ζ2
(17)

S(t1j , t2j) =
1

(1 + θ)

 θµ+1(
θ + ρ

{
eδ1t

ζ1
1j + eδ2t

ζ2
2j − 2

})µ +
θθ(1+θ−µ)(

θ + ρ
{
eδ1t

ζ1
1j + eδ2t

ζ2
2j − 2

})θ(1+θ−µ)
 (18)
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S(t1j, t2j) = e
−ρ

{
e
δ1t

ζ1
1j +e

δ2t
ζ2
2j−2

}
(19)

Here, equations (16), (17) can be called as Model-I, Model-III respectively that have been estab-
lished for generalized Weibull baseline distribution with and without frailty and equations (18),
(19) can be called as Model-II and Model-IV respectively that have been established for exponen-
tial power baseline distribution with and without frailty.

5. Likelihood Design and Bayesian Paradigm

For the study, n individuals have been considered. Observed failure times have been indi-
cated by (t1j, t2j). We are using the random censoring scheme. Censoring time, supposed to be
indicated by c1j and c2j for jth individual (j = 1, 2, 3, ..., n). Independence between censoring
schemes and lifetimes of individuals has been presumed. Likelihood function can be described for
bivariate lifetime random variable of the jth individual as,

Lj(t1j, t2j) =


f1(t1j, t2j), ; t1j < c1j, t2j < c2j,
f2(t1j, c2j), ; t1j < c1j, t2j > c2j,
f3(c1j, t2j), ; t1j > c1j, t2j < c2j,
f4(c1j, c2j), ; t1j > c1j, t2j > c2j.

and likelihood function will be,

L(Θ, β, θ, µ) =

n1∏
j=1

f1(t1j, t2j)

n2∏
j=1

f2(t1j, c2j)

n3∏
j=1

f3(c1j, t2j)

n4∏
j=1

f4(c1j, c2j) (20)

where,Θ, β, θ and µ are vector of baseline parameters and the vector of regression coefficients and
frailty parameters respectively. Likelihood function for without frailty model is,

L(Θ, β) =

n1∏
j=1

f1(t1j, t2j)

n2∏
j=1

f2(t1j, c2j)

n3∏
j=1

f3(c1j, t2j)

n4∏
j=1

f4(c1j, c2j) (21)

let n1, n2, n3 and n4 be the number of pairs for which first and second failure times (t1j, t2j) lie in
the ranges t1j < c1j, t2j < c2j; t1j < c1j, t2j > c2j; t1j > c1j, t2j < c2j and t1j > c1j, t2j > c2j

respectively and let

f1(t1j, t2j) =
∂2S(t1j, t2j)

∂t1j∂t2j

f2(t1j, c2j) = −∂S(t1j, c2j)

∂t1j

f3(c1j, t2j) = −∂S(c1j, t2j)

∂t2j
f4(c1j, c2j) = S(c1j, c2j). (22)
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substituting cumulative hazard rates Φ01(t1j) and Φ02(t2j) and survival function S(t1j, t2j) in equa-
tion (22) for Model-I and Model-II and by differentiating we get the likelihood function. The
maximum likelihood method has a crucial importance in computing efficient estimators. Inap-
propriately, due to a convergence problem, maximum likelihood failed to estimate the parame-
ters, because of Model-I has thirteen-dimensional, Model-II, Model-III have eleven-dimensional
and Model-IV has nine-dimensional optimization problem. The Bayesian scenario has been dis-
cussed by several researchers for estimating parameters of the frailty models. For gamma and
log-normal frailty models, the Bayesian paradigm has been contemplated by Santos and Achcar
(2010). Weibull and piecewise exponential model have been discussed by Ibrahim et al. (2001)
with gamma frailty. The joint posterior density function of parameters for given failure times is
obtained as,

π(Θ, θ, µ, β0) ∝ L(Θ, µ, β
0
)g1(ζ)g2(ξ)g3(δ)g4(θ)g5(µ)

5∏
i=1

pi(β0i×1)

where gi(.) indicates the prior density function with known hyperparameters of corresponding
argument for baseline parameters and frailty variance; pi(.) is prior density function for regression
coefficient β0i and likelihood function is L(.). An important assumption here is, all the parameters
are independently distributed. In a similar way, joint posterior density function can be written for
without frailty models. To estimate the parameters of the models, Metropolis-Hastings algorithms
and Gibbs samplers have been used. Geweke test (see Geweke, 1992) and Gelman-Rubin (see
Gelman and Rubin, 1992) statistics have been used to monitor the convergence of a Markov chain
to a stationary distribution.

Due to the high-dimensions of conditional distributions, it is not unproblematic to integrate
out. Thus, it has been considered that full conditional distributions can be obtained as they are
proportional to the joint distribution of the parameter of the model. The conditional distribution
for single parameter δ with frailty as,

ψ1(δ | ξ, ζ, θ, µ, β0) ∝ L(δ, ξ, ζ, θ, µ, β0) · g1(δ) (23)

and the conditional distribution for single parameter δ without frailty as,

ψ1(δ | ξ, ζ, β0) ∝ L(δ, ξ, ζ, β0) · g1(δ)

similarly full conditional distributions can be obtained.

6. Simulation Study

A simulation study has been executed to appraise the Bayesian estimation paradigm for
Model-I and Model-II. Single covariate K1 has been considered as follows normal distribution.
The frailty variable W is assumed to follow generalized Lindley distribution. Independence be-
tween lifetimes of individuals has been considered. Samples are generated using the subsequent
mechanism,

1. From the binomial distribution with probability 0.6, 25 values for K1 has been generated.
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2. For known covariates, compute ρ = eK1β1 .

3. Lifetimes reckoned to follows generalized Weibull and exponential power baseline distri-
butions for given frailty Wj . 25 values of lifetimes have been spawned after using ensuing
manners.
Conditional survival function for lifetime tj (j = 1, 2, ..., n) for given frailty Wj = wj and
covariate K1 is,

S(tj | wj, K1) = e−wjH0(tj)ρ

Equating S(tj | wj, K1) to random number, say vj(0 < vj < 1) spawned from U(0, 1) over
tj > 0 we get,
for Model-I,

tj =

(
−1

δ
log(1− (1− v

1
wjρj

j )
1
ζ )

) 1
ξ

for Model-II,

tj =

(
1

δ
log(1− 1

wjρj
log(vj))

) 1
ζ

4. Censoring time cj has been spawned from G(0.9, 0.01) for Model-I.

5. Observe the jth survival time t∗j = min(tj, cj) and the censoring indicator δj for the jth

individual (j = 1, 2, ..., 25) where,

δj =

{
1, ; tj < cj
0, ; tj > cj

thus we have data consisting of 25 pairs of survival times t∗j and the censoring indicator δj .

Concurrently, with different priors and starting points, two chains based on two priors (one
is based on gamma prior and another is based on uniform prior) have been operated. Both chains
recapitulated 100,000 times. Gelman-Rubin test (see Gelman and Rubin, 1992) values are very
close to one. Due to small values of Geweke test statistic (see Geweke, 1992) and corresponding
p-values, the chains reach stationary distribution for both prior sets. In view of, estimates of
parameters were about the same, no impact of prior distributions has been founded on posterior
summaries. Here, the analysis for one chain has been exhibited because both the chains have shown
similar results. Tables 1 and 2 present the estimates and the credible intervals of the parameters for
the Models I and II based on the simulation study. The Gelman-Rubin convergence statistic values
are nearly equal to one and also the Geweke test values are quite small and the corresponding
p-values are large enough to say that the chain attains stationary distribution.
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7. Analysis of Kidney Infection Data

To elucidate the Bayesian estimation paradigm, kidney infection data of McGilchrist and
Aisbett (1991) has been considered. This data consists of 38 patients, recurrence times (in days) of
infection are given which can be outlined as these are recorded from the insertion of the catheter
until it has to be removed due to infection. Data having five known covariates age, sex (Female=1,
Male=0), and disease type Glomerulo Neptiritis (GN), Acute Nephritis (AN) and Polycystic Kid-
ney Disease (PKD). Opine first and second time to infection is symbolized by T1j and T2j . Five
covariates age, sex, GN, AN and PKD are symbolized by K1, K2, K3, K4 and K5. To check
goodness of fit of kidney data set, we consider Kolmogrove-Smirnov (K-S) test for two baseline
distributions. Table 3 gives the p-values of goodness of fit test for Model I and Model II. Thus
from p-values of K-S test we can say that there is no statistical evidence to reject the hypothesis
that data are from the Model I and Model II in the marginal case and we assume that they also
fit for bivariate case. Figures 1-4 show the parametric plot with semi-parametric plot for models
(Model I and Model II) with frailty for T1 and T2 separately and both lines are close to each other.

For frailty parameters, gamma prior distribution with very small shape and scale parameters
(say, 0.0001) has been used. Additionally, it can be considered, regression coefficients are nor-
mally distributed with mean zero and high variance (say 1000). A similar type of prior was used
in Ibrahim et al (2001) and Santos and Achcar (2010). That’s why for frailty parameters θ, µ and
regression coefficients β0i, i = 1, ..., 5, vague priors have been used. Because of no information
about baseline parameter having, therefore, prior distribution corresponding to baseline param-
eters are also considered flat. We considered two different vague prior distributions for baseline
parameters, one is gamma distribution with shape and scale hyperparameters ε1, ε2 respectively and
another is uniform distribution with interval (ν1, ν2). All the hyperparameters are known. Under
the Bayesian paradigm, for both models, two parallel chains have been run. Also, two sets of prior
distributions have been used with different starting points using the Metropolis-Hastings algorithm
and Gibbs sampler based on normal transition kernels. It can be said that estimates are indepen-
dent of the different prior distributions because, for both sets of priors, estimates of parameters are
approximately similar. We got almost similar convergence rate of Gibbs sampler for both sets of
priors. Here, the analysis for one chain has been exhibited because both the chains have shown
similar results.

Markov chain has seemed to reach the stationary state because of the zigzag pattern of the
trace plots for all the parameters that gesture parameters move and mix more freely (See Figure 5).
Coupling from the past plot has been applied to fix up the burn-in period (See Figure 6). A sequence
of draws may have serial correlation after the burn-in period. Randomness may not be shown in
successive draws. But almost independence can be seen in values at the extensive split. After
using the values from the single run of the Markov chain, a vague sample can be obtained from the
posterior distribution. Because of the burn-in period, it has been founded at extensive spaced time
points. Autocorrelation function (ACF) plots can be utilized to examine the appropriate blend of
our chains (See Figure 7). ACF plot for each parameter is converging to the posterior mean of the
parameter, thus, represents a good mixing of the chain. Thus, our diagnostic plots suggest that the
MCMC chains are mixing very well. After a certain lag, the serial correlation of the parameters
turns out to almost negligible for all the parameters. Observations are shown independently after
thinning the serial correlation function plot (See Figure 8). For visual approximate estimates as
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confirmative measures such as posterior density plots also drawn for Model-I. It has been observed
in some of posterior densities of the parameters depict multi-modal shapes which are quite possible
in frailty models. The Gelman-Rubin convergence statistic values are closely equal to one. The
Geweke test statistic values are somewhat small, and the corresponding p-values are large enough
to say that the chains reach stationary distribution. Tables 4-7 give the values of posterior mean and
the standard error with 95% credible intervals, the Gelman-Rubin statistics values and the Geweke
test with p-values for Model I, II, III and IV. Table 8 present the values of AIC, BIC and DIC values
for both models. Values of AIC, BIC, and DIC, given in Table 8, have been used to the comparison
of all models. Model-I holds the lowest possible values of AIC, BIC, and DIC. For all models,
regression coefficients contained different values. For Model-I and Model-II, the credible interval
of β02, β03, β04, β05 are not contained zero. It indicates that covariates sex, diseases GN, AN and
PKD have a significant effects on all four models. It is being indicated that sex (β2), disease PKD
(β5) are significant factors for kidney infection, having negative effects for all the four models.
Negative value of β2 indicates that the female patients have a slightly lower risk for infection.
Negative value of β5 indicates that the patients with the disease PKD has a slightly lower risk for
infection.

8. Conclusions

Generalized Lindley frailty model under generalized Weibull and exponential power baseline
distributions have been proposed. To fit the proposed models M-H algorithm and Gibbs samplers
have been applied. Analysis has been done in R statistical software with self-written programs.
The value of both frailty parameters for Model-I (θ = 3.08680, µ = 2.89438) and Model-II (θ =
2.89271, µ = 2.49934) are very high (See Tables 4 and 5) and corresponding variances are 1.38334
and 1.42248 by using equation (2.2). This exhibits that there is a strong indication of heterogeneity
among the patient in the population for the data set. To take the decision about all models, different
tools have been utilized. With the lowest value of AIC, BIC and DIC, given by Table 8, it can
be said that Model-I and Model-II are better than Model-III and Model-IV for analyzing kidney
infection data. The generalized Lindley frailty with generalized Weibull baseline (Model-I) is the
best among all four models. For kidney infection data, sex, diseases AN, GN, and PKD have been
found statistically significant factors for both with frailty and without frailty models (See Tables
4-7). Our proposed frailty model (Model-I) has been founded better in compare to Hanagal and
Pandey’s (2015a) frailty model with baseline generalized Weibull distribution. In a similar way,
with a minimum value of AIC, our proposed frailty model ( Model-II) has been founded better in
compare of Hanagal and Dabade’s (2015) frailty model.
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Appendix
Summary of Tables and Figures

Table 1: Posterior Summary of Generalized Lindley Frailty with Baseline Generalized
Weibull (Simulation Study: Model I)

Parameter Estimate S.E. L.C.L. U.C.L. Geweke test p-value Gelman-
Rubin test

ζ1(3.1) 3.08997 0.17672 2.68349 3.44157 0.00101 0.50040 0.99999
δ1(0.15) 0.15417 0.01551 0.12216 0.17852 -0.01145 0.49543 1.00378
ξ1(0.85) 0.85822 0.03033 0.79395 0.91321 0.01542 0.50615 1.00239
ζ2(5.0) 4.99795 0.55329 4.07576 5.95502 -0.00825 0.49671 0.99998
δ2(0.26) 0.27186 0.02817 0.20969 0.31781 0.00043 0.50017 1.00494
ξ2(0.74) 0.74822 0.02897 0.69046 0.81146 -0.00174 0.49930 1.00096
θ(3.0) 2.99983 0.15562 2.71870 3.28869 0.01826 0.50729 1.00002
µ(2.5) 2.49520 0.08979 2.33103 2.65688 0.00415 0.50166 1.00201

β1(0.005) 0.00458 0.00349 -0.00237 0.01135 -0.00530 0.49788 1.00021

Table 2: Posterior Summary of Generalized Lindley Frailty with Baseline Exponential Power
(Simulation Study: Model II)

Parameter Estimate S.E. L.C.L. U.C.L. Geweke test p-value Gelman-
Rubin test

ζ1(0.75) 0.71106 0.03077 0.65061 0.77292 0.00752 0.50300 1.00123
δ1(0.09) 0.09774 0.00960 0.07452 0.10972 -0.00332 0.49868 1.01043
ζ2(0.7) 0.75231 0.05995 0.62533 0.86400 0.00035 0.50014 1.00299
δ2(0.06) 0.06937 0.00764 0.05270 0.07915 0.00347 0.50138 1.00051
θ(1.2) 1.19076 0.09615 1.01631 1.37833 -0.00444 0.49823 1.00352
µ(0.7) 0.70361 0.03565 0.63321 0.76945 -0.00327 0.49870 1.00050

β1(0.003) 0.00303 0.00173 -0.00049 0.00664 -0.00322 0.49871 0.99997

Table 3: p-values of K-S Statistics for goodness of fit test for Kidney Infection data set

Recurrence Time
Distribution First Second
Model I 0.5174 0.6060
Model II 0.1184 0.4185
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Table 4: Posterior Summary of Generalized Lindley Frailty with Baseline Generalized
Weibull for Kidney Infection Data (Model I)

Parameter Estimate S.E. L.C.L. U.C.L. Geweke test p-value Gelman-
Rubin test

ζ1 2.99002 0.15637 2.70025 3.29677 -0.00910 0.49637 1.00016
δ1 0.18320 0.01455 0.15510 0.21414 -0.00871 0.49653 1.00094
ξ1 0.78464 0.02354 0.73846 0.83274 0.00234 0.50094 1.00005
ζ2 8.99452 0.97203 7.14211 10.92913 -0.00559 0.49777 0.99998
δ2 0.30022 0.01887 0.26317 0.34148 -0.00381 0.49848 0.99996
ξ2 0.67188 0.02468 0.62380 0.71751 -0.00787 0.49686 1.00005
θ 3.08680 0.12306 2.84842 3.35547 0.00019 0.50008 1.00048
µ 2.89438 0.12997 2.63819 3.16898 0.00218 0.50087 1.00010
β1 0.00091 0.00054 -0.00004 0.00185 0.00781 0.50312 1.00117
β2 -2.02839 0.22274 -2.46437 -1.58541 0.00661 0.50312 1.00306
β3 -0.00446 0.00259 -0.00928 -0.00005 -0.00167 0.49933 1.00001
β4 0.44121 0.20265 0.07885 0.80228 -0.00178 0.49929 1.00117
β5 -1.06697 0.25150 -1.49606 -0.59086 0.00912 0.50364 1.00081

Table 5: Posterior Summary of Generalized Lindley Frailty with Baseline Exponential Power
for Kidney Infection Data (Model II)

Parameter Estimate S.E. L.C.L. U.C.L. Geweke test p-value Gelman-
Rubin test

ζ1 0.59126 0.01185 0.56663 0.61349 -0.00265 0.49894 1.00119
δ1 0.08507 0.00315 0.07859 0.09102 0.00065 0.50026 1.00011
ζ2 0.67026 0.01459 0.64434 0.69888 -0.00376 0.49850 0.99998
δ2 0.05114 0.00301 0.04569 0.05758 -0.00204 0.49919 1.00012
θ 2.89271 0.09667 2.70694 3.09136 0.00038 0.49965 1.00047
µ 2.49934 0.03404 2.43316 2.56418 -0.00088 0.49831 1.00025
β1 -0.00044 0.00205 -0.00431 0.00306 0.00464 0.50185 1.00006
β2 -1.67836 0.10168 -1.86985 -1.49478 -0.00517 0.50185 1.00406
β3 0.21870 0.02916 0.17235 0.26824 0.00703 0.50280 1.00004
β4 0.75038 0.11075 0.55099 0.93289 -0.01367 0.49455 1.00029
β5 -0.67039 0.05381 -0.76419 -0.57894 -0.00423 0.49831 0.99998
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Table 6: Posterior Summary of Generalized Weibull Distribution for Kidney infection Data
(Model III)

Parameter Estimate S.E. L.C.L. U.C.L. Geweke test p-value Gelman-
Rubin test

ζ1 2.48490 0.30943 1.89920 3.08310 -0.00829 0.49670 1.00010
δ1 0.20310 0.06863 0.09050 0.35890 -0.00614 0.49750 0.99990
ξ1 0.60490 0.07812 0.46010 0.76200 0.01195 0.50470 0.99990
ζ2 5.04010 0.50556 4.09990 5.94920 0.00073 0.50030 1.00030
δ2 0.32220 0.08144 0.17580 0.49420 -0.00887 0.49650 1.00000
ξ2 0.51290 0.06162 0.38820 0.63330 0.01124 0.50450 1.00000
β1 0.00070 0.00279 -0.00440 0.00630 -0.00968 0.49610 1.00040
β2 -1.07160 0.31695 -1.67560 -0.46080 -0.01568 0.49370 0.99990
β3 -0.01590 0.02781 -0.06770 0.03750 0.00845 0.50340 1.00040
β4 -0.00410 0.00660 -0.01670 0.00780 -0.00533 0.49780 0.99990
β5 0.00120 0.00185 -0.00210 0.00460 0.00589 0.50240 1.00000

Table 7: Posterior Summary of Exponential Power Distribution for Kidney infection Data
(Model IV)

Parameter Estimate S.E. L.C.L. U.C.L. Geweke test p-value Gelman-
Rubin test

ζ1 0.61387 0.01685 0.57520 0.64394 0.00142 0.50057 1.00138
δ1 0.06108 0.00327 0.05428 0.06775 0.00493 0.50197 1.00050
ζ2 0.63406 0.01645 0.60266 0.66541 0.00632 0.50252 1.00090
δ2 0.05032 0.00305 0.04411 0.05608 -0.00380 0.49849 1.00051
β1 -0.00193 0.00178 -0.00579 0.00084 -0.00567 0.49774 1.00285
β2 -1.61959 0.09413 -1.81647 -1.48638 0.00300 0.49774 0.99998
β3 0.21887 0.02533 0.17269 0.26366 -0.01487 0.49407 0.99999
β4 0.76834 0.09830 0.57241 0.93181 0.00916 0.50365 1.00803
β5 -0.67269 0.03430 -0.74420 -0.60866 -0.00258 0.49897 1.00013

Table 8: AIC, BIC and DIC Comparison

Model AIC BIC DIC
Model-I 682.2537 703.5423 661.4339
Model-II 689.5993 707.6128 670.3702
Model-III 690.2814 708.2949 678.103
Model-IV 690.3103 705.0486 676.7688
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Figure 1 Figure 2

Figure 3 Figure 4
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Figure 5: Trace plots for Model-I
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Figure 6: Coupling from the past plots for Model-I
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Figure 7: ACF plots for Model-I
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Figure 8: ACF plots After thinning for Model-I
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Figure 9: Posterior density plots for Model-I
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Abstract
Given a spring balance that reports the true total weight of items plus a white noise

of an unknown variance, which n subsets of n items will you weigh in order to estimate the
true weights of each item with the highest possible precision?

For n ≤ 6, we classify all D-optimal weighing designs according to the combinatorial
patterns they exhibit (modulo permutation), we count the D-optimal designs exhibiting each
pattern, and we explain how a D-optimal design for n items may arise out of a D-optimal
design for (n − 1) items. For n = 7, 11 we exhibit D-optimal designs obtained from balanced
incomplete block designs (BIBDs). We discuss some strategies to construct D-optimal designs
of larger sizes, and pose some unsolved problems.

Key words: Design of experiments; Estimable parameter; Information matrix; Credibility
region; Symmetric BIBD; Hadamard matrix.

AMS Subject Classifications: 62K05, 05B05

1. Introduction

This story has a humble beginning in a classroom activity, then a surprising discovery,
and finally an unexpected entry into the fascinating world of combinatorial designs.

While teaching a master’s level first course in Design of Experiments, one day we
brought to class four books, A–D, and asked the students: ”If you want to estimate the true
weight of each book, but you will only receive the true weight of each subset plus a white
noise of an unknown variance, which four subsets of books will you weigh?”

Once a student would make his/her choices of any 4 out of the 15 subsets A, B, C, D,
AB, AC, AD, BC, BD, BC, ABC, ABD, ACD, BCD, ABCD, we would give him/her
the true weight of each chosen subset plus a white noise. We wanted to demonstrate that a
haphazard choice of four subsets may not yield an estimate of µ4×1, the vector of true weights
of all four books; rather the subsets should be chosen with care, not only for estimating, but
also for lowering the Euclidean volume of the estimated confidence region for µ. A more
elaborate discussion on this classroom activity is given in the technical report, which we will
happily share with the interested reader. Here we develop the main research ideas and their
extensions to more general problems.

Corresponding Author: Jyotirmoy Sarkar
Email: jsarkar@iupui.edu
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Initially, we had thought that only one design is optimal in producing a confidence
region for µ having the smallest Euclidean volume. When we tried to establish this optimal
property of our preconceived choice, we had hoped to show that no other design had the
same property. So, we carried out a complete search of all

(
15
4

)
= 1365 viable binary designs

that render µ estimable. Although it was somewhat counter-intuitive to us at that time, we
were pleasantly surprised to find several other optimal designs (to be revealed in Section 3)!

Naturally, curiosity took a hold of us and we wanted to study the problem not just
for 4 books, but for any n books, allowing selection of n out of (2n − 1) possible non-empty
subsets. The rest of the paper documents what we found. Not only did we find multiple
optimal designs in most cases, but also we categorized the optimal designs into distinct
patterns (modulo permutation) and counted the number of optimal designs within each
pattern. Additionally, we discovered connections between the optimal designs for n books
and the optimal designs for (n − 1) books, for some values of n.

The origin of this optimal design problem can be traced back to almost a century
ago when Yates introduced the experiment in 1935, which lead to a precise formulation by
Hotelling in 1944. Since then, weighing designs have been thoroughly studied for both the
spring balance problem and the chemical balance problem, with and without bias. This
paper focuses on the spring balance problem where the scale has no bias.

In Section 2, we summarize the mathematical basis to estimate the true weights of the
n books based on the experimental design. Among several reasonable criteria for determin-
ing the optimal design, we adopt D-optimality for our problem. In Section 3, we count the
number of D-optimal designs of size n ≤ 5, and classify them into distinct patterns (mod-
ulo permutation). In Section 4, we describe how sometimes a D-optimal design of size n is
related to that of size (n − 1), illustrating the feature for n ≤ 6. In Section 5, we discuss
D-optimal designs of size n = 4k − 1 (for k > 1) using balanced incomplete block designs
(BIBDs), and illustrate the same for n = 7, 11. Section 6 gives some strategies to construct
D-optimal designs of larger sizes, and poses some unsolved problems, hoping to inspire young
researchers to study this fascinating topic. All computations are done using the freeware R.

2. Mathematical Background

Let µj denote the true weight of item j ∈ S ≡ {1, 2, . . . , n}. When any subset of items
Si ⊂ S is suspended from a spring balance, the reported weight yi equals ∑{j∈Si} µj + ϵi,
where ϵi is a white noise; that is, it is normally distributed with mean 0 and unknown
variance σ2. The white noises are assumed independent. For 1 ≤ i ≤ n, let us write xij = 1
if j ∈ Si and xij = 0 if j /∈ Si. Then the linear model, in matrix notation, can be written
as y = Xµ + ϵ, where the binary matrix X = (xij) is called the design matrix for weighing
with a spring balance. Since each of the n2 elements of X can be chosen to be either 0 or
1, there are altogether 22n possible design matrices, of which only a subset of

(
2n−1

n

)
design

matrices render µ estimable. For details on the statistical model behind this estimation
problem, see Banerjee (1975).

For our in-class book-weighing activity, intending to estimate each parameter µi with
the highest possible precision, we prefer small values on the diagonal of the inverse of the
information matrix (XT X)−1, which correspond to the variances of the estimates µ̂i. How-
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ever, it may not be possible to minimize all diagonal elements simultaneously. We must
thoughtfully choose an optimality criterion. Among the various notions of optimality dis-
cussed in Nishii (1993) and Pukelsheim (2006), we like D-optimality the most: It minimizes
the determinant of (XT X)−1; or equivalently, maximizes the determinant of XT X. Moreover,
when we adopt a Bayesian point of view, then under a non-informative prior distribution,
the posterior credibility region of the smallest Euclidean volume turns out to be an ellipsoid
with center µ̂. Therefore, we adopt D-optimality as the criterion for choosing the best design.

3. Classifying D-optimal Designs into Patterns

Among the
(

2n−1
n

)
designs that render µ estimable, many exhibit similar patterns. We

will present these patterns by showing a characteristic illustrative design, along with its in-
cidence matrix. However, before we construct and classify the different D-optimal weighing
designs (DWDs) into patterns, it is helpful to know how many binary square matrices of
degree n achieve the maximal determinant, and what is the value of that maximal deter-
minant. Let us denote the determinant of X by det(X). Then det(XT X)−1 = | det(X)|−2.
Among the 22n binary matrices X, what is δ = max det(X), and how many binary matrices
achieve this maximum determinant δ?

In fact, the answers are well known for small n as summarized by Weisstein (no date)
and presented in Table 1. Using this information, let us explain how to determine the number
of DWDs (modulo permutation). Any binary design matrix X represents a weighing design,
but a weighing design is invariant under row-permutation, since the order in which we weigh
the subsets is irrelevant. As there are n! permutations of the n rows, each weighing design
can be represented by n! binary matrices. Moreover, since the number of matrices achieving
the maximal absolute value of determinant is twice the number of binary matrices achieving
the maximal determinant, the total number of DWDs is given by the relation

# D-optimal weighing designs = # D-optimal matrices
n! = 2 · #{X : det(X) = δ}

n! ,

where D-optimal matrices are those matrices X that attain the maximal determinant δ in
absolute value. We summarize the information in Table 1, where X is a binary matrix of
size n. Next, Table 2 shows the number of DWDs per pattern.

Table 1: The number of D-optimal matrices (DMs) and weighing designs

n max det(X) 1
2# DMs # DWDs # patterns

2 1 3 3 2
3 2 3 1 1
4 3 60 5 2
5 5 3600 60 3
6 9 529200 1470 7
7 32 75600 30 1
8 56 195955200 9720 ?∗

9 144 13716864000 75600 ??∗

∗The undisclosed # patterns for n = 8, 9 are offered as exercise to the interested reader.
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Table 2: The number of D-optimal weighing designs per pattern

Pattern # DWDs
D2,1 1
D2,2 2
D3,1 1
D4,1 1
D4,2 4
D5,1 20
D5,2 10
D5,3 30

Pattern # DWDs
D6,1 360
D6,2 180
D6,3 180
D6,4 180
D6,5 360
D6,6 180
D6,7 30
D7,1 30

Table 3 shows an illustrative design characterizing each pattern for n = 2, 3, 4, along
with its incidence matrix, information matrix and inverse of information matrix.

Table 3: The patterns of D-optimal weighing designs for n = 2, 3, 4 illustrated

Pattern Illustrative Design Corresponding X XT X (XT X)−1

D2,1 {P1, P2}
(

1 0
0 1

) (
1 0
0 1

) (
1 0
0 1

)

D2,2 {P1P2, P1}
(

1 1
1 0

) (
2 1
1 1

) (
1 −1

−1 2

)

D3,1 {P1P2, P1S1, P2S1}

1 1 0
1 0 1
0 1 1

 2 1 1
1 2 1
1 1 2

 1
4

 3 −1 −1
−1 3 −1
−1 −1 3



D4,1 {P1P2Q1, P1P2Q2,
P1Q1Q2, P2Q1Q2}


1 1 1 0
1 1 0 1
1 0 1 1
0 1 1 1




3 2 2 2
3 2 2

3 2
3


1
9


7 −2 −2 −2

7 −2 −2
7 −2

7



D4,2 {Q1Q2Q3, Q1S1,
Q2S1, Q3S1}


1 1 1 0
1 0 0 1
0 1 0 1
0 0 1 1




2 1 1 1
2 1 1

2 1
3


1
9


7 −2 −2 −1

7 −2 −1
7 −1

4



Returning to our classroom book-weighing activity, we note that there are exactly five
DWD’s. The first pattern D4,1 represents only one DWD, namely {ABC, ABD, ACD, BCD},
which we had anticipated beforehand; and the second pattern D4,2 represents the following
four DWD’s whose discovery surprised us and propelled us into this research:

{ABC, AD, BD, CD}, {ABD, AC, BC, CD}, {ACD, AB, BC, BD}, {BCD, AB, AC, AD}.
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For n = 5 and 6, we simply present the incidence matrices, the information matrices
and the inverse information matrices in Table 4 below and in Table B1 in Annexure B, re-
spectively, leaving the reader to find the corresponding illustrative designs. Details of these
designs, along with ways to construct them, can be found in the technical report, which we
will be happy to share with the interested reader, if needed.

Table 4: The three patterns of D-optimal designs for n = 5 illustrated

Pattern Corresponding X XT X 25(XT X)−1

D5,1


1 0 0 0 1
1 1 1 0 0
1 1 0 1 0
1 0 1 1 0
0 1 1 1 1




4 2 2 2 1
3 2 2 1

3 2 1
3 1

2




11 −3 −3 −3 −1
19 −6 −6 −2

19 −6 −2
19 −2

16



D5,2


1 1 1 0 0
1 1 0 1 0
1 1 0 0 1
1 0 1 1 1
0 1 1 1 1




4 3 2 2 2
4 2 2 2

3 2 2
3 2

3




16 −9 −2 −2 −2
16 −2 −2 −2

19 −6 −6
19 −6

19



D5,3


1 1 1 0 0
0 1 0 1 0
0 1 0 0 1
0 0 1 1 1
1 0 0 1 1




3 1 1 1 1
2 1 1 1

2 1 1
3 2

3




11 −3 −3 −1 −1
19 −6 −2 −2

19 −2 −2
16 −9

16



4. Interrelations Between DWD’s of Sizes (n − 1) and n

As n gets larger, patterns become more complicated. However, we have found that all
designs of size n for n = 2, . . . , 6 are related to at least one pattern of size (n − 1), and thus,
can be constructed by simply adding a new letter to some words of a design of size (n − 1),
and then adding a new word (or equivalently, by adding a row and column to a binary matrix
representing the design of size (n − 1)). Alternatively, we can think of a pattern or design
of size n to have a D-optimal design of size (n − 1) embedded in it; or in terms of matrices,
a D-optimal matrix of order n to have a minor of order (n − 1) which attains the maximal
determinant for that order. However, this feature fails for n = 7 and n = 11.

Surely, all DWDs of size 2 embed in them a DWD of size 1. We illustrate how new
designs are constructed from a lower order design for n = 3, . . . , 6, by taking matrices of the
previous order displayed in Section 3 and adding a new row and a new column to them.

4.1. From n = 2 to n = 3

Recall that for n = 2 and n = 3 some of the D-optimal matrices we found were

X2,1 =
(

1 0
0 1

)
, X2,2 =

(
1 1
1 0

)
, X3,1 =

1 1 0
1 0 1
0 1 1


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Note that X2,1 and X2,2 are both embedded in X3,1, as shown below:

X3,1 =

 1 1 0
1 0 1
0 1 1

 =

 1 1 0
1 0 1
0 1 1



4.2. From n = 3 to n = 4

From D3,1, we can construct both, D4,1 and D4,2. Below we give an illustrative matrix
for each pattern (permute the rows/columns to see D3,1 embedded in D4,2):

X4,1 =


1 1 0 1
1 0 1 1
0 1 1 1
1 1 1 0

 X4,2 =


0 1 1 1
1 0 1 0
1 1 0 0
1 0 0 1


4.3. From n = 4 to n = 5

Patterns D5,1 and D5,2 are constructed from either D4,1 or D4,2; but D5,3 comes only
from D4,2. Refer to the technical report for details about how to construct these patterns.
Below are illustrative matrices for each of these cases. Within the first two cases, permute
the rows/columns to see that the two incidence matrices represent the same pattern.

1) Illustrative matrices for D5,1 coming from X4,1 and X4,2, respectively:


0 1 1 1 1
1 0 1 1 0
1 1 0 1 0
1 1 1 0 0
1 0 0 0 1




0 1 1 1 1
1 0 1 0 1
1 1 0 0 1
1 0 0 1 0
1 1 1 0 1


2) Illustrative matrices for D5,2 coming from X4,1 and X4,2, respectively:


0 1 1 1 1
1 0 1 1 1
1 1 0 1 0
1 1 1 0 0
1 1 0 0 1




0 1 1 1 1
1 0 1 0 1
1 1 0 0 1
1 0 0 1 1
1 1 1 1 0


3) An illustrative matrix for D5,3 coming from D4,2:


0 1 1 1 0
1 0 1 0 0
1 1 0 0 0
1 0 0 1 1
0 1 1 0 1


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4.4. From n = 5 to n = 6

Patterns D6,1 and D6,2 come from D5,1, patterns D6,3 and D6,4 come from D5,2, and
patterns D6,5, D6,6 and D6,7 come from D5,3. The matrices representing these designs can
be found in Table B1 in Annexure B. We invite the astute reader to contemplate how to
obtain these extensions from size 5 to size 6, how to count the number of DWDs, and how
to construct the different patterns. All of these topics and more are thoroughly addressed
in the technical report, which we will gladly share, if needed.

What we found absolutely delightful, we offer as a gift to our dear readers: We present
a D-optimal matrix of size 6, coming from a D-optimal matrix of size 5, coming from a
D-optimal matrix of size 4, coming from . . . you get the idea. Here it is:

0 1 1 1 0 1
1 0 1 0 0 1
1 1 0 0 0 1
1 0 0 1 1 1
0 1 1 0 1 1
1 1 1 1 1 0




Without first memorizing it, can you reconstruct this DWD?

5. DWD’s for Cases n = 4k − 1 where k = 2, 3, . . .

These special cases are related to a well-studied group of chemical balance weighing
designs. A square sign matrix (all whose elements are −1 and 1) of size n that attains the
maximal determinant is known as a Hadamard matrix. The order of a Hadamard matrix is
n = 1, 2 or n = 4k for k ≥ 1, and its determinant is nn/2 (see Brenner, 1972). Mood (1946)
and Banerjee (1975) show that there is a one-to-one correspondence between Hadamard
matrices of size n and square binary matrices of size (n − 1) with maximal determinant.
Thus, the number of inequivalent Hadamard matrices of size n is also the number of patterns
for DWD’s of size (n − 1).

The existence of Hadamard matrices is known for all n divisible by 4 up to n < 668,
thereby implying the existance of D-optimal binary matrices of size n = 4k − 1 < 667.
Moreover, Raghavarao (1971) provides methods for constructing Hadamard matrices of order
n ≤ 100, and the number of inequivalent Hadamard matrices is known for orders n ≤ 32, as
given in the On-Line Encyclopedia of Integer Sequences (OEIS).

Since square binary matrices with maximal determinants can be constructed from
Hadamard matrices, as shown by Mood (1946) and as found in Stinson (2004), we can
construct DWDs of size n = 4k − 1, k = 1, 2, ... starting from Hadamard matrices of size
n = 4k. Here, we illustrate two of them, n = 7 and n = 11, leaving the rest to the reader.

5.1. Case n = 7

There are more reasons that make this case very, very special. First, there is only one
possible pattern, yielding 30 possible DWDs. Note that both the number of patterns and
the number of DWDs is much smaller than the previous case of n = 6. Moreover, the only
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pattern for n = 7 does not come from any of the patterns for n = 6, as proven by Williamson
(1946). Surprisingly, that single pattern for n = 7 is rather easy to construct: First, find
the incidence matrix of the symmetric BIBD(7, 3, 1) associated with the Hadamard matrix
of size 8, and then take its complement, which gives a symmetric BIBD(7, 4, 2).

Recall that the symmetric BIBD(7, 3, 1) can be found from the Fano plane shown
below. To construct a particular design, we label the vertices of the Fano plane with distinct
letters and make words consisting of the three letters on each line on the graph. (Here, the
central circle also counts as a line.) There are 30 distinct ways to label of the Fano plane,
not counting rotation and reflection symmetries. By taking the complements of each such
labelled symmetric BIBD(7, 3, 1), we obtain 30 possible DWDs of size n = 7.

G

A

B C

F

D

E

Figure 1: The Fano plane yields the symmetric BIBD(7, 3, 1).

For example, using the labeling shown in Figure 1 above, we obtain the symmetric
BIBD {ABF, ACE, ADG, BCD, BEG, CFG, DEF}. Thereafter, its complement yields the
following DWD of size n = 7:

{CDEG, BDFG, BCEF, AEFG, ACDF, ABDE, ABCG}.

Another DWD is given below along with its corresponding matrix. Can you find the
labeling of the Fano plane that leads to this DWD?

Illustrative Design: {ABCD, ABEF, ACEG, ADFG, BCFG, BDEG, CDEF}.

X7 =



1 1 1 1 0 0 0
1 1 0 0 1 1 0
1 0 1 0 1 0 1
1 0 0 1 0 1 1
0 1 1 0 0 1 1
0 1 0 1 1 0 1
0 0 1 1 1 1 0


, XT

7 X7 =



4 2 2 2 2 2 2
4 2 2 2 2 2

4 2 2 2 2
4 2 2 2

4 2 2
4 2

4


,

(XT
7 X7)−1 = 1

16



7 −1 −1 −1 −1 −1 −1
7 −1 −1 −1 −1 −1

7 −1 −1 −1 −1
7 −1 −1 −1

7 −1 −1
7 −1

7


.



2021] D-OPTIMAL WEIGHING DESIGNS 71

5.2. Case n = 11

According to the OEIS, there is only one distinct (up to permutation of rows and
columns) Hadamard matrix of order 12, implying that there is only one possible pattern of
DWDs for n = 11. This pattern can be found by using the Paley biplane (shown below),
which leads to a symmetric BIBD(11, 5, 2), as explained in the next paragraph. The Paley
biplane can be labelled in 60,480 distinct ways not counting symmetries.

1

23

4

5

6

7

8

9 10

11

Figure 2: The Paley biplane yields the symmetric BIBD(11, 5, 2).

After the Paley biplane is labelled, Brown (2004) explains that each of the 11 subsets
(rows of the incidence matrix of the BIBD) can be found by traveling on three types of paths
in the graph: The first type, shown in bold line gives rise to 5 subsets, via a 1/5 rotation
about the center. Similarly, the second type of path, shown with the zigzag lines gives rise
to 5 more subsets, via a 1/5 rotation about the center. Finally, any four edges of the outer
pentagon constitute the last subset needed to construct the symmetric BIBD(11, 5, 2).

Thereafter, we take its complement, a symmetric BIBD(11, 6, 3), to obtain the pattern
of DWDs for n = 11. We give the incidence matrix of one such DWD; but leave to the avid
reader the task of finding other such designs by relabelling the Paley biplane.

X11 =



1 0 1 0 0 0 1 1 1 0 1
1 1 0 1 0 0 0 1 1 1 0
0 1 1 0 1 0 0 0 1 1 1
1 0 1 1 0 1 0 0 0 1 1
1 1 0 1 1 0 1 0 0 0 1
1 1 1 0 1 1 0 1 0 0 0
0 1 1 1 0 1 1 0 1 0 0
0 0 1 1 1 0 1 1 0 1 0
0 0 0 1 1 1 0 1 1 0 1
1 0 0 0 1 1 1 0 1 1 0
0 1 0 0 0 1 1 1 0 1 1


Note that the above matrix has determinant 1458, which means that it achieves the

maximal determinant for a square binary matrix of order 11. Alternatively, a matrix for this
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design can be found by using the standardized Hadamard matrix of order 12 and deleting
its first row and column, or by using the Paley construction. Moreover, we know from
Williamson (1946) that this pattern cannot be constructed using a DWD of size n = 10. In
fact, there is no DWD of order n = 8, 9 or 10 embedded in this design.

We constructed DWDs of sizes n = 7 and n = 11 using symmetric BIBDs. This is
no coincidence: Raghavarao (1971) proves that when estimating the weights of n = 4k − 1
objects using exactly n weighings, the incidence matrix of a symmetric BIBD(4k − 1, 2k, k)
is D-optimal as a spring balance weighing design of size n = 4k − 1.

This result can be strengthened. Mood (1946) proves that there is a one-to-one corre-
spondence between D-optimal binary matrices and Hadamard matrices. Additionally, Stin-
son (2004) states that for k > 1, there exists a Hadamard matrix of order 4k if and only if
there exists a symmetric BIBD(4k − 1, 2k − 1, k − 1). Hence, the following lemma holds.

Lemma 1. For k > 1, there exists a D-optimal binary matrix of size n = 4k − 1 if and only
if there exists a symmetric BIBD(4k − 1, 2k, k).

Lemma 1 aids us in counting DWDs associated with each pattern (or equivalently,
with each symmetric BIBD). For n = 4k − 1, the number of DWDs associated with a
particular symmetric BIBD is given by n! divided by the number of symmetries of the
symmetric BIBD(v, k, λ); that is, the number of permutations of the v treatments (columns)
that simultaneously permute the blocks (rows). (This number is also known as the order of
the automorphism group of the design). This explains our counting of DWDs for n = 7 and
n = 11:

7!
168 = 30 DWDs 11!

660 = 60480 DWDs

In other words, there were 7! and 11! ways to relabel the Fano plane and the Paley
biplane, respectively; but to remove all duplicates, we divided by 168 and 660—the number
of symmetries of the plane/biplane.

6. Future Work

We have found, classified and counted all D-optimal weighing designs of sizes n =
2, . . . 7. One may now consider other types of optimality, such as A-optimality and E-
optimality, mentioned in Nishii (1993) and Pukelsheim (2006), to choose a preferred design
depending on the research goal. We leave this task to the interested reader, aiding them
with the following table of traces of the (XT X)−1 matrices that we used in Sections 3 and
4. The reader can also find a thorough discussion of this topic in Shah and Sinha (1989).

A natural extension of this work is to study designs of sizes n > 7. As mentioned in
Section 5, designs of sizes n = 4k − 1 are very well studied, given the study of Hadamard
matrices and the association between Hadamard matrices and D-optimal binary matrices.

Moreover, to construct designs of sizes n > 7 where n ̸= 4k − 1, Bose and Nair (1939)
and Banerjee (1952) use some partial BIBDs as weighing designs. Also, one can try to extend
designs of size (n − 1), following strategies used in Section 4, and further explained in the
technical report. For instance, starting with the matrix X7 in Section 5 illustrating the case
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Table 5: Traces of (XT X)−1 matrices for D-optimal weighing designs

Pattern tr((XT X)−1)
D2,1 2
D2,2 3
D3,1 9/4
D4,1 28/9
D4,2 25/9
D5,1 84/25
D5,2 89/25
D5,3 81/25

Pattern tr((XT X)−1)
D6,1 298/81
D6,2 310/81
D6,3 309/81
D6,4 309/81
D6,5 295/81
D6,6 319/81
D6,7 306/81
D7,1 49/16

for n = 7, and adding an extra row and column leads to a matrix of order n = 8 with
determinant 56, which, as reported in Table 1, is the largest determinant a binary matrix of
this size can attain.

X8 =



1 1 1 1 0 0 0 1
1 1 0 0 1 1 0 1
1 0 1 0 1 0 1 1
1 0 0 1 0 1 1 1
0 1 1 0 0 1 1 1
0 1 0 1 1 0 1 1
0 0 1 1 1 1 0 1
1 1 1 1 1 1 1 0


As mentioned in Section 3, we leave to the reader the task of finding all patterns and

counting all DWDs for cases n = 8, 9. We empower them with yet another potent idea
described below. But first let us explain a geometric representation of a design matrix: We
construct an n × n grid of unit squares; color a unit square if the corresponding matrix
entry is 1, but leave the unit square colorless if the entry is 0. We may also partition the
grid suitably to enhance the pattern. For example, designs D6,3 and D6,4, after suitable
rearrangements of rows and columns, are represented as shown in Figure 3.

Figure 3: These geometric patterns for D6,3 and D6,4 are obtained by coloring
and spacing unit squares.

Having given such a geometric representation of a design matrix, let us describe another
type of extension from a smaller size design to a larger size design that is worth exploring:
Carefully observe the patterns themselves, and replicate them for a larger n. For example,
the geometric representation of X7, shown in Figure 4, reveals a visual pattern, which may
be time-consuming to express verbally. Instead, we invite the astute reader to imitate the
same pattern for a 9 × 9 grid. The resulting picture is shown in Figure 5 in Annexure A.
Please do not peek at it too early, lest you miss the joy of discovery.
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Figure 4: Here is a geometric pattern for n = 7. Can you imitate it for n = 9?

Figure 5 serves as a design matrix for the case n = 9, and it has determinant 144, which
is the largest determinant a binary matrix of this size can attain. Although performing such
extensions multiple times may not result in D-optimal matrices of larger orders (for example,
this pattern does not work for n = 11 or n = 13), the idea is worth testing with other patterns
of different sizes.

Let us briefly mention yet another avenue of research involving designs that do not
necessarily involve square matrices. In this case, to estimate all parameters, we allow more
weighings than objects to weigh (see Mood, 1946, Banerjee 1975, or Neubauer et al., 1998
for designs corresponding to four and five objects). While the investment is higher than
absolutely necessary in terms of increased number of weighings, the added benefit is that
the estimates have smaller standard errors and one can also estimate the error variance σ2.
For an introduction to a very general description of weighing designs in this direction and
related results, we refer to Raghavarao (1971) and Shah and Sinha (1989).
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ANNEXURE A

Figure 5: This geometric pattern for n = 9 imitates the pattern shown in Figure 4.



76 MONICA PENA PARDO AND JYOTIRMOY SARKAR [Vol. 19, No. 2

ANNEXURE B

Table B1: The seven patterns of D-optimal designs for n = 6 illustrated

Pattern Illustrative X XT X 81(XT X)−1

D6,1


1 1 1 0 0 0
1 1 0 1 0 0
1 0 1 1 0 1
0 1 1 1 1 0
1 0 0 0 1 1
0 1 0 0 0 1




4 2 2 2 1 2

4 2 2 1 1
3 2 1 1

3 1 1
2 1

3




45 −6 −12 −12 3 −21

35 −11 −11 −4 1
59 −22 −8 2

59 −8 2
56 −14

44



D6,2


1 1 1 0 0 0
1 1 0 1 0 0
1 0 1 1 0 1
0 1 1 1 1 1
1 0 0 0 1 1
1 0 1 1 1 0




5 2 3 3 2 2

3 2 2 1 1
4 3 2 2

4 2 2
3 2

3




35 −6 −11 −11 −4 −4

45 −12 −12 3 3
59 −22 −8 −8

59 −8 −8
56 −25

56



D6,3


1 1 0 0 1 1
1 0 1 0 1 1
1 0 0 1 1 0
0 1 1 1 1 0
1 1 1 1 0 0
0 0 0 1 0 1




4 2 2 2 3 2

3 2 2 2 1
3 2 2 1

4 2 1
4 2

3




56 −8 −8 −4 −25 −14

59 −22 −11 −8 2
59 −11 −8 2

35 −4 1
56 −14

44



D6,4


1 1 0 0 1 0
1 0 1 0 1 0
1 0 0 1 1 1
0 1 1 1 1 0
1 1 1 1 0 0
0 1 1 0 0 1




4 2 2 2 3 1

4 3 2 2 1
4 2 2 1

3 2 1
4 1

2


3


17 −1 −1 −3 −10 −1
17 −10 −3 −1 −1

17 −3 −1 −1
18 −3 −3

17 −1
17



D6,5


1 1 0 0 1 0
1 0 1 0 0 0
1 0 0 1 0 1
0 1 1 1 0 0
0 0 1 1 1 0
0 1 1 0 1 1




3 1 1 1 1 1

3 2 1 2 1
4 2 2 1

3 1 1
3 1

2




35 −4 1 −6 −4 −11

56 −14 3 −25 −8
44 −21 −14 2

45 3 −12
56 −8

59



D6,6


1 1 0 0 1 1
1 0 1 0 0 1
1 0 0 1 0 1
0 1 1 1 0 1
0 0 1 1 1 1
1 1 1 1 1 0




4 2 2 2 2 3

3 2 2 2 2
4 3 2 3

4 2 3
3 2

5




45 −12 3 3 −12 −21

59 −8 −8 −22 2
56 −25 −8 −14

56 −8 −14
59 2

44



D6,7


1 1 0 0 1 0
1 0 1 0 0 1
1 0 0 1 0 1
0 1 1 1 0 0
0 0 1 1 1 0
0 1 0 0 1 1




3 1 1 1 1 2

3 1 1 2 1
3 2 1 1

3 1 1
3 1

3


3


17 −1 −1 −1 −1 −10
17 −1 −1 −10 −1

17 −10 −1 −1
17 −1 −1

17 −1
17


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Abstract 

 
For data on two continuous variables, how should one depict the summary statistics 

(means, SDs, correlation coefficient, coefficient of determination, regression lines) so that their 
values can be read off easily from the depiction and potential outliers can be flagged also? We 
propose the Gaussian covariance ellipse as an answer that will benefit all users of statistics. 

 
Key words: Five-number summary; Variance; Least squares lines; Bivariate normal 
distribution; 𝑥-, 𝑦- and regression outliers. 
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1.      Introduction 
 
Appropriate graphical representation of data is necessary for easy comprehension of 

underlying information. For each type of variable and for each objective, one must choose the 
correct graph to depict the data. In this paper, we focus only on quantitative variables which 
take values on a continuous scale; that is, even though measurement limitations may force us 
(and ease of comprehension may prompt us) to report the value correct to an integer or up to a 
few decimal places, we recognize that finer values are surely possible. Some quantitative 
variables are measured only on a difference scale, where the difference between two values has 
a meaningful interpretation, but not their ratio; and other quantitative variables are measured 
on an interval or ratio scale, where the ratio of two values has a proper physical interpretation. 

  
The objective of this paper is to depict the summary statistics of two quantitative 

variables that are related via the linear regression model or that exhibit a bivariate normal 
distribution. Section 2 identifies some commonly used bivariate statistics and poses the 
problem of depicting them efficiently. Section 3 depicts bivariate linear association for 
standardized data using a correlation ellipse; and Section 4 depicts bivariate summary statistics 
for raw data using a covariance ellipse. Section 5 highlights the sufficient statistics from which 
other bivariate summary statistics can be reconstructed; and Section 6 further reduces the 
sufficient statistics. Section 7 concludes the paper, interprets the covariance ellipse and poses 
some directions of future research. 

 
 
 



78 JYOTIRMOY SARKAR AND MAMUNUR RASHID [Vol. 19, No. 2 

 

2.      Depicting Bivariate Summary Statistics: Statement of the Problem 
 

Methods are well-known for depicting summary statistics of a quantitative variable. We 
refer the reader to Maverick (1932), Embse and Engebretsen (1996), and Sarkar and Rashid 
(2016, 2019). Also, above (or below) a dot plot or a histogram one can easily superimpose an 
arrow, whose tail shows the mean and length the SD. See, for example, Devore (2015) and 
Rashid and Sarkar (2018). Likewise, to depict the interrelations between two quantitative 
variables, the commonly used scatter plot can be augmented by the five-number-summary, the 
mean and the SD of each variable in the margins; that is, when the scatter plot is projected 
along each coordinate axis, the corresponding dot plots can be summarized using univariate 
methods. See an example given in Figure 1 with details found in Sarkar and Rashid (2020). 

 
Throughout the paper we illustrate some visualization techniques using the following 

example involving the midterm exam score (𝑥) and the final exam score (𝑦) of 23 students in 
an Introduction to Statistics course.  

  

 
 
Figure 1: The midterm exam (𝒙) and the final exam (𝒚) scores of 23 students, with 
the five-number-summary, mean and SD of each score shown in the margins 
 
To the astute reader we pose a quiz: “Projection of a scatter plot in which direction will 

cause the corresponding dot plot to exhibit the largest (or the smallest) SD? Alternatively, 
which linear combination of 𝑥 and 𝑦 has the largest (or the smallest) SD?” We urge the readers 
to jot down their answers before reading further. Our answer is given later in this paper. 

 
Frequently used bivariate summary statistics include the correlation coefficient 𝑟, the 

least squares regression line 𝑦& as a function of 𝑥, the inverse least squares regression line 𝑥& as 
a function of 𝑦, and the coefficient of determination 𝑟!. How should these bivariate statistics 
be depicted so that their numerical values can be easily read off from the scales of the axes?  

 
As a solution to this question, we propose to draw the Gaussian covariance ellipse that 

fits inside the 𝑐-SD rectangle given by the 𝑐-SD boundaries 𝑦 = 𝑦) ± 𝑐𝑠" and 𝑥 = 𝑥̅ ± 𝑐𝑠#. The 
diagonals of this rectangle intersect at the mean vector (𝑥̅, 𝑦)). We shall exhibit the Gaussian 
covariance ellipse in Section 4. But first, in Section 3, let us look at the Gaussian correlation 
ellipse, which only considers the standardized variables. It strips out the central location vector 
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(𝑥̅, 𝑦)), suppresses the scale factors 𝑠# and 𝑠", and focuses on the correlation coefficient 𝑟, the 
coefficient of determination 𝑟! and the two regression lines (in standardized units). 

 
3.      Gaussian Correlation Ellipse 

 
Let us first focus on the correlation coefficient 𝑟. To do so, we replace the variables by 

their standardized versions: Replace 𝑥 by 𝑥0 = (𝑥 − 𝑥̅)/𝑠# and 𝑦 by 𝑦0 = (𝑦 − 𝑦))/𝑠". 
Consequently, the mean vector for (𝑥0, 𝑦0) is (0, 0), and 𝑠"$ = 𝑠#$ = 1. In particular, the 𝑐-SD 
rectangle for (𝑥0, 𝑦0) is a square (so long as the scales of the two axes in the diagram are chosen 
to be the same). We inscribe in this square the 𝑐-SD Gaussian correlation ellipse whose two 
axes pass through (0, 0) and have slopes 1 and −1, and is internally tangential to the 𝑐-SD 
square at exactly four points: bottommost point 𝐵 = (−𝑟𝑐, −𝑐), topmost point 𝑇 = (𝑟𝑐, 𝑐), 
leftmost point 𝐿 = (−𝑐,−𝑟𝑐) and rightmost point 𝑅 = (𝑐, 𝑟𝑐). Then 𝐿𝑅 is the regression line  
𝑦09 = 𝑟𝑥0  line, 𝐵𝑇 is the inverse regression line  𝑥09 = 𝑟𝑦0  line. Furthermore, these two regression 
lines 𝐿𝑅 and 𝐵𝑇 intersect at the center (0, 0) of the 𝑐-SD correlation ellipse, which is also the 
point of intersection of the two diagonals of the 𝑐-SD square and the center of gravity of the 
scatter plot of standardized variables (𝑥0, 𝑦0).  

 
For the example data, shown in Figure 1, after standardizing the scores, Figure 2 depicts 

the standard correlation ellipse, where we have chosen 𝑐 = 1, so that 39.35% of the data are 
expected to fall inside. We will say more about the choice of 𝑐 towards the end of Section 4. 

 

 
 

Figure 2: The 𝟏-SD square and the 𝟏-SD correlation ellipse for midterm and final 
exam scores of 23 students in an Introduction to Statistics course  
 
Based on the standardized variables, the standard (that is, with 𝑐 = 1) correlation ellipse 

is centered at the origin, has one axis with half-length 𝑎 (to be determined in the next paragraph) 
in the direction (1, 1) starting from the center, and has the other (orthogonal) axis with half-
length 𝑏 (also to be determined shortly) in the direction (1, −1) starting from the origin. After 
normalizing the direction vectors (that is, dividing each vector by √2), the standard correlation 
ellipse can be described by the equation 

 
(#$&"$)!

!(!
+ (#$)"$)!

!*!
= 1.     (1) 
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Next, focusing on the upper 𝑦0-value as a function of 𝑥0 and implicitly differentiating with 
respect to 𝑥0, we have 

 
(#$&"$)
(!

(1 + 𝑦0+) + (#$)"$)
*!

(1 − 𝑦0 +) = 0.    (2) 
 

The standard correlation ellipse is internally tangential to the 1-SD square at the point 
(𝑟, 1). Hence, we have 𝑦0’(𝑟) = 0 and 𝑦0(𝑟) = 1, and equations (1) and (2) yield 

 
(,&-)!

!(!
+ (,)-)!

!*!
= 1; 		and						 (,&-)

(!
+ (,)-)

*!
= 0.               (3) 

 
Solving the two equations in (3) simultaneously, we determine 𝑎 = √1 + 𝑟 and 𝑏 = √1 − 𝑟.  

 
Having determined 𝑎 and 𝑏, the standard correlation ellipse can be described by any one 

of the following equivalent equations {of which we prefer the last; that is, expression (4)}: 
 

(𝑥0 + 𝑦0)!

2(1 + 𝑟) +
(𝑥0 − 𝑦0)!

2(1 − 𝑟) = 1 

 

G
𝑥0 + 𝑦0
√2

𝑥0 − 𝑦0
√2

H I1 + 𝑟 0
0 1 − 𝑟J

)-
K(𝑥
0 + 𝑦0)/√2
(𝑥0 − 𝑦0)/√2

L = 1 

 

(𝑥0 𝑦0) M
N1/2 N1/2
N1/2 −N1/2

O I1 + 𝑟 0
0 1 − 𝑟J

)-
M
N1/2 N1/2
N1/2 −N1/2

O G𝑥0𝑦0H = 1 

 

(𝑥0 𝑦0) I1 𝑟
𝑟 1J

)-
G𝑥0𝑦0H = 1.    (4) 

 

The reader can verify that the correlation matrix I1 𝑟
𝑟 1J has eigen-values (1 + 𝑟) and 

(1 − 𝑟), and eigen-vectors PN1/2, N1/2Q and PN1/2, −N1/2Q, respectively. The 
standard correlation ellipse is also given (among several equivalent expressions) by 

 
(1 − 𝑟!)𝑥0! 	+ 	(𝑦0 − 𝑟𝑥0)! = 1 − 𝑟! 

or, 
	(𝑥0 − 𝑟𝑦0)! + (1 − 𝑟!)𝑦0! 	= 1 − 𝑟!. 

 
The standard correlation ellipse has the following properties: It passes through, not just 

the already mentioned four points 𝐿, 𝑅, 𝐵, 𝑇, but also through other recognizable points on the 
𝑥0-axis, the 𝑦0-axis, the major- and the minor axis such as 

 

±P√1 − 𝑟!, 0Q, ±P0, √1 − 𝑟!Q, ± KR-&,
!
,	sign(𝑟)R-&,

!
L ,±KR-),

!
, −sign(𝑟)R-),

!
L. 

 
Any vertical line segment terminated by the correlation ellipse is bisected by the 𝑦09 = 𝑟𝑥0 

line 𝐿𝑅; and similarly, any horizontal line segment terminated by the correlation ellipse is 
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bisected by the 𝑥09 = 𝑟𝑦0 line 𝐵𝑇. Hence, the standard correlation ellipse also passes through the 
following four points: ±(𝑟, 2𝑟! − 1) and ±(2𝑟! − 1, 𝑟). 

 
When the 1-SD square and the 1-SD Gaussian correlation ellipse of (𝑥0, 𝑦0) are both 

horizontally and vertically dilated (magnified or expanded) by the same factor 𝑐 we obtain the 
𝑐-SD square and the 𝑐-SD Gaussian correlation ellipse of (𝑥0, 𝑦0). To reiterate, the major axis of 
the 𝑐-SD correlation ellipse falls precisely on that diagonal of the 𝑐-SD square whose slope has 
the same sign as 𝑟. The ratio of the lengths of the two axes is 𝑐𝑎/[𝑐𝑏] = √1 + 𝑟/√1 − 𝑟. 
Hence, the 𝑐-SD Gaussian correlation ellipse (for all 𝑐) has eccentricity 

 

𝑒 = √(!)*!

(
= R !|,|

-&|,|
.     (5) 

 
Specifically, when 𝑟 = 0, eccentricity is 0 and the correlation ellipse is a circle; and when 

|𝑟| = 1, eccentricity is 1 and the ellipse with a major axis of half-length √2 and a minor axis 
of half-length 0 collapses into a line segment of length 2√2. 

 
4.      Gaussian Covariance Ellipse 

 
In the more general case, when 𝑠# ≠ 𝑠", let us consider the shifted variables 𝑢 = 𝑥 − 𝑥̅ 

and 𝑣 = 𝑦 − 𝑦). Note that the mean vector for (𝑢, 𝑣) is (0, 0), and 𝑠0 = 𝑠# ≠ 𝑠" = 𝑠1.  
 
Starting from the 𝑐-SD square and the 𝑐-SD Gaussian correlation ellipse of (𝑥0, 𝑦0), shown 

in Figure 3(a), if both are horizontally dilated by a factor 𝑠0 = 𝑠# and vertically dilated by a 
factor 𝑠1 = 𝑠", and then the image is translated by (𝑥̅, 𝑦)), the transformed regions are shown 
in Figure 3(b). We have chosen two different values, 𝑐 = 2.448 and 𝑐 = 2.7972, for reasons 
given at the end of this section. What exactly are the shapes of these transformed regions? 

 

(a) (b) 
 

Figure 3: A scatter plot of midterm and final exam scores, together with (a) the 𝒄-SD 
square and the 𝒄-SD correlation ellipse for standardized data, and (b) the corresponding 
transformed regions after dilations and translation for raw data, choosing 𝒄 = 𝟐. 𝟒𝟒𝟖 and 
𝒄 = 𝟐. 𝟕𝟗𝟕𝟐. What shapes are these transformed regions? 

 
It is trivial to see that each 𝑐-SD square in Figure 3(a) turns into a 𝑐-SD rectangle in 

Figure 3(b). But it is not easy to recognize that each 𝑐-SD correlation ellipse turns into another 
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ellipse, which we shall call the 𝑐-SD covariance ellipse. Why is the dilations-translation of an 
ellipse another ellipse? How do the major- and the minor axes of the correlation ellipse morph 
into the corresponding axes of the covariance ellipse?  

 
The answers to these questions are straightforward in the special case when 𝑠0 = 𝑠1 = 𝑠, 

say: The axes of the covariance ellipse coincide with the SD lines and their half-lengths are 𝑠-
multiples of those of the correlation ellipse. To answer the questions in the more general case 
when 𝑠0 ≠ 𝑠1, we use matrix algebra. Note that after dilations, the standard correlation ellipse, 
given in (4), changes into  

 

G
𝑢
𝑠0

𝑣
𝑠1
H I1 𝑟
𝑟 1J

)-
G𝑢/𝑠0	𝑣/𝑠1	

H = 1 

 
or equivalently, 

(𝑢 𝑣) d 𝑠0! 𝑟𝑠0𝑠1
𝑟𝑠0𝑠1 𝑠1!

e
)-

f𝑢𝑣g = 1,    (6) 

 
which is an ellipse (called the shifted standard covariance ellipse, shifted because the mean is 
(0, 0) and standard because 𝑐 = 1). 
 

Let the eigen-values of the covariance matrix 𝑆 = d 𝑠0! 𝑟𝑠0𝑠1
𝑟𝑠0𝑠1 𝑠1!

e be 𝛼 and 𝛽; let the 

associated (orthonormal) eigen-vectors be (𝑒--, 𝑒-!) and (𝑒!-, 𝑒!!) respectively; that is, 
 

d 𝑠0! 𝑟𝑠0𝑠1
𝑟𝑠0𝑠1 𝑠1!

e = I
𝑒-- 𝑒!-
𝑒-! 𝑒!!J d

𝛼 0
0 𝛽e I

𝑒-- 𝑒-!
𝑒!- 𝑒!!J; 

and 

I
𝑒-- 𝑒!-
𝑒-! 𝑒!!J I

𝑒-- 𝑒-!
𝑒!- 𝑒!!J = I1 0

0 1J. 
 

Then, reversing the steps shown for the standard correlation ellipse, the shifted standard 
covariance ellipse, given in (6), becomes  

 
(2""0&2"!1)!

3
+ (2!"0&2!!1)!

4
= 1.    (7) 

 
Returning to the original variables (𝑥 = 𝑢 + 𝑥̅, 𝑦 = 𝑣 + 𝑦)) with mean vector (𝑥̅, 𝑦)), 

the shifted standard correlation ellipse (7) becomes the general covariance ellipse (with 
arbitrary 𝑐) given by 

 
(2""(#)#̅)&2"!(")"6))!

3
+ (2!"(#)#̅)&2!!(")"6))!

4
= 𝑐!.   (8) 

 
Thus, matching (8) with (1), we note that the 𝑐-SD covariance ellipse has major and 

minor axes given by   
 

Major axis: 𝑦 − 𝑦) = (𝑒-!/𝑒--)	(𝑥 − 𝑥̅) with half-length 𝑐√𝛼  (9) 
  Minor axis: 𝑦 − 𝑦) = (𝑒!!/𝑒!-)	(𝑥 − 𝑥̅) with half-length 𝑐N𝛽.   
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To complete the discussion on the major and the minor axes, shown in (9), it remains to 
obtain the eigen-decomposition of the covariance matrix 𝑆. The eigen-values are the solutions 

𝜏 of the quadrative equation 𝑑𝑒𝑡 M
𝑠#! − 𝜏 𝑟𝑠#𝑠"
𝑟𝑠#𝑠" 𝑠"! − 𝜏

O = 0; or equivalently, 

 
𝜏! − P𝑠#! + 𝑠"!Q𝜏 + 𝑠#!𝑠"!(1 − 𝑟!) = 0 

or, 

𝜏 =
1
2nP𝑠#

! + 𝑠"!Q ± RP𝑠#! − 𝑠"!Q
! + P2𝑟𝑠#𝑠"Q

!o	. 

 

The larger eigen-value is 𝛼 = -
!
nP𝑠#! + 𝑠"!Q + RP𝑠#! − 𝑠"!Q

! + P2𝑟𝑠#𝑠"Q
!o, and the 

eigen-vector associated with 𝛼 satisfies (𝑠#! − 𝛼)𝑒-- + 𝑟𝑠#𝑠"𝑒-! = 0, whence 
 

𝑒-!
𝑒--

=
𝛼 − 𝑠#!

𝑟𝑠#𝑠"
=
RP𝑠#! − 𝑠"!Q

!
+ P2𝑟𝑠#𝑠"Q

!
− P𝑠#! − 𝑠"!Q

2𝑟𝑠#𝑠"
 

 
which has the same sign as that of 𝑟. 
 

Likewise, the smaller eigen-value is 𝛽 = -
!
nP𝑠#! + 𝑠"!Q − RP𝑠#! − 𝑠"!Q

! + P2𝑟𝑠#𝑠"Q
!o, 

and the eigen-vector associated with 𝛽 satisfies (𝑠#! − 𝛽)𝑒!- + 𝑟𝑠#𝑠"𝑒!! = 0, whence  
 

𝑒!!
𝑒!-

=
𝛽 − 𝑠#!

𝑟𝑠#𝑠"
= −

RP𝑠#! − 𝑠"!Q
!
+ P2𝑟𝑠#𝑠"Q

!
+ P𝑠#! − 𝑠"!Q

2𝑟𝑠#𝑠"
 

 
which has the opposite sign as that of 𝑟. 

 
Moreover, instead of documenting the two eigen-vectors, it may suffice to record only 

the slope 𝑚 = 𝑒-!/𝑒-- of the major axis (since the minor axis is orthogonal to the major axis, 
the slope of the minor axis is −1/𝑚 = 𝑒!!/𝑒!-). Let us compare 𝑚 with the ratio 𝑠"/𝑠# of the 
two SDs in all possible cases:  

 
1. When 𝑟 = 0, the major- and minor axes of the covariance ellipse may be chosen to 

coincide with the two coordinate axes. In this case, 𝑚 = 0 if 𝑠# > 𝑠" and 𝑚 = ∞ if 
𝑠# < 𝑠". 

2. When 𝑠# = 𝑠" and 𝑟 ≠ 0, we have 𝑚 = 𝑠𝑖𝑔𝑛(𝑟); that is, the major axis falls on the 
SD line if 𝑟 > 0, and the minor axis falls on the SD line if 𝑟 < 0.  

3. When 𝑠# < 𝑠" and 𝑟 > 0, we have 𝑚 > 𝑠"/𝑠#; but when 𝑠# < 𝑠" and 𝑟 < 0, we have 
𝑚 < −𝑠"/𝑠#;	that is, the major axis is steeper than the SD line.  

4. When 𝑠# > 𝑠" and 𝑟 > 0, we have 𝑚 < 𝑠"/𝑠#; but when 𝑠# > 𝑠" and 𝑟 < 0, we have 
𝑚 > −𝑠"/𝑠#;	that is, the major axis is less steep than the SD line. 
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How should one choose the multiplier 𝑐 to construct the 𝑐-SD rectangle? If one desires a 
fraction 𝑝 of points to fall outside the covariance ellipse, one can choose 𝑐 as the (1 − 𝑝)th 
percentile of a chi-square distribution with two degrees of freedom, obtained from R using 
code: sqrt(qchisq(1–p,2). For example, 60.65% of points fall outside the 1–SD covariance 
ellipse; 5% of points will fall outside the 2.448–SD covariance ellipse; 1.11% outside the 3–
SD covariance ellipse; 1% outside the 3.035–SD covariance ellipse. In Figure 3, we have used 
𝑐 = 2.448 and 𝑐 = 2.7972 to flag the farthest (in 2-d sense) 5% and 2% of the scatter points. 
We recommend using 𝑐 = 2.8, since this value is easy to remember and since with this choice, 
for a bivariate normal distribution, roughly 2% of the points fall outside the covariance ellipse.  

 
Whereas the 𝑥-outliers and the 𝑦-outliers are already detected using the single variable 

𝑐-SD line segments, the 𝑐-SD covariance ellipse is a handy tool to detect the regression outliers 
or bivariate outliers. 

 
We mention a few properties of the 𝑐-SD Gaussian covariance ellipse: As  mentioned 

before, the 𝑐-SD Gaussian covariance ellipse is internally tangent to the 𝑐-SD rectangle at four 
points: bottommost point 𝐵 = (𝑥̅ − 𝑟𝑐𝑠# , 𝑦) − 𝑐𝑠"), topmost point 𝑇 = (𝑥̅ + 𝑟𝑐𝑠# , 𝑦) + 𝑐𝑠"), 
leftmost point 𝐿 = (𝑥̅ − 𝑐𝑠# , 𝑦) − 𝑟𝑐𝑠") and rightmost point 𝑅 = (𝑥̅ + 𝑐𝑠# , 𝑦) + 𝑟𝑐𝑠"). 
Moreover, 𝐿𝑅 is the 𝑦& line, 𝐵𝑇 is the 𝑥& line. These two regression lines 𝐿𝑅 and 𝐵𝑇 intersect at 
the center of the ellipse, which is also the point of intersection of the two diagonals of the 𝑐-
SD rectangle and is also the mean vector (𝑥̅, 𝑦)). As it was for the correlation ellipse, any vertical 
line segment terminated by the covariance ellipse is bisected by the 𝑦&-line 𝐿𝑅; and any 
horizontal line segment terminated by the covariance ellipse is bisected by the 𝑥&-line 𝐵𝑇. 
Admittedly, the directions and lengths of the major- and the minor-axis of the 𝑐-SD Gaussian 
covariance ellipse, given in (9) and the discussion afterwards, are relatively more difficult to 
fathom. Nonetheless, astute students of statistics will do wisely to learn them. 

 
5.      Sufficiency 

 
So far, we established that the 𝑐-SD rectangle and the 𝑐-SD covariance ellipse summarize 

all bivariate statistics mentioned in Section 2. Now we go a step further to claim that it suffices 
to draw only one 𝑐-SD Gaussian covariance ellipse (for any value of 𝑐) since all summary 
statistics can be recovered from it. How so? 

 
Here is how: Refer to Figure 3(b) again. Given the 𝑐-SD covariance ellipse, the 𝑐-SD 

rectangle can be reconstructed by sandwiching the ellipse between lines parallel to the two 
coordinate axes. Hence, we can locate the four points of tangency 𝐵, 𝑇, 𝐿, 𝑅 between the 𝑐-SD 
covariance ellipse and the 𝑐-SD rectangle. Then, using the points of tangency, we obtain the 
regression lines 𝐿𝑅 (for 𝑦&) and 𝐵𝑇 (for 𝑥&). The center of the ellipse is found either as the point 
of intersection between 𝐿𝑅 and 𝐵𝑇, or the point of intersection of the two diagonals of the 𝑐-
SD rectangle. The correlation coefficient 𝑟 is the ratio of the horizontal distance between 𝐵 and 
𝑇 to the horizontal distance between 𝐿 and 𝑅 of the 𝑐-SD rectangle (with sign positive if 𝑇 is 
to the right of 𝐵, and negative otherwise); or equivalently, it is the ratio of the vertical distance 
between 𝐿 and 𝑅 to the vertical height 𝐵𝑇 of the 𝑐-SD rectangle (with sign positive if 𝐿 is 
below 𝑅, and negative otherwise). The major and the minor axes are found (at least visually) 
as the largest and the smallest diameters (line segments passing through the center and 
terminated by the ellipse). If the two axes have half-lengths 𝑎 and 𝑏 respectively, we can also 

calculate 𝑟 = (!)*!

(!&*!
, since one can verify that (

*
= R-&,

-),
	. Finally, if the vertical line from 𝑇 to 
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the horizontal line 𝑦 = 𝑦) intersects 𝐿𝑅 (the 𝑦& line) at 𝐽 and ends at 𝐾, then the coefficient of 
determination is 𝑟! = 𝐽𝐾/𝑇𝐾. 

 
6.      Further Reduction 

 
To help the user decipher all bivariate summary statistics, we recommend superposing 

the entire 𝑐-SD covariance ellipse on the scatter plot. However, for mathematical completeness, 
we must mention that it suffices to superpose the four points of tangency 𝐵, 𝑇, 𝐿, 𝑅 between the 
covariance ellipse and the 𝑐-SD rectangle. In fact, any three of these points will also suffice. 
For instance, given 𝐵, 𝑇, 𝐿, you can discover 𝑅 as follows: Join 𝐵𝑇; find its midpoint 𝑀; join 
𝐿𝑀 and produce it to 𝑅 such that 𝐿𝑀 = 𝑀𝑅. Using these four points, we can obtain the 𝑐-SD 
rectangle, as explained below and shown in Figure 4.  

 
Draw horizontal lines through 𝐵 and 𝑇 and vertical lines through 𝐿 and 𝑅. Their points 

of intersection form the 𝑐-SD rectangle 𝐸𝐹𝐺𝐻, whose vertices are labeled clockwise starting 
from the north-west corner. Then we have 

 
                   𝑠# =

-
!7
𝐸𝐹, 𝑠" =

-
!7
𝐹𝐺,         and  𝑟 = 2 89

8:
− 1 = 1 − 2 9:

8:
.            (10) 

 

 
Figure 4: Any three points, out of the four points of tangency 𝑻,𝑩, 𝑳, 𝑹, suffice to 
reconstruct the 𝒄-SD rectangle and the two regression lines 
 
As already mentioned before, 𝐿𝑅 is the 𝑦& line, 𝐵𝑇 is the 𝑥& line. Furthermore, if we draw 

vertical lines through 𝐵 and 𝑇, and horizontal lines through 𝐿 and 𝑅, then their intersections 
form the inner rectangle 𝐸′𝐹′𝐺′𝐻′ whose area as a proportion of the area of the outer rectangle 
𝐸𝐹𝐺𝐻 represents the coefficient of determination 𝑟!. See Figure 5. In particular, as 𝑟 
approaches 0, the inner rectangle 𝐸′𝐹′𝐺′𝐻′ reduces in size until it coincides with the center; 
and as 𝑟 approaches 1, the inner rectangle 𝐸′𝐹′𝐺′𝐻′ increases in size until it coincides with the 
outer rectangle EFGH. 
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Figure 5: Any three of the four points of tangency 𝑩, 𝑻, 𝑳, 𝑹, suffice to calculate the 
coefficient of determination and the correlation coefficient. 
 
Thereafter, we impose a coordinate system such that the point of intersection between 

𝐵𝑇 and 𝐿𝑅 represents (𝑥̅, 𝑦)). Then using the SDs and the correlation given in (10) and scaling 
both variables in (6) by the same factor 𝑐, the 𝑐-SD covariance ellipse is given by  

 

(𝑥 − 𝑥̅, 𝑦 − 𝑦))	M
𝑠#! 𝑟𝑠#𝑠"

𝑟𝑠#𝑠" 𝑠"!
O
)-

G𝑥 − 𝑥̅𝑦 − 𝑦)H = 𝑐!.            (11) 

 
We can draw (at least a free-hand sketch of) the 𝑐-SD covariance ellipse internally tangential 
to the 𝑐-SD rectangle at the four points 𝐵, 𝑇, 𝐿, 𝑅 and passing through 𝐵′, 𝑇′, 𝐿′, 𝑅′ obtained by 
moving vertically points 𝐵, 𝑇 towards the regression line 𝑦& (or 𝐿𝑅) and continuing equally far 
on the opposite side of 𝐿𝑅, and similarly moving points 𝐿, 𝑅 horizontally towards the regression 
line 𝑥& (or 𝐵𝑇) and continuing equally far on the opposite side of 𝐵𝑇. Additional points on the 
ellipse are found by repeating the process. 

 
7.     Conclusion 

 
While a box plot and a mean-SD arrow (or alternatively, a 𝑐-SD line) offer graphical 

summaries of one continuous variable, our proposed 𝑐-SD covariance ellipse does the same for 
two continuous variables. Using the 𝑐-SD covariance ellipse, we can recover the means, the 
SDs, the correlation coefficient 𝑟, the regression line 𝑦& (as a linear function of 𝑥), the regression 
line 𝑥& (as a linear function of 𝑦), and the coefficient of determination 𝑟!. Thereafter, the 
equation of the ellipse can be recovered from (11). Moreover, scatter points outside the 𝑐-SD 
covariance ellipse (with a desired choice of 𝑐) are flagged as potential outliers. We hope that 
the 𝑐-SD covariance ellipse (or simply any three points of tangency between the 𝑐-SD 
covariance ellipse and the 𝑐-SD rectangle) will help users develop better intuitions about the 
important concepts of correlation, regression and bivariate outliers.  

 
It is worth mentioning that the 𝑐-SD covariance ellipse, given in (11), is the shortest area 

region (of any shape) that captures inside it a specific fraction of the bivariate normal 
distribution approximately equal to the cumulative distribution function of a chi-square 
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variable with two degrees of freedom {given by R codes: pchisq(c^2, 2) = pexp(c^2/2)}. 
Equivalently, the contour plots of a bivariate normal distribution form a family of ellipses for 
various values of 𝑐. What we have demonstrated in this paper is that given any one of these 
contour ellipses (even when not knowing the value of 𝑐) we can discover the mean vector, the 
SD line, the SD-ratio 𝑠"/𝑠#, the correlation coefficient 𝑟, the two regression lines 𝑦,� 𝑥&, and the 
coefficient of determination 𝑟!. 

 
Here is the answer to the quiz we posed in the Section 2 regarding the largest (or the 

smallest) SD of a suitable projection of a scatter plot: The largest SD is attained when the 
scatter plot is projected on to the major axis of the 𝑐-SD covariance ellipse, for any 𝑐. Similarly, 
the smallest SD is attained when the scatter plot is projected on to the minor axis of the 𝑐-SD 
covariance ellipse. 

 
We invite the interested reader to depict simultaneously the summary statistics involving 

three or more quantitative variables—specifically focusing on multiple correlation coefficient 
partial correlation coefficients, and principal components. 
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Abstract 
 

Pepper is the most used spice and flavoring agent in the food industry. Sri Lanka is the 

fifth largest exporter of pepper in the world. Variations in export income of pepper is a huge 

matter for farmers, consumers, investors and policy makers in the country. Hence an accurate 

forecast of export income is extremely important. This study presents a time series modelling 

approach for forecasting the income of pepper exports in Sri Lanka. Two different models are 

adopted: deterministic decomposition model which is built decomposing the trend, 

seasonality and the random variations and Seasonal Auto Regressive Integrated Moving 

Average (SARIMA) which belongs to the stochastic class of models. The data used in this 

study are monthly export income of pepper in Sri Lanka from January 2000 to December 

2018. Among the two types of models, deterministic decomposition model with Mean 

Absolute Error (MAE) of 4.36 has a strong potential in forecasting the income of pepper 

exports in Sri Lanka. As the forecasts from the model shows an increasing pepper export 

market which will need a higher production of pepper, the government can improve the 

awareness of farmers about the requirements of pepper in export market by providing infra-

structure facilities.  

 

Key words: Deterministic decomposition; Forecasting; MAE; Seasonality; Trend. 
 
 

1. Introduction 
 

International trade and finance are important economic concepts in a country where 

international trade in goods and services allows nation to raise their standards of living by 

exporting and importing goods. Exporting and importing helps in growing national 

economies and expanding the global market. The more a country exports, the more domestic 

economic activity is occuring. So, export sector plays a vital role in every country’s economy 

influencing the level of economic growth, employment opportunities, balance of payments 

and international relations.  

 

According to the Economic Complexity Index (ECI), Sri Lanka is the 79th largest 

export economy in the world and the 101st most complex economy. In 2017, Sri Lanka 

exported $12B and imported $21.1B, resulting in a negative trade balance of $9.1B in net 

imports (“Sri Lanka (LKA) Exports, Imports, and Trade Partners | OEC - The Observatory of 

Economic Complexity” , 2020.). Sri Lanka is an island and borders India and Maldives by 

sea that creates a large possibility in export market. The top export destinations of Sri Lanka 
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are the United States, United Kingdom, Germany, India and Italy. Sri Lanka exports 204 

products with revealed comparative advantage which includes Ceylon tea, apparel, spice and 

allied products, aquarium fish, seafood, rubber and rubber-based products, wooden products. 

Sri Lanka was historically known as the Spice Island and further attracted by the Western 

nations for its spices. Sri Lankan Spices and Allied products Suppliers export the most 

sought-after cinnamon, pepper, cloves, cardamoms, nutmeg, mace and vanilla. 56% of Sri 

Lankan Agricultural exports consists of spices, allied products and essential oils. These 

varieties are used to season, flavour and aromatise various forms of cuisines across the world. 

 

Pepper is the most significant and widely used spice in the world. There are but a few 

countries in Asia including Sri Lanka and the Pacific, Brazil and Madagascar that produce 

pepper. Currently, Sri Lanka ranks at fifth place in terms of area under pepper cultivation and 

seventh place in terms of production with a world share of 5.7% in production. Pepper is 

mainly used as a spice and flavoring agent in the food industry. It also has industrial uses in 

perfumery and pharmaceutical industries. Sri Lanka exports pepper as: black pepper, white 

pepper, black pepper oil, pepper ground pepper crushed, light berries, organic pepper 

(Institute of Policy Studies in Sri Lanka and Department of National Planning, 2017). 

However, majority of the exports are black pepper – neither crushed/ grounded (53% of total 

export earnings of pepper products in 2012), followed by light berries. 

 

In Sri Lanka, pepper is mainly cultivated in Low and mid country wet and Intermediate 

agro-climatic zones.    The total extent of pepper in Sri Lanka is about 29,378 ha and Matale, 

Kandy, Kegalle, Badulla, Ratnapura, Monaragala, and Kurunegala are the major districts. 

Unlike other pepper growing countries, Sri Lanka pepper flowers twice a year during the 

Maha and Yala rains. Currently about 60% of pepper production of the country is exported, 

while the remainder is consumed domestically according to government sources (Institute of 

Policy Studies in Sri Lanka and Department of National Planning, 2017). Sri Lanka is the 

fifth largest exporter of pepper in the world. India buys 62% of pepper exports from Sri 

Lanka followed by European, American and other Asian and African countries (Institute of 

Policy Studies in Sri Lanka and Department of National Planning, 2017). Given that majority 

of black pepper from Sri Lanka is exported to the low end of the market (India), Sri Lanka 

should explore high end markets elsewhere. Its widely known that the demand for Sri Lankan 

pepper is increasing rapidly due to its richer in piperine content, which lends it a superior 

quality and greater pungency ( Ministry of Development Strategies and International Trade 

and Sri Lanka Export Development Board, 2018). Thus, Sri Lanka has the potential to 

become a key player in the global pepper market by raising the country’s pepper production 

penetrating through high value export markets. 

 

The unforeseen variations in export value (export income) can complicate budgetary 

planning in a country. Hence an accurate forecasting method of export income is extremely 

important for efficient monitoring and planning of export commodities. Many attempts have 

been made in the past to develop forecasting models for export quantity and price of various 

commodities around the world. Most of the past research have focused on forecasting the 

export quantity or export volume of a commodity. Autoregressive Integrated Moving 

Average (ARIMA) and Bayesian Artificial Neural Network (BANN) were used in 

forecasting the imports and exports of the Philippines and the two models were compared 

using comparison methods (Urrutia et al., 2019). Seasonal autoregressive integrated moving 

average (SARIMA) methodology has been applied for modelling and forecasting of monthly 

export of meat and meat products from India (Paul et al., 2013). ARIMA model by using 

Box-Jenkins methodology was used to forecast the export/import of wood based panel in 
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India (Plywood, 2015). A forecasting model was built for Exports of Dates in Pakistan for the 

next 15 years using ARIMA technique (Naz, 2012). An analysis has been done in India about 

the production and export performance of black pepper (Mokshapathy, 2017).  

 

There are some research papers related to pepper in Sri Lanka in current literature. 

Analysis and a comparison were done among the small and large scale pepper farmers 

considering production levels and costs, income and profitability of pepper cultivation. The 

study has concluded that there is a significant difference between small and large scale 

pepper farmers in the extent cultivated, incomes received, cost of production and profits 

earned (Sivarajah, 2018). No studies have been conducted on modelling and forecasting the 

export income of pepper in any country so far. In this context, it is necessary to know to what 

extent the export income is being fluctuated and to draw meaningful policy conclusion. 

Hence, this study focuses on the objective of modelling and forecasting the pepper income in 

Sri Lanka by using time-series models. 
 

2. Materials and Methodology 

 

Two main approaches to the research problem with their methodologies are discussed 

in here: deterministic decomposition method and is built decomposing the trend, seasonality 

and the random variations and second method is based on SARIMA, and it belongs to the 

stochastic class of models. 

 

2.1. Data collection 

 

 In the context of export sector, export volume and export value are important terms. 

Export volume refers to the quantity of goods exported. It is usually in kilograms, Metric 

tons. Generally, Tons is used for calculating export volume in worldwide. Export value is the 

value of export goods in currency and it may be measured in any currency such as USD, 

EURO, and RUPEES. Export value represents the total worth of a commodity hence this is 

the total export income of that commodity to the country. This study is based on the export 

income of pepper in Sri Lanka. Based on the varieties of pepper, they are compiled according 

to the trade classification harmonized system with coding as HS 090411, HS 090420, HS 

090412 which represents dried pepper (crushed or ground), fruits of genus capsicum or 

pimento (dried, crushed or ground) and pepper (crushed or ground) respectively. Monthly 

data on total pepper export value (US Dollar Millions) in Sri Lanka were collected from Sri 

Lanka Exports Development Board for the period of January 2000 to December 2018 (228 

observations). The data set was divided into two parts as 80% and 20% for the model 

building and model validation respectively. Historical data in the period from January 2000 to 

March 2015 was used in the model identification and the data from April 2015 to December 

2018 was used for the model validation. R statistical package was used in analysis and 

modelling of pepper export income. 

 

2.2. Preliminary analysis 

 

 One of the most common data pre-processing technique is data cleaning. It includes fill 

in missing values, smooth noisy data, identify or remove outliers and resolve inconsistencies. 

In this study, the data set is first explored to identify the outliers and the missing values. 

There were no any missing values or outliers detected in the data set. Therefore, the original 

series was taken for model fitting. A stationary time series is defined as a time series whose 

mean and variance are constant over time. In order to identify the stationary of a time series, 
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statistical tests are used. The three tests Kwiatkowski-Phillips-Schmidt-Shin (KPSS), 

Augmented Dickey Fuller (ADF) and Phillips Perron (PP) were used in this study to check 

the stationary of the time series. 

 

2.3.  Time series forecasting methods 

 

 Time series is a set of time-ordered observations of a process where the intervals 

between observations remain constant such as hours, weeks, quarters, months, years. Time 

series analysis can be applied to any variable that changes over time. The main objective of 

time series analysis is to develop models that best capture an observed time series in order to 

understand the underlying causes. Time series models used for forecasting include 

decomposition models, exponential smoothing models, ARIMA models and SARIMA 

models. 

 

2.4.  Components of a time series 

 

 The components of a time series are trend, seasonal variation, cyclic changes, and 

irregular factors. Trend is the long-term change in the mean level and often thought of as the 

underlying growth or decline component in the series. Cyclic changes within a time series are 

similar to the seasonal component in that it is revealed by a wavelike pattern. Once the trend 

and cyclic variations have been accounted for, the remaining movement is attributed to 

irregular fluctuations. 

 

2.5.  Seasonality in a time series 

 

 Seasonal variation, or seasonality, are changes that repeat themselves within a fixed 

period such as weekly, monthly, quarterly. Seasonality may be caused by various factors, 

such as weather, vacation, and holidays and consists of periodic, repetitive, and generally 

regular and predictable patterns in the levels of a time series. Seasonality of a time series can 

be detected in many ways including graphical methods and statistical tests. The run sequence 

plot is considered as a first step in analyzing any time series plot. Seasonal subseries plot, box 

plot, Auto Correlation Function (ACF) plot do an excellent job in showing seasonal 

variations. In this study, ACF plot is used to identify seasonality among graphical methods. If 

there is a significant seasonality, ACF plot shows spikes at lags equal to the seasonal period.  

Student t-test and Wilcoxon Signed-Ranks test are some popular statistical tests for detecting 

seasonality in a time series (Nwogu et al., 2016). 

 

 In R software, Webel-Ollech overall seasonality test combines results from different 

seasonality tests. It combines the results of the QS-test and the Kruskal-Wallis (KW) test. If 

the p-value of the QS-test is below 0.01 or the p-value of the KW test is below 0.002, the 

WO-test will classify the corresponding time series as seasonal. This test is used in this study 

to identify seasonality in theoretically (Ollech, 2019). 

 

2.6.  SARIMA model 

 

 SARIMA models are used in cases where the time series exhibits a seasonal variation. 

It is formed by including additional seasonal terms in the ARIMA model. A seasonal 

autoregressive notation (P) and a seasonal moving average notation (Q) will form the 

multiplicative process of SARIMA as ARIMA (p, d, q)(P, D, Q)s where subscripted letter ‘s’ 

shows the length of seasonal period. The multiplicative SARIMA model has the form in (1). 
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       Φ𝑃(𝐵𝑠)φ𝑝(𝐵)∇𝑠
𝐷∇𝑧𝑡

𝑑 =  ϴ𝑞(𝐵)Θ𝑄(𝐵𝑠)ε𝑡                   (1) 

 where Φ𝑃(𝐵𝑠) is the seasonal AR operator of order P, φ𝑝 is the regular AR operator of 

order p, ∇𝑠
𝐷 represents the seasonal differences, ∇𝑑 represents the regular differences, Θ𝑄(𝐵𝑠) 

the seasonal moving average of order Q, ϴ𝑞(𝐵) is the regular MA order of order q and ε𝑡 is a 

white noise process. 

 

 The Box-Jenkins (BJ) methodology of estimating a time series model consists of four 

iterative steps: Model identification, Estimation of model parameters, Diagnostic checking 

and forecasting. First tentative model parameters are identified through ACF (Auto 

Correlation  Function) and PACF (Partial Auto Correlation Function), then coefficients of the 

most likely model are determined, next steps involves is to forecast, validate and check the 

model performance by observing the residuals through Ljung Box test and ACF plot of 

residuals. 

 

2.7.  Decomposition method 

  

Time series can be decomposed into various sub-components and their effects can be 

checked in the data in series. Mainly, time series data composed of seasonal pattern and trend 

pattern. There are two different decomposition models possible. 

 

Additive Decomposition: Here, the total data are taken as the sum of the decomposed 

components. 

 

𝑋𝑡 = 𝑠𝑒𝑎𝑠𝑜𝑛𝑎𝑙(𝑆𝑡) + 𝑡𝑟𝑒𝑛𝑑(𝑇𝑡) + 𝑟𝑎𝑛𝑑𝑜𝑚 
 

Multiplicative Decomposition: Here, the given time series data are treated as the 

product of the decomposed components. 

 

𝑋𝑡 = 𝑠𝑒𝑎𝑠𝑜𝑛𝑎𝑙(𝑆𝑡) × 𝑡𝑟𝑒𝑛𝑑(𝑇𝑡) × 𝑟𝑎𝑛𝑑𝑜𝑚 
 

An additive model is appropriate if the magnitude of the seasonal fluctuations does not 

vary with the level of time series. The multiplicative model is appropriate if the seasonal 

fluctuations increase or decrease proportionally with increases and decreases in the level of 

the series. Multiplicative decomposition is more prevalent with economic series because most 

seasonal economic series do have seasonal variations which increase with the level of the 

series. Often the transformed series can be modeled additively when the original data is not 

additive. In particular, logarithm turn a multiplicative relationship into an additive 

relationship. So, a multiplicative relationship can be fitted by fitting a more convenient 

additive relationship to the logarithms of the data and then to move back to the original series 

by exponentiating. 

 

The steps involved in developing the multiplicative decomposition model in this study 

are listed below. 

 

 Estimating the trend and the seasonal factors 

 

Here, both trend and the seasonal effects were estimated specifying a regression 

equation. To decide upon the mathematical form of a trend, one must first draw the 
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plot of the time series. The number of seasonal factors is equal to the frequency of the 

series (e.g. monthly data = 12 seasonal factors, quarterly data = 4, etc.) 
 

 Calculating the irregular component; for an additive model εt = Yt − Tt − St 

 Analyzing the residual component.  
 

 Whichever method was used to decompose the series, the aim is to produce stationary 

residuals. 
 

 Choosing a model to fit the stationary residuals. 
 

 Forecasting can be achieved by forecasting the residuals and combining with the 

forecasts of the trend and seasonal components. 

 

2.8.  Forecasting accuracy  

  

The forecast errors are the difference between the actual values in the test set and the 

forecasts produced using only the data in the training set. The two most commonly used 

scale-dependent measures are based on the absolute errors or squared errors: The smaller the 

difference, the better the model is. Several criteria such as Root Mean Square Error (RMSE), 

Mean Absolute Error (MAE), Mean Absolute Percentage Error (MAPE) and Weighted 

MAPE can be used to compare different forecasting models. In this study, two different error 

metrics are considered for the evaluation of the forecasting models: MAE and MAPE. MAPE 

usually expresses the prediction accuracy of a forecasting model as a percentage and it is 

defined in (2) and MAE is given in (3). 

 

             MAPE =
100%

𝑛
∑

|𝑦𝑖−𝑦𝑖̂|

𝑦𝑖

𝑛
𝑖=1                                                                                             (2) 

 

            MAE =  
1

𝑛
∑

|𝑦𝑖−𝑦𝑖̂|

𝑦𝑖

𝑛
𝑖=1                                                                   (3)  

 

where 𝑦𝑖̂ = estimated value of 𝑦𝑖, 𝑦𝑖 = actual value, n = number of observations. 

 

3. Results and Discussion 

 

 Results under the two approaches; deterministic decomposition and Seasonal ARIMA 

model are clearly explained in here.  

 

3.1.  Year wise evaluation of pepper export value 

 

 According to Figure 1, a clear seasonal pattern in export income in Sri Lanka can be 

observed in each year. The export value of pepper decreases in April in each year while it 

increases to a maximum value in June – July period. Another significant feature is that export 

value has gradually increased in each year. This proves that there is a significant pattern of 

export income of pepper in Sri Lanka in each year. 
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Figure 1: Pepper export income evaluation in Sri Lanka – Year-wise 

 

3.2. SARIMA model 

 

As the series does not contain missing values, the original series was used in model 

fitting. On plotting the export income data of pepper as shown in Figure 2, a slight trend with 

a seasonality can be observed.   It is confirmed with the slow declines and oscillations given 

in the ACF plot of the series in Figure 3. Further seasonality WO test in R software which is a 

combined tests of QS-test, the QS-R test and the KW-R-test was also performed and all p 

values of the tests were less than 0.05 indicating the series exhibits seasonality. 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 2: Time series plot of export income              

Figure 3. ACF plot of the series                           

of pepper in Sri Lanka 
 

 

 

 

 

 

 

 

 

 

 

Figure 4: ACF of the first differenced series            Figure 5: ACF of the first   

                             and Seasonal differenced series 
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Figure 6: PACF of the first differenced and               Figure 7: Model adequacy of     

seasonal differenced series                                           ARIMA (4,1,4) (1,1,1) [12] model 

 

Since KPSS (p value=0.1) test suggest that the series is not stationary at 5% level of 

significance, first difference of the series was taken. The ACF plot of the first differenced 

series is shown in Figure 4 which shows significant spikes at lags 12, 24 which identifies the 

seasonality period as 12. 

 

A seasonal difference at lag 12 was taken then for better identification of the model 

parameters. Through the investigation of the ACF and PACF of the first and seasonal 

differenced series shown in Figure 5 and Figure 6, the seasonal and non-seasonal lags were  

identified as; Seasonal AR lags: 12, 24, 36, Seasonal MA lags: 12, Non – seasonal AR lags: 

4, 5 and Non – seasonal MA lags: 4, 5. Then, several SARIMA models were tested and 

ARIMA (4, 1, 4) (1, 1, 1) [12] was identified as the best model with lowest AIC value 

(637.01) for modelling the income of pepper exports in Sri Lanka. 

 

         The ARIMA (4, 1, 4) (1, 1, 1) [12] model is represented as in (4).  

 

           ɸ(𝐵12)𝜑(𝐵)(𝑥𝑡 −  µ) =  𝛳(𝐵12)𝛳(𝐵)𝑤𝑡                                                                    (4) 

 

        where, 

Non- seasonal component: 

𝐴𝑅: 𝜑(𝐵) = 1 − 0.3229𝐵 − 0.0529𝐵2 + 0.2058𝐵2 − 0.1188𝐵3 

𝑀𝐴: 𝛳(𝐵) = 1 + 0.2922𝐵 + 0.1463𝐵2 + 0.1228𝐵2 + 0.5227𝐵3 

 

Seasonal component: 

𝑆𝑒𝑎𝑠𝑜𝑛𝑙 𝐴𝑅: ɸ(𝐵12) = 1 + 0.3291𝐵12 

𝑆𝑒𝑎𝑠𝑜𝑛𝑙 𝑀𝐴: 𝛳(𝐵12) = 1 + 0.7016𝐵12 

 

Residuals of the fitted model was evaluated as in Figure 7. Ljung Box test returns a 

large p value (0.1612) indicating that the residuals are random and independent variance at 

5% level of significance. Further ARCH test gives large p value (0.9336) indicating the 

residuals have a constant variance at 5% level of significance. 
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   Figure 8: Actual and Fitted values                                   Figure 9: Model validation  

  

In Figure 8, red lines shows the actual data and the blue line shows the fitted data points 

from (4) where it suggests that the identified model is suitable in forecasting the pepper 

export income beyond the year 2015 hence the gap between two lines is minimum. 20% of 

the data was used in model validation and it is shown in Figure 9. 

 

It gives a considerable low MAE (4.76) and MAPE (43.81) which outlines ARIMA (4, 

1, 4) (1, 1, 1) [12] is quite good in forecasting the income of pepper exports in Sri Lanka. 

 

3.3.  Deterministic decomposition method 

 

As the series of pepper export income have seasonal variations which increase or 

decrease with the level of the series, multiplicative decomposition is used as shown in Figure 

10. It shows the observed series, trend line, seasonal pattern and random part of the series. 

Hence the decomposition model looks as shown in (5). As the logarithms turn a 

multiplicative relationship into an additive relationship, taking the logarithms of both sides 

gives the additive model as shown in (6). Hence the logarithm of the series was taken as 

shown in Figure 11. 

 

        𝑌𝑡 = 𝑇𝑡. 𝑆𝑡. ε𝑡                                                                                                                     (5) 

 

       𝑙𝑜𝑔 (𝑌𝑡) = 𝑙𝑜𝑔 (𝑇𝑡) + 𝑙𝑜𝑔(𝑆𝑡) + 𝑙𝑜𝑔 (𝜀𝑡)                                                                       (6) 

                                          

Both trend and the seasonal effects were estimated specifying a regression equation. 

The number of seasonal factors is equal to the frequency of the series: there are 12 seasonal 

factors as monthly data is used in here.  

 

 

 

 

 

 

 

 

 

 

Figure 10: Decomposition of the time series               Figure 11: Log transformed series  

plot of pepper export income of Sri Lanka           
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The regression equation results are shown in Figure 12, where t = 1,2,3…, is for trend, 

dm1 is the dummy variable for the 1st month, dm2 for the second month etc. In order to avoid 

the dummy variable trap, one dummy variable is excluded from the regression model. 

 

 
Figure 12: Estimated trend and seasonal effects from regression equation 

 

The error component can be obtained by subtracting trend and seasonal components 

as εt = Yt − Tt − St  and the plot of that error component is shown in Figure 13. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 13: Time series plot of error component 

 

As the series seems to be stationary, for further evidence stationary tests were carried 

out. Stationary tests confirm that the series of error component is stationary at 5% level of 

significance. As the residuals are stationary, next step is to fit a model for stationary 

residuals. ARMA (2, 1) model was selected as the best model with lowest AIC value (227.55) 

among many tentative models that were tested based on the ACF and PACF of the stationary 

residuals. The fitted ARMA (2, 1) model for the stationary residuals is given in (7). 

 

         𝑥𝑡 = 0.0179 + 0.0440𝑥𝑡−1 + 0.4757𝑥𝑡−2 + 𝜀𝑡 + 0.8487𝜀𝑡−1                                    (7) 

 

Model adequacy of the fitted model for residuals was evaluated as in Figure 14. 

According to Figure 14, ACF plot of the residuals of the ARMA (2, 1) model shows that all 

autocorrelations are within the threshold limits indicating the residuals are behaving random. 

Further Ljung Box test on squared residuals gives large p value (0.0909) indicating the 

residuals have a constant variance at 5% level of significance. 

 

Forecasting of the export income of pepper beyond year 2015 was achieved by 

forecasting the residuals and combining with the forecasts of the regression model that 

contains trend and seasonal components. Figure 15 represents the model validation of the 

time series decomposition model where black color series represents the actual data and the 

red color represents the forecasted data. Forecasting accuracy of the 20 % of the test data is 

measured with MAE and MAPE with values 4.3567 and 41.8718 respectively. 
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Figure 14: Model adequacy of ARMA (2,1)               Figure 15: Model validation of the 

model                                                                              time series decomposition model 

 

 

3.4.  Model comparison 
 

In order to identify the best model from SARIMA and the time series deterministic 

decomposition models, the forecasting accuracy of both models were compared with error 

metrics MAE and MAPE. The model comparison results are shown in Table 1.  

 

       Table 1: Model Comparison Results 

 

Model Type MAE MAPE 

SARIMA (4, 1, 4) (1, 1, 1) [12] 4.76 43.81 

Deterministic decomposition model 4.36 41.87 

 

According to Table 1, it is clear that deterministic decomposition model is the best 

model for forecasting the export income of pepper in Sri Lanka because it has minimum 

MAE and MAPE. 

 

4. Results and Discussion 

 

Forecasting the export income of pepper in Sri Lanka with time series modelling 

approach was carried out through this study. Monthly data on total pepper export value (US 

Dollar Millions) in Sri Lanka were used for the analysis. Two main approaches have been 

implemented to solve the research problem. First model is implemented as a stochastic class 

of models; SARIMA model. Second model is a Deterministic Decomposition model which 

assumes that the export income of pepper in Sri Lanka is a composition of three parts: a trend 

component, a seasonal component and an irregular component. The chosen decomposition 

model is multiplicative. After investigating time series approaches, the deterministic 

decomposition model was evidently selected as the best approach in forecasting the export 

income of pepper in Sri Lanka. ARIMA (4, 1, 4) (1, 1, 1) [12] which was selected as the best 

model under stochastic models approach also do a quite good job in forecasting export 

income of pepper in Sri Lanka but the best results can be achieved by the deterministic 

decomposition model which demonstrates a good performance in terms of both explained 

variability and forecasting. Most forecasted values are similar to actual values. Forecasts 

from the model shows a significant positive trend which can be considered as a growth of 
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pepper export market in Sri Lanka in the future. Therefore, this study helps Sri Lankan 

pepper exporters to consider about long term investment decisions by identifying trends in 

the export value. As well as this may be useful for the government policy makers to rethink 

about the policy agenda of the country. As the forecasts shows an increasing pepper export 

market which will need a higher production of pepper, the government can improve the 

awareness of farmers about the requirements of pepper in export market by providing infra-

structure facilities such as establishing central collecting, processing, storage centres to 

improve quality of pepper at the intermediary stages of the value chain, by providing land and 

loans for the cultivation purposes. Forecasts also depicts an important piece of information 

for potential investors in the pepper export market. The researchers who are interested in this 

field also can conduct time series regression approaches by incorporating the factors which 

are affecting to the pepper export income in Sri Lanka. This forecasting method can be 

generalized in analysing the export income of other commodities with necessary alterations. 
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Abstract
This paper attempts to analyze the general autoregressive integrated moving average

model under the classical and Bayesian paradigms. The paper aims to forecast the infant
mortality rate of India under the two setups. A real data set is first examined for the
presence of stationarity and is achieved by performing logarithmic scale transformation and
then differencing it twice. After achieving stationarity, the most appropriate model is selected
among the various competing models by using Akaike’s information criterion and Bayesian
information criterion. The selected model is analysed and the results in classical framework
are obtained on the basis of maximum likelihood estimators. A complete Bayesian analysis is
performed by using vague priors for the parameters and posterior inferences are drawn using
Markov chain Monte Carlo simulation technique. The retrospective as well as prospective
predictions are obtained, under the two paradigms, for infant mortality rate data and the
results are, in general, found to be satisfactory.

Key words: Autoregressive integrated moving average model; Infant mortality rate; Station-
arity; Akaike’s information criterion; Bayesian information criterion; Markov chain Monte
Carlo simulation.

AMS Subject Classifications: 37M10, 62F15, 65C05

1. Introduction

Forecasting demographic characteristics like fertility, morbidity, mortality, etc., is an
important facet for the socio-economic planners as it facilitates them to analyze and regulate
policies for the betterment of the human population. To forecast such characteristics require
an appropriate model building so that a reliable result can be obtained. In this paper,
we attempted to predict the infant mortality rate (IMR) of India in classical as well as
in Bayesian paradigms. Truly speaking, IMR represents the number of deaths of children
under one year of age per thousand live births. Being a vital demographic characteristic,
IMR affects the population structure of a country and the projection of human population as
well. Cruciality of the IMR data enforce us to model and forecast such a salient characteristic
with utmost care.
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In the past few decades, a deep review of literature shows a remarkable contribution
of the researchers to model and forecast mortality (see, for example, Keyfitz (1982), Pollard
(1987), McNown and Rogers (1989), Lee and Carter (1992), etc.). More specifically, McNown
and Rogers (1989) used a kind of parametrization of time series model to forecast mortality.
Later on, McNown and Rogers (1992) employed the use of time series methods to forecast
cause specific mortality. In their pioneering work Lee and Carter (1992) have proposed a
probabilistic approach to model the age-specific mortality and made a long term forecast
using time series methodology. Interestingly, Carter (1996) examined the stability of the
‘Lee-Carter method’ for structural change in a time series and made a comparison with the
‘Box-Jenkins methodology’ of autoregressive integrated moving average (ARIMA) process.
Tuljapurkar and Boe (1998) have critically examined the change of mortality pattern and
its forecasting. One should refer to Booth (2006) for a deep review of the methodologies to
model and forecast the demographic components.

The use of Bayesian methodology is no more exception in time series analysis, specif-
ically with demographic characteristics. Some of the recent works include Pedroza (2006),
Reichmuth and Sarferaz (2008), Alkema and Ann (2011), Tripathi et al. (2018) among
others. Pedroza (2006) applied a Bayesian approach in Lee-Carter model to forecast the
mortality rates. Reichmuth and Sarferaz (2008) have reanalyzed the Lee-Carter model in
Bayesian paradigm using the latent variable approach. Alkema and Ann (2011) used a hier-
archical time series model, in Bayesian paradigm, to estimate the under-five mortality rate.
Recently, Tripathi et al. (2018) used ARIMA model to predict the total fertility rate (TFR)
of India using classical and the Bayesian approaches.

In this paper, we have applied the methodology discussed by Tripathi et al. (2018) for
the time series based on IMR of India. In his classical work on IMR time series, Bishai (1995)
has explained the issues of non-stationarity and co-integration of IMR data with the other
socio-economic variables. In another study on IMR, Kurniasih et al. (2018) has discussed
about the different methods of forecasting and their relative comparison. To forecast IMR
time series data is always crucial for the view point of demographic planning and, hence, for
the strategic development of the nations like India. With the same very spirit, we attempted
to forecast IMR of India using ARIMA model.

Let {yt}; t = 1, 2, ..., T , be a sequence of time series observations and {εt} is a sequence
of independently and identically distributed (iid) error terms following normal distribution
each with mean zero and a constant variance, say, σ2, then the general form of the autore-
gressive moving average (ARMA) model of order (p,q) is given by:

yt = θ0 +
p∑
i=1

θiyt−i +
q∑
j=1

φjεt−j + εt, (1)

where θ0 represents the intercept term and θi’s, φj’s are the autoregressive (AR) and moving
average (MA) coefficients respectively.

One can further introduce a generalization of ARMA models by taking the difference
of a suitable order, say, d, of the original series yt. This new generalization is known as the
integrated form of ARMA model and is given by:
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wt = θ0 +
p∑
i=1

θiwt−i +
q∑
j=1

φjεt−j + εt, (2)

where wt represents the dth difference of yt. Particularly, in ARIMA model, the order of
differencing decides the level of stationarity of the time series. For more details one may
refer to Box et al. (2015).

Although, there are a number of methods available in time series literature for the
model assessment, we have adopted the techniques of autocorrelation function (ACF) and
partial autocorrelation function (PACF) plots in our case. This technique is proposed by
Box and Jenkins (1970) in their pioneering work on ARIMA model. Truly speaking, ACF
can be defined as the correlation between the two observations in a time series. It measures
the linear relationship between an observation at time t and the observation at some k (say)
distance apart. Slightly different from ACF, the PACF measures the degree of association
between the current and a previous observation, at a distance k (say), of a time series only
after removing the effects of other intermediate observations in between.

This paper proceeds as follows. The next section elaborates the data structure those
based on IMR of India and the model identification on the basis of ACF and PACF. The
two model selection criteria, that is, Akaike’s information criterion (AIC) and Bayesian
information criterion (BIC) are also being discussed for choosing an appropriate model. The
section finally ends with the numerical illustration of selected ARIMA model including both
retrospective as well as prospective predictions. Section 3 explains the necessary priors setup
and algorithm to draw the inferences under Bayesian paradigm. A detailed implementation
of Markov chain Monte Carlo (MCMC) procedure, using Gibbs sampler and Metropolis
algorithm, is also being discussed in a separate subsection. This section ends with the
retrospective and prospective predictions for IMR data. The last section provides with a
brief summary of the work done that concludes the whole paper.

2. Data Structure and Model Selection Criterion

We considered a real data set on IMR of India over the period of 48 years from 1971
to 2018. The data set, in the form of time series, has been collected from the SRS bulletin,
Registrar General of India (see, https://data.gov.in/resources/time-series-data-crude-
death-rate-cdr-and-infant-mortality-rate-imr-srs-1971-2016) and is framed in Table 1.
To see the movement of time series, we have plotted the original data set in Figure 1. It is
quite evident from the plot that the observed data on IMR shows a non-stationary pattern
as it shows a consistent decline over the years. One has to ensure that the time series must
achieve the stationarity to get a reliable result and for the further analyses.

To achieve the stationarity, we exercised the logarithmic scale transformation of the
original series and then differenced the transformed series twice. The resultant time series,
then, plotted for the different years as shown in Figure 2. The plot (Figure 2) confirms
the stationarity of the time series as the mean level is constant over the years. To further
strengthened our conclusion we shall provide some numerical evidences, for the differenced
data set, those based on Augmented Dickey-Fuller (ADF) test and Kwaitkwoski-Phillips-
Schmidt-Shin (KPSS) test. In case of ADF test the p-value is found to be 0.01 (less than 0.05)

https://data.gov.in/resources/time-series-data-crude-death-rate-cdr-and-infant-mortality-rate-imr-srs-1971-2016
https://data.gov.in/resources/time-series-data-crude-death-rate-cdr-and-infant-mortality-rate-imr-srs-1971-2016
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that rejects the null hypothesis. Truly speaking, the ADF test assumes the null hypothesis
that a unit root is present in the AR process. KPSS test, on the other hand, assumes the
null hypothesis that the process is stationary. The p-value, in KPSS test, is found to be
0.1 (greater than 0.05) that accepts the null hypothesis. On the basis of p-values, in the
two tests, one may conclude that the data is stationary in nature and the values of the test
statistics are not so significant which are calculated as –5.07 for ADF test and 0.06 for KPSS
test, at 5% level of significance. It is important to mention here that an AR(p) model is said
to be stationary if there is no unit root present in the process, that is, if all the roots of the
characteristic polynomial lie outside the unit circle (see, for example, Tripathi et al. (2017)).

Table 1: IMR of India from 1971 to 2018 (from left to right)

129 139 134 126 140 129 130 127 120
114 110 105 105 104 97 96 95 94
91 80 80 79 74 74 74 72 71
72 70 68 66 63 60 58 58 57
55 53 50 47 44 42 40 39 37
34 33 32

Source: SRS bulletin, Registrar General of India

Figure 1: Time series plot for IMR data of India from 1971 to 2018

Once stationarity is achieved, we shall look forward for an appropriate model to get a
reliable forecast. For this purpose, we start with the popular ‘Box-Jenkins methodology’ for
the identification of order of ARIMA model, that is, p, d and q (see, for example, Box et al.
(2015)). To estimate p and q we have plotted the values of ACF and PACF, respectively,
against the lag values (see Figure 3). Following Box et al. (2015), we can observe from the
Figure 3 that AR(2) and MA(1) are the most suitable choices for the components of ARIMA
model. Since we have applied the second difference of the data set, therefore, the order of
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differencing d is fixed as 2. Consequently, a conclusive ARIMA model can be easily assessed
as ARIMA(2,2,1). For more details of the procedure one may refer to Tripathi et al. (2018).

Figure 2: Time series plot for twice differenced transformed IMR data of India

Figure 3: ACF and PACF plots for twice differenced IMR data

In order to avoid any fallacious conclusion, just on the basis of a tentative model
assessed graphically, we shall consider some other nearby candidate models and a suitable
model will be selected on the basis of some numerical findings. For this purpose, we used the
two well known model selection criteria in statistics, namely; AIC and BIC (see, for example,
Akaike (1974) and Schwarz (1978)). The two model selection criteria can be defined as below;

AIC = −2 logL̂+ 2k, (3)

and
BIC = −2 logL̂+ k log(T − p), (4)

where L̂ is the maximized likelihood function and k represents the number of parameters in
the concerned model. These two criteria possess a common characteristic that they more
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disagree with the model that contains large number of parameters and, hence, increase the
complexity of a model. The model corresponding to the least value of AIC (BIC) is considered
to be a good model and can be chosen for the purpose of further analysis. We will not go
into the details of these criteria due to space restriction, but the interested candidate may
refer to Ghosh et al. (2007) for more information. Moreover, to proceed further we have to
formulate the likelihood function of the candidate models which can be accomplished by the
general form of the likelihood of the ARIMA model.

Likelihood function of ARIMA model (2) can be approximately written by using the
conditional density of the differenced observations, w : w1, w2, ..., wT−d (see, for example,
Tripathi et al. (2018)), which is given by

f(wt|wt−1, wt−2, ..., wt−p; θ0,Θ,Φ, σ2) ∝
( 1
σ2

)
exp

− 1
2σ2 (wt − θ0 −

p∑
i=1

θiwt−i −
q∑
j=1

φjεt−j)2


(5)

Now, we can write the approximate likelihood function of model (2), using (5), as;

L(θ0,Θ,Φ, σ2|w) ∝
( 1
σ2

)(T−d−p)/2
exp

− 1
2σ2

T−d∑
t=p+1

(wt − θ0 −
p∑
i=1

θiwt−i −
q∑
j=1

φjεt−j)2

 , (6)

where Θ = (θ1, θ2, ..., θp) and Φ = (φ1, φ2, ..., φq).

2.1. Model selection and prediction

As discussed in Section 2, we considered some nearby competing ARIMA models to
validate our procedure. The competing models are; ARIMA(0, 2, 1), ARIMA(0, 2, 2),
ARIMA(1, 2, 0), ARIMA(2, 2, 0), ARIMA(1, 2, 1), ARIMA(1, 2, 2) and ARIMA(2, 2, 2).
By doing some small mathematical corrections in the expression (6), one can easily obtain
the approximate maximum likelihood (ML) estimators for the parameters involved in the
concerned model. All the competing models along with the ML estimates of their parameters
and the values of log-likelihoods are reported in the Table 2. Since, the likelihood functions
were not easily tractable, therefore, we have used numerical based approximation to obtain
the ML estimates of the parameters.

Although the interpretation of results obtained in Table 2 is quite obvious still we shall
highlight a few of them for the flow of analysis. The impact of intercept term on IMR data is
not so considerable in all the considered models. Also, one may observe that the stationarized
form of the data set shows less variability for error terms. Therefore, the fluctuations in the
random component can be assumed to be constant over a period of time. We shall next
proceed with the model selection for the observed stationarized form of the data.

The values of AIC and BIC, for each competing model, can be easily calculated by using
the formulae (3) and (4) and the same are reported in Table 3. It is quite evident that both
the criteria give their least value corresponding to ARIMA(2, 2, 0) that can be considered as
the most appropriate model among others. Undoubtedly, a graphical assessment is always
striking and reliable source of information still, we can not ignore the possibilities of numerical
evidences which are more appealing as they consider any kind of loss due to fitting as well as
complexity both. Certainly, we shall consider ARIMA(2, 2, 0) model for the further analyses
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and prediction of IMR of India.

Table 2: Classical estimates of the competing ARIMA models
Model Parameter ML estimate log L̂ Model Parameter ML estimate log L̂

θ0 0.0005 θ0 −0.0010

ARIMA(0, 2, 1) φ1 −0.9900 −89.4400 ARIMA(1, 2, 1) θ1 −0.2200 −96.1500

σ2 0.0012 φ1 −1.2200

σ2 0.0008

θ0 −0.0001 θ0 −0.0005

ARIMA(0, 2, 2) φ1 −1.0100 −86.3700 ARIMA(2, 2, 1) θ1 −0.5100 −90.3700

φ2 0.1400 θ2 −0.5900

σ2 0.0013 φ1 −1.1800

σ2 0.0009

θ0 −0.0010 θ0 0.0001

ARIMA(1, 2, 0) θ1 −0.5100 −75.5600 ARIMA(1, 2, 2) θ1 −1.0900 −88.2300

σ2 0.0020 φ1 0.2100

φ2 −1.1100

σ2 0.0011

θ0 −0.0012 θ0 0.0019

ARIMA(2, 2, 0) θ1 −0.9100 −71.8000 ARIMA(2, 2, 2) θ1 −1.1500 −79.4000

θ2 −0.5800 θ2 −0.5300

σ2 0.0011 φ1 −0.3400

φ2 −1.0000

σ2 0.0015

Table 3: Values of AIC and BIC for the competing ARIMA models

Model AIC BIC

ARIMA(0, 2, 1) 184.89 190.37

ARIMA(0, 2, 2) 180.75 188.07

ARIMA(1, 2, 0) 157.13 162.55

ARIMA(2, 2, 0) 151.60 158.73

ARIMA(1, 2, 1) 200.31 207.54

ARIMA(2, 2, 1) 190.74 199.66

ARIMA(1, 2, 2) 186.46 195.49

ARIMA(2, 2, 2) 170.80 181.51

Before we extend our study to the Bayesian analysis, let us perform the classical pre-
diction of IMR based on the selected ARIMA(2, 2, 0) model. For this purpose we took only
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43 observations out of 48 observations (see Table 1) and left rest of the values as the test
sample. We have obtained the necessary classical estimates for the parameters of ARIMA(2,
2, 0) model as discussed in Section 2 and predicted for the next (44th) observation using
the ML estimates of the parameters. This predicted observation then forms a sample of
size 44 and again the next (45th) observation is predicted by obtaining the corresponding
ML estimates using these 44 observations in a similar way. Proceeding in this way, we can
predict for all the corresponding values in the test sample.

Theoretically, to predict the future values of the original time series of size T , we have
predicted the very next value for the differenced time series (of size T − 2), that is, wthT−1
observation. Next, we shall obtain the future value corresponding to the scaled transformed
time series, that is, log(ŷT+1) which can be calculated using the recurrence relationship given
below;

log(ŷT+1) = ŵT−1 + 2log(yT )− log(yT−1), (7)

where ŵT−1 is the estimated predictive value corresponding to wthT−1 observation obtained
by using ARIMA(2, 2, 0) process that can comfortably be obtained from (2) for the error
term having the distribution N(0, σ̂2). Hence, the estimated predictive value for the original
series of IMR data set can be obtained by performing the inverse logarithmic transformation
on log(ŷT+1). To get the estimated predictive intervals, for the corresponding future values
of the original series, let us represent the ML estimates of the parameters as σ̂2, θ̂1 and θ̂2.
We have calculated the predictive intervals for the differenced series {wt} by means of the
formula;

ŵT−1 ± z1−α/2

√
V ar(ŵT−1), (8)

where z1−α/2 is the standard normal percentile and V ar(ŵT−1) = σ̂2

(1− ρ1θ̂1 − ρ2θ̂2)
with ρ1 =

θ̂1
(1−θ̂2) and ρ2 = θ̂2 + θ̂2

1
(1−θ̂2) . It is to be mentioned here that the confidence interval for the

scaled transformed series can be obtained by using the expression (7), just by replacing
ŵT−1 with LŵT−1 and UŵT−1 to get lower and upper limits, respectively. Here LŵT−1 and
UŵT−1 are the lower and upper limits of predicted intervals respectively for the differenced
data. Finally, the confidence interval for the original series is obtained by using the similar
inverse logarithmic transformation. Truly speaking, the expression (8) gives a 100(1 − α)%
confidence interval. To get 95% confidence interval, one may use the critical value at 0.05
level of significance from the standard normal table.

The 95% predictive intervals for the estimated predictive values, from 2014 to 2018, are
given retrospectively in Table 4. We have also calculated the width of predictive intervals (ω)
to observe the consistency of the prediction. It can be easily visualized that the estimated
predictive values of IMR data are not too far from the true values, also the true values
are well within the range of corresponding predictive intervals. The retrospective prediction
is quite satisfactory and, hence, we can predict the future values prospectively. For the
prospective prediction we have applied the same strategy on the whole data set and have
predicted for the next five years. The future predictions, for IMR of India, are reported in
the Table 5.
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Table 4: Retrospective predictions of IMR from 2014 to 2018 using the ML
estimates

Year True value Estimated predictive value 95% Estimated predictive interval ω

2014 39.00 38.08 34.33 42.24 7.91

2015 37.00 38.08 34.33 42.24 7.91

2016 34.00 38.14 32.39 42.31 9.92

2017 33.00 36.72 32.11 40.73 8.62

2018 32.00 37.71 31.00 41.83 10.83

Table 5: Future predictions of IMR for the next 5 years using ML estimates

Year Estimated predictive value 95% Estimated predictive interval ω

2019 30.31 27.30 33.65 6.35

2020 30.32 27.30 33.66 6.36

2021 30.36 27.35 33.71 6.36

2022 29.25 26.34 32.47 6.13

2023 30.03 27.05 33.34 6.29

It is to be noted that the future values of IMR go down, with a good consistency,
which is a good sign for a developing nation like India. Before we set up a concrete opinion
about these predicted values, let us extend this study to the advanced level and perform the
Bayesian analysis in the next section.

3. Bayesian Inference

The conditional likelihood function of the selected ARIMA(2,2,0) model for the differ-
enced data is given by

f(w|θ0, θ1, θ2, σ
2) ∝

( 1
σ2

)(T−4)/2
exp

− 1
2σ2

T−2∑
t=p+1

(wt − θ0 − θ1wt−1 − θ2wt−2)2

 , (9)

where wt = ∆2log(yt). To perform the Bayesian analysis, a suitable choice of prior distri-
bution is essential. Choosing the prior distributions is a vital aspect in Bayesian paradigm
and one can use the information, if any, while selecting a prior distribution. Such priors are
called informative priors. In case we have no information, the non-informative priors come
into existence. For the present study, we shall consider the non-informative (vague) priors
for σ2, θ0, θ1 and θ2 as we do not have any concrete information (see, for example, Tripathi
et al. (2017)). The following prior distributions have been considered for the completion of
Bayesian analysis;

g1(σ2) ∝ 1
σ2 ; σ2 ≥ 0, (10)

g2(θ0) ∝ U [−N1, N1]; N1 > 0, (11)
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g3(θ1) ∝ U [−N2, N2]; N2 > 0, (12)

and
g4(θ2) ∝ U [−N3, N3]; N3 > 0, (13)

where N1, N2 and N3 are the hyperparameters. One may choose the hyperparameters (large
enough) in such a way that the priors remain vague over the range of parameters. We have
considered the same set of values with opposite signs for the uniform range though, one can
choose the different values which permit the vagueness of prior distributions. Moreover, the
prior distribution for the σ2, in (10), is a type of prior suggested by Jeffrey and is widely used
by the researchers (see, for example, Marriott et al. (1996), Kleibergen and Hoek (2000) and
Tripathi et al. (2018) among others).

Next, we shall obtain the joint posterior distribution by updating the prior distributions
(from (10) to (13)) with the help of likelihood function (9) and it can be written up to
proportionality as;

p(θ0, θ1, θ2, σ
2|w) ∝

( 1
σ2

)(T−2)/2
exp

− 1
2σ2

T−2∑
t=p+1

(wt − θ0 − θ1wt−1 − θ2wt−2)2

 I[−N1,N1](θ0)

I[−N2,N2](θ1)I[−N3,N3](θ2), (14)

where I(.) denotes the usual indicator function that can take only two values; either zero or
one. Truly speaking, if a value of the parameter falls in the interval, it will take the value
one and zero otherwise.

It has been seen that the form of joint posterior (14) is analytically intractable, one has
to go for the sample based approaches to get the required posterior samples from this. We,
however, considered an MCMC approach and apply the Gibbs sampler with intermediate
Metropolis steps. It has been seen that after a large number of iterations the sequence
of parametric values converges in distribution to a random sample taken from the actual
posterior distribution. For more details of the procedure one may refer to Gelfand and
Smith (1991) and Upadhyay et al. (2001) among others. Once the posterior samples of
desired size are obtained, the unobserved future value (ŵT−1) can be simulated, for each of
the posterior samples, from the parent sampling distribution p(wT−1|θ0, θ1, θ2, σ

2, w). It can be
easily verified that the predicted observation ŵT−1 follows an univariate normal distribution
(see, for example, Tripathi et al. (2018)).

3.1. Full conditional distributions and MCMC implementation

To proceed for the MCMC implementation, let us calculate the full conditional distri-
bution of each parameter, from the joint posterior (14), up to proportionality as below;

p(θ0|θ1, θ2, σ
2, w) ∝ exp

− 1
2σ2

T−2∑
t=p+1

(wt − θ0 − θ1wt−1 − θ2wt−2)2

 , (15)

p(θ1|θ0, θ2, σ
2, w) ∝ exp

− 1
2σ2

T−2∑
t=p+1

(wt − θ0 − θ1wt−1 − θ2wt−2)2

 , (16)



2021] FORECASTING IMR OF INDIA USING ARIMA MODEL 111

p(θ2|θ0, θ1, σ
2, w) ∝ exp

− 1
2σ2

T−2∑
t=p+1

(wt − θ0 − θ1wt−1 − θ2wt−2)2

 , (17)

p(σ2|θ0, θ1, θ2, w) ∝
( 1
σ2

)(T−2)/2
exp

− 1
2σ2

T−2∑
t=p+1

(wt − θ0 − θ1wt−1 − θ2wt−2)2

 . (18)

Among all, the full conditional of σ2 can be transformed into a gamma distribution by means
of the transformation τ = 1/σ2. A simple mathematics shows that τ follows a gamma distri-

bution with shape parameter (T −4)/2 and scale parameter 1
2

T−2∑
t=p+1

(wt−θ0−θ1wt−1−θ2wt−2)2.

It is also to be noted that the full conditionals (15), (16) and (17) are not easily available
in close form and direct simulation is not possible. We, therefore, adopted the Metropolis
algorithm to simulate from these full conditionals. To employ the Metropolis algorithm, a
univariate normal density is proposed in each case with mean value corresponding to the
ML estimate of the respected parameter and standard deviation is taken to be c times the
Hessian based approximation at the value of ML estimate. The constant c behaves like a
tuning parameter whose value often suggested to lie between 0.5 and 1.0 (see, for example,
Tripathi et al. (2018)). Thus, we created a single long run of the simulated values from the
posterior distribution (14) via the simple implementation of the Gibbs sampler. Posterior
estimates were, then, obtained by choosing the posterior samples at a regular gap, after
avoiding the initial transient behavior, so that the correlation between them is close to zero.
For further reading of the algorithm one may refer to Smith and Roberts (1993), Upadhyay
et al. (2001) among others.

3.2. Numerical illustration for Bayesian analysis

To illustrate the Bayesian methodology, discussed above, we took the same set of
data reported in Table 1. As discussed, we have calculated the ML estimates of the selected
ARIMA(2, 2, 0) model to initialize the Markov chain. The values of hyperparameters, N1, N2
and N3, were set to be 100 in each case to maintain the vagueness of the prior distributions.
An iterative procedure indicated us to choose the value of tunning parameter c as 0.7. It is
important to mention here that these values are chosen to get a good acceptance probability
in Metropolis algorithm. For successful implementation of the Gibbs sampler, we have
considered a single long run of the chain up to 50K iterations. After avoiding the initial
transient behavior of the chain at about 10K iterations, we took a sample of size 1K by
maintaining a gap of 40 so that the serial correlation is negligibly small. We have provided
the posterior summary, for the differenced data, on the basis of these 1K posterior samples
in Table 6.

The results obtained in Table 6 are self explanatory and it reveals the fact that the
estimated marginal posterior densities, for all the parameters, exhibit a normal trend, that
is, almost symmetrical in nature. Also, as obvious, the posterior modes are close enough
to the corresponding ML estimates which might be because of the vague consideration of
priors. Although, we are not giving the densities plots for the estimated parameters due to
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space restriction still most of the inferences can be easily guessed from the table. Moreover,
the length of highest posterior density (HPD) intervals tell the accuracy of the posterior
estimates.

Table 6: Posterior summary for the parameters of ARIMA(2, 2, 0) model

Parameter MLE Posterior Mean Posterior Median Posterior Mode 0.95 HPD interval

θ0 −0.0012 −0.0034 −0.0035 −0.0035 −0.0143 0.0102

θ1 −0.9110 −0.7719 −0.7710 −0.7622 −1.0235 −0.5528

θ2 −0.5814 −0.5163 −0.5185 −0.5344 −0.7667 −0.2674

σ2 0.0011 0.0016 0.0016 0.0016 0.0009 0.0023

Like the classical analysis, let us now work on the retrospective prediction of IMR
in Bayesian framework. Again, we have considered only first 43 observations, out of 48
observations, as the informative data set (see Table 1) and rests are left to see the forecasting
performance. We have applied the same strategy, as in classical prediction, to predict in
Bayesian context. It is to be noted that the whole Bayesian analysis is performed repeatedly
in each step of prediction until the last value is predicted. Moreover, to predict the next future
value, we simulated 1K predictive samples based on 1K posterior samples and predictive
summaries are drawn, for the next five values, in Table 7. It is important to know that the
estimated predictive values are corresponding to the modal values of the predictive samples.

Table 7: Bayesian retrospective predictions of IMR from 2014 to 2018

Year True value Estimated Bayes predictive value Estimated HPrD interval ω

2014 39.00 38.83 35.01 41.08 6.07

2015 37.00 37.12 33.08 39.65 6.57

2016 34.00 34.46 30.61 36.80 6.19

2017 33.00 35.39 31.84 37.33 5.49

2018 32.00 38.18 31.32 39.74 8.42

It is nice to interpret that the predicted values are pretty close to the true values.
Also, the 95% highest predictive density (HPrD) intervals are covering the corresponding
true values nicely. Referring to Table 4, it can be inferred that the Bayes predictions, in
general, appear to be more closer to the corresponding true values as compared to that on
the basis of likelihood only. Also, the estimated predictive intervals in Bayesian paradigm
appear to be more narrower than the classical paradigm (see the values of ω), that shows the
accuracy of Bayesian analysis over the classical approach. Moreover, the widths of estimated
predictive intervals ω in Table 7 look more consistent than those in Table 4.

Since the retrospective predictions (see Table 7) are found to be satisfactory, therefore,
we did the prospective prediction of IMR of India using the same Bayesian methodology.
For this prospective prediction, we considered the whole series (containing 48 observations)
and apply the same strategy to forecast the next five observations. Table 8 provides the
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future values of IMR for the next five years. It can be seen that values of IMR (Table 8) will
remain close, on an average, to 30.20 which, in fact, is a good sign and showing a decreasing
trend of IMR values in upcoming years. Although, in this study, we did not consider any
other demographic component which effects the IMR still, our findings are very hopeful and
realistic for the developing countries like India.

Table 8: Bayesian prospective predictions of IMR for the next 5 years

Year Estimated Bayes predictive value Estimated HPrD interval ω

2019 30.91 27.69 32.49 4.80

2020 29.84 25.90 30.37 4.47

2021 30.23 28.40 33.57 5.17

2022 30.26 28.22 33.88 5.66

2023 29.76 27.06 32.73 5.67

4. Conclusion

This paper has successfully modelled and analysed the ARIMA model under classical
and the Bayesian paradigms. The analyses resulted in retrospective as well as prospective
(for the next 5 years) predictions of IMR data of India. Stationarity of the data set has been
examined carefully using ADF and KPSS tests. The likelihood based estimates have been
used for the classical predictions whereas, for Bayesian predictions the corresponding modal
values of the parameters have been used. It is found that the latter paradigm provided
us with more accurate and reliable results as compared to the former. It is expected that
such an analysis will be helpful for the policy makers and researchers to come across an
appropriate planning.
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Abstract
In this paper, the association in time of a Markov process is considered. A measure

based on transition probability function is proposed to obtain and compare the degree of
association in time of two processes. A real data is analyzed.
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1. Introduction

For a multistate system it is difficult to calculate system reliability. The calculation of
system reliability can become even more difficult, perhaps impossible, if the components of
the system are maintained, or are interdependent. Hence, reliability bounds for reliability of
multistate systems (MSSs) are useful. In reliability and survival analysis, the lifetime ran-
dom variables are not independent but are associated. In structures in which the components
share load, the failure of one component results in increased load on each of the remaining
components. Associated random variables and time associated stochastic processes are useful
for obtaining the reliability bounds for MSSs. Association of random variables is mathemat-
ically described by Esary et al. (1967). Esary and Proschan (1970) obtained a minimal cut
lower bound for a non-maintained system, if the joint performance process of the components
is associated in time. A repairable system modeled by semi-Markov process is considered
by Dharmadhikari and Kuber (2006) and derived a sufficient condition for the association
in time of the process governing the system. Hjort et al. (1985) introduced a sufficient con-
dition for association when the marginal processes are Markovian. Bound for reliability of
maintained systems without imposing conditions of association in time of marginal process
of components is given by Natvig (1993). Minimal path structures of a coherent system
having components in common behave in a similar manner, so that failure of a component
will adversely affect the performance of all the minimal path structures.

A sufficient condition for association in time of the Markov performance process of a
binary system, in terms of its transition probability functions, is given by Esary and Proschan
(1970). Reliability analysis of MSSs can be seen in Barlow and Wu (1978).
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Relative degree (or strength) of association for two sets of random variables is described
by Karlin (1983). In order to assess the degree of association of a Markov process or of com-
paring the relative strength of association of two Markov processes, we need measures in
terms of transition probability functions. In this paper, in order to find degree of association
of the Markov process or to compare the relative degree of association of two Markov pro-
cesses, we consider a measure of association based on transition probability function. In MSS
modeling, the information regarding exact state visited by components before the present
state may not be available. At the same time, information regarding either the state is above
or below a certain state of performance may be available. The conditions for association in
time of the stochastic process which governs the MSS is still worthwhile. A weaker sufficient
condition for association in time of the finite Markov process is given.

In section 2, we discuss the measure of degree of association in time of the Markov
process in terms of the transition probability function. We examine the correlation in terms of
transition probability functions to asses the relative degree (or strength) of association when
comparing two Markov processes. In section 3, we present the weaker sufficient condition in
terms of transition functions and intensities for the Markov process to be associated in time.
An illustrative example is provided in section 4.

2. Measure of Degree of Association

An approach for assessing the level and form of dependence for multivariate observa-
tions is provided by Karlin (1983). It provides a fine tuning in evaluating relationships of pair
of random variable by transforming the data in natural manifold ways and then computing
the associated correlations whose totality reflects on the nature of dependence between array
of transformed variables. The degree of dependence between two random variables X and
Y can be computated by a single statistics.

The following definition gives the measure for ordering bivariate distributions by the
strength of their association.

Definition 1: For two bivariate distributions corresponding to the random variables (X, Y )
and (Z, W ) we say that dependence of (X, Y ) is stronger than the dependence of (Z, W )
with respect to classes of non-decreasing functions F and G if ρ[h(X), g(Y )]≥ρ[h(Z), g(W )]
for all h∈Fandg∈G.

The comparisons are made with respect to the same transformations on the variables
(X, Y ) and (Z, W ) for all functions h∈Fandg∈G.

A measure which can be used to measure the degree of association of the Markov
process is proposed below. We first discuss the measure of degree of association in dis-
crete time stochastic process {Xk, k ≥ 0} with state space E = {1, 2, ..., M}. We have,
Cov(Xk, Xk−1) = E(Xk.Xk−1) − E(Xk)E(Xk−1)
= ∑

i,j∈E P (Xk ≥ j, Xk−1 ≥ i) − ∑
j∈E P (Xk ≥ j) ∑

i∈E P (Xk−1 ≥ i).
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But, Xk and Xk−1, associated if, Cov(Xk, Xk−1) ≥ 0.
⇒

(∑
i,j∈E P (Xk ≥ j, Xk−1 ≥ i) − ∑

i,j∈E P (Xk ≥ j)P (Xk−1 ≥ i)
)

≥ 0
⇒ ∑

i,j∈E [P (Xk ≥ j, Xk−1 ≥ i) − P (Xk ≥ j)P (Xk−1 ≥ i)] ≥ 0
or ∑

i,j∈E

[P (Xk ≥ j|Xk−1 ≥ i) − P (Xk ≥ j)]P (Xk−1 ≥ i) ≥ 0. (1)

Using one step transition probability, we get,∑
i,j∈E

∑
i,j∈E

[P (Xk = j|Xk−1 = i) − P (Xk = j)]P (Xk−1 = i) ≥ 0 (2)

We can use the measure, Cov(Xk, Xk−1) = ∑
i,j∈E

∑
i,j∈E[P (Xk = j|Xk−1 = i) −

P (Xk = j)]P (Xk−1 = i), for assessing the association of the discrete time stochastic process.

Standardization of the covariance may be desired to achieve scale invariance and enable
meaningful comparisons between different data sets. The condition of association,

Cov(h(X), g(Y )) ≥ 0

for all functions h ∈ F and g ∈ G, of two random variables with respect to the classes F
and G is replaced by an equivalent requirement ρ(X, Y ) = Cov(h(X),g(Y ))√

V ar(h(X)).V ar(g(Y ))
≥ 0. For

two stochastic processes {Xk, k ≥ 0} and {Yk, k ≥ 0}, the following measure of association
is used for comparing two processes in terms of their strength of association. ρ(Xk,Xk−1) =

Cov(Xk,Xk−1)√
V ar(Xk).V ar(Xk−1)

where V ar(Xk) = ∑
i,j∈E P (Xk ≥ max(i, j)) − P (Xk ≥ j)P (Xk ≥ i).

If
ρ(Xk,Xk−1) ≥ ρ(Yk,Yk−1) (3)

the association between Xk and Xk−1 is larger than association between Yk and Yk−1. If (3) is
true for every k, then the stochastic process {Xk, k ≥ 0} is more associated than {Yk, k ≥ 0}.

Here we also consider a continuous time Markov process {X(t), t ≥ 0}. Consider the
random variables X(t), X(s), s < t in the Markov process. It is clear that if X(t) and X(s),
s < t are associated if

Cov(X(t), X(s)) =
�

R

�
R

P (X(t) > x, X(s) > y)−P (X(t) > x)P (X(s) > y)dxdy ≥ 0. (4)

Using transition probability function, P (X(t) = j|X(s) = i) of the Markov process, we write
(4) as,
Cov(X(t), X(s)) =�

R

�
R

∑
{i,j:X(s)=i>y,X(t)=j>x}

[P (X(t) = j|X(s) = i) − P (X(t) = j)]P (X(s) = i)dxdy ≥ 0 (5)

Comparison of two Markov processes, {X(t), t ≥ 0} and {Y (t), t ≥ 0}, only in terms of tran-
sition probabilities is not possible but comparison between covariances in terms of transition
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probabilities and state probabilities is more reasonable. The degree of association of two
Markov processes can be compared using the following correlation function, ρX(t, s).

In the case of the Markov process we have, ρX(t, s) = Cov(X(t),X(s))√
V ar(X(t)).V ar(X(s))

≥ 0 implies
association between X(s) and X(t). We use the correlation ρX(t, s) as a function of transition
probability function and state probabilities to measure the degree of association in time of
the Markov process.

We compare the degree of association of two Markov processes using ρX(t, s). This
gives a stochastic ordering of two Markov processes based on strength of their association.
Denote, CX(t, s) =

�
R

�
R

[P (X(t) ≥ x|X(s) ≥ y) − P (X(t) ≥ x) ]P (X(s) ≥ y)dxdy,
CX(t, t) =

�
R

�
R

[P (X(t) ≥ max(x, y)) − P (X(t) ≥ x)P (X(t) ≥ y) ]dxdy

ρX(t, s) = CX(t,s)√
CX(t,t).CX(s,s)

. We propose the following definitions.

Definition 2: For two different Markov processes {X(t), t ≥ 0} and {Y (t), t ≥ 0}, we say
that association of (X(t), X(s)), s < t is stronger than the association of (Y (t), Y (s)), s < t
if ρX(t, s) ≥ ρY (t, s).

Definition 3: For two different Markov processes {X(t), t ≥ 0} and {Y (t), t ≥ 0}, we say
that association of X process is stronger than the association of Y process if ∀s, t ∈ R, s < t,
ρX(t, s) ≥ ρY (t, s). Some conditions of association in terms of the nondecreasing functions
of the classes F and G and its distributional properties are given below. It provide a measure
for the comparison of the degree of association of two system each consists of n associated
components, see Prakash Rao and Dewan (2001).

Definition 4: A collection of random variables {Xn, n ≥ 1} is said to be associated if for
every n and for every choice of coordinate-wise non-decreasing functions h(x) and g(x) from
Rn to R,

Cov(h(X), g(X)) ≥ 0 (6)
whenever it exist, where X = (X1, ..., Xn).

Definition 5: The performance process of the ith component is a stochastic process
{Xi(t), t ∈ τ} where for each fixed t ∈ τ, Xi(t) denotes the state of component i at
time t. The joint performance process of the components is given by {X(t), t ∈ τ} =
{(X1(t), ..., Xn(t)), t ∈ τ}.

Let I = [tA, tB] ⊂ [0, ∞), τ(I) = τ ∩ I.

Definition 6: The joint performance process {X(t), t ∈ τ} of the components is said to be
associated in time interval I if and only if, for any integer m and {t1, ..., tm} ⊂ τ(I), the
random variables in the array

X1(t1) ... X1(tm)
... ... ...

Xn(t1) ... Xn(tm)
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are associated.

For the component performance process {Xi(t), t ∈ τ}, i ∈ {1, 2, ..., n} and fixed t1 <
... < tm, let hi(X i) ∈ F, gi(X i) ∈ G are nondecreasing function of random variables from Rm

to R, where X i = (Xi(t1), Xi(t2), ..., Xi(tm)). Xi(t1), Xi(t2), ..., Xi(tm) are associated if for
every hi(xi), gi(xi), Cov(hi(X i), gi(X i)) ≥ 0 where Cov(hi(X i), gi(X i)) =

�
R

�
R

[P (hi(X i) >
x, gi(X i) > y) − P (hi(X i) > x)P (gi(X i) > y)]dxdy, i ∈ {1, 2, ..., n}. This implies that if

�
R

�
R

[P (hi(X i) > x|gi(X i) > y) − P (hi(X i) > x)]P (gi(X i) > y)dxdy ≥ 0 (7)

we have association of the component performance processes {Xi(t), t ∈ τ}.

Definition 7: A Markov performance process {Xi(t), t ∈ τ} of component i is associated
if

�
R

�
R

[P (hi(X i) > x|gi(X i) > y) − P (hi(X i) > x)]P (gi(X i) > y)dxdy ≥ 0 for every
collection of random variables X i = (Xi(t1), ..., Xi(tm)) and every choice of coordinate wise
nondecreasing function hi(xi) and gi(xi) from Rm to R.

In a similar way, we can find a condition for association of joint performance process of
components, in terms of non-decreasing functions, which is quite desirable. In the following
definition, we consider the nondecreasing functions H ∈ F and G ∈ G from Rnm to R.

Definition 8: The joint performance process of the components {X(t),t∈ τ}
= {(X1(t), ..., Xn(t)), t ∈ τ} is associated in time if

�
R

�
R

[P (H(X) > x|G(X) > y) − P (H(X) > x)]P (G(X) > y)dxdy ≥ 0

for every collection of random variables,

X = (X1(t1), X2(t1), ..., Xn(t1), X1(t2), ...., Xn(t2), ..., X1(tm), ..., Xn(tm))

and every choice of coordinate wise nondecreasing function H(x) and G(x) from Rnm

to R.

The measure of degree of association of the system which consists of n associated
components governed by Markov processes is given below.

Denote

CX(H, G) =
�

R

�
R

[P (H(X) > x|G(X) > y) − P (H(X) > x)]P (G(X) > y)dxdy

CX(H, H) =
�

R

�
R

[P (H(X) > max{x, y}) − P (H(X) > x)P (H(X) > y)]dxdy

and
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ρX(H, G) = CX(H,G)√
CX(H,H)CX(G,G)

The degree of association of two performance processes {X(t), t ≥ 0} and {Y (t), t ≥ 0}
of two systems can be compared using the measures ρX(H, G) and ρY (H, G).

Definition 9: For two performance process {X(t), t ≥ 0} and {Y (t), t ≥ 0}, of two systems
consists of n associated components governed by the Markov processes {X i(t), t ≥ 0} and
{Y i(t), t ≥ 0}, i = 1, 2, ..., n respectively, we say that association of X-system is stronger
than the association of Y -system if ∀m , n and H ∈ F, G ∈ G, from Rmn to R, ρX(H, G) ≥
ρY (H, G).

The proposed measures may help us (i) to suggest whether a Markov process is associ-
ated in time; and (ii) to asses the relative degree (or strength) of association of two different
Markov processes, and (iii) to asses the relative strength of association of two performance
process of two systems consists of n associated components which are governed by Markov
processes.

3. A Weaker Condition for Association in Time of a Markov Process

A sufficient condition using transition probability function for association with the
marginal Markovian processes is given by Hjort et al. (1985). We consider much weaker
conditions for the Markov process to be associated in time. Let P∗

ij(s, t) = P (X(t) =
j|X(s) ≥ i), s < tand P∗(s, t) = {P ∗

ij(s, t)}i,j∈{0,1,...,M}, s < t Assume the existence of the
following intensities

µ∗
ij(s) =

 limh→0+
P ∗

ij(s,s+h)
h

, i ̸= j

limh→0+
P ∗

ij(s,s+h)−1
h

, i = j

Let P∗
i,≥j(s, t) = P (X(t) ≥ j|X(s) ≥ i)

P ∗
i,<j(s, t) = P (X(t) < j|X(s) ≥ i)

µ∗
i,≥j(s) = ∑M

ν=j µ∗
iν(s), i < j

µ∗
i,<j(s) = ∑j−1

ν=0 µ∗
iν(s), i ≥ j

Now we consider the following definitions, see Barlow and Proschan (1975).

Definition 10: A random variable T is stochastically right tail increasing (st. RTI) in
random variables S1, ..., Sk if P (T > t|S1 ≥ s1, ..., Sk ≥ sk) is nondecreasing in s1, s2, ..., sk.

Definition 11: Random variables T1, ..., Tn are conditionally RTI in sequence if Ti is st.
RTI in T1, ...., Ti−1 for i = 2, 3, ..., n.

Definition 12: A process {X(t), t ≥ 0} is conditionally RTI in time if P(X(t)≥ j|X(s1) ≥
i1, ..., X(sn) ≥ in) is nondecreasing in i1, ..., in for each j and for each choices of s1 < ... <
sn < t, n ≥ 1.

Manoharan (1995) proved the following result.

Theorem 1: If the random variables T1, T2, ..., Tn are conditionally RTI in sequence, then
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they are associated.

Now using the Definition 12 and the above Theorem 1, we get the following result.

Theorem 2: If a stochastic process {X(t), t ≥ 0} is conditionally RTI in time, then it is
associated in time.

A main result of this section which gives a weaker condition for the Markov process to
be associated in time is given below.

Theorem 3: Let X be a continuous time Markov process with state space {0, 1, ..., M}.
Assume µ∗

ij(s) to be continuous. Then each of the following three conditions are equivalent
and implay that X is associated in time

(a) X is conditionally RTI in time.

(b) P ∗
i,≥j(s, t) is nondecreasing in i for each j and for each choice of s < t.

(c) For each j and s

µ∗
i,≥j(s) is nondecreasing in i ∈ {0, 1, ..., j − 1}

µ∗
i,<j(s) is nonincreasing in i ∈ {j, j + 1, ..., M}

Proof: In view of Theorem 2, it suffices to prove the equivalence of conditions (a), (b)
and (c).

The equivalence of (a) and (b) follows from the Markov property of X.

Now to prove the equivalence of (b) and (c), note that statement (b) is equivalent to
the following three conditions.

(i)P (X(t) ≥ j|X(s) ≥ i) = P ∗
i,≥j(s, t) is nondecreasing in i ∈ {0, 1, 2..., j − 1}

(ii)P (X(t) < j|X(s) ≥ i) = P ∗
i,<j(s, t) is nonincreasing in i ∈ {j, j + 1, ..., M}.

(iii)P (X(t) ≥ j|X(s) ≥ j − 1) ≤ P (X(t) ≥ j|X(s) ≥ j)

Thus if (b) holds then for i < j, µ∗
i,≥j(s) = ∑M

ν=j µ∗
iν(s)

= ∑M
ν=j limh→0+

P ∗
ij(s,s+h)

h
= limh→0+

P ∗
i,≥j(s,s+h)

h
is nondecreasing in i ∈ {0, 1, ..., j − 1}, and

for i ≥ j

µ∗
i,<j(s) =

j−1∑
ν=0

µ∗
iν(s) = limh→0+

P ∗
i,<j(s, s + h)

h

is nonincreasing in i ∈ {j, j + 1, ..., M}. Hence (b) implies (c).

To show that (c) implies (b), let M∗ denote the class of all stochastic matrices
P∗ = (P ∗

ij)i,j∈{0,1,...,M} such that ∑M
ν=j P ∗

iν is nondecreasing in i for each j. In order to prove
that X has property (b) it is enough to show that P∗(s, t) ∈ M∗ for each choice s < t.
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Define
a∗

ij(u) =
{

µ∗
ij(u), i ̸= j

1 − ∑
j ̸=i µ∗

ij(u), i = j

and let A∗(u) = (a∗
ij(u))i,j∈{0,1,...,M}. Also let Q∗(u) = A∗(u) − I, where I is the identity

matrix. Using the product integral representation (see Johansen (1977)) and the fact that
the transition intensities are uniformly continuous on [s, t], we have

P∗(s, t) = limn→∞

n−1∏
j=0

[I + Q∗(s + (j/n)(t − s))(t − s)/n] (8)

Note that B(u, h) = I + Q∗(u)h = (1 − h)I + A∗(u)h is a stochastic matrix. Now if
(c) is satisfied, ∑M

ν=j biν(u, h) = ∑M
ν=j q∗

iν(u)h = ∑M
ν=j µ∗

iν(u)h is nondecreasing in i ∈
{0, 1, ..., j − 1}, and ∑j−1

ν=0 biν(u, h) = ∑j−1
ν=0 µ∗

iν(u)h is nonincreasing in i ∈ {j, j + 1, ..., M}.
Also ∑M

ν=j bjν(u, h)−∑M
ν=j bj−1,ν(u, h) = (1−h)+ha∗

jj(u)+h
∑M

ν=j+1 a∗
jν(u)−h

∑M
ν=j a∗

j−1,ν(u)
= (1 − h) + h

[
1 − ∑

l ̸=j µ∗
jl(u)

]
+ h

∑M
ν=j+1 µ∗

jν(u) − h
∑M

ν=j µ∗
j−1,ν(u)

= 1 + h
[∑M

ν=j+1 µ∗
jν(u) − ∑M

ν=j µ∗
j−1,ν(u) − ∑

l ̸=j µ∗
jl(u)

]
Now choose h small enough so that∑M

ν=j bjν(u, h) − ∑M
ν=j bj−1,ν(u, h) ≥ 0 ∀j = 1, 2, ..., M.Since µ∗

ij’s are bounded, we can choose
h independent of u. Hence for sufficiently small h (independent of u),

B(u, h) = I + Q∗(u)h

satisfies the conditions (i), (ii) and (iii), which means that B(u, h) ∈ M∗. The class M∗

being closed under multiplication and also under pointwise limits, we conclude from (8) that
P ∗(s, t) ∈ M∗. Hence (b) is true.

Remark 1: It can be easily seen that the conditions for the association of Markov process
in Hjort et al. (1985) imply the conditions (a) to (c) of the Theorem 3 and hence the latter
set gives a much weaker conditions for association in time of a Markov process.

Remark 2: For the binary reliability system (M=1) it is easily seen that condition (b) of
the Theorem 3 is equivalent to P11(s, t)+P00(s, t) ≥ 1 for each s < t which is the sufficient
condition for the association in time of X given by Esary and Proschan (1970). Furthermore,
when the transition intensities are continuous, the condition (c) of the Theorem 3 is always
satisfied and hence the corresponding Markov process is always associated.

Remark 3: One may have further extension of the conditions (a)-(c) of the Theorem 3 for a
semi-Markov process by augmenting the waiting time variable to the state variable as dealt
in Kuber and Dharmadhikari (1996).

4. Application

We consider the data set from medical field for the illustration of concept of measure
of degree of association in Markov processes.

Example 1: We re-examine the data on an oral hygiene study, discussed in Das and
Chattopadhyay (2004)(cf. Dharmadhikari and Dewan (2006)) for the illustration of the
association of a vector valued process. The reduction in the amount of plaque on teeth is
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recorded. Each individual in the data was monitored for a couple of days. Two teeth were
identified, one on the left lower canine which is in the left lower corner of a jaw, and one on
molar at upper right jaw. The reduction in the thickness of plaque for subjects are usually
recorded as belonging to four different categories, viz, no reduction, slight reduction, moder-
ate reduction and vast reduction. To evaluate effectiveness of brushing, we use the proposed
measures. To check whether it is possible to reduce the number of records per individual per
day and there is some sort of dependence Das and Chattopadhyay (2004) developed a latent
mixture regression model to study this categorical multivariate data. Table A.1 give a part
of dental data analyzed. It gives stain on the same tooth at all four positions before and
after brushing, respectively. Numbers under (P1, P2, P3, P4) indicate the amount of stain at
each of the four positions on the selected tooth of an individual. The data in Table A.1 are
conditionally increasing in its coordinates.

The state probabilities are given in Table A.2. The conditional probabilities P (X(t) =
j|X(s) = i) for i, j ∈ {0, 1, 2, 3} for the four sets of data are calculated in Table A.3.

To get an ordering in terms of association we have to compute the measure of associa-
tion. The values are obtained in Table A.4.

This shows that the data in the third (P3) position is more associated. This informa-
tion may be useful to medical practitioners.

5. Summary

The degree of association in time of a Markov process can be measures using proposed
measures which are based on transition probability function. The measure can be used to
compare two Markov process according to the degree of association. A weaker condition for
association of a Markov process in time is derived. The proposed measure can be used in
various areas such as engineering, medical, social science etc.
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Appendix A

Table A.1: Dental data stain before and after brushing

Before brushing After brushing Individual Before brushing After brushing
Individual P1 P2 P3 P4 P1 P2 P3 P4 P1 P2 P3 P4 P1 P2 P3 P4

1 1 1 1 2 0 0 0 0 14 2 1 2 2 0 0 1 1
2 1 1 2 2 0 0 0 1 15 2 2 2 2 0 0 1 1
3 1 1 2 2 0 0 0 1 16 2 2 2 2 0 0 1 1
4 1 1 2 2 0 0 0 1 17 2 2 2 2 0 0 1 1
5 1 1 2 2 0 0 0 1 18 2 2 2 2 0 0 1 1
6 1 2 2 2 0 0 0 1 19 2 2 2 2 0 0 1 1
7 1 2 2 2 0 0 0 1 20 2 2 2 2 0 0 1 1
8 1 2 2 2 0 0 0 1 21 2 2 2 2 0 1 1 1
9 1 2 2 2 0 0 0 1 22 2 2 2 2 0 1 1 1
10 1 2 2 2 0 0 0 1 23 2 2 2 2 0 1 1 1
11 1 2 2 2 0 0 0 1 24 2 2 2 3 0 1 1 1
12 1 2 2 2 0 0 0 2 25 2 2 2 3 1 1 1 2
13 1 2 2 3 0 0 0 2

Table A.2: State probabilities

P1 P2 P3 P4
P (X(s) = 1) = 13/25 P (X(s) = 1) = 6/25 P (X(s) = 1) = 1/25 P (X(s) = 1) = 0
P (X(s) = 2) = 12/25 P (X(s) = 2) = 19/25 P (X(s) = 2) = 24/25 P (X(s) = 2) = 22/25
P (X(s) = 3) = 0 P (X(s) = 3) = 0 P (X(s) = 3) = 0 P (X(s) = 3) = 3/25
P (X(t) = 0) = 24/25 P (X(t) = 0) = 20/25 P (X(t) = 0) = 13/25 P (X(t) = 0) = 1/25
P (X(t) = 1) = 1/25 P (X(t) = 1) = 5/25 P (X(t) = 1) = 22/25 P (X(t) = 1) = 21/25
P (X(t) = 3) = 0 P (X(t) = 3) = 0 P (X(t) = 3) = 0 P (X(t) = 2) = 3/25

Table A.3: The conditional probabilities P (X(t) = j|X(s) = i) for i, j ∈ {0, 1, 2, 3}

X(t) 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3
X(s)
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0
2 11

12
1
12 0 0 14

19
5
19 0 0 12

24
12
24 0 0 1

22
20
22

1
22 0

3 0 0 0 0 0 0 0 0 0 0 0 0 0 1
3

2
3 0

Table A.4: Covariance

Position P1 P2 P3 P4
Cov(X(t), X(s)) 0 30/625 12/25 2/25
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Abstract 

The central thrust of this paper is to accentuate the impact of Anti-Retroviral Therapy 

(ART) on cure rate of HIV/AIDS patients and on the transition intensities between the stages 

of disease using cure rate model and Hidden Markov model (HMM) respectively.  Hidden 

Markov Model (HMM) is a captivating algorithm for temporal pattern recognition like 

automated speech, handwriting and gesture recognition in the signal processing field. Although 

it is based on Markov processes which are more widely used in estimating the transition rates 

between the different stages of a disease, but HMM is hardly being used in survival data 

modeling.  

 

Key words: AIDS; CD4; Cure rate model; Hidden Markov model. 

1. Introduction 

 

Human Immunodeficiency Virus (HIV) is a kind of virus that ushers and leads to 

Acquired Immune Deficiency Syndrome (AIDS). HIV taints a particular type of white blood 

cells, known as T- cells (or CD4+ T-cells), that helps in fighting diseases. As time passes, HIV 

kills CD4+ T- cells and multiplying itself, that leads to weakening of the immune system. In 

due course of time, the infected person’s immune system can no longer fight off diseases. So, 

proper measurement of CD4+ T cell count may be viewed as the snapshot of how good a 

patient’s immune system is functioning. 

 

Till date, there is no vaccine that can claim of curing HIV/AIDS. Although, a medication 

called antiretroviral (ARV) drug can steady the deteriorating immune system. The initiation of 

ARV drug is generally based on two clinical observations, one is CD4+ T cell count and 

another is viral load (HIV RNA concentrations) that measures HIV in the blood, lower is better. 

The purpose of the ARV drug is to make viral load undetectable and if it is able to do so, then 

infected person can’t transmit HIV to partner [Veterans’ Health Administration]. According to 

WHO guidelines also, initiation of ARV drug and for measuring disease progression, viral load 

should be preferred over the CD4+ cell count. 

 

But, in India due to scarcity of resources, the decision about the commencement of 

treatment and disease progression is taken merely based on CD+ cell count. In spite of the fact 

that, national AIDS control organization (NACO) issued new guidelines that mandated to 

“treat all persons living with HIV (PLHIV) with antiretroviral therapy regardless of CD4+ cell 

mailto:arpankmr3@gmail.com
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count, clinical stage, age or population” [NACO on May, 2017], CD4+ cell count play an 

indispensable role in entire treatment protocol. 

 

To study the transmission of the virus to next-generation Bature et al. (2010) used a 

Markov chain model. The same model has been used for observing disease progression in liver 

cancer Kay et al. (1986), for Hepatitis C disease progression Sweeting et al. (2010), for 

tuberculosis (TB) progression Debanne et al. (2000), Alzheimer’s disease Commenge et al. 

(2004), liver-cirrhosis progression Grover et al. (2014). Discretized Markov model has been 

developed and employed to AIDS prediction in England and Wales, Aalen et al. (2018) used 

Markov model to study disease progression among HIV/AIDS patients, Grover et al. (2019). 

 

New and ameliorated statistical methods are always entailed for making decisions about 

initiation and switching treatment protocols. Nevertheless, antecedent studies have 

appropriately modeled disease progression using multistate Markov processes, very few have 

explored the aptness of the hidden Markov model. 

 

The aftermath of lung transplantation is studied by Jackson and Sharples (2002), 

Guihenneuc-Jouyaux et al. (2000) used a Bayesian hierarchical model for hidden Markov 

processes by exemplifying HIV infected patient’s data. On the contrary to the simple Markov 

model, where the state is directly observable, in HMM the true state is not directly visible 

(that’s what name hidden symbolizes).  Laake et al. (2014) used Hidden Markov Model to 

study dependent mark loss and for estimation of survivals of black bears. Johnson et al. (2016) 

employed multivariate Hidden Markov Models to study mark-recapture data of California sea 

lion vital rates. Dempsey et al. (2017) used this model to study mobile health (mHealth) data 

collected from sensor streams and self report. Discrete survival time data were studied in 

Bayesian framework by Kozumi (2000).  

 
The HMM canvasses to recuperate the true sequence of states from the visible (observed) 

sequence of states It has a plethora of applications in speech recognition, in part of speech 

tagging, in object tracking, in computational molecular biology. HMM in one sense may be 

treated as an artefact in the sense that it has developed way back in late 1960’s by Baum and 

Petrie (1966) but it’s use is now ubiquitous in science including survival analysis. 

 

In India, ART centers are compelled to use CD4+ T cell count instead of the viral load 

while staging the HIV patients. This may lead to a mismatch in staging, additionally 

measurement of CD4+ cell count itself is prone to error mainly due to intraindividual variability 

and to some extent due to measurement error. In this paper an attempt has been made to 

underline the mismatch using HMM.  

 

The paper is organized as follows: in next section 2, a short explanation of material and 

method to be used is given. In section 3, results are provided followed by section 4 where 

discussions, limitations, future ambits and pipelined research is presented.     

 

2.  Material and Methods 

 

2.1. Materials 

 

It is a longitudinal retrospective follow-up study of 5300 HIV/AIDS patients undergoing 

treatment at ART center of Dr. Ram Manohar Lohia hospital in New Delhi, during the period 

April 2004 to December 2014. Exclusion criteria were the age at enrollment should be >= 18 
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years, should have baseline CD4+ cell count available, periodic CD4+ cell count available for 

at least two visits. By filtering using complete case analysis on variables like sex, smoking and 

alcohol consumption status, treatment (virocomb-N combination and others), we are left with 

only 1063 observations. 
 

2.2. Methods 

 

2.2.1. Cure Fraction model 

 

Assume that 𝐶 be the probability of an HIV patient being a long-term survivor and (1 −
 𝐶) be the probability of a patient being susceptible to death (Stage 5 of the disease). Then, 

Berkson et al. (1952) defined the survival function at any time t as: 

 

                             𝑆(𝑡) = 𝐶 + (1 − 𝐶) ∗ 𝑆𝑢(𝑡)                             (1) 

                                              

where, 𝑆𝑢(𝑡) is the survival function of the susceptible population which may be assumed to 

follow some life time distribution. Probability density function 𝑓(𝑡) of the overall population 

is written as 

   

                                𝑓(𝑡)  =   (1 −  𝐶)  ∗  𝑓𝑢(𝑡)                                             (2) 

 

where 𝑓𝑢(𝑡) is the probability density function of susceptible population. 

 

Now let (𝑡𝑖 , 𝛿𝑖) be the observed data of size n , where 𝑡𝑖 is the survival time of the 𝑖𝑡ℎ 

patient and    𝛿𝑖 is censoring indicator variable which is defined as follows:      𝛿𝑖 = 0 for right-

censored observation and  𝛿𝑖 = 1 for uncensored observation (i = 1, 2, . . , n). 

 

Accordingly, the individual patient’s contribution to the likelihood function can be written as 

 

                    𝐿𝑖    = [𝑓(𝑡𝑖)]𝛿𝑖  [𝑆(𝑡𝑖)](1−𝛿𝑖 ) 

 

                            = [(1 − 𝐶)𝑓𝑢(𝑡𝑖)]𝛿𝑖  [𝐶 +  (1 − 𝐶)𝑆𝑢(𝑡𝑖)](1−𝛿𝑖 )                              (3) 

 

So, complete likelihood is given by 

 

               𝐿 =  ∏ 𝐿𝑖  
𝑛
𝑖=1 =  ∏ [(1 − 𝐶)𝑓𝑢(𝑡𝑖)]𝛿𝑖   [𝐶 +  (1 − 𝐶)𝑆𝑢(𝑡𝑖)](1−𝛿𝑖 )𝑛

𝑖=1          (4) 

 

Parameters are estimated by maximizing the complete data likelihood in equation (4) 

using WinBUGS software package using Gibbs sampling approach. Here we have used various 

lifetime distributions like exponential, Weibull, gamma, exponentiated Weibull etc., based on 

least deviance information criteria (DIC) value we found exponentiated Weibull distribution to 

be the best model. For detailed review of the foregoing model one may refers to Farewell 

(1982), Yamaguchi (1992), Maller and Zhou (1995), Chen et al. (1999), Peng and Dear (2000), 

and Sy and Taylor (2000), Kannan et al. (2010), Achcar et al. (2012), Varshney et al. (2018). 

 

2.2.2. Hidden Markov model 

 

Before applying HMM, we have used a time-homogenous multistate Markov model to 

study disease progression among HIV/AIDS patients. For this purpose, stages of HIV/AIDS 

patients have been defined in terms of CD4+ cell count as: 
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Stage/State 1 2 3 4 5 

CD4+ cell count range >500 351-500 200-350 <200 Death 

 

It is well established that ARV drugs improve the CD4+ cell count in most of the cases, 

but unfortunately for some patients, it might not do so, that results in deterioration of health. 

That is, the patients may move from a lower stage to higher stages of the disease, a significant 

proportion of patients move to end-stage, i.e. death stage too. So, backward progression / 

transition is also a possibility. Consequently we used reversible transition model that is 

depicted in Figure 1. Except for stage 5, which is absorbing stage all other stages are transient 

in nature. 

 

 

Figure 1: Possible disease progression 

 

With the passage of time, a patient may move in possible state space S={1,2,3,4,5}. Let 

𝑋(𝑡) = 𝑟 be the current state of the patient, then the transition intensity 𝜆𝑟𝑠 of advancing to 

state 𝑠 in infinitesimal time  𝛿𝑡 is given by 

 

𝜆𝑟𝑠 =  lim
𝛿𝑡⟶0

𝑃(𝑋(𝑡 +  𝛿𝑡) = 𝑠/𝑋(𝑡) = 𝑟)

𝛿𝑡
 

 

Then the transition intensity matrix Q can be written as  𝑄 = [𝜆𝑟𝑠]𝑟,𝑠 ∈𝑆 and possess the 

following two properties (a) ∑ 𝜆𝑟𝑠𝑠∈𝑆 = 0 for all  r  and (b) 𝜆𝑟𝑠 = − ∑ 𝜆𝑟𝑠𝑟 ≠𝑠 . 

 

The maximum likelihood estimation technique developed by Kalbfleish and Lawless 

(1986) can be used to estimate the transition intensities, 𝜆𝑟𝑠. Estimated transition intensities in 

turn can be used to find the transition probability matrix  𝑃(𝑡) = [𝑃𝑟𝑠(𝑡)]𝑟,𝑠 ∈𝑆 and 𝑃𝑟𝑠(𝑡) is 

defined as: 

 

𝑃𝑟𝑠(𝑡) = 𝑃(𝑋(𝑡 + 𝑣) = 𝑠/𝑋(𝑡) = 𝑟) 
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Also, Cox and Miller (1965) defined transition probability matrix with the help of the 

intensity matrix as a Kolmogorov equation 𝑃(𝑡) = 𝑒𝑡𝑄 . Similarly, mean sojourn time, that is 

the time of stay in any transient state, is given by   −   1
𝜆𝑟𝑟

⁄ . Let us denote covariates vector 

as Z, then the effect of covariates on transition intensity can be modeled by 𝑞𝑖𝑗 (𝑡), and defined 

in terms of Cox- proportional hazard regression as suggested by Marshall and Jones (1995): 

   

 𝑞𝑖𝑗 (𝑡) =   𝑞𝑖𝑗 (0)𝑒𝑧𝛽𝑖𝑗 

 

Here  𝑞𝑖𝑗 (0), is the baseline intensity, 𝛽𝑖𝑗 is the coefficient of regression. Here it is 

assumed that covariates are time independent. Estimates can be obtained using the maximum 

likelihood procedure suggested by Kalbfleish and Lawless (1986). 

 

A hidden Markov model is generally used for defining a probability distribution over a 

sequence of observations. For brief elucidation, consider the observation at time t by the 

variable 𝑋𝑖𝑡. It is presumed that t is an integer-valued index. Additionally, it is based on two 

assumptions: (i) the observations at time t is fostered by some process that is hidden from the 

observer and generated by misclassification matrix, (ii) it is also assumed that hidden state 

follows the Markov property with transition matrix Q, put in another way current state 

envelopes all information that is required to know about the historicity of the process to predict 

the subsequent future of the process, Ghahramani (2001), this intricate relationship for HMM 

is given in Figure 2. Generalized regressions can be used to model the covariates effect on 

transition intensity and misclassification probabilities. 

 

 
 

Figure 2: Hidden and observed stages 

 

For mathematical formulation of the HMM, let  𝑋𝑖𝑇 = [𝑋𝑖1 , . . . , 𝑋𝑖𝑇𝑖 ] denotes the 

observed state that triggered by the hidden state 𝑆𝑖𝑡. The observed states 𝑋𝑖𝑡 are assumed to be 

conditionally independent of true hidden states. The likelihood contribution for patient i is 

given by 

                                    
𝐿𝑖 = 𝑓(𝑋𝑖1 , . . . , 𝑋𝑖𝑇𝑖 ) 

 

           = ∑ 𝑓(𝑋𝑖1 , . . . , 𝑋𝑖𝑇𝑖 /𝑆𝑖1 , . . . , 𝑆𝑖𝑇𝑖 )𝑓(𝑆𝑖1 , . . . , 𝑆𝑖𝑇𝑖 )𝑆𝑖
 

 

Given the values of the underlying hidden state, observed states are conditionally 

independent, using Markovian property of hidden states 
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𝑃(𝑆𝑖𝑗/𝑆𝑖,𝑗−1,….,, 𝑆𝑖1) = 𝑃(𝑆𝑖𝑗/𝑆𝑖,𝑗−1) 

 

The resulting likelihood can be rewritten as, 

 

∑ ∏ 𝑓(𝑋𝑖𝑡𝑖
/𝑆𝑖𝑡𝑖

)

𝑇𝑖

𝑡𝑖=𝑡1𝑆𝑖

{𝑓(𝑋𝑖1) ∏ 𝑓(𝑋𝑖𝑡𝑖
/𝑆𝑖𝑡𝑖−1)

𝑇𝑖

𝑡𝑖=𝑡2

} 

 

In HMM, for the observable state 𝑋𝑡  are conditionally emitted by hidden states 𝑆𝑡 

through misclassification matrix 𝑀 = [𝑒𝑟𝑠]𝑟,𝑠 ∈𝑆, whose elements are defined by 

 

𝑔𝑒𝑟𝑠 = 𝑃{𝑋𝑡 = 𝑠/ 𝑆𝑡 = 𝑟}, 𝑟, 𝑠 ∈ 𝑆 

 

An assumption about disease stages is that a stage can be misclassified only to the 

adjacent disease stage, it is reasonable to assume that misclassification due to random causes 

will give over/under estimation of the disease to immediate stage. By employing the Viterbi 

algorithm technique, we can recreate the optimal sequence in HMM using dynamic 

programming algorithm. It was disseminated by Viterbi (1967), but more elaborate elucidation 

was given by Bellman (1957). 

 

3.  Results and Discussions 

 

The progression of disease stages in HIV/AIDS patients are given in Table 1. Diagonal 

entries in the table is the number of times a patient remains in the same stage. The number 19 

signify that number of occasions where patient of stage 1 moves to stage 2. Likewise, there are 

5,12, 22 and 35 number of cases of reaching end stage 5 from stage 1, stage 2, stage 3 and stage 

4 respectively.  

 
The estimated parameters of cure rate model have been presented in Table 2. Here stages 

are observed after one year of initiation of ARV drug. Following table shows that patients who 

are in stage 1 have 86% chance of being long-term survivors, and chances are shrinking with 

severity of the disease. Patients who are in stage 4 even after one year of treatment have 

comparatively less chance (only 58%) of being long-term survivors. This table also gives 

Monte Carlo (MC) standard error of the mean. 

 

Table 3 presents the intensity of disease progression in the absence of prognostic factors. 

Patients of stage 3 are 1.82 times (0.841/0.462) more likely to move to less severe disease stage 

1 than moving to severe stage 4. Similarly, the patients of stage 4 are 27.2 times (0.716/0.0263) 

more likely to move to stage 3 than moving to death stage 5. Confidence interval is calculated 

by simulating 1000 random vectors from the asymptotic multivariate normal distribution.  

From Table 4 it can be observed that on an average a patient elapsed 1.88 years in stage 1, and 

0.517 years, 0.812 years, 0.769 years in stage 2, stage 3 and stage 4 respectively.  

 

Table 5 presents the estimated transition intensities for misclassification model along 

with misclassification probabilities. Therein 𝑒𝑟𝑠, 𝑟 denotes true stage and 𝑠 denotes observed 

stage. So, 𝑒12  signify that for true stage 1 misclassifying it to stage 2 has probability 0.106, in 

other words there is 10% chance that patient of stage 1 will be mistakenly treated as stage 2, 

similarly there is 0.06 probability of treating stage 2 patients as stage 3. Mean sojourn time for 
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misclassification model is given in Table 6. Even though prognostic factors effects have not 

been presented for simple Markov model, it is used for Hidden Markov model in Table 7. With 

sex (female) as reference, overestimation (𝑒12, 𝑒23, 𝑒34) of misclassification probability has 

odds ratio 1.46, 1.81 and 2.08 over male patients. Odds ratio for misclassification probability 

for age (>35) is 2.412, 1.477, 0.906 for over-estimation (𝑒12, 𝑒23, 𝑒34) with respect to age 

(<=35). 
 

To decrypt the states that could have most pertinently generated the sequence of stages 

observed, we employ a Viterbi algorithm Table 8. The data set is divided into two parts namely 

training data and testing data. On training data which we have taken as around 80% of total 

1043 data points (830 observations), we developed the model. On remaining 20% of the data 

(213 observations) that was kept for testing, the trained model is applied to check the model 

performance using Viterbi algorithms. Table 8 also presents the precision for each observed 

stage of disease. It is to be noted that at higher observed stages of disease precision is also 

higher i.e., for patients having advanced stage of disease there are less chances of being 

misclassified. 

 

4.  Conclusion 

 

The study shows that current ART treatment is successful and effective in making 

HIV/AIDS patients long-term survivors. Although, sticking to the treatment (adherence) is 

highly suggested but that isn’t easy to comply. Sometimes antiretroviral drugs could cause such 

side effects that is severe enough to make patient stop taking them. Unfortunately, if a patient 

skips drugs the virus may start multiplying itself. This results in HIV to get resistant to drugs, 

the scenario relatively more prevalent in developing countries including India. That may be the 

reason of partially high morbidity and mortality due to HIV in India. This also showed by our 

cure rate model where stage 4 patients have less long-term survivors than the lower stages. We 

have demonstrated the alluring algorithm of pattern recognition, HMM in modeling the 

survival time data. This paper ventured to decipher the hidden Markov model in HIV/AIDS 

setup, where simple Markov model is effectively and predominantly being used to study 

disease progression. We obtained transition intensity for misclassification model and also the 

misclassification probabilities. Even though prognostic factor’s effects were not considered in 

simple Markov model, it is contemplated whilst studying hidden Markov model. 

Notwithstanding the evidence that sex of the patient have no significant effect on the disease 

progression Jackson (2011), when it comes to misclassification of stages it do have effect on 

odds of misclassification probability. It can be observed that males have more odds of 

misclassification probability than the females (reference group) patients. In other words, males 

are more vulnerable to exaggeration of stages of disease than the females, it may be distantly 

attributable to the prejudices towards males with respect to debauchery in general and 

promiscuity in particular. This finding may be re-verified through large scale meta- analysis of 

HIV/AIDS data. 

 

Patients with age more than 35 years at enrolment may be subject to overestimation of 

stages, which is partially understandable as older age is closely related with rapid progression 

of disease, Ghate et al. (2011), Touloumi et al. (1998). Thus our study solidify the point that 

person with relatively higher age with even higher CD4+ count should initiate ART. Likewise, 

smoking and alcohol consumption are associated with overestimation of stages of the disease. 

 

Most significant and compelling finding is related with CD4+ count, whenever CD+ 

count is below 200 cells/µL, then odds of misclassification (overestimation) probability have 
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increased. We have to further study the subjectivity involved in this result. As we have filtered 

the data set, therefore out of 1063 patients, majority of patients (694) are those on whom 

virocomb-N treatment combination were administered and remaining were given Tenolam+ 

Efravinez-600 etc.  Hence, we classify the treatment protocol as “virocomb-N” (reference 

group) and “Tenolam+ Efravinez-600” as target group. With virocomb-N in reference, the 

others treatment have more odds of misclassification (overestimation), i.e. if treatment 

combination administered is “others” then there is more chance that they will be misclassified 

to higher stages of the disease. At last, Viterbi algorithm is used to see the most probable 

sequence of disease progression stages that may have given rise to the stages that we perceive 

as observed stage. By employing the Viterbi algorithm, at one go we can get rid of glut of errors 

committed during staging of the disease. 
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APPENDIX 

 

Table 1: Number of state transitions 

  Stage 1 Stage 2 Stage 3 Stage 4 Stage 5 

Stage 1 130 19 7 1 5 

Stage 2 131 128 65 7 12 

Stage 3 75 251 314 64 22 

Stage 4 28 133 484 363 35 

 

Table 2: Estimated cure rate model parameters 

  Mean S.D. MC- error 

Stage 1 

𝐶 0.862 0.0587 0.05011 

𝛼 4.85E-03 0.003741 6.57E-04 

𝛽 0.06538 0.0995 0.00113 

𝛾 1.547 0.1095 0.0221 

Stage 2 

𝐶 0.724 0.0418 0.00735 

𝛼 5.74E-03 0.00411 2.51E-04 

𝛽 0.00856 0.0997 0.001306 

𝛾 1.632 0.1014 0.0113 

Stage 3 

𝐶 0.657 0.0156 0.00815 

𝛼 6.85E-03 0.00412 5.27E-04 

𝛽 0.006449 0.01317 0.001614 

𝛾 1.0546 0.2514 0.01822 

Stage 4 

𝐶 0.587 0.0248 0.00139 

𝛼 7.54E-03 0.00417 4.28E-04 

𝛽 0.009324 0.0243 0.000908 

𝛾 0.693 0.168 0.099 

https://www.hiv.va.gov/index.asp
http://www.who.int/
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Table 3: Estimated transition intensities with 95% confidence interval 

From To Intensity C.I. 

Stage 1 Stage 1 –0.5306 (–0.759, –0.371) 

Stage 1 Stage 2 0.303 ( 0.249, 0.730) 

Stage 1 Stage 3 0.14 ( 0.023, 0.3621) 

Stage 1 Stage 4 0.09 ( 0.01, 0.1625) 

Stage 1 Stage 5 1.32E-06 ( 0, 8.035) 

Stage 2 Stage 1 0.983 ( 0.734, 1.158) 

Stage 2 Stage 2 –1.94 (–2.240, –1.371) 

Stage 2 Stage 3 0.553 ( 0.335, 1.210) 

Stage 2 Stage 4 0.405 ( 0.272, 1.116) 

Stage 2 Stage 5 1.98E-05 ( 0, 2.920) 

Stage 3 Stage 1 0.33 ( 0.234, 0.621) 

Stage 3 Stage 2 0.841 ( 0.603, 1.331) 

Stage 3 Stage 3 –1.64 (–1.837, –1.456) 

Stage 3 Stage 4 0.462 ( 0.3604, 0.6001) 

Stage 3 Stage 5 8.68E-03 ( 0.00067,0. 1115) 

Stage 4 Stage 1 0.27 ( 0.13502, 0.3402) 

Stage 4 Stage 2 0.7504 ( 0.613, 1.712) 

Stage 4 Stage 3 0.716 ( 0.571, 1.966) 

Stage 4 Stage 4 –1.76 (–1.966, –1.571) 

Stage 4 Stage 5 2.63E-02 ( 0.0059, 0.118) 

 
Table 4: Mean sojourn times at different stages 

 
Estimates  

(Std. error) 95 % C.I. 

Stage 1 1.884 (0.343) (1.318, 2.694) 

Stage 2 0.517 (0.038) (0.446, 0.598) 

Stage 3 0.812 (0.036) (0.544, 0.987) 

Stage 4 0.769 (0.032) (0.508, 0.963) 

 

Table 5: Estimated transition intensities and misclassification probabilities for 

misclassification model 

From To Intensity Probability 

Stage 1 Stage 1 –0.517 e11 0.894 

Stage 1 Stage 2 0.233 e12 0.106 

Stage 1 Stage 3 0.15   

Stage 1 Stage 4 0.09   

Stage 1 Stage 5 0.046   

Stage 2 Stage 1 0.933 e21 0.106 

Stage 2 Stage 2 –1.845 e22 0.834 

Stage 2 Stage 3 0.514 e23 0.06 

Stage 2 Stage 4 0.382   

Stage 2 Stage 5 8.28E-03   

Stage 3 Stage 1 0.232   

Stage 3 Stage 2 0.625 e32 0.152 

Stage 3 Stage 3 –1.223 e33 0.743 

Stage 3 Stage 4 0.366 e34 0.105 

Stage 3 Stage 5 1.98E-05   

Stage 4 Stage 1 0.24   
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Stage 4 Stage 2 0.783   

Stage 4 Stage 3 0.267 e43 0.063 

Stage 4 Stage 4 –1.29 e44 0.937 

Stage 4 Stage 5 1.27E-06   

Table 6: Mean sojourn times for misclassification model 

 Estimates (Std. error) 95 % C.I. 

Stage 1 1.934 (0.215) (1.734,2.159) 

Stage 2 0.542 (0.093) (0.345.747) 

Stage 3 0.817 (0.082) (0.651,0.892) 

Stage 4 0.775 (0.136) (0.650,0.893) 

Table 7: Odds ratios for misclassification probabilities for prognostic factors 

 Misclassification 

 𝑒12 𝑒21 𝑒23 𝑒32 𝑒34 𝑒43 

Sex 1.466 0.651 1.814 0.578 2.08 0.722 

Age 2.412 0.855 1.477 0.881 0.906 0.763 

Smoking 1.524 0.743 1.745 0.578 1.79 0.62 

Alcohol 2.438 0.835 2.216 0.771 1.823 0.697 

CD4 count 1.245 0.529 1.329 0.742 1.074 0.092 

Treatment 1.586 0.784 1.157 0.635 5.428 0.083 

Table 8: Viterbi sequence 

 

 

Generated by Viterbi Algorithm 
Total Precision 

Stage 1 Stage 2 Stage 3 Stage 4 Stage 5 

  

O
b

se
r
v

ed
 Stage 1 30 2 1 2 0 35 0.857143 

Stage 2 2 65 3 5 0 75 0.866667 

Stage 3 3 6 135 4 0 148 0.912162 

Stage 4 4 6 5 198 0 213 0.929577 

Stage 5 0 0 0 0 35 35 1 
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Abstract 

 

Increasing spread of HIV facilitates the incidence of tuberculosis (TB) and HIV 

infected individuals co-infected with TB have much higher risk of developing active TB. In 

India, where TB infection is health burden, co-infection of TB with HIV increases the life-

time risk by more than 5 times of developing TB. The objective of the study is to find the 

association between HIV and TB and the risk factors for infections of HIV and TB in Assam, 

north-east part of India. We used a joint bivariate binary model to accommodate the 

dependence between HIV and TB using a copula function. The maximum likelihood (ML) 

method has been used to estimate the model. We found a significant positive association 

between HIV and TB. The odds of developing TB in HIV infected person more than two-

fold. We also found higher odds of HIV among younger people, who were men, military or 

paramilitary personnel, and heterosexual. These findings suggest that co-infection of HIV and 

TB is higher for this population and group interventions should be made to control the risk 

factors of the co-infection of HIV and TB in this part of India.  

 

Key words: HIV; Tuberculosis; Bivariate binary outcomes; Copula function. 

 

1.  Introduction 
 

While Human Immunodeficiency Virus (HIV) alone continues to be one of the 

deadliest diseases around the world, co-infection of tuberculosis (TB) with HIV is found to 

be the most leading cause of high mortality among people living with HIV (Corbett et al., 

2003; Lawn et al., 2009). According to the UNAIDS report of 2019, about 37.9 million 

people globally were living with HIV at end of 2018 of which an estimated 10.0 million 

people developed TB disease, approximately 9% of all people living with HIV (UNAIDS fact 

sheet). Moreover, an estimated 49% of people living with HIV and TB are unaware of their 

co-infection and are therefore not receiving care. Increasing spread of HIV has become a 

major contributor in increasing the incidence of TB. Moreover, HIV infected individuals co-

infected with TB have an annual risk of 5-15% of developing active TB, due to the 

reactivation of latent infection (Albalak et al., 2007; Carvalho et al.,2001; Young, 2008; 

Mendelson, 2007).  A HIV-positive person infected with TB has a 50 - 60% lifetime risk of 

developing TB as compared to an HIV-negative person who has only a 10% risk. Pulmonary 

tuberculosis showed no association with HIV and treatment failure. However co-infection of 
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pulmonary tuberculosis and HIV increases the probability of dying during treatment 

(Cabrera-Gaytán et al., 2016).  

  

Thus, identification and treatment of TB as well as controlling the risk factors 

associated with TB are essential for successful HIV prevention in absence of effective 

vaccine. The objective of the present study was to find the association between HIV and TB 

in a survey among patients came to Assam Medical College and Hospital, Assam, north-east 

state of India and identify some of potential risk factors for HIV and TB infections. We used 

a joint response model with bivariate binary variables that measures the dependence between 

HIV and TB infections in assessing the socio-demographic, and biological risk factors of the 

two infections. Separate analysis of each infection ignores the dependence between the two 

infections and analyzing the data as if it were independent results in biased estimates.  

 

The most common assumption for a bivariate binary mode to assume a bivariate normal 

distribution that guarantees normal marginals for the disturbances, and probit marginals for 

the binary dependent variables (Bhattacharya et al., 2006). Ghebremichael (2015) used a joint 

binary model to find the correlation between co-infection of HSV-2 and HIV-1. We consider 

a copula function based method to derive the joint model with the possibility of various 

marginal distributions and dependence structures for bivariate binary variables.  

 

The copula approach of modelling gives wide flexibility in modelling for varied types 

of data. It has been widely used as a method to derive a joint bivariate distribution with non-

normal marginal distributions and various dependence structures in recent years (see for 

details: Kolev and Paiva, 2009; Song, Li and Yuan, 2009 among others). Winkelmann (2012) 

proposed a bivariate probit model in modeling the effect of an endogenous binary regressor 

on a binary outcome variable with non-normal dependence among two variables using copula 

functions. There are number of copula families representing wide range of dependence 

structure among the random variables. A bivariate copula function, 𝐶𝛼(𝑢1, 𝑢2) is a bivariate 

distribution function of the uniform [0,1] random variables and 𝛼 ∈ Ω measures the 

dependence between 𝑢1 and 𝑢2. Details of copula function can be found in Nelson (2006). 

The notion of statistical modeling by copula approach started with the pioneering work of 

Sklar (1959, 1973) where every multivariate distribution function can be uniquely 

constructed with a unique copula function which captures the dependence structure among 

the random variables and the marginal distribution functions of these random variables. Let 

𝐹(𝑥1, 𝑥2; 𝜆) be the joint distribution function of the random variables 𝑋1 and 𝑋2. Using 

Sklar’s theorem, 𝐹(𝑥1, 𝑥2; 𝜆) can be obtained with a unique copula function, 𝐶𝛼(𝑢1, 𝑢2) such 

as 𝐹(𝑥1, 𝑥2; 𝜆) = 𝐶𝛼(𝐹1(𝑥1; 𝜃1), 𝐹2(𝑥2; 𝜃2)) where 𝐹𝑖(𝑥𝑖; 𝜃𝑖) is the distribution function of 

𝑋𝑖, 𝜽 = (𝜃1, 𝜃2)
′ and 𝝀 = (𝜽, 𝛼)′.  

 

The paper is organized as follows. We introduce a class of copula-based regression 

models for bivariate binary outcomes in Section 2 and discuss likelihood-based methods for 

model estimation. The model is estimated by maximum likelihood method. Section 3 

introduces the data from the study population and summarizes the results from the proposed 

regression model applied to the data. Finally, Section 4, interprets the findings and concludes 

the paper. 
 

2.  Regression Model for Copula-based Bivariate Binary Outcomes 
 

Consider two correlated binary outcomes 𝑋𝑖 and 𝑌𝑖 obtained from each of n subjects, 

where 𝑋𝑖 and 𝑌𝑖 are observed for the presence of HIV and TB respectively. The underlying 
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latent counterpart of 𝑋𝑖 can be defined as 𝑋𝑖
∗ = 𝒛1𝑖

′ 𝜷1 + 𝜀1𝑖 where 𝒛1𝑖 denote explanatory 

variable, 𝜀1𝑖 is the random error and 𝜷1 is the corresponding parameter with 

 

𝑋𝑖 = {
0         𝑖𝑓 𝑋𝑖

∗ ∈ (−∞, 𝜂1) 

1           𝑖𝑓 𝑋𝑖
∗ ∈ (𝜂1, ∞)  

 

 

where 𝜂1 is unknown threshold.  

 

Similarly, the underlying latent counterpart of 𝑌𝑖 is presented as 𝑌𝑖
∗ = 𝒛2𝑖

′ 𝜷2 + 𝜀2𝑖 
where 𝒛2𝑖 denote explanatory variable, 𝜀2𝑖 is the random error and 𝜷2 is the corresponding 

parameter such that 

 

𝑌𝑖 = {
0            𝑖𝑓𝑌𝑖

∗ ∈ (−∞, 𝛾1)

1               𝑖𝑓𝑌𝑖
∗ ∈ (𝛾1, ∞)

  

 

where 𝛾1 is unknown threshold. 

 

Assuming 𝑋𝑖
∗~𝐹𝑋𝑖

∗ and 𝑌𝑖
∗~𝐹𝑌𝑖

∗

 
and the joint distribution function of (𝑋𝑖

∗, 𝑌𝑖
∗) as 

𝐹𝑋𝑖
∗𝑌𝑖
∗(𝑥𝑖

∗, 𝑦𝑖
∗), the joint distribution of 𝑋𝑖 and 𝑌𝑖 is then given by 

 

𝑃(𝑋𝑖 = 0, 𝑌𝑖 = 0) = 𝑃(𝑋𝑖
∗ ≤ 𝜂1, 𝑌𝑖

∗ ≤ 𝛾1) = 𝐹𝑋𝑖
∗𝑌𝑖
∗(𝜂1, 𝛾1)    

𝑃(𝑋𝑖 = 0, 𝑌𝑖 = 1) = 𝑃(𝑋𝑖
∗ ≤ 𝜂1, 𝛾1 ≤ 𝑌𝑖

∗) = 𝐹𝑋𝑖
∗(𝜂1) − 𝐹𝑋𝑖

∗𝑌𝑖
∗(𝜂1, 𝛾1)           

𝑃(𝑋𝑖 = 1, 𝑌𝑖 = 0) = 𝑃(𝜂1 ≤ 𝑋𝑖
∗, 𝑌𝑖

∗ ≤ 𝛾1) 
= 𝑃(𝑋𝑖

∗ ≤ ∞,𝑌𝑖
∗ ≤ 𝛾1) − 𝑃(𝑋𝑖

∗ ≤ 𝜂1, 𝑌𝑖
∗ ≤ 𝛾1) 

= 𝐹𝑌𝑖
∗(𝛾1) − 𝐹𝑋𝑖

∗𝑌𝑖
∗(𝜂1, 𝛾1) 

 

and 

 

𝑃(𝑋𝑖 = 1, 𝑌𝑖 = 1) = 𝑃(𝜂1 ≤ 𝑋𝑖
∗, 𝛾1 ≤ 𝑌𝑖

∗) 
= 𝑃(𝑋𝑖

∗ ≤ ∞,𝑌𝑖
∗ ≤ ∞) − 𝑃(𝑋𝑖

∗ ≤ ∞,𝑌𝑖
∗ ≤ 𝛾1) − 𝑃(𝑋𝑖

∗ ≤ 𝜂1, 𝑌𝑖
∗ ≤ ∞) + 𝑃(𝑋𝑖

∗ ≤ 𝜂1, 𝑌𝑖
∗ ≤ 𝛾1) 

= 1 − 𝐹𝑌𝑖
∗(𝛾1) − 𝐹𝑋𝑖

∗(𝜂1) − 𝐹𝑋𝑖
∗𝑌𝑖
∗(𝜂1, 𝛾1) 

 

The degree and type of dependence depends on the choice of copula. We consider the 

popular FGM copula, as this copula is comprehensive and allows for either negative or 

positive dependence. It also has a closed and simple analytic form. Moreover, the marginals 

are considered as standard logistic, i.e. logits for the binary dependent variables. The logit 

function is based on logistic distribution and its cdf turns out to be mathematically 

convenient. It is more popular in health sciences as the coefficients can be interpreted in 

terms of odds ratios. Therefore, the joint distribution function of 𝑋𝑖 and 𝑌𝑖 with logit 

marginals and copula function is obtained as  

 

𝐹𝑋𝑖
∗𝑌𝑖
∗(𝑥𝑖

∗, 𝑦𝑖
∗) = 𝐶𝛼(Λ(𝑥𝑖

∗), Λ(𝑦𝑖
∗)) 

 

where 𝐶𝛼(. , . ) is the copula function, Λ(. ) is the distribution function of a logistic random 

variable and is given by Λ(𝑧𝑖) = 1 (1 + exp(−𝑧𝑖))⁄ .  

 

Therefore, the joint density 𝑓𝑋𝑖,𝑌𝑖(𝑥, 𝑦) = 𝑃(𝑋𝑖 = 𝑥, 𝑌𝑖 = 𝑦) of 𝑋𝑖 and 𝑌𝑖 under the 

copula is as follows: 
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𝑃(𝑋𝑖ℎ = 𝑥, 𝑌𝑖 = 𝑦) =

{
 
 

 
 
𝐶𝛼(Λ(𝜁1),Λ(𝜉1))                                                                     𝑖𝑓 𝑥 = 0, 𝑦 = 0

𝐶𝛼(Λ(𝜁1), 1) − 𝐶𝛼(Λ(𝜁1),Λ(𝜉1))                                        𝑖𝑓 𝑥 = 0, 𝑦 = 1

𝐶𝛼(1,Λ(𝜉1)) − 𝐶𝛼(Λ(𝜁1),Λ(𝜉1))                                        𝑖𝑓 𝑥 = 1, 𝑦 = 0

1 − 𝐶𝛼(1,Λ(𝜉1)) − 𝐶𝛼(Λ(𝜁1), 1) + 𝐶𝛼(Λ(𝜁1),Λ(𝜉1))   𝑖𝑓 𝑥 = 1, 𝑦 = 1

 

 

where 

 

𝜁1 = 𝜂
1
− 𝒛1

′ 𝜷1 

𝜉1 = 𝛾1 − 𝒛2
′ 𝜷2 

 

Setting 𝜂1 = 𝛾1 = 0 and under FGM copula, 𝐶𝛼(𝑢1, 𝑢2) = 𝑢1𝑢2{1 + 𝛼(1 − 𝑢1)(1 − 𝑢2)}, 

the joint density 𝑓𝑋𝑖,𝑌𝑖(𝑥, 𝑦) becomes 

 

𝑃(𝑋𝑖 = 0, 𝑌𝑖 = 0) =
1

(1 + 𝑒−𝜁1)

1

(1 + 𝑒−𝜉1)
{1 + 𝛼

1

(1 + 𝑒𝜁1)

1

(1 + 𝑒𝜉1)
} 

𝑃(𝑋𝑖 = 0, 𝑌𝑖 = 1) =
1

(1 + 𝑒−𝜁1)
[1 −

1

(1 + 𝑒−𝜉1)
{1 + 𝛼

1

(1 + 𝑒𝜁1)

1

(1 + 𝑒𝜉1)
}] 

𝑃(𝑋𝑖 = 1, 𝑌𝑖 = 0) =
1

(1 + 𝑒−𝜉1)
[1 −

1

(1 + 𝑒−𝜁1)
{1 + 𝛼

1

(1 + 𝑒𝜁1)

1

(1 + 𝑒𝜉1)
}] 

𝑃(𝑋𝑖 = 1, 𝑌𝑖 = 1) = 1 −
1

(1 + 𝑒−𝜁1)
−

1

(1 + 𝑒−𝜉1)
 

+
1

(1 + 𝑒−𝜁1)

1

(1 + 𝑒−𝜉1)
{1 + 𝛼

1

(1 + 𝑒𝜁1)

1

(1 + 𝑒𝜉1)
} 

 

These joint probabilities described above depend on the selected copula as well as 

parameter vector 𝝀 = (𝜷1, 𝜷2, 𝛼)
′. If the true copula is assumed to belong to a parametric 

family, consistent and asymptotically normally distributed estimates of the parameter 𝝀 can 

be obtained through maximum likelihood method. 

 

Assuming an independent sample of n observations on (𝑥𝑖, 𝑦𝑖 , 𝒛1𝑖, 𝒛2𝑖), the likelihood 

function is given by 

 

   𝐿(𝝀; 𝑥, 𝑦, 𝒛1, 𝒛2) = ∏ {𝑃(𝑋𝑖 = 0, 𝑌𝑖 = 0|𝒛1𝑖, 𝒛2𝑖)
(1−𝑥𝑖)(1−𝑦𝑖)

𝑖  

× 𝑃(𝑋𝑖 = 0, 𝑌𝑖 = 1|𝒛1𝑖, 𝒛2𝑖)
(1−𝑥𝑖)𝑦𝑖 × 𝑃(𝑋𝑖 = 1, 𝑌𝑖 = 0|𝒛1𝑖, 𝒛2𝑖)

𝑥𝑖(1−𝑦𝑖) 

                                                                                     × 𝑃(𝑋𝑖 = 1, 𝑌𝑖 = 1|𝒛1𝑖, 𝒛2𝑖)
𝑥𝑖𝑦𝑖} 

 

The corresponding log-likelihood function is then given by: 

 

    𝑙(𝝀; 𝑥, 𝑦, 𝒛1, 𝒛2) = ∑ {(1 − 𝑥𝑖)(1 − 𝑦𝑖) log 𝑃(𝑋𝑖 = 0, 𝑌𝑖 = 0|𝒛1𝑖, 𝒛2𝑖)
𝑛
𝑖=1  

+(1 − 𝑥𝑖)𝑦𝑖 log 𝑃(𝑋𝑖 = 0, 𝑌𝑖 = 1|𝒛1𝑖, 𝒛2𝑖) + 𝑥𝑖(1 − 𝑦𝑖) log 𝑃(𝑋𝑖 = 1, 𝑌𝑖 = 0|𝒛1𝑖, 𝒛2𝑖) 
                                                                                      +𝑥𝑖𝑦𝑖 log 𝑃(𝑋𝑖 = 1, 𝑌𝑖 = 1|𝒛1𝑖, 𝒛2𝑖)} 
 

The above presented log-likelihood function can be maximized using numerical 

optimization methods. These can use analytical first derivatives that have a relatively 

tractable form.  
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3.  Data Analyses 
 

This study was conducted at Department of TB & Chest Disease, Integrated 

Counselling and Testing Centre (ICTC) and Department of Medicine; Assam Medical 

College & Hospital, Dibrugarh from January 2007 to November 2008. Patients coming with 

suspected infection with HIV or Tuberculosis were sent to Department of TB and Chest 

Disease/RNTCP from ICTC. The study was approved by Assam Medical College & Hospital 

Ethics Committee and performed according to the Declaration of Helsinki, 1975. Written 

informed consent for participation in the study was obtained from participants. A total of 184 

patients both male and female were screened for the study. Information was collected on 

different socio-demographic characteristics and sexual behaviors. Blood samples were drawn 

to test for HIV and Tuberculosis. HIV infection was determined using HIV enzyme-linked 

immunosorbent assay (ELISA), and reactive samples were confirmed using Wellcozyme HIV 

ELISA test. Western blot tests were used to confirm discordant ELISA test results. Presence 

of Tuberculosis were verified by acid fast bacilli (AFB) sputum smear, mycobacterial culture, 

histopathology, by clinical suspicion or radiological epidemiologic. Socio-demographic 

characteristics (age in years, gender, occupation), route of transmission, types of tuberculosis 

were considered as covariates in our analyses.  
 

3.1.  Results 
 

One hundred and eighty four patients were recruited for the study, out of which 74% 

were male and 26% were female. The median age of the participants was 35 years (IQR = 

25–54). Among the patients, 121 were HIV infected of which 35 were TB infected. The 

prevalence of TB among non-HIV infected patients was 11.11% compare to the prevalence of 

TB infection among HIV infected patients at 28.92% which is more than 2.6 times higher. 

The rate of HIV in TB positive was 83.33% compare to the rate of HIV among TB negative 

at 60.56%. The Pearson Chi-square test of interdependence between HIV and TB was highly 

significant indicating that patients who were infected by one of the infections were likely to 

be infected by the other as well (phi-coefficient = 0.201, p-value < 0.01). About 94% of the 

participants had heterosexual as route of transmission of HIV, and only 6% had homosexual 

as route of transmission of HIV. Eight-eight percent of HIV infected female were 

housewives, rest were commercial sexual workers. Among HIV infected male 74% were 

paramilitary & military personnel and private sector workers, 17% were drivers and rickshaw 

puller. Among TB infected patients 54% had pulmonary type of infection, and 46% had 

extra-pulmonary type of infection. Out of extra-pulmonary infection, lymphadenopathy were 

26%, intestinal were 14% and meningitis were 6%. Table 1 showed male had more than 

twice odds (Odds Ratio (OR): 2.664, 95% Confidence Interval (CI): 0.845, 8.401) to have co-

infection of HIV and TB. Urban patients had higher in-confection of HIV and TB (OR: 

1.733, 95% CI: 0.672, 4.471) than their rural counterpart. Smokers showed almost 4 times 

odds (OR: 3.704, 95% CI: 1.513, 9.068) of developing co-infection. Drivers and paramilitary 

personnel showed seven times (OR: 7.200, 95% CI: 2.248, 23.063) and three times (OR: 

2.965, 95% CI (0.964, 9.119) odds in favour of co-infection.  
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Table 1: Possible risk factors for tuberculosis (TB) in HIV and TB co-infected patients 

  

 

HIV + TB HIV OR (95% CI) 

Gender 

 

 

 

 

 

Female 4 22 1 

 

Male 31 64 2.664 (0.845, 8.401) 

Age 

 

 

 

 

 

<20 1 2 1 

 

20-40 29 57 0.983 (0.085, 11.295) 

 

40-60 4 24 3.000 (0.217, 41.353) 

 

>60 1 3 1.500 (0.055, 40.635) 

Marital status 

 

 

 

 

 

Married 11 25 1 

 

Single 24 61 1.118 (0.477, 2.622) 

Residence 

 

 

 

 

 

Rural 7 26 1 

 

Urban 28 60 1.733 (0.672, 4.471) 

Smoking 

 

 

 

 

 

No 8 45 1 

 

Yes 27 41 3.704 (1.513, 9.068) 

Drug dependency 

 

 

 

 

 

No 13 37 1 

 

Yes 22 49 1.278 (0.569, 2.865) 

Occupation  

 

 

 

Private 5 36 1 

 

Para-Military 14 34 2.965 (0.964, 9.119) 

 

Driver 16 16 7.200 (2.248, 23.063) 

ROT 

 

 

 

 

Homosexual 

 

1 10 1 

Heterosexual 

 

34 76 4.474 (0.551, 36.353) 
 

Table 2: Outcome of Bivariate Binary Model: HIV and TB under FGM copula 

Parameter OR SE 95% CI 

HIV 

   Age 1.372 0.135 (1.091, 2.114) 

Gender 2.873 0.253 (1.138, 4.223) 

ROT 5.611 1.574 (2.893, 26.432) 

Occupation 4.627 1.282 (1.482, 7.324) 

Residence 1.825 0.831 (1.121, 3.473) 

TB 

   Age 1.245 0.143 (0.913, 1.865 

Smoking 3.122 0.986 (1.628, 7.421) 

Residence 1.386 0.668 (0.739, 3.116) 

Occupation 3.192 1.154 (1.433, 6.310) 

Gender 

Correlation (𝛼) 
2.521 

2.084 

0.431 

0.382 

(0.957, 3.264) 

(0.891, 4.884) 
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The risk factors of HIV and tuberculosis were identified using the preliminary analysis. 

The variables that were found to be significantly associated with HIV and TB in the 

preliminary analysis were further considered for multivariate analysis. Age, gender, route of 

transmission (ROT), occupation were associated with both infections. We did a multivariate 

analysis using these variables as covariates in a joint response model. The results of our 

multivariate analysis are reported in Table 2. Odds ratios together with their corresponding 

standard errors and 95% confidence intervals are presented. Despite the relatively small 

sample, we found a significant association between HIV and TB. The results indicate that 

higher prevalence of HIV was associated among younger age patients. Male had significantly 

higher prevalence of HIV and TB than female. The odds of having HIV in younger people 

were 1.372 times higher than that of older people (OR = 1.372; 95% CI: 1.091–2.114). Men 

were associated with higher rates of HIV (OR = 2.873; 95% CI: 1.138–4.223) and TB (OR = 

2.521; 95% CI: 0.957–3.264) infections. Heterosexual route of transmission was highly 

associated with higher prevalence of HIV (OR = 5.611; 95% CI: 2.893–26.432). The odds of 

having HIV and TB in urban patients were 1.825 times (OR = 1.825, 95% CI: 1.121-3.473) 

and 1.186 times (OR = 1.186, 95% CI: 0.439-3.116) higher. HIV was significantly associated 

with TB (OR = 2.084; CI: 0.891 – 4.884).  
 

4.  Conclusion 
 

In this paper, we developed a joint response model for HIV and TB infections. Our 

study aimed to assess the association of HIV and TB infections with their determinants 

among peoples in Assam, north-eastern part of India. Socio-demographic characteristics such 

as age, gender and occupation as well as biological risk factors such as route of transmission 

of HIV and TB were considered. One hundred and eighty-four patients coming with 

suspected infection with HIV or TB were included in the study at Department of TB and 

Chest Disease/RNTCP, Assam Medical College and Hospital. 

  

Assam has HIV prevalence of about 0.06%, compared to India’s prevalence of 0.22% 

and TB prevalence of about 0.001%. The prevalence rates of HIV and TB among the study 

participants were 65.8% and 22.8%, respectively. The rate of TB in HIV infected patients 

was 2.6 times higher than rate of TB in non-HIV infected patients. Moreover, the rate of HIV 

in TB positive was 1.380 times higher the rate of HIV among TB negative. These indicate 

that the chance of infected from a disease increases for patients who have already infected 

from other disease. Thus, a joint response model is considered to accommodate the 

interdependence between the two infections of HIV and TB with the potential risk factors.  

We found high prevalence of HIV among younger patients. The odds of having HIV in 

younger patients were 1.372 times higher than in older patients (OR = 1.372; 95% CI: 1.091–

2.114). This finding may be result of demographical and social structure of India where most 

of the people are from young generation and they are more exposed to the western culture 

than their older counterpart. Men were associated with higher rates of HIV and tuberculosis 

infections. These findings are also associated with the social structure of India where women 

do not get much freedom and have restricted social life. Heterosexual route of transmission 

was highly associated with higher prevalence of HIV. Smoking played a pivotal role in 

developing TB. Study showed people from urban area were more prone to develop the co-

infection of HIV and TB. The study also found that HIV was significantly associated with 

TB. Previous studies of HIV and TB co-infection modelled each infection separately ignoring 

the potential biological association between the two infections. 
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Abstract 

 

The growth trajectory of the mobile telephone subscribers is highly nonlinear. The 

piecewise nonlinear growth model, comprising the well-known Gompertz and Bass 

models, was shown to be adequately describing the underlying data generating process of 

mobile telephone subscribers. This study used monthly time series data from March 1997 

to December 2018 of telecom Circle A, representing the industrially advanced states like 

Maharashtra, Gujarat, Andhra Pradesh, Karnataka, and Tamil Nadu, was applied to 

develop the model.  We partition the monthly data into the analysis sample (March 1997 

to December 2017) and the test sample (January 2018 to December 2018). The parameters 

of the piecewise nonlinear model were estimated using Levenberg-Marquardt and 

sequential quadratic programming algorithms. The piecewise nonlinear model comprising 

Gompertz and Bass growth models was suitable for describing the monthly mobile 

subscribers’ data in Circle A. The developed model was statistically validated using an 

appropriate coefficient of determination for the nonlinear models and Root Mean Squared 

Error (RMSE). We found the RMSE to be comparable for both training and the test sets. 

The forecasting capabilities of the piecewise nonlinear model, under mild violation of 

residual diagnostics, are compared to exponential smoothing (Holt’s) and Gompertz 

models. We compared the performance of the model to the best fit Gompertz and Holt’s 

models. In the test sample, we found the RMSE to be lower in the piecewise nonlinear 

model comprising Gompertz and Bass compared to the Holt’s as well as the Gompertz 

model. We computed the forecast values of the subscribers during April-December 2020 

using the developed model. As evident from the test sample and the published data of the 

Telecom Regulatory Authority of India (TRAI), the prediction from the developed model 

is lower than the actual values. The maximum potential number of subscribers in Circle A 

was 421.545 million, likely to be achieved in 2027. However, as the model predicted 

values are marginally smaller than the actual values, the maximum potential is expected 

to be completed before 2027.  
 

Key words: Piecewise nonlinear regression model; Gompertz model; Bass growth model; 

Sequential quadratic programming algorithm; Holt’s model; Root mean squared error. 
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1.  Introduction 

Indian telecommunication market is the second-largest in the world. The telecom sector 

showed remarkable growth and contributed substantially to creating new jobs and providing 

revenue to the Government. The industry will contribute ₹14.5 lakh crore to the economy and 

support 3 million direct jobs and 2 million indirect jobs by 2020 (GSMA, 2019). In 2015, the 

telecom sector accounted for 6.5% of India's Gross Domestic Product (GDP). With the leveraging 

of 5G technology, in 2020, it is estimated to reach 8.2% of India's GDP (ET, 2019, Wikipedia, 

2020), if not getting delayed due to the COVID-19 pandemic. The bidding decision of the 5G 

spectrum and the telecom service providers' price in different circles would be based on the demand 

in that circle, among other parameters. All the stakeholders would be interested to know the future 

potential of the telecom markets in terms of subscriber base in the years to come. We can estimate 

the demand of a circle by predicting the number of mobile subscribers. There are four telecom 

circles in India, namely, metro, A, B, and C. In this study, we develop a model to forecast the total 

mobile subscribers of Circle A, which is comprising of industrially advanced states viz., 

Maharashtra, Gujarat, Andhra Pradesh, Karnataka, and Tamil Nadu. The number of subscribers 

(henceforth by subscribers, we would refer to customers subscribed to GSM services only) attained 

from 9698 in March 1997 to 3505.27 lakhs in December 2018 in Circle A – an impressive growth 

in subscriber base (COAI, 2018, TRAI, 2018).  

In this study, our objectives are: (i) to develop an appropriate model to forecast the 

numbers of mobile subscribers in Circle A; (ii) to apply the developed model to forecast the 

numbers of mobile subscribers in Circle A. The modeling approach employed is that of piecewise 

nonlinear growth models. The results so obtained are compared to the exponential smoothing 

(Holt’s) and Gompertz models. We compared the piecewise model's performance to the Holt’s and 

Gompertz models using the test set. We divide the paper into five sections. Section 2 reviews the 

existing literature on piecewise nonlinear regression and exponential smoothing models and their 

applications. We discussed models, parameter estimation, fit statistics, and model selection metrics 

in Section 3. We discussed the results and salient findings in Section 4. Finally, in Section 5, we 

present the conclusion and the way forward.   

2.  Literature Review 

The piecewise regression models are also known as segmented regression or broken stick 

regression models. In Econometrics, it is known as interrupted time series regression (Linden 

and Arbor, 2015). In this method, we partition the outcome (or the study) variable into regions, 

and a separate model is fit to each part. The piecewise regression is employed when the data is 

hypothesized to have been generated by more than one model (McZgee and Carleton, 1970). 

The piecewise linear regression models are pragmatic in the bio-physical (Vieth, 1989, Malash 

and El-Khaiary, 2010) and socio-economic domains (Birgit, 2006). The piecewise nonlinear 

regression models are also applied to biological and socio-economic studies (Oh and Kim, 

2002, Maceina, 2007, Morrell et al., 1995, Vanli and Kozat, 2014).  

The application of the growth models is the most popular approach to study the growth 

trajectory of mobile subscribers in different markets, namely, Central and Eastern Europe 

(Gruber, 2001), Asia Pacific region (Wenrong et al., 2006), Greece (Michalakelis et al., 2008) 

and Taiwan (Wu and Chu, 2010). Several researchers (Sridhar, 2010; Hedau and Soni, 2016) 

also studied India's mobile telephone market. The effect of different techno-economic 

variables, among other things, on the growth of mobile services in different regions in India 

using panel data, was studied by Sridhar (2010). It was found that competition and network 
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were the two crucial variables to impact mobile services' growth. Though it provided 

significant insight into the impact of variables on mobile services' growth, it failed to make a 

time series forecast. The major lacuna in Hedau and Soni (2016) were in the model 

development and parameter estimation. The linearized model parameters were estimated; 

however, the original model was recommended as a forecast model. We can overcome this 

shortcoming by employing nonlinear estimation procedures. Though several studies were 

conducted to track the growth trajectory with limited success, no attempt has been made to 

engage piecewise nonlinear growth models to understand mobile subscribers' growth path. As 

growth models are mechanistic, they have advantages in understanding the data generating 

process and its future potential. We discuss the nonlinear growth models, piecewise nonlinear 

growth models, and related issues in the next section.   

3.  Models and Methodology 

3.1. Nonlinear growth models 

Let n ( t ) and N ( t ) denote the number of subscribers and the cumulative number of 

subscribers, respectively, to mobile service at time t in Circle A. If t0 denotes the time at 

starting, i.e., t = 0, then at time t, the cumulative number of subscribers can be expressed as: 

𝑁 ( 𝑡 ) =  ∫ 𝑛 ( 𝑡 )𝑑𝑡

t

t0

 

where n ( t ) is the non-cumulative number of adopters at time t. Further, let, 

dN ( t )

dt
 = rate of growth at time t, and  

1

N ( t )

dN ( t )

dt
= relative rate of growth at time t. 

Let K denote the total number of potential subscribers in Circle A. It is also known as 

the carrying capacity or maximum potential of the system, i.e., the markets of Circle A. Let 

us assume that: 

(i) the rate of growth is proportional to the interaction of adopters and non-adopters. 

This can be expressed as: 

 

In differential equation form, it becomes: 

  dN ( t )

dt
 = rN ( t )[ 1 - N ( t )/K ].  (2)  

Here, r is the intrinsic growth rate. The solution to this equation yields the following model: 

 
N ( t ) = 

K

1 + 
( K - N0 )

N0
 exp( -rt )

, 
(3)  

where N0 is the number of subscribers at t = 0.     

Reparametrizing, the model can be written as:  

where B = ( K - N0 )/N0. 

 dN ( t )

dt
 ∞ N ( t ) [1 - 

N ( t )

K
] . (1)  
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This model is known as the logistic growth model. The inflection point of this model is at 

K/2. The model described in Eq. (3) or the reparametrized model in Eq. (4) appeared 

deterministically as if data never deviates from the model. It is unrealistic. To make the model 

realistic, independently, identically, and normally distributed error term is added to the right-hand 

side (RHS) of the mathematical model. The resulting nonlinear regression model is: 

 
N ( t ) = 

K

1 + B * exp ( -rt)
+ εt (5) 

 

(ii) The relative rate of growth is proportional to the logarithm of the ratio of carrying 

capacity to subscribers' number at time t. Hence, this can be represented as: 

 1

N ( t )

dN ( t )

dt
 ∞  ln (

K

N ( t )
). (6)  

Therefore, the model in differential equation form can be expressed as: 

 𝑑𝑁 ( 𝑡 )

𝑑𝑡
= 𝑟𝑁 ( 𝑡 ) ln (

𝐾

𝑁 ( 𝑡 )
) (7)  

with the boundary condition N (t = t0) = N0  = cumulative number of adopters at time t0. 

 

The parameter r is known as the intrinsic rate of growth. The solution to the above 

differential equation results in the following model: 

 N ( t ) = K* exp ( -B* exp ( -rt )) (8)  

where B = ln( N0 / K ). 

 

This model is known as the Gompertz model. By adding an error term to the RHS, we 

obtain the following statistical model: 

 N ( t ) = K* exp ( -B* exp ( -rt)) + εt .  (9)  

The model is asymmetric, and the point of inflection is at K/e.  

(iii) the rate of growth is proportional to the number of non-adopters, which can be 

expressed as: 

 dN ( t )

dt
 ∞ [ K - N ( t ) ]. (10)  

In the differential equation form, it becomes: 

 dN ( t )

dt
 = r [ K - N ( t ) ]. (11)  

The solution to this equation yields the following model: 

 N ( t ) = K - (K - B ) * exp ( −𝑟𝑡 ), (12)  

where r > 0 and K > B > 0.  Here, K is the maximum potential, and B is the number of 

subscribers at t = 0. The statistical model can be written as: 

 

 

 

N ( t ) = 
K

1 + B * exp ( -rt)
 , (4)  



2021] PIECEWISE NONLINEAR GROWTH MODELS 151 

 

 

 𝑁( t ) = K - ( K - B )*exp( -rt ) + εt (13)  

The model in Equation 13 is known as monomolecular (MM). The models in Equations 5, 

9, and 13 are S-shaped growth models. These are nonlinear models in the statistical regression 

sense because at least one parameter of these models appears nonlinearly. The three parameters 

viz., K, B, and r of the models in Equations 5, 9, and 13, are estimated. For further details on S-

shaped nonlinear growth models and the Richards model, readers can refer to Seber and Wild 

(2003).  

 

(iv) The rate of growth is influenced by two types of subscribers, namely, innovators and 

imitators. We present the differential equation below:  

 

 dN ( t )

dt
 = p [ m - N ( t ) ] + ( 

q

m
 ) N ( t )[ m - N ( t ) ] (14)  

 

Here, m is the market potential, p and q are the coefficients of innovation and imitation. The 

solution of the above differential equation results in the following model: 

 

 
N ( t ) = m

1 - 𝑒𝑥𝑝 − ( 𝑝+𝑞 ) 𝑡

1+ ( 
𝑞
𝑝  ) * exp

- ( p + q ) t
 (15)  

By adding an error term to the RHS, we obtain the following statistical model: 

 N (t ) = m
1 -  exp- ( p + q ) t

1 + ( 
𝑞

𝑝
 ) * 𝑒𝑥𝑝−( 𝑝+𝑞 ) 𝑡

 + εt (16)  

In this model, m > 0, p > 0, and q > 0. It is also a nonlinear model in the regression sense. 

The parameters of the model viz., m, p, and q are to be estimated. For further details on the Bass 

model, the readers can refer to Bass (1969) and Rogers (2003). 
 

3.2.  Piecewise nonlinear growth models 

The piecewise nonlinear model of the following type is considered in this study: 

 ( t  <  𝑇∗) * N1 ( t ) + ( t  >=  𝑇∗) * N2 ( t ). (17)  

In Equation (17), 𝑇∗ is the value of t at which the growth trajectory is found to be changing 

from one model to another model. It is also known as the knot, breaking point, change point, or 

joining point. The two nonlinear functions are denoted by N1 ( t ) and N2 ( t ). If ( t  <  𝑇 ∗) is true, 

it returns one else zero. Similarly, if ( t > = 𝑇∗ ) is true, it returns 1 else zero. Here, N1 ( t ) can be 

any growth model viz., logistic, Gompertz, monomolecular, Bass, Richards, or any other growth 

model. The function, N2 ( t ), can also be any growth model viz., logistic, Gompertz, 

monomolecular, Bass, Richards, or any other growth model. As an example, let us consider the 

following combination: 

 

 𝑁 ( 𝑡 ) = ( 𝑡 <  𝑇∗ ) ∗ ( 𝐾 ∗ 𝑒𝑥𝑝 ( −𝐵 ∗ 𝑒𝑥𝑝( −𝑟𝑡 )))  (18) 
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+ ( 𝑡 ≥  𝑇∗) ∗ 𝑚 

1 − 𝑒𝑥𝑝− ( 𝑝 + 𝑞) 𝑡

1 + (
𝑞
𝑝) ∗ 𝑒𝑥𝑝− ( 𝑝+𝑞 ) 𝑡

 + 𝜀𝑡 

 

In this segmented (piecewise) study, the first segment of the sample data is hypothesized to 

have been generated by a Gompertz model. The second segment of the sample data is hypothesized 

to have been caused by a Bass model. In general, when we consider ‘n’ number of models for 

modeling a data set having two segments, there can be n2 number of piecewise models.  

 

3.3.    Estimation of parameters 

The nonlinear model differs in their estimation properties from linear regression models. 

Under the assumption of an independently and identically distributed normal error term, the linear 

model gives rise to unbiased, normally distributed minimum variance estimators. Nonlinear 

regression models tend to do so as the sample size becomes very large (asymptotically) 

(Ratkowsky, 1990, Ross, 1990, Intriligator, 1996). Like linear regression, in nonlinear regression 

also normal equations are obtained. However, these normal equations are nonlinear, and no explicit 

solutions can be obtained. Different algorithms are available in the literature to solve nonlinear 

normal equations. Three main algorithms are (i) Gauss-Newton, (ii) Sequential Quadratic 

Programming, and (iii) Levenberg-Marquardt. The sequential quadratic programming algorithm is 

appropriate for nonlinear constraint models. It is a combination of Lagrangian relaxation, active set 

strategy, and Newton-Raphson methods. The algorithm yields stable solutions in the majority of 

situations. The details of these methods and their merits and demerits are available in the 

literature (Draper and Smith,1998; Nocidal and Wright, 2006). These algorithms are iterative 

and require starting values of the parameters. A good starting value can ensure global 

convergence and can obtain a minimum value of the loss function. The sum of squared residuals 

can be considered a loss function in estimating piecewise nonlinear regression models' 

parameters. The choice of good starting values can influence the convergence of the algorithm 

in locating the fitted value or between rapid and slow convergence to the solution. However, 

there is no standard procedure for computing the starting values of the parameters. Sometimes 

a combination of two or three methods results in good starting values. In this study, a combination 

of techniques is used to obtain the starting values of the parameters. IBM SPSS Statistics version 

26 software package is used to estimate the models' parameters and computation of goodness of 

fit measures (IBM, 2019). The goodness of fit of the nonlinear model is assessed by the 

coefficient of determination (R2). 

 

However, as Kvalseth (1985) pointed out, eight different expressions for R2 appear in the 

literature. One of the most frequent mistakes occurs when the fits of a linear and a 

nonlinear model are compared by using the same R2 expression. Thus, a logistic or a 

Gompertz model may first be linearized by using a logarithmic transformation and then 

fitted to data by using the ordinary least squares method. The R2-value is then often 

calculated using the log of observed and log of predicted data points. The R2 is, erroneously, 

interpreted as a measure of goodness of fit of even the original nonlinear model. Scott and Wild 

(1991) have given an example where two models are identical for all practical purposes 

and yet have very different values of R2 calculated on the transformed scales. Kvalseth (1985) 

has emphasized that the following R2 

 𝑅2 = 1 −
𝑅𝑆𝑆

𝑇𝑆𝑆
, (19)  
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where RSS is the residual sum of squares, and TSS is the total sum of squares, which is entirely 

appropriate even for nonlinear models. We present below the other necessary summary measures 

for nonlinear models: 

 

 

𝑅𝑜𝑜𝑡 𝑀𝑒𝑎𝑛 𝑆𝑞𝑢𝑎𝑟𝑒𝑑 𝐸𝑟𝑟𝑜𝑟 (𝑅𝑀𝑆𝐸) =  √
∑ ( 𝑁 ( 𝑡 ) −  𝑁 ( 𝑡 ))2̂𝑇

𝑡=1

𝑇
 . (20) 

 

 

Here, T is the total number of observed values. N ( t ), and 𝑁(𝑡)̂ are the number of actual 

and the predicted subscribers.  
 

Mean Absolute Percentage Error (MAPE) is defined as: 

 

 
MAPE =

1

𝑇
∑ |

𝑁(𝑡)−𝑁(𝑡)̂

𝑁(𝑡)
| ∗ 100𝑇

𝑡=1  (21)  

N ( t ), and 𝑁(𝑡)̂ are the number of actual and the predicted subscribers, respectively.  

4.  Results  

Monthly data on mobile subscribers in the Circle A, from March 1997 to December 2018, 

was collated from the Cellular Operators Association of India (COAI) (www.coai.in). Currently, 

in the COAI repository, monthly data is available from January 2005 - December 2018. The data 

before 2005 was collated from the same repository in 2013 when it was available in the database. 

Data is currently available on the TRAI website; however, there is a difference in the subscribers’ 

numbers reported by COAI and TRAI. For example, in January 2018, COAI reported 340.41 

million subscribers, whereas TRAI reported 402.81 million subscribers in Circle A. To avoid 

mixing data from two sources, only data from COAI, which is available until December 2018, has 

been analyzed. Moreover, cumulative data is required for the estimation of parameters of the 

growth models. The cumulative data is essentially increasing or equal to the previous observation 

where N ( t+1 ) >= N ( t ). However, in the reported data in some months, this essential criterion 

has been violated.  Wherever N ( t+1 ) was reported to be smaller than the N ( t ), it has been 

imputed by the N ( t ). With this simple and essential imputation, the monthly data were pre-

processed to estimate the model's parameters.  Further, the complete data set was partitioned into 

an analysis sample and the test sample. The monthly data from March 1997 to December 2017 

were used as the analysis sample, and January 2018 to December 2018 was retained as the test 

sample. The line plot of the data is presented in Figure 1. The line plots of Figure 1 and Figure 2 

are generated in R studio (R Core Team, 2016, RStudio Team, 2015). Figure 1 depicts the growth 

trajectory of the corrected level data. The growth trajectory appears to be S-shaped until 2016 and 

follows a different path (Figure 1).  
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Figure 1: Partitioning of the data into Segment 1 and Segment 2 by the vertical line 

It is hypothesized that the underlying data generating process follows an S-shaped model. 

The traditional growth models, namely, logistic, Gompertz, monomolecular, Bass, and Richards, 

were fitted to the data using a nonlinear estimation method.  The results are presented in Table 1. 

Table 1: Results of fitting nonlinear growth models to subscribers’ data of Circle A 

Fit Statistics/Model Logistic Gompertz MM Bass 

R 2 0.98 0.99 0.952 0.98 

RMSE 15.89 13.85 26.64 15.84 

MAPE 1.38 0.36 49.94 0.55 

K (millions) 318.79 359.29 IE  

m (millions)    319.74 

IE: Inadmissible estimate 

The Gompertz model appears superior to other models in R2, RMSE, and MAPE. The next 

appropriate model is the Bass model. The Richards model resulted in the non-convergence of the 

iterative algorithm. The maximum potential of the market is estimated using the parameter K. The 

actual maximum number of subscribers in the sample is 357.378 million. The monomolecular 

model resulted in an inadmissible estimate. The logistic and Bass models resulted in an estimate 

lower than the actual maximum value. The estimate of K given by the Gompertz model is only 

marginally higher than the actual maximum value. The Gompertz model is appropriate for 

describing the subscribers' data of Circle A based on the fit statistics.  The estimated parameter 

value of K in the Gompertz model is admissible. We found that the results did not support the 

assumption of the normality of residuals in the Gompertz model using the Anderson-Darling test. 

Moreover, the RMSE of 13.85, though minimum among all the models, is not small in an 

absolute sense. Hence, we look for alternative models for describing the sample data. To this end, 

we employ piecewise nonlinear growth models. The change point was identified visually by 

examining the graph (Figure 1) and scanning the values of the data during 2016 and found to be in 
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August 2016 ( t < 235 ); t is the index of the time series representing month and year of the series. 

The change point divides the series into two segments, namely, segment one and segment two. We 

present this in Figure 1. 

We hypothesize that the two segments can be modeled using one model applied to two 

segments separately or by two models. To evaluate this hypothesis, we fitted all 25 model 

combinations. To validate the piecewise nonlinear growth models' performance, we have 

partitioned the sample data to the training set (March 1997 to December 2017) and the test set 

(January 2018 to December 2018). Considering that the valuable information is present in the 

recent observations, we have retained only 12 observations (i.e., one year’s data) in the test set.  

 The piecewise nonlinear growth models are fitted to the training set, and the performance of 

the model was evaluated on the test set. Out of all 25 combinations, not all combinations converged 

or resulted in admissible parameter estimates. The combinations which converged and resulted in 

admissible parameter estimates are presented here. Two combinations, namely the Gompertz 

model for both the segments (let us name it Gompertz-Gompertz (G-G)), and the Gompertz model 

for Segment 1 and Bass model for Segment 2 (let us name it Gompertz-Bass (G-B)) were found to 

be comparable. We present here two sets of initial values, namely, K = 200, B = 2, r = 0.05, m = 

400, p = 0.00005, and q = 0.05; and K = 300, B = 2, and r = 0.05, m = 400,   p = 0.00005, q = 0.05. 

The first three parameters pertain to the Gompertz model, and the following three parameters 

pertain to the Bass model. These are obtained by combining linearization, intelligent guesses, and 

property of the model. We present the results in Table 2. 

Table 2: Results of fitting piecewise nonlinear growth model to the analysis sample 

Fit Statistics/Model G-G G-B 

R2 0.99 0.99 

RMSE 6.94 7.14 

MAPE 0.46 0.43 

Parameter estimate (only maximum potential) 

K (millions) 384.07  

m (millions)  421.54 

 

The results of the G-G model presented above are that of a local minimum. The algorithm 

failed to converge to a global minimum even when widely separated initial values were used. 

Therefore, it is prudent not to compare the results of G-G to that of G-B, which resulted in global 

convergence. However, for the sake of completeness, we presented the results here. The 

performance of the models (G-G and G-B) is compared using the test sample. The RMSE of the G-

G model in the test sample was found to be 71.78, whereas the same value of the G-B model was 

13.12. In the test sample, the value of the RMSE of the G-B model is much better than the G-G 

model. Furthermore, in the test sample, the value of the RMSE of the G-B model is marginally 

better than the only Gompertz model. Let us compare the test series results to that of the exponential 

smoothing model to decide the final model.    

We describe below the exponential smoothing model (also known as Holt’s model) 

(Gardner, 1985, Hanke and Wichern, 2013): 

y
t+1

= αxt + (1 - α)(y
t + Tt)     (22)  
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Tt+1= γ(y
t+1

 - y
t
) + (1 - γ) Tt (23)  

Ht+h= y
t+1

 + hTt+1, (24)  

where, yt+1 = smoothed value for period t+1, α = smoothing constant for the level (0 < α < 1), xt = 

observed value in period t, Tt+1 = trend estimate, γ = Smoothing constant for the trend estimate (0< 

γ<1), h = number of periods ahead to be forecast, and Ht+h = Holt’s forecast value for period t+h. 

The estimated values of alpha and gamma parameters of Holt's model were 0.933 and 0.134, 

respectively. The RMSE of Holt's model was found to be 2.883 and 14.97 for the training and the 

test samples, respectively. Therefore, the RMSE of the piecewise nonlinear growth model 

comprising Gompertz and Bass models was found to be superior to Holt's model. The residual 

diagnostics of the piecewise nonlinear model was found to deviate from the assumptions of 

normality and independence. However, both these deviations are mild and ignored because of the 

superior comparative performance of the model. Given the above, it can be concluded that the data 

generating process of the mobile subscribers' data of the Circle A was piecewise nonlinear, which 

can be modeled by Gompertz and the Bass models. We present the parameters of the final model 

in Table 3.  

Table 3: Parameter estimates of piecewise nonlinear model 

Parameters K B r 

Estimates 291.965 86.168 .031 

Parameters m p q 

Estimates 421.545 
7.328x10-

9 
.07 

In the final model, the estimated value of the parameter 'p' is minimal. Such a small value, 

which is not exactly equal to zero but near zero, can occur and be meaningful in the present context 

as the data on which the models have been fitted are in millions. We present the final fitted model 

below: 

𝑁( 𝑡 ) = ( 𝑡 <  𝑇∗) ∗ ( 291.965 ∗ 𝑒𝑥𝑝−86.168∗ 𝑒𝑥𝑝−.031∗𝑡
 ) 

+ ( 𝑡 > =  𝑇∗) ∗ 421.545 
1 −  𝑒𝑥𝑝−( 7.328 x 10−9 + .07) 𝑡

1 + ( 
. 07

7.328 x 10−9) ∗ 𝑒𝑥𝑝− ( 7.328 x 10−9 + .07 ) 𝑡
 

The actual (dotted line) and the predicted (solid line) trajectory of the mobile subscribers are 

depicted in Figure 2. We present the forecasted number of subscribers using the piecewise 

nonlinear growth model (Gompertz-Bass) for the last three quarters of 2020 in Table 4. 
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Figure 2: Actual (dotted) and predicted (solid line) mobile subscribers (in millions) in 

Circle A 

 

  Table 4: The forecasted subscribers (in millions) of Circle A in 2020 

 

 

 

 

 

 

 

 

 

 

It is evident from the predicted values and the graph (Figure 2) that the circle's 

maximum potential, which is 421.545 million, is predicted to be achieved in November 

2027. However, it has been found earlier that the predictions from the growth models are 

conservative, and the maximum potential usually is attaining much before the model-

predicted date (Das, 2013). Moreover, the data reported by TRAI is much higher than the 

data reported by COAI. As this study is based on COAI data, actual values are likely to 

be higher than the forecast provided in this paper. 

5.  Conclusions 

We found the piecewise nonlinear growth model comprising Gompertz and Bass to 

be appropriate for describing the subscribers' data in Circle A. It confirms our assertion 

that the underlying data generating process can be divided into two segments, which 

shows strong evidence of ushering a new growth phase. Despite several issues in the 

telecom sector, Circle A comprises industrially advanced states like Maharashtra, Gujarat, 

Andhra Pradesh, Karnataka, and Tamil Nadu, which has entered into a new growth cycle. 

If this new cycle continues, it is likely to impact the Government in terms of revenue 

collection and the first- and second-degree stakeholders. As the post-COVID-19 

economic scenario is different from the pre-COVID-19 economic scenario, the data 

Month Forecast  

 

Month Forecast 

April 407.62 September 411.62 

May 408.53 October 412.27 

June 409.38 November 412.88 

July 410.18 December 413.45 

August 410.92   
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policy and pricing of the 5G spectrum are required to be such that it encourages more 

usages so that the current growth momentum continues.  
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Abstract 

Randomized Response (RR) Techniques (RRT’s) are employed to reduce possible 

bias in gathering data related to sensitive characteristics. Alternatively, Item Count 

Techniques (ICT’s) are also used for indirect questioning related to stigmatizing 

characteristics. Anticipating that a characteristic may be viewed as stigmatizing by some of 

the potential respondents but as innocuous by the rest who may not hesitate to give out 

direct responses (DR), literature is already developed as Optional Randomized Response 

(ORR) Techniques (ORRT’s) permitting respondents to answer either an RR or a DR, 

exercising respective judgments. In this paper, two ORR techniques relating to qualitative 

sensitive characteristics are proposed allowing individuals selected by a general sampling 

scheme to choose DR, RR or ICT according to his/her own choice. Based on simulation 

results, estimates obtained from the proposed techniques are competitive to those obtained 

from an existing ORRT. 

Key words: Item count technique; Optional randomized response technique; Stigmatizing 

characteristic; Unequal probability sampling.   

AMS Subject Classification: 62 DO5 

1. Introduction 

Let 𝑼 = (1,2, … , 𝑖, … , 𝑁) denote a finite population of a known number 𝑁 of persons. 

Let 𝑦𝑖 be a stigmatizing variate value such that 𝑦𝑖 = 1 or 0, if the 𝑖𝑡ℎ (𝑖 = 1,2, … , 𝑁) person 

bears a stigmatizing characteristic 𝐴 or its complement 𝐴𝐶 , respectively. Our objective is to 

estimate a finite population proportion of individuals bearing 𝐴, i.e.,    

𝜃 =
1

𝑁
∑ 𝑦𝑖

𝑁

𝑖=1

 
                      

(1) 

Warner’s (1965) RRT is a well-known device for estimating 𝜃. In this technique, a sampled 

person 𝑖 is provided with a box containing similar cards marked 𝐴 and 𝐴𝐶  in proportions 

𝑝(≠ 0.5) and (1 − 𝑝), respectively. The individual’s response is 1, if the card drawn randomly 

by him/her matches his/her characteristic and the response is 0, if there is no match. Warner’s 

(1965) RR device was followed by several developments in which selection of sample was 

restricted to Simple Random Sampling with Replacement (SRSWR). Chaudhuri (2011) and 

Chaudhuri and Christofides (2013) recommended unequal probability sampling for selecting 

the units from the population and explained that RRT’s are not conditioned by the sampling 

mailto:mitrapal2013@gmail.com
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schemes. With this amendment, using RR’s, 𝑦𝑖 can be unbiasedly estimated for each 𝑖, followed 

by estimation of 𝜃 and estimate of its standard error.  

As respondents may be suspicious of revelation of their privacy in RRT, the ICT, also 

known as the Block Total Response or the Unmatched Count Technique was introduced by 

Raghavarao and Federer (1979), Miller (1984) and Miller et al. (1986). Further developments 

in this area include those of Chaudhuri and Christofides (2007), in which two independent 

samples are required to be selected from 𝑈. A questionnaire is provided to the participants in 

the first sample in which there are 𝐺 innocuous item statements and the (𝐺 + 1)𝑡ℎ item is —“I 

bear characteristic 𝐴 or 𝐹”, with 𝐹 as an innocuous characteristic unrelated to 𝐴. Another 

questionnaire is provided to the participants in the second sample in which the same 𝐺 

innocuous item-statements along with the (𝐺 + 1)𝑡ℎ statement —“I do not bear characteristic 

𝐴 or I do not bear characteristic 𝐹”, are present. Each of the participants responds the number 

of statements out of (𝐺 + 1) that are valid for him/her without revealing the answers to the 

individual statements. Using the responses from the two independent samples, 𝜃 and its 

standard error can be estimated. The developments in this area include those of Chaudhuri and 

Christofides (2013) and Shaw (2016) among others.   

While some individuals may consider 𝐴 as sensitive, others may prefer giving a direct 

response (DR). To tackle such situations, ORR devices were contributed by Arnab (2004), 

Chaudhuri and Saha (2005), Pal (2008), Mehta et al. (2012) and Sihm and Gupta (2015), among 

others. Several ORR devices are elaborated in Arnab and Rueda (2016). In the ORR device by 

Chaudhuri and Dihidar (2009) as explained in Chaudhuri (2011), each individual 𝑖, 𝑖 =
1,2, … , 𝑁, in the population, bears an unknown probability 𝐶𝑖, 0 ≤ 𝐶𝑖 ≤ 1, to opt for giving a 

direct answer and a probability (1 − 𝐶𝑖) for preferring an RR. Respondents in a sample 𝑠 drawn 

from 𝑈, are requested to either answer directly about 𝐴 or provide an RR. However, they are 

instructed not to reveal the option chosen by them. Another similar response, independent of 

the first response, is collected from the same set of individuals. Pal (2007) developed an 

optional method in which, a sampled individual 𝑖 in 𝑠 is given the option to either provide an 

RR or answer to an ICT questionnaire, without revealing the choice of response to the 

investigator.  

It is observed that all the ORR devices existing in the literature provide only two response 

options to the sampled individuals, i.e., either DR and RR or RR and ICT. It is anticipated that 

while a few individuals in the population may prefer DR, some may opt for RR and the rest 

may be comfortable in answering to an ICT questionnaire. Motivated to fill up this gap in the 

literature, a generalized version of ORR device providing all the three modes of responses viz., 

DR, RR and ICT is proposed in Section 2. This device mandates selection of 2 independent 

samples from the population by using a general sampling scheme. An alternative ORR device 

proposed in Section 3 requires selection of three independent samples chosen by a general 

sampling scheme. Section 4 provides a derivation of optimum allocation of sample sizes for a 

given cost of survey. In Pal’s (2007) ORRT, there are two response options, viz., RR and ICT; 

however, option for DR is not provided. So, we have compared our new ORRT’s with Pal (2007).  

Hence in Section 5, performances of the two proposed devices have been compared with the 

performance of Pal (2007) ORR device, on the basis of a simulated data. The concluding 

remarks are presented in Section 6. 

2. Proposed ORR Device Using Two Independent Samples  

A respondent 𝑖(𝑖 = 1,2, … , 𝑁), in the population, bears an unknown probability 𝐶1𝑖(0 ≤
𝐶1𝑖 ≤ 1), with preference for opting a DR, a probability 𝐶2𝑖(0 ≤ 𝐶1𝑖 + 𝐶2𝑖 ≤ 1), for an RR 
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and with the remaining probability (1 − 𝐶1𝑖 − 𝐶2𝑖), 0 ≤ 1 − 𝐶1𝑖 − 𝐶2𝑖 ≤ 1, for an ICT. 

Consider a sample 𝑠1 selected from 𝑼 according to an unequal probability sampling design 𝑃 

admitting positive first order and second order inclusion probabilities 𝜋𝑖 = ∑ 𝑃(𝑠1)𝑠1∋𝑖 , 𝜋𝑖𝑗 =

∑ 𝑃(𝑠1)𝑠1∋𝑖,𝑗 , 𝑖 ≠ 𝑗, (𝑖, 𝑗 = 1,2, … , 𝑁). A respondent 𝑖 is provided with options to either give a 

DR after multiplying with a constant or answer as per an RR device or answer to an ICT 

questionnaire, without divulging the chosen option.  

 

If a respondent opts for DR, then, he/ she has to multiply the direct answer 𝑦𝑖 with 2 and 

then give the resulting number in his/her response. In the option for RR, the respondent is 

requested to multiply his/ her value 𝑦𝑖 with 2 and then add it with a number, say 𝑎11𝑖, randomly 

chosen from (1,2,3, … , 𝐺 − 1). The questionnaire for ICT consists of 𝐺 innocuous item 

statements, the (𝐺 + 1)𝑡ℎ statement being “I have characteristic 𝐴 or 𝐹”, i.e., (𝐴 ∪ 𝐹), where 

𝐹 is an innocuous characteristic unrelated to 𝐴. A respondent opting for ICT, has to answer the 

total number of statements holding true for him/ her, say 𝑡1𝑖. Considering 𝑓𝑖 = 1 or 0, if the 𝑖𝑡ℎ 

person bears innocuous characteristic 𝐹 or its complement 𝐹𝐶, respectively, 𝑡1𝑖 can be 

expressed as,  

𝑡1𝑖 = ∑ 𝑢𝑖ℎ

𝐺

ℎ=1

+ 𝑦𝑖 + 𝑓𝑖 − 𝑦𝑖𝑓𝑖  (2) 

 

where, 𝑢𝑖ℎ takes value 1 if the individual 𝑖 bears the ℎ𝑡ℎ innocuous characteristic, ℎ =
1,2, … , 𝐺. Consider, the 𝑖𝑡ℎ respondent’s answer as 𝑧11𝑖, where, 

𝑧11𝑖 = {

2𝑦𝑖 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝐶1𝑖,   𝑓𝑜𝑟 𝐷𝑅

(2𝑦𝑖 + 𝑎11𝑖) 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝐶2𝑖,   𝑓𝑜𝑟 𝑅𝑅

𝑡1𝑖 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 (1 − 𝐶1𝑖 − 𝐶2𝑖),     𝑓𝑜𝑟 𝐼𝐶𝑇
 

  

(3) 

 

The respondent 𝑖 is requested to provide another response, say 𝑧12𝑖, independent of 𝑧11𝑖, 

following the same procedure. Let 𝑎12𝑖 be the random number chosen from (1,2,3, … , 𝐺 − 1) 

by the respondent opting RR, independent of the selection of 𝑎11𝑖,  

𝑧12𝑖 = {

2𝑦𝑖 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝐶1𝑖,    𝑓𝑜𝑟 𝐷𝑅
(2𝑦𝑖 + 𝑎12𝑖) 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝐶2𝑖,    𝑓𝑜𝑟 𝑅𝑅

𝑡1𝑖 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 (1 − 𝐶1𝑖 − 𝐶2𝑖),    𝑓𝑜𝑟 𝐼𝐶𝑇
 

  

(4) 

 

The set of all possible answers for the DR is {0,2}, for the RR is {1,2,3, … , 𝐺 + 1} and that for 

the ICT questionnaire is {0,1,2, … , 𝐺 + 1}. Hence, the investigator remains unaware of the 

respondent’s choice. Taking 𝐸𝑅 and 𝑉𝑅 as the RR-based expectation and variance operators, 

respectively,   

𝐸𝑅(𝑧11𝑖) = 𝐸𝑅(𝑧12𝑖) 

= 2𝐶1𝑖𝑦𝑖 + 𝐶2𝑖 (2𝑦𝑖 +
𝐺

2
) + (1 − 𝐶1𝑖 − 𝐶2𝑖) (∑ 𝑢𝑖ℎ

𝐺

ℎ=1

+ 𝑦𝑖 + 𝑓𝑖 − 𝑦𝑖𝑓𝑖) 

  

(5) 

Taking the concept of inter-penetrating network of sub-samples developed by Mahalanobis in 

1936, consider, 
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𝑟1𝑖 =
𝑧11𝑖 + 𝑧12𝑖

2
,     𝑣1𝑖 =

(𝑧11𝑖 − 𝑧12𝑖)
2

4
 

 (6) 

Then, 
𝐸𝑅(𝑟1𝑖) = 𝐸𝑅(𝑧11𝑖) = 𝐸𝑅(𝑧12𝑖)  (7) 

and, 
𝐸𝑅(𝑣1𝑖) = 𝑉𝑅(𝑟1𝑖) 

  

(8) 

 

Consider a second sample 𝑠2, selected from 𝑼 (independent of the selection of 𝑠1) 

according to an unequal probability sampling design 𝑃 admitting positive first order and second 

order inclusion-probabilities 𝜋𝑘 = ∑ 𝑃(𝑠2)𝑠2∋𝑘 , 𝜋𝑘𝑙 = ∑ 𝑃(𝑠2)𝑠2∋𝑘,𝑙 , 𝑘 ≠ 𝑙(𝑘, 𝑙 = 1,2, … , 𝑁). 

The selected individuals in 𝑠2 are provided the options for DR, RR and ICT, which are slightly 

different from the device used for the first sample. A respondent 𝑘 is provided with options to 

either give DR added with a constant or answer as per an RR device or answer according to an 

ICT questionnaire, without revealing the response medium opted by him/ her.  

 

If DR is chosen, then, 𝑦𝑘 is to be added with 1. If RR is chosen, then 𝑦𝑘 is to be added 

with (1 + 𝑎21𝑘), where 𝑎21𝑘 is randomly chosen from (0,1,2, … , 𝐺). The ICT questionnaire 

contains the same 𝐺 innocuous statements as in the questionnaire used for the first sample, with 

the (𝐺 + 1)𝑡ℎ statement being “I do not bear characteristic 𝐴 or I do not bear characteristic 𝐹”, 

i.e., (𝐴𝐶 ∪ 𝐹𝐶) and the (𝐺 + 2)𝑡ℎ statement being “I bear characteristic 𝐹”. A respondent 

opting for ICT, answers 𝑡2𝑘, where, 

𝑡2𝑘 = ∑ 𝑢𝑘ℎ

𝐺

ℎ=1

+ 1 − 𝑦𝑘𝑓𝑘 + 𝑓𝑘  (9) 

where, 𝑢𝑘ℎ takes value 1 if the individual 𝑘 bears the ℎ𝑡ℎ innocuous characteristic, ℎ =
1,2, … , 𝐺. Consider, the 𝑘𝑡ℎ respondent’s answer as 𝑧21𝑘, where, 

𝑧21𝑘 = {

𝑦𝑘 + 1 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝐶1𝑘,    𝑓𝑜𝑟 𝐷𝑅
(𝑦𝑘 + 1 + 𝑎21𝑘) 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝐶2𝑘,    𝑓𝑜𝑟 𝑅𝑅

𝑡2𝑘 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 (1 − 𝐶1𝑘 − 𝐶2𝑘),    𝑓𝑜𝑟  𝐼𝐶𝑇
 

(10) 

 

The respondent 𝑘 is requested to provide another response, say 𝑧22𝑘, independent of 𝑧21𝑘, 

following the same procedure. Let 𝑎22𝑘 be the number randomly chosen from (0,1,2, … , 𝐺) by 

the respondent, independent of the selection of 𝑎21𝑘,  

𝑧22𝑘 = {

𝑦𝑘 + 1 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝐶1𝑘,    𝑓𝑜𝑟 𝐷𝑅
(𝑦𝑘 + 1 + 𝑎22𝑘) 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝐶2𝑘,    𝑓𝑜𝑟 𝑅𝑅

𝑡2𝑘 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 (1 − 𝐶1𝑘 − 𝐶2𝑘),    𝑓𝑜𝑟 𝐼𝐶𝑇
 

(11) 

 

The set of all possible answers for DR being {1,2}, for RR being {1,2,3, … 𝐺 + 2} and for the 

ICT being {1,2,3, … 𝐺 + 2}, the medium of response chosen by the respondent is not revealed. 

Then, similar to (6), taking,  

𝑟2𝑘 =
𝑧21𝑘 + 𝑧22𝑘

2
,     𝑣2𝑘 =

(𝑧21𝑘 − 𝑧22𝑘)2

4
 

(12) 

gives, 𝐸𝑅(𝑟2𝑘) = 𝐸𝑅(𝑧21𝑘) = 𝐸𝑅(𝑧22𝑘) 
(13) 
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and, 𝐸𝑅(𝑣2𝑘) = 𝑉𝑅(𝑟2𝑘) 
(14) 

We consider the Horvitz Thompson (1952) estimator 𝑒 to estimate 𝜃, where, 
 

𝑒 = 1 +
1

𝑁
∑

𝑟1𝑖

𝜋𝑖
𝑖∈𝑠1

−
1

𝑁
∑

𝑟2𝑘

𝜋𝑘
𝑘∈𝑠2

 (15) 

Then, assuming 𝐸𝑃 and 𝑉𝑃 as the design-based expectation and variance operators respectively, 

𝐸(𝑒) = 𝐸𝑅𝐸𝑃(𝑒) = 𝐸𝑃𝐸𝑅(𝑒) =
1

𝑁
∑ 𝑦𝑖

𝑁

𝑖=1

= 𝜃 (16) 

Hence, 𝑒 is an unbiased estimator of 𝜃. Now, taking clue from Chaudhuri and Pal (2002), 

variance of 𝑒 can be expressed as,  

𝑉(𝑒) = 𝑉 (
1

𝑁
∑

𝑟1𝑖

𝜋𝑖
𝑖∈𝑠1

) + 𝑉 (
1

𝑁
∑

𝑟2𝑘

𝜋𝑘
𝑘∈𝑠2

) 

= 𝐸𝑃𝑉𝑅 (
1

𝑁
∑

𝑟1𝑖

𝜋𝑖
𝑖∈𝑠1

) + 𝑉𝑃𝐸𝑅 (
1

𝑁
∑

𝑟1𝑖

𝜋𝑖
𝑖∈𝑠1

) + 𝐸𝑃𝑉𝑅 (
1

𝑁
∑

𝑟2𝑘

𝜋𝑘
𝑘∈𝑠2

) + 𝑉𝑃𝐸𝑅 (
1

𝑁
∑

𝑟2𝑘

𝜋𝑘
𝑘∈𝑠2

) 

= 𝐸𝑅𝑉𝑃 (
1

𝑁
∑

𝑟1𝑖

𝜋𝑖
𝑖∈𝑠1

) + 𝑉𝑅𝐸𝑃 (
1

𝑁
∑

𝑟1𝑖

𝜋𝑖
𝑖∈𝑠1

) + 𝐸𝑅𝑉𝑃 (
1

𝑁
∑

𝑟2𝑘

𝜋𝑘
𝑘∈𝑠2

) + 𝑉𝑅𝐸𝑃 (
1

𝑁
∑

𝑟2𝑘

𝜋𝑘
𝑘∈𝑠2

) 

= 𝐸𝑅 [
1

𝑁2
{∑ ∑(𝜋𝑖𝜋𝑗 − 𝜋𝑖𝑗) (

𝑟1𝑖

𝜋𝑖
−

𝑟1𝑗

𝜋𝑗
)

2

+ ∑
𝛽𝑖

𝜋𝑖
𝑟1𝑖

2

𝑁

𝑖=1

𝑁

<𝑗

𝑁

𝑖

}] +
1

𝑁2
∑ 𝑉𝑅(𝑟1𝑖)

𝑁

𝑖=1

 

(17) 

+𝐸𝑅 [
1

𝑁2
{∑ ∑(𝜋𝑘𝜋𝑙 − 𝜋𝑘𝑙) (

𝑟2𝑘

𝜋𝑘
−

𝑟2𝑙

𝜋𝑙
)

2

+ ∑
𝛽𝑘

𝜋𝑘
𝑟2𝑘

2

𝑁

𝑘=1

𝑁

<𝑙

𝑁

𝑘

}] +
1

𝑁2
∑ 𝑉𝑅(𝑟2𝑘)

𝑁

𝑘=1

 

      writing, 
 

             

𝛽𝑖 = 1 +
1

𝜋𝑖
∑ 𝜋𝑖𝑗 − ∑ 𝜋𝑖

𝑁

𝑖=1

𝑁

𝑗≠𝑖
,           𝛽𝑘 = 1 +

1

𝜋𝑘
∑ 𝜋𝑘𝑙 − ∑ 𝜋𝑘

𝑁

𝑘=1

𝑁

𝑘≠𝑙
, (18) 

If every sample 𝑠1 and 𝑠2 contains a common number of distinct units in it, then, 𝛽𝑖 = 0 ∀ i 
and 𝛽𝑘 = 0 ∀ k throughout in 𝑉(𝑒) above. 

Then, taking clue from Chaudhuri and Pal (2002), an unbiased estimator for 𝑉(𝑒) is, 

𝑣(𝑒) =
1

𝑁2
{∑ ∑ (

𝜋𝑖𝜋𝑗 − 𝜋𝑖𝑗

𝜋𝑖𝑗
) (

𝑟1𝑖

𝜋𝑖
−

𝑟1𝑗

𝜋𝑗
)

2

𝑗∈𝑠1𝑖<

+ ∑
𝛽𝑖

𝜋𝑖
2

𝑖∈𝑠1

𝑟1𝑖
2} +

1

𝑁2
∑

𝑣1𝑖

𝜋𝑖
𝑖∈𝑠1

 (19) 
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+
1

𝑁2
{∑ ∑ (

𝜋𝑘𝜋𝑙 − 𝜋𝑘𝑙

𝜋𝑘𝑙
) (

𝑟2𝑘

𝜋𝑘
−

𝑟2𝑙

𝜋𝑙
)

2

𝑙∈𝑠2𝑘<

+ ∑
𝛽𝑘

𝜋𝑘
2

𝑘∈𝑠2

𝑟2𝑘
2} +

1

𝑁2
∑

𝑣2𝑘

𝜋𝑘
𝑘∈𝑠2

 

with 𝛽𝑖 = 0 ∀ i and 𝛽𝑘 = 0 ∀ k in 𝑣(𝑒) when applicable. Hence, 𝑣(𝑒) is an unbiased estimator 

of 𝑉(𝑒), such that 𝐸{𝑣(𝑒)} = 𝐸𝑃𝐸𝑅{𝑣(𝑒)} = 𝐸𝑅𝐸𝑃{𝑣(𝑒)} = 𝑉(𝑒). A 100(1 − 𝛼)% 

Confidence Interval for 𝜃 is, [𝐿, 𝑈], where, 

𝐿 = 𝑒 − {𝜏𝛼/2√𝑣(𝑒)} , 𝑈 = 𝑒 + {𝜏𝛼/2√𝑣(𝑒)} (20) 

where, 𝜏𝛼/2 is the upper 𝛼/2 point of 𝑁(0,1) distribution 

 

This device, although provides three choices to the respondents, it has a limitation. A 

respondent may prefer to give direct value to the investigator, instead of multiplying or adding 

it with a constant. The authors have resolved this issue in the proposed device in Section 3.    

 

3. Proposed ORR Device Using Three Independent Samples  

 

In this device, a respondent 𝑖 in the first sample 𝑠1 opting DR, has to answer 𝑦𝑖 directly. 

For giving an RR, 𝑦𝑖 is to be multiplied with a number, say 𝑎11𝑖
′ , randomly chosen from 

(0,1,2, … , 𝐺 + 1). The ICT questionnaire contains 𝐺 innocuous item statements and the 

(𝐺 + 1)𝑡ℎ statement is “I bear characteristic 𝐴 or 𝐹”. Let 𝑡1𝑖
′  be the total number of statements 

valid for respondent 𝑖 who has chosen ICT. Then,  

𝑡1𝑖
′ = ∑ 𝑢𝑖ℎ

𝐺

ℎ=1

+ 𝑦𝑖 + 𝑓𝑖 − 𝑦𝑖𝑓𝑖 
(21) 

where, 𝑢𝑖ℎ takes value 1 if the individual 𝑖 bears the ℎ𝑡ℎ innocuous characteristic, ℎ =
1,2, … , 𝐺. Consider, the 𝑖𝑡ℎ respondent’s answer as 𝑧11𝑖

′ , 

𝑧11𝑖
′ = {

𝑦𝑖 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝐶1𝑖,    𝑓𝑜𝑟 𝐷𝑅

𝑎11𝑖
′ 𝑦𝑖 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝐶2𝑖,    𝑓𝑜𝑟 𝑅𝑅

𝑡1𝑖
′  𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 (1 − 𝐶1𝑖 − 𝐶2𝑖),    𝑓𝑜𝑟 𝐼𝐶𝑇

 
(22) 

 

The respondent is requested to provide another response, say 𝑧12𝑖
′ , independent of 𝑧11𝑖

′ , 

following the same procedure. Let 𝑎12𝑖
′  denote the number randomly chosen from 

(0,1,2, … , 𝐺 + 1) by the respondent, independent of the selection of 𝑎11𝑖
′ , then, 

𝑧12𝑖
′ = {

𝑦𝑖 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝐶1𝑖,    𝑓𝑜𝑟 𝐷𝑅

𝑎12𝑖
′ 𝑦𝑖 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝐶2𝑖,    𝑓𝑜𝑟 𝑅𝑅

𝑡1𝑖
′  𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 (1 − 𝐶1𝑖 − 𝐶2𝑖),   𝑓𝑜𝑟 𝐼𝐶𝑇

 
(23) 

The set of all possible answers for DR is {0,1}, for RR is {0,1,2, … 𝐺 + 1} and that for ICT 

questionnaire is {0,1,2, … 𝐺 + 1}. Hence, the response option chosen by the respondent remains 

unknown. Then, taking 
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𝑟1𝑖
′ =

𝑧11𝑖
′ + 𝑧12𝑖

′

2
,     𝑣1𝑖

′ =
(𝑧11𝑖

′ − 𝑧12𝑖
′ )2

4
 

(24) 

gives, 
𝐸𝑅(𝑟1𝑖

′ ) = 𝐸𝑅(𝑧11𝑖
′ ) = 𝐸𝑅(𝑧12𝑖

′ ) 
(25) 

and, 
𝐸𝑅(𝑣1𝑖

′ ) = 𝑉𝑅(𝑟1𝑖
′ ) 

(26) 

 

Respondents in the second sample 𝑠2 are also provided with all the three response options 

but the ORR device in this case is differently designed as compared to the device used for the 

first sample. The RR is obtained by adding a number, say 𝑎21𝑘
′ , randomly chosen from 

(0,1,2, … , 𝐺 + 1) with another number, say 𝑏21𝑘
′ , randomly chosen from (0,1,2, … , 𝐻) and then 

multiplying this sum with the 𝑦 −value. The ICT questionnaire contains the same 𝐺 innocuous 

item statements as in the questionnaire used for the first sample, with an additional set of 𝐻 

innocuous item statements and the (𝐺 + 𝐻 + 1)𝑡ℎ statement being “I do not bear characteristic 

𝐴 or I do not bear characteristic 𝐹”. A sampled individual choosing ICT, has to answer, say 

𝑡2𝑘
′ , where, 

𝑡2𝑘
′ = ∑ 𝑢𝑘ℎ

𝐺

ℎ=1

+ ∑ 𝑤𝑘𝑜

𝐻

𝑜=1

+ 1 − 𝑦𝑘𝑓𝑘 (27) 

where, 𝑢𝑘ℎ takes value 1 if the individual 𝑘 bears the ℎ𝑡ℎ innocuous characteristic, ℎ =
1,2, … , 𝐺 and 𝑤𝑘𝑜 takes value 1 if the individual 𝑘 bears the 𝑜𝑡ℎ innocuous characteristic, 𝑜 =
1,2, … , 𝐻. Let the 𝑘𝑡ℎ sampled individual’s answer be 𝑧21𝑘

′ , where 

𝑧21𝑘
′ = {

𝑦𝑘 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝐶1𝑘,    𝑓𝑜𝑟 𝐷𝑅
(𝑎21𝑘

′ + 𝑏21𝑘
′ )𝑦𝑘 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝐶2𝑘,    𝑓𝑜𝑟 𝑅𝑅

𝑡2𝑘
′  𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 (1 − 𝐶1𝑘 − 𝐶2𝑘),    𝑓𝑜𝑟 𝐼𝐶𝑇

 (28) 

The respondent 𝑘 is requested to provide another response, say 𝑧22𝑘
′ , independent of 𝑧21𝑘

′ , 

following the same procedure. Let 𝑎22𝑘
′  denote the number randomly chosen from 

(0,1,2, … , 𝐺 + 1) and another number, say 𝑏22𝑘
′ , randomly chosen from (0,1,2, … , 𝐻) by the 

respondent, independent of the selection of 𝑏21𝑘
′ ,    

𝑧22𝑘
′ = {

𝑦𝑘 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝐶1𝑘,    𝑓𝑜𝑟 𝐷𝑅

(𝑎22𝑘
′ + 𝑏22𝑘

′ )𝑦𝑘 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝐶2𝑘,    𝑓𝑜𝑟 𝑅𝑅

 𝑡2𝑘
′ 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 (1 − 𝐶1𝑘 − 𝐶2𝑘),    𝑓𝑜𝑟 𝐼𝐶𝑇

 (29) 

The sets of all possible answers for DR, RR and ICT questionnaire being {0,1}, 
{0,1,2, … 𝐺 + 𝐻 + 1} and {0,1,2, … 𝐺 + 𝐻 + 1}, respectively, the respondent’s choice remains 

hidden. Then, taking 

𝑟2𝑘
′ =

 𝑧21𝑘
′ + 𝑧22𝑘

′

2
,      𝑣2𝑘

′ =
( 𝑧21𝑘

′ −  𝑧22𝑘
′ )2

4
 

(30) 

gives, 
𝐸𝑅( 𝑟2𝑘

′ ) = 𝐸𝑅( 𝑧21𝑘
′ ) = 𝐸𝑅( 𝑧22𝑘

′ ) 
(31) 

and, 
𝐸𝑅( 𝑣2𝑘

′ ) = 𝑉𝑅( 𝑟2𝑘
′ ) 

(32) 
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A third sample 𝑠3 is chosen (independent of the selection of 𝑠1 and 𝑠2) from 𝑼 according 

to an unequal probability sampling design 𝑃 with positive first and second order inclusion-

probabilities 𝜋𝑑 = ∑ 𝑃(𝑠3)𝑠3∋𝑑 , 𝜋𝑑𝑞 = ∑ 𝑃(𝑠3)𝑠3∋𝑑,𝑞 , 𝑑 ≠ 𝑞(𝑑, 𝑞 = 1,2, … , 𝑁). The 

instructions for RR and ICT for the sampled individuals in this case differ from those in the 

first two samples. Respondents are free to choose any of the three response options and answer 

accordingly without revealing the chosen response option.  

 

RR is generated by adding a number, say  𝑏31𝑑
′ , randomly chosen from (0,1,2, … , 𝐻), 

with 1 and then multiplying the resulting number with the respondent’s 𝑦 − value. All the 𝐻 

innocuous item statements in the second questionnaire are repeated in the current ICT 

questionnaire along with the (𝐻 + 1)𝑡ℎ statement “I do not bear characteristic 𝐹”. Let the 

response for ICT, if chosen by the 𝑑𝑡ℎ respondent, be 𝑡3𝑑
′  where,  

𝑡3𝑑
′ = ∑ 𝑤𝑑𝑜

𝐻

𝑜=1

+ 1 − 𝑓𝑑 (33) 

where, 𝑤𝑑𝑜 takes value 1 if the individual 𝑑 bears the 𝑜𝑡ℎ innocuous characteristic, 𝑜 =
1,2, … , 𝐻. Consider, the 𝑑𝑡ℎ respondent’s answer as 𝑧31𝑑

′ , 

𝑧31𝑑
′ = {

𝑦𝑑 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝐶1𝑑,    𝑓𝑜𝑟 𝐷𝑅
(1 + 𝑏31𝑑

′ )𝑦𝑑 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝐶2𝑑 ,    𝑓𝑜𝑟 𝑅𝑅

𝑡3𝑑
′  𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 (1 − 𝐶1𝑑 − 𝐶2𝑑),    𝑓𝑜𝑟 𝐼𝐶𝑇

 (34) 

The respondent 𝑑 is requested to provide another response, say 𝑧32𝑑
′ , independent of 𝑧31𝑑

′ , 

following the same procedure. Then, taking 𝑏32𝑑
′  as the number randomly chosen from 

(0,1,2, … , 𝐻) by the respondent, independent of the selection of 𝑏31𝑑
′ ,    

𝑧32𝑑
′ = {

𝑦𝑑 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝐶1𝑑,    𝑓𝑜𝑟 𝐷𝑅
(1 + 𝑏32𝑑

′ )𝑦𝑑 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝐶2𝑑 ,    𝑓𝑜𝑟 𝑅𝑅

𝑡3𝑑
′  𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 (1 − 𝐶1𝑑 − 𝐶2𝑑),    𝑓𝑜𝑟 𝐼𝐶𝑇

 (35) 

The sets of all possible responses for DR, RR and ICT are {0,1}, {0,1,2, … , 𝐻 + 1} and 

{0,1,2, … , 𝐻 + 1}, respectively, thus indicating that the investigator is unaware of the choice 

of the respondent. Taking,    

𝑟3𝑑
′ =

𝑧31𝑑
′ + 𝑧32𝑑

′

2
,     𝑣3𝑑

′ =
(𝑧31𝑑

′ − 𝑧32𝑑
′ )2

4
 

(36) 

gives, 
𝐸𝑅(𝑟3𝑑

′ ) = 𝐸𝑅(𝑧31𝑑
′ ) = 𝐸𝑅(𝑧32𝑑

′ ) 
(37) 

and, 
𝐸𝑅(𝑣3𝑑

′ ) = 𝑉𝑅(𝑟3𝑑
′ ) 

(38) 

 

We consider the Horvitz Thompson (1952) estimator 𝑒′, where, 

𝑒′ =
1

𝑁
∑

𝑟1𝑖
′

𝜋𝑖
𝑖∈𝑠1

−
1

𝑁
∑

𝑟2𝑘
′

𝜋𝑘
𝑘∈𝑠2

+
1

𝑁
∑

𝑟3𝑑
′

𝜋𝑑
𝑑∈𝑠3

 (39) 
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Then, 

𝐸(𝑒′) = 𝐸𝑅𝐸𝑃(𝑒′) = 𝐸𝑃𝐸𝑅(𝑒′) =
1

𝑁
∑ 𝑦𝑖

𝑁

𝑖=1

= 𝜃 (40) 

Hence, 𝑒′ is an unbiased estimator of 𝜃. Now, to find out the variance of 𝑒′,   

𝑉(𝑒′) = 𝑉 (
1

𝑁
∑

𝑟1𝑖
′

𝜋𝑖
𝑖∈𝑠1

) + 𝑉 (
1

𝑁
∑

𝑟2𝑘
′

𝜋𝑘
𝑘∈𝑠2

) + 𝑉 (
1

𝑁
∑

𝑟3𝑑
′

𝜋𝑑
𝑑∈𝑠3

 ) 

= 𝐸𝑃𝑉𝑅 (
1

𝑁
∑

𝑟1𝑖
′

𝜋𝑖
𝑖∈𝑠1

) + 𝑉𝑃𝐸𝑅 (
1

𝑁
∑

𝑟1𝑖
′

𝜋𝑖
𝑖∈𝑠1

) + 𝐸𝑃𝑉𝑅 (
1

𝑁
∑

𝑟2𝑘
′

𝜋𝑘
𝑘∈𝑠2

) + 𝑉𝑃𝐸𝑅 (
1

𝑁
∑

𝑟2𝑘
′

𝜋𝑘
𝑘∈𝑠2

)

+ 𝐸𝑃𝑉𝑅 (
1

𝑁
∑

𝑟3𝑑
′

𝜋𝑑
𝑑∈𝑠3

) + 𝑉𝑃𝐸𝑅 (
1

𝑁
∑

𝑟3𝑑
′

𝜋𝑑
𝑑∈𝑠3

) 

= 𝐸𝑅𝑉𝑃 (
1

𝑁
∑

𝑟1𝑖
′

𝜋𝑖
𝑖∈𝑠1

) + 𝑉𝑅𝐸𝑃 (
1

𝑁
∑

𝑟1𝑖
′

𝜋𝑖
𝑖∈𝑠1

) + 𝐸𝑅𝑉𝑃 (
1

𝑁
∑

𝑟2𝑘
′

𝜋𝑘
𝑘∈𝑠2

) + 𝑉𝑅𝐸𝑃 (
1

𝑁
∑

𝑟2𝑘
′

𝜋𝑘
𝑘∈𝑠2

)

+ 𝐸𝑅𝑉𝑃 (
1

𝑁
∑

𝑟3𝑑
′

𝜋𝑑
𝑑∈𝑠3

) + 𝑉𝑅𝐸𝑃 (
1

𝑁
∑

𝑟3𝑑
′

𝜋𝑑
𝑑∈𝑠3

) 

= 𝐸𝑅 [
1

𝑁2
{∑ ∑(𝜋𝑖𝜋𝑗 − 𝜋𝑖𝑗) (

𝑟1𝑖
′

𝜋𝑖
−

𝑟1𝑗
′

𝜋𝑗
)

2

+ ∑
𝛽𝑖

𝜋𝑖
𝑟1𝑖

′ 2

𝑁

𝑖=1

𝑁

<𝑗

𝑁

𝑖

}] +
1

𝑁2
∑ 𝑉𝑅(𝑟1𝑖

′ )

𝑁

𝑖=1

 

(41) 
+𝐸𝑅 [

1

𝑁2
{∑ ∑(𝜋𝑘𝜋𝑙 − 𝜋𝑘𝑙) (

𝑟2𝑘
′

𝜋𝑘
−

𝑟2𝑙
′

𝜋𝑙
)

2

+ ∑
𝛽𝑘

𝜋𝑘
𝑟2𝑘

′ 2

𝑁

𝑘=1

𝑁

<𝑙

𝑁

𝑘

}] +
1

𝑁2
∑ 𝑉𝑅(𝑟2𝑘

′ )

𝑁

𝑘=1

 

+𝐸𝑅 [
1

𝑁2
{∑ ∑(𝜋𝑑𝜋𝑞 − 𝜋𝑑𝑞) (

𝑟3𝑑
′

𝜋𝑑
−

𝑟3𝑞
′

𝜋𝑞
)

2

+ ∑
𝛽𝑑

𝜋𝑑
𝑟3𝑑

′ 2

𝑁

𝑑=1

𝑁

<𝑞

𝑁

𝑑

}] +
1

𝑁2
∑ 𝑉𝑅(𝑟3𝑑

′ )

𝑁

𝑑=1

 

where, 𝛽𝑖 = 1 +
1

𝜋𝑖
∑ 𝜋𝑖𝑗 − ∑ 𝜋𝑖

𝑁

𝑖=1

𝑁

𝑗≠𝑖
, 𝛽𝑘 = 1 +

1

𝜋𝑘
∑ 𝜋𝑘𝑙 − ∑ 𝜋𝑘

𝑁

𝑘=1

𝑁

𝑘≠𝑙
    

(42) 

and, 𝛽𝑑 = 1 +
1

𝜋𝑑
∑ 𝜋𝑑𝑞 − ∑ 𝜋𝑑

𝑁

𝑑=1

𝑁

𝑑≠𝑞
 

If every sample 𝑠1, 𝑠2 and 𝑠3 contains a common number of distinct units in it, then, 𝛽𝑖 =
0 ∀ i, 𝛽𝑘 = 0 ∀ k and 𝛽𝑑 = 0 ∀ d throughout in 𝑉(𝑒) above, using Chaudhuri and Pal (2002). 

Then, taking clue from Chaudhuri and Pal (2002), an unbiased estimator of 𝑉(𝑒′) is, 

𝑣(𝑒′) =
1

𝑁2
{∑ ∑ (

𝜋𝑖𝜋𝑗 − 𝜋𝑖𝑗

𝜋𝑖𝑗
) (

𝑟1𝑖
′

𝜋𝑖
−

𝑟1𝑗
′

𝜋𝑗
)

2

𝑗∈𝑠1𝑖<

+ ∑
𝛽𝑖

𝜋𝑖
2

𝑖∈𝑠1

𝑟1𝑖
′ 2

} +
1

𝑁2
∑

𝑣1𝑖
′

𝜋𝑖
𝑖∈𝑠1

 
(43) 
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+
1

𝑁2
{∑ ∑ (

𝜋𝑘𝜋𝑙 − 𝜋𝑘𝑙

𝜋𝑘𝑙
) (

𝑟2𝑘
′

𝜋𝑘
−

𝑟2𝑙
′

𝜋𝑙
)

2

𝑙∈𝑠2𝑘<

+ ∑
𝛽𝑘

𝜋𝑘
2

𝑘∈𝑠2

𝑟2𝑘
′ 2

} +
1

𝑁2
∑

𝑣2𝑘
′

𝜋𝑘
𝑘∈𝑠2

 

+
1

𝑁2
{∑ ∑ (

𝜋𝑑𝜋𝑞 − 𝜋𝑑𝑞

𝜋𝑑𝑞
) (

𝑟3𝑑
′

𝜋𝑑
−

𝑟3𝑞
′

𝜋𝑞
)

2

𝑞∈𝑠3𝑑<

+ ∑
𝛽𝑑

𝜋𝑑
2

𝑑∈𝑠3

𝑟3𝑑
′ 2

} +
1

𝑁2
∑

𝑣3𝑑
′

𝜋𝑑
𝑑∈𝑠3

 

with 𝛽𝑖 = 0 ∀ i, 𝛽𝑘 = 0 ∀ k and 𝛽𝑑 = 0 ∀ d in 𝑣(𝑒′) when applicable. Hence, 𝑣(𝑒′) is an 

unbiased estimator of 𝑉(𝑒′), such that, 𝐸{𝑣(𝑒′)} = 𝐸𝑃𝐸𝑅{𝑣(𝑒′)} = 𝐸𝑅𝐸𝑃{𝑣(𝑒′)} = 𝑉(𝑒′). A 

100(1 − 𝛼)% Confidence Interval for 𝜃 is, [𝐿′, 𝑈′], where,  

𝐿′ = 𝑒′ − {𝜏𝛼/2√𝑣(𝑒′)} , 𝑈′ = 𝑒′ + {𝜏𝛼/2√𝑣(𝑒′)} 
(44) 

 

4. Optimum Sample Size Allocation for Fixed Survey Cost 

 

As the two proposed ORR devices with options for DR, RR and ICT, mandate selection 

of multiple samples from the population, this section demonstrates a procedure to minimize the 

variance of the estimate of 𝑌̅ by assuming a fixed cost of the survey. Consider the ORR device 

in Section 2 and assume that both the samples (of sizes 𝑛1 and 𝑛2, say) are chosen 

independently from the population by following the Hartley and Rao (1962) sampling scheme 

and using variable 𝑥 as the size measure for sample selection, with population total 𝑋 =
∑ 𝑥𝑖

𝑁
𝑖=1 . Then, putting the expressions for first and second order inclusion probabilities and 

using (17), variance of the estimate 
1

𝑁
∑

𝑟1𝑖

𝜋𝑖
𝑖∈𝑠1

 obtained from the first sample can be written as,  

𝑉 (
1

𝑁
∑

𝑟1𝑖

𝜋𝑖
𝑖∈𝑠1

) = 𝐸𝑃𝑉𝑅 (
1

𝑁
∑

𝑟1𝑖

𝜋𝑖
𝑖∈𝑠1

) + 𝑉𝑃𝐸𝑅 (
1

𝑁
∑

𝑟1𝑖

𝜋𝑖
𝑖∈𝑠1

) =
𝑉11

𝑛1
+ 𝑉12 (45) 

where, 

                  𝑉11 =
1

𝑁2
∑

𝑉𝑅(𝑟1𝑖)

𝑝𝑖

𝑁

𝑖=1

+
1

𝑁2
[∑ ∑ 𝑝𝑖𝑗 {

𝐸𝑅(𝑟1𝑖)

𝑝𝑖
−

𝐸𝑅(𝑟1𝑗)

𝑝𝑗
}

2𝑁

<𝑗

𝑁

𝑖

], (46) 

𝑉12 =
1

𝑁2
[∑ ∑(𝑝𝑖𝑝𝑗 − 𝑝𝑖𝑗) {

𝐸𝑅(𝑟1𝑖)

𝑝𝑖
−

𝐸𝑅(𝑟1𝑗)

𝑝𝑗
}

2𝑁

<𝑗

𝑁

𝑖

], (47) 

𝑝𝑖 =
𝑥𝑖

𝑋
, 𝑝𝑗 =

𝑥𝑗

𝑋
, (48) 

𝐸𝑅(𝑟1𝑖) = 2𝐶1𝑖𝑦𝑖 + 𝐶2𝑖 (2𝑦𝑖 +
𝐺

2
) + (1 − 𝐶1𝑖 − 𝐶2𝑖) (∑ 𝑢𝑖ℎ

𝐺

ℎ=1

+ 𝑦𝑖 + 𝑓𝑖 − 𝑦𝑖𝑓𝑖), (49) 

𝑉𝑅(𝑟1𝑖) =
𝐸𝑅(𝑟1𝑖

2 ) − 𝐸𝑅
2(𝑟1𝑖)

2
, (50) 

with, 
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𝐸𝑅(𝑟1𝑖
2 ) = 4𝐶1𝑖𝑦𝑖 + 𝐶2𝑖 (4𝑦𝑖 +

𝐺2

3
−

𝐺

6
+ 4𝑦𝑖

𝐺

2
)

+ (1 − 𝐶1𝑖 − 𝐶2𝑖) (∑ 𝑢𝑖ℎ

𝐺

ℎ=1

+ 𝑦𝑖 + 𝑓𝑖 − 𝑦𝑖𝑓𝑖)

2

 

(51) 

Similarly, variance of the estimate 
1

𝑁
∑

𝑟2𝑘

𝜋𝑘
𝑘∈𝑠2

 obtained from the second sample can be 

expressed as, 

𝑉 (
1

𝑁
∑

𝑟2𝑘

𝜋𝑘
𝑘∈𝑠2

) =
𝑉21

𝑛2
+ 𝑉22 (52) 

where, 

              𝑉21 =
1

𝑁2
∑

𝑉𝑅(𝑟2𝑘)

𝑝𝑘

𝑁

𝑘=1

+
1

𝑁2
[∑ ∑ 𝑝𝑘𝑙 {

𝐸𝑅(𝑟2𝑘)

𝑝𝑘
−

𝐸𝑅(𝑟2𝑙)

𝑝𝑙
}

2𝑁

<𝑙

𝑁

𝑘

], (53) 

𝑉22 =
1

𝑁2
[∑ ∑(𝑝𝑘𝑝𝑙 − 𝑝𝑘𝑙) {

𝐸𝑅(𝑟2𝑘)

𝑝𝑘
−

𝐸𝑅(𝑟2𝑙)

𝑝𝑙
}

2𝑁

<𝑙

𝑁

𝑘

], (54) 

𝑝𝑘 =
𝑥𝑘

𝑋
,        𝑝𝑙 =

𝑥𝑙

𝑋
, (55) 

𝐸𝑅(𝑟2𝑘) = 𝐶1𝑘(𝑦𝑘 + 1) + 𝐶2𝑘 (𝑦𝑘 + 1 +
𝐺

2
)

+ (1 − 𝐶1𝑘 − 𝐶2𝑘) (∑ 𝑢𝑘ℎ

𝐺

ℎ=1

+ 1 − 𝑦𝑘𝑓𝑘 + 𝑓𝑘), 
(56) 

𝑉𝑅(𝑟2𝑘) =
𝐸𝑅(𝑟2𝑘

2 ) − 𝐸𝑅
2(𝑟2𝑘)

2
, (57) 

 

with,  

𝐸𝑅(𝑟2𝑘
2 ) = 𝐶1𝑘(𝑦𝑘 + 1)2 + 𝐶2𝑘 {(𝑦𝑘 + 1)2 +

𝐺2

3
+

𝐺

6
+ 2(𝑦𝑘 + 1)

𝐺

2
}

+ (1 − 𝐶1𝑘 − 𝐶2𝑘) (∑ 𝑢𝑘ℎ

𝐺

ℎ=1

+ 1 − 𝑦𝑘𝑓𝑘 + 𝑓𝑘)

2

 

(58) 

Hence,  

𝑉(𝑒) =
𝑉11

𝑛1
+

𝑉21

𝑛2
+ 𝑉12 + 𝑉22 (59) 

Let 𝐶 be the total cost of the survey, 𝐶0 be the overhead cost and 𝐶′ be the cost per unit in the 

samples selected from the population. Then,  

𝐶 = 𝐶0 + 𝐶′(𝑛1 + 𝑛2) (60) 

In order to find 𝑛1 and 𝑛2 under the above cost function, consider the following Lagrangian 

function with 𝜆 as the Lagrange multiplier,  

Φ = 𝑉(𝑒) + 𝜆(𝐶 − 𝐶0) =
𝑉11

𝑛1
+

𝑉21

𝑛2
+ 𝜆𝐶′(𝑛1 + 𝑛2) + 𝑉12 + 𝑉22 

(61) 

= (√
𝑉11

𝑛1
− √𝜆𝐶′𝑛1)

2

+ (√
𝑉21

𝑛2
− √𝜆𝐶′𝑛2)

2

+ 2√𝜆𝐶′(√𝑉11 + √𝑉21) + 𝑉12 + 𝑉22 

Thus, Φ is minimum when, 
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𝑛1 =
√𝑉11

√𝜆𝐶′
                    𝑛2 =

√𝑉21

√𝜆𝐶′
 (62) 

Now, considering 𝐶 as a pre-specified fixed survey cost, then, 𝐶′(𝑛1 + 𝑛2) = 𝐶 − 𝐶0 gives,   

√𝜆 =
√𝐶′(√𝑉11 + √𝑉21)

(𝐶 − 𝐶0)
 (63) 

Hence, 

𝑛1 =
√𝑉11(𝐶 − 𝐶0)

𝐶′(√𝑉11 + √𝑉21)
                    𝑛2 =

√𝑉21(𝐶 − 𝐶0)

𝐶′(√𝑉11 + √𝑉21)
 (64) 

 

Thus, for fixed survey cost, the variance 𝑉(𝑒) is minimum if the two independent samples 

chosen from the population are of sizes as specified above.  

For the ORR device proposed in Section 3, sizes of the three independent samples, say 

𝑛1, 𝑛2 and 𝑛3 for which variance of estimate 𝑒′ is minimum for fixed survey cost, can be 

similarly worked out, as, 

𝑛1 =
√𝑉′

11(𝐶 − 𝐶0)

𝐶′(√𝑉′
11 + √𝑉′

21 + √𝑉′
31)

                𝑛2 =
√𝑉′

21(𝐶 − 𝐶0)

𝐶′(√𝑉′
11 + √𝑉′

21 + √𝑉′
31)

 

(65) 

𝑛3 =
√𝑉′

31(𝐶 − 𝐶0)

𝐶′(√𝑉′
11 + √𝑉′

21 + √𝑉′
31)

 

 

where, 

𝑉′
11 =

1

𝑁2
∑

𝑉𝑅(𝑟1𝑖
′ )

𝑝𝑖

𝑁

𝑖=1

+
1

𝑁2
[∑ ∑ 𝑝𝑖𝑗 {

𝐸𝑅(𝑟1𝑖
′ )

𝑝𝑖
−

𝐸𝑅(𝑟1𝑗
′ )

𝑝𝑗
}

2𝑁

<𝑗

𝑁

𝑖

] (66) 

𝑉′
21 =

1

𝑁2
∑

𝑉𝑅(𝑟2𝑘
′ )

𝑝𝑘

𝑁

𝑘=1

+
1

𝑁2
[∑ ∑ 𝑝𝑘𝑙 {

𝐸𝑅(𝑟2𝑘
′ )

𝑝𝑘
−

𝐸𝑅(𝑟2𝑙
′ )

𝑝𝑙
}

2𝑁

<𝑙

𝑁

𝑘

] (67) 

𝑉′
31 =

1

𝑁2
∑

𝑉𝑅(𝑟3𝑑
′ )

𝑝𝑘

𝑁

𝑘=1

+
1

𝑁2
[∑ ∑ 𝑝𝑘𝑙 {

𝐸𝑅(𝑟3𝑑
′ )

𝑝𝑘
−

𝐸𝑅(𝑟3𝑞
′ )

𝑝𝑙
}

2𝑁

<𝑙

𝑁

𝑘

] (68) 

It may be noted that for both the proposed ORR devices, the probabilities of choosing DR, RR 

and ICT are different and unknown for each individual.   

 

5. Numerical Illustration  
 

To examine the performances of the Generalized ORR devices proposed in Sections 2 

and 3, a simulated population of 𝑁 = 117 individuals has been considered, wherein, 𝐴 

indicates consumption of alcohol, 𝐹 indicates the individual’s preference in playing football 

and 𝑧 is the number of family members of the respondent. It is desired to estimate the 

population proportion of individuals consuming alcohol. A sample of size 𝑛 = 11 individuals 

is drawn from the population by following Hartley and Rao’s (1962) sampling scheme. In this 

scheme, a systematic sample is drawn by Probability Proportional to Size (PPS) method 

following a random arrangement of the population units. The size measure used for the 

sampling purpose is 𝑧.  

 

For the sake of simplicity in notations, the device by Pal (2007), the generalized ORR 

device proposed with two independent samples (Section 2) and the alternative ORR device 



2021]                                   ESTIMATING SENSITIVE POPULATION PROPORTION                                173 

 
 

with three independent samples (Section 3) are denoted as Device-I, Device-II and Device-III, 

respectively. For individuals opting to answer an RR, the specifications of the RR device are 

stated below:  

(i) Device-I: An individual in the first or second sample, opting for RR has to choose 

a random number from (0,1,2, … , 𝐺).  

(ii) Device-II: For the first sample, RR in this device is generated by choosing a random 

number from (1,2,3, … , 𝐺 − 1). For the second sample, a random number is to be 

chosen from (0,1,2, … , 𝐺).  

(iii) Device-III: This device for the first sample mandates selection of a random number 

from (0,1,2, … , 𝐺 + 1). In the second sample, RR is computed by choosing two 

numbers randomly from (0,1,2, … , 𝐺 + 1) and (0,1,2, … , 𝐻), respectively. A 

random number is to be chosen from (0,1,2, … , 𝐻) for generating RR in the third 

sample. 

As per requirement of ICT, the two sets of 𝐺 = 5 and 𝐻 = 4 innocuous items statements 

denoted by 𝐵1, 𝐵2, 𝐵3, 𝐵4, 𝐵5 and 𝐸1, 𝐸2, 𝐸3, 𝐸4, considered here are described below: 

Set-1 

𝐵1 : I like listening to music. 

𝐵2 : I am diagnosed with liver disease. 

𝐵3 : I am married. 

𝐵4 : I am planning to buy a house. 

𝐵5 : I love painting. 

   

Set-2 

𝐸1 : I like watching movies. 

𝐸2 : I prefer cricket test matches over one day matches. 

𝐸3 : I am currently employed. 

𝐸4 : My birthday is in December. 

 

The specifications of the ICT questionnaire followed are stated below: 

(i) Device-I: For both the samples, 𝐺 innocuous item statements in the questionnaire are 

as given in Set-1. The (𝐺 + 1)𝑡ℎ item in the questionnaire for the first sample is “I 

consume alcohol or I love playing football”. On the other hand, the (𝐺 + 1)𝑡ℎ item in 

the questionnaire for the second sample is “I do not consume alcohol or I don’t love 

playing football”.  

(ii) Device-II: 𝐺 innocuous item statements from Set-1 are used for both the samples. In 

the questionnaire for the first sample, the (𝐺 + 1)𝑡ℎ statement is “I consume alcohol or 

I love playing football”. In the questionnaire to be used for the second sample, the 

(𝐺 + 1)𝑡ℎ statement is “I do not consume alcohol or I don’t love playing football” and 

the (𝐺 + 2)𝑡ℎ statement is “I love playing football”. 

(iii) Device-III: For the first sample, 𝐺 innocuous item statements in the questionnaire are 

as given in Set-1. The (𝐺 + 1)𝑡ℎ statement is “I consume alcohol or I love playing 

football”. For the second sample, (𝐺 + 𝐻) innocuous item statements in the 
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questionnaire are provided in Set-1 and Set-2. The (𝐺 + 𝐻 + 1)𝑡ℎ statement is “I do 

not consume alcohol or I don’t love playing football”. The  𝐻 innocuous item 

statements in Set-2 are used in the questionnaire for the third sample. The (𝐻 + 1)𝑡ℎ 

statement is “I do not love playing football”. 

For each of the three devices, independent samples are drawn each of size 𝑛 = 11. 

Various scenarios on different proportion of individuals in the sample opting for DR, RR and 

ICT for Devices I, II and III are identified. For each of these scenarios, 𝑒, 𝑣(𝑒), 𝐿 and 𝑈 for 

Device-II and 𝑒′, 𝑣(𝑒′), 𝐿′ and 𝑈′ for Device-III are calculated. Similarly, the proportion 

estimate 𝑒′′, its variance estimate 𝑣(𝑒′′) and confidence interval (𝐿′′, 𝑈′′) are also computed 

for Device-I. The estimates are derived each time for 𝐷 = 1000 re-samples drawn from the 

population and then to compare Devices II and III with Device-I, the following are calculated: 

 

Average Estimates: 
1

𝐷
∑ 𝑒𝑑

1000
𝑑=1 ,

1

𝐷
∑ 𝑒𝑑

′1000
𝑑=1  and and 

1

𝐷
∑ 𝑒𝑑

′′1000
𝑑=1 ,   

 

Average Relative Efficiency (Device-II relative to Device-I): 

1

𝐷
∑ 𝑣(𝑒𝑑

′′)1000
𝑑=1

1

𝐷
∑ 𝑣(𝑒𝑑)1000

𝑑=1

100,   

Average Relative Efficiency (Device-III relative to Device-I): 

1

𝐷
∑ 𝑣(𝑒𝑑

′′)1000
𝑑=1

1

𝐷
∑ 𝑣(𝑒𝑑

′ )1000
𝑑=1

100, 

 

Average Relative Bias: |
1

𝐷
∑ 𝑒𝑑

1000
𝑑=1 −𝜃

𝜃
| , |

1

𝐷
∑ 𝑒𝑑

′1000
𝑑=1 −𝜃

𝜃
|  𝑎𝑛𝑑  |

1

𝐷
∑ 𝑒𝑑

′′1000
𝑑=1 −𝜃

𝜃
|, 

 

Actual Coverage Percentage for Devices I, II and III viz., percentage of cases out of 1,000 

re-samples, in which (𝐿, 𝑈), (𝐿′, 𝑈′) and (𝐿′′, 𝑈′′) covers 𝜃 and Average Length of the 1,000 

replicates of Confidence Intervals for 𝜃 for Devices I, II and III are also computed.   

If Average Relative Efficiency of a proposed device relative to Device-I is more than 

100, then the proposed device is more efficient than Device-I. On the other hand, lower the 

Average Relative Bias, better the device. Further, closer the Actual Coverage Percentage to 

95% and smaller the Average Length, better is the performance of that device.     

 

The Average Estimates (AE), Average Relative Bias (ARB), Actual Coverage 

Percentage (ACP) and Average Length (AL) obtained from Devices II and III are compared to 

those obtained from Device-I for various scenarios of individuals’ choices on the medium of 

response. Further, the Average Relative Efficiency (ARE) of the estimates obtained from each 

of Device-II and Device-III relative to those calculated using Device-I are also derived. Few 

such comparisons are displayed in Tables 1 and 2. Table 3 provides a similar comparison of 

the performances of the proposed Devices II and III.  

 

From Table 1, it is observed that Device-II outperforms Device-I marginally in all aspects 

viz., ARE, ARB and ACP and AL. From Table 2, it is observed that Device-III is better than 

Device-I in respect of ARE, ARB, ACP as well as AL. Amongst Device-II and Device-III, 

Device-II shows better performance in terms of ARE, ARB and AL (Table 3). Hence, it can be 

safely concluded that the proposed Devices II and III are competitive with Device-I. The very 

purpose of proposing Devices II and III is to accommodate a variety of responses, viz., DR, RR 

and ICT. The proposed devices not only fulfil this purpose but also perform efficiently in 

comparison to the existing device Pal (2007) with two response options. 
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Table 1: Comparison of performance of proposed ORR Device-II with Device-I by Pal 

(2007) 

 
Sample proportion with a chosen 

response option 
AE  

(𝜽 = 𝟎. 𝟔𝟕) 

ARE of 

Device II 

relative 

to 

Device I 

ARB ACP AL 

Device-II Device-I 

DR RR ICT RR ICT 
Device Device Device Device 

II I II I II I II I 
0.4 0.4 0.2 0.8 0.2 0.67 0.58 103.6 0.005 0.131 97.9 94.8 4.57 4.57 

0.6 0.1 0.3 0.7 0.3 0.64 0.60 131.0 0.052 0.098 97.7 95.4 3.80 4.42 

0.7 0.1 0.2 0.8 0.2 0.73 0.76 152.4 0.096 0.130 97.8 95.4 3.51 4.47 

0.8 0.1 0.1 0.9 0.1 0.68 0.70 210.6 0.021 0.050 96.7 95.4 3.11 4.57 

0.6 0.2 0.2 0.8 0.2 0.66 0.71 148.2 0.008 0.055 98.0 96.3 3.76 4.64 

0.7 0.2 0.1 0.9 0.1 0.67 0.68 166.4 0.003 0.016 97.8 96.3 3.56 4.57 

0.4 0.4 0.2 0.4 0.6 0.67 0.75 113.4 0.005 0.125 97.9 94.8 4.57 4.66 

0.4 0.2 0.4 0.2 0.8 0.71 0.62 112.9 0.062 0.071 98.3 95.8 4.32 4.58 

0.6 0.2 0.2 0.2 0.8 0.66 0.62 162.1 0.008 0.069 98.0 96.6 3.76 4.71 

 

Table 2: Comparison of performance of proposed ORR Device-III with Device-I by Pal 

(2007) 
 

 

Table 3: Comparison of performances of proposed ORR devices viz., Device-II and 

Device-III 
 

Sample proportion with a chosen 

response option 

AE  

(𝜽
= 𝟎. 𝟔𝟕) 

ARE of 

Device 

III 

relative 

to 

Device I  

ARB ACP AL 

Device-III Device-I 

DR RR ICT RR ICT 
Device Device Device Device 

III I III I III I III I 

0.7 0.1 0.2 0.8 0.2 0.66 0.76 115.4 0.008 0.130 100.0 95.4 4.16 4.47 

0.6 0.2 0.2 0.8 0.2 0.67 0.71 111.7 0.000 0.055 100.0 96.3 4.49 4.64 

0.7 0.2 0.1 0.9 0.1 0.67 0.68 158.5 0.003 0.016 99.8 96.3 3.74 4.57 

0.6 0.3 0.1 0.9 0.1 0.67 0.64 117.8 0.007 0.047 99.5 94.9 4.27 4.62 

0.8 0.1 0.1 0.9 0.1 0.70 0.63 181.2 0.052 0.059 99.8 94.7 3.30 4.41 

0.6 0.1 0.3 0.7 0.3 0.70 0.60 120.5 0.041 0.104 100.0 95.0 4.63 4.76 

0.7 0.1 0.2 0.1 0.9 0.66 0.66 127.0 0.008 0.015 100.0 95.5 4.16 4.50 

0.8 0.1 0.1 0.1 0.9 0.65 0.72 173.0 0.025 0.076 99.7 92.5 3.38 4.33 

0.6 0.2 0.2 0.2 0.8 0.67 0.62 122.2 0.000 0.069 100.0 96.6 4.49 4.71 

0.7 0.2 0.1 0.2 0.8 0.67 0.65 160.8 0.003 0.026 99.8 93.6 3.74 4.46 

0.6 0.3 0.1 0.3 0.7 0.67 0.64 113.5 0.007 0.050 99.5 94.8 4.27 4.40 

Sample proportion 

with a chosen 

response option 

AE  

(𝜽 = 𝟎. 𝟔𝟕) 

ARE of 

Device II 

relative to 

Device III 

  

ARB ACP AL 

DR RR ICT 
Device Device Device Device 

II III II III II III II III 
0.1 0.3 0.6 0.68 0.73 139.9 0.018 0.088 96.0 99.4 5.00 6.26 

0.1 0.8 0.1 0.63 0.74 104.6 0.060 0.109 95.1 98.9 5.25 5.74 

0.2 0.3 0.5 0.69 0.61 155.9 0.028 0.082 97.1 99.5 4.82 6.38 

0.2 0.6 0.2 0.72 0.73 125.0 0.075 0.094 96.9 99.2 5.18 5.89 

0.3 0.5 0.2 0.65 0.64 128.8 0.035 0.046 97.5 99.3 4.91 5.71 
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Next, as the two proposed devices mandate selection of multiple samples from the 

population, an attempt has been made here to compute the optimum samples sizes, based on 

the discussion in Section 4. The probabilities of choosing DR, RR and ICT are different and 

unknown for each individual. However, for conducting the numerical computations, it is 

assumed that these probabilities are same for each individual in the population. Taking this 

assumption, the optimum sample sizes are calculated for various scenarios of proportion of 

individuals opting for DR, RR and ICT. Tables 4 and 5 illustrate the optimum sample sizes of 

independent samples required to be drawn from the population for the two proposed devices. 

Subsequently, the resulting variances of the estimated population proportions given a fixed 

survey cost are also displayed. For both the devices, it is observed that for increase in survey 

costs, gain in efficiency of estimates is achieved with increasing sample sizes. 

Table 4: Population variance for fixed survey cost in ORR device with options for RR 

and ICT using two independent samples (Device-II) 

Proportion of individuals with 

a chosen response option 
𝑪 

(Rs.) 

𝑪𝟎 

(Rs.) 

𝑪′ 

(Rs.) 
𝒏𝟏 𝒏𝟐 𝑽(𝒆) 

DR RR ICT 

0.1 0.2 0.7 

300 12 22 6 7 4.65 

600 23 29 9 11 3.36 

900 32 35 12 13 2.87 

1200 47 43 13 14 2.72 

1900 73 64 13 15 2.61 

0.2 0.4 0.4 

300 12 22 6 7 4.30 

600 23 29 9 10 3.09 

900 32 35 12 13 2.63 

1200 47 43 13 14 2.49 

1900 73 64 14 15 2.39 

0.2 0.3 0.5 

300 12 22 6 7 4.25 

600 23 29 9 10 3.06 

900 32 35 12 13 2.61 

1200 47 43 13 14 2.47 

1900 73 64 14 15 2.37 

0.2 0.6 0.2 

300 12 22 6 7 4.52 

600 23 29 9 10 3.25 

900 32 35 12 13 2.76 

1200 47 43 13 14 2.62 

1900 73 64 14 15 2.50 

0.4 0.2 0.4 

300 12 22 6 7 3.42 

600 23 29 9 10 2.45 

900 32 35 12 13 2.09 

1200 47 43 13 14 1.97 

1900 73 64 14 15 1.89 

 

0.4 0.4 0.2 0.67 0.58 134.4 0.005 0.140 97.9 99.5 4.57 5.38 

0.4 0.2 0.4 0.68 0.64 159.9 0.021 0.045 97.9 99.8 4.46 5.87 

0.6 0.1 0.3 0.64 0.73 140.8 0.052 0.096 97.7 99.9 3.80 4.77 

0.8 0.1 0.1 
0.68 0.71 103.5 0.012 0.055 97.0 

100.

0 
3.16 3.31 

0.6 0.3 0.1 0.65 0.60 114.7 0.023 0.099 97.9 99.9 3.91 4.27 
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0.6 0.2 0.2 

300 12 22 6 7 2.38 

600 23 29 10 10 1.70 

900 32 35 12 13 1.44 

1200 47 43 13 14 1.36 

1900 73 64 14 15 1.30 

 

Table 5: Population variance for fixed survey cost in ORR device with options for DR, 

RR and ICT using three independent samples (Device-III) 

 

Proportion of individuals with a 

chosen response option 
𝑪 

(Rs.) 

𝑪𝟎 

(Rs.) 

𝑪′ 

(Rs.) 
𝒏𝟏 𝒏𝟐 𝒏𝟑 𝑽(𝒆′) 

DR RR  ICT 

0.1 0.2 0.7 

300 12 22 4 6 3 8.87 

600 23 29 6 9 5 6.22 

900 32 35 8 11 6 5.21 

1200 47 43 8 12 6 4.90 

1900 73 64 9 13 7 4.67 

0.2 0.4 0.4 

300 12 22 4 6 3 7.37 

600 23 29 6 9 5 5.09 

900 32 35 7 11 6 4.23 

1200 47 43 8 12 7 3.96 

1900 73 64 9 13 7 3.77 

0.2 0.3 0.5 

300 12 22 4 6 3 7.60 

600 23 29 6 9 5 5.27 

900 32 35 8 11 6 4.39 

1200 47 43 8 12 7 4.12 

1900 73 64 9 13 7 3.92 

0.2 0.6 0.2 

300 12 22 4 6 3 7.00 

600 23 29 6 9 5 4.85 

900 32 35 7 11 7 4.03 

1200 47 43 8 12 7 3.78 

1900 73 64 8 13 8 3.59 

0.4 0.2 0.4 

300 12 22 4 6 3 6.02 

600 23 29 6 9 5 4.15 

900 32 35 8 11 6 3.44 

1200 47 43 8 12 7 3.23 

1900 73 64 9 13 7 3.06 

0.6 0.2 0.2 

300 12 22 4 6 3 3.41 

600 23 29 6 9 5 2.32 

900 32 35 8 11 6 1.91 

1200 47 43 8 12 7 1.78 

1900 73 64 9 13 7 1.69 
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6. Conclusion  
 

To estimate a proportion of individuals bearing a sensitive characteristic in the 

population, ORR devices present in the literature provide only two types of response options 

to the survey participants. It is anticipated that in reality, the population is heterogeneous 

enough to contain individuals out of which a few may opt DR, a few may choose RR and the 

rest may opt for answering an ICT questionnaire. In such a case, using any ORR device existing 

in the literature which provides only two response options (DR and RR or RR and ICT), would 

result in plausible non-responses. Hence, to avoid this issue, two ORR devices are proposed 

here, both of which provide all the three response options (DR, RR and ICT) to each sampled 

individual who may choose any one option at his/her discretion without disclosing the choice 

to the investigator. The first proposed device requires selection of two independent samples 

from the population and the second device mandates selection of three independent samples. 

Based on a simulation exercise with different scenarios of respondents’ choices for DR, RR 

and ICT, it is concluded that both the proposed devices are competitive to the existing ORR 

device.  
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Abstract 

 

Repeated droughts, population expansion and global warming force thorough 

limitations on irrigation practices. The low water usage efficiency is the universal problem 

encountered by most of the irrigation systems. A survey was carried out over irrigation 

practices, which comprises of conventional irrigation methods, micro-irrigation systems, 

intelligent irrigation approaches, estimation of reference evapotranspiration (ET0) using soft 

computing models and performance indicator models. The outcome of the survey reveals 

that, the software techniques must be integrated with traditional irrigation practices to 

improve water productivity and economy. 

 

Key words: Irrigation methods; Land suitability; Machine learning; Performance indicators. 

 

1. Introduction 

 

Economic progress and expanding worldwide populace extend the interest for 

innovative irrigation system. According to the expectation of food and agriculture 

organization (FAO), food necessity will increment about 60% by year 2050 (Alexandratos 

and Bruinsma, 2012). Internationally, evaluated that agriculture action devours around 70% 

of the gross water, grouped with 10% for civic use and remaining water is used by 

mechanical sector (Provenzano and Sinobas, 2014). Worldwide, inundated land represents 

302Mha and possesses just 16% of the cultivatable region (Playan et al., 2013). Presently, 

36% of land by bone-dry and semi-parched locales and anticipated that drought risk will 

further increment (Safriel et al., 2006; Alcamo et al., 2007; Arnell et al., 2011). The water 

productivity (WP) is the proportion between crop yield and complete water use (Pereira et al., 

2002). The water devoured by plants is under 65% of provided water and right volume of 

plants upon right time improves the WP (Chartzoulakis et al., 2015). The design of effective 

irrigation system is complex because of barometrical conditions, soil properties, crop species 

and irrigation strategy (Dabach et al., 2013; Soulis and Elmaloglou, 2018). The generally 
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utilized irrigation system strategies are surface, pressurized sprinkler, low volume drip and 

micro-sprinkler. The subsurface irrigation is another water system wherein water is applied 

straightforwardly inside the soil (Orang et al., 2008). The deficit irrigation method was an 

efficient strategy for Mediterranean environment land considering drought tolerant crop 

(Galindo et al., 2018; Hargreaves and Samani, 1984). The surface irrigation strategy is most 

widely utilized method and this methodology is generally popular and prudent but the low 

water system proficiency is the key issue (Raghuwanshi et al., 2010). The sprinkler water 

system structure includes pipe network water streams with power through spouts and it 

mimics precipitation with of overhead splashing (Valipour, 2015). In trickle water system, 

water is provided through fixed model line organization and gradually discharged to plants 

(Tindula et al., 2013). The advancement of first generation water system innovation was 

begun with multi-customer electronic hydrants for usage at regulation organization. The 

second era water system innovation was variable recurrence siphons. The micro-irrigation 

system strategy was the third era in irrigation innovation wherein WP was expanded however 

hardly introduced because of high initial speculation. The sub surface trickle water system 

was the fourth era in irrigation innovation designed to address the difficulties of surface drip 

water system, wherein producer obstructing issue is killed. The fifth era in water system 

innovation was deficiency water system developed for ideal water application considering 

crop development stage without influencing the yield (Levidow et al., 2014; kang et al., 

2017). Artificial intelligence (AI) based water system frameworks are likely ways to deal 

with affordable and effective models for agricultural water management (Torres-Rua et al., 

2012; Niu et al., 2017; Chlingaryan et al., 2018; Behmann et al., 2015; Griffiths et al., 2011;  

Gutierrez et al., 2018; Haider et al., 2008; Kamilaris and Prenafeta-Bouldu, 2018). 

 

2. Land Suitability for Different Irrigation Methods 

 

The land suitability for surface and micro-irrigation system was dissected utilizing 

parametric assessment strategy to decide the possible technique. The dirt properties were 

utilized to decide the reasonable water system technique in Fakkeh area of West Iran. The 

investigation displayed that trickle water system technique improved land sufficiency over 

sprinkler and surface strategy. The dirt surface was restricting variable for surface and 

sprinkler strategy, calcium carbonate was central question for drip irrigation system (Landi et 

al., 2008). The dirt properties were utilized to decide the appropriate water system techniques 

in Abbas plain territory of West Iran. The dirt properties were utilized to decide the 

appropriate water system strategy in Dosalegh locale of Iran. The investigation displayed that 

drip water system technique improved land sufficiency over sprinkler and surface strategy. 

The dirt surface, saltiness and incline were restricting components for surface and sprinkler 

strategy, calcium carbonate, soil surface and saltiness were key restricting variable for drip 

water system (Albaji et al., 2010). The dirt properties were utilized to decide the appropriate 

water system strategies in Gotvand plain zone of Iran. The investigation showed that 

sprinkler water system strategy improved land sufficiency over trickle and surface technique. 

The calcium carbonate and seepage were restricting variables for all water system strategies 

(Albaji et al., 2014). The dirt properties were utilized to decide the appropriate water system 

strategy in Rasht area of Iran. The investigation showed that trickle water system strategy 

improved land ampleness over sprinkler and surface technique. The dirt surface and seepage 

were key restricting variables for all the water system techniques (Seyedmohammadi et al., 

2016). The audit of soil properties and land appropriateness model shows that micro-

irrigation system surpasses surface water system over expanding irrigation land inside the 

accessible water resources. 
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3. Irrigation Methods 
 

The irrigation method adoption depends on soil and land characteristics, WP and 

Economic water productivity (EWP). In the following section the basin, tube sprinkler, 

pillow and drip irrigation strategies were compared over investment, electricity cost, water 

usage efficiency and crop yield.  The furrow and deficit drip strategies were compared on 

water savings and yield. The surface drip and sub surface drip were compared over emitter 

clogging, water consumption and yield. The drip and sprinkler methods were analyzed over 

delivery efficiency.   

 

3.1. Comparison of basin, pillow, drip, and tube sprinkler irrigation  

 

To address water scarcity, a field study was carried out at North China Plain, the three 

micro-irrigation methods improved WP but EWP of basin irrigation method was higher 

compared to micro irrigation methods. The comparisons of drip, basin, pillow and tube 

sprinkler irrigation methods are represented in Table 1 and Figure 1. 

 

Table 1: Comparison of basin, tube sprinkler pillow and drip irrigation methods  

 
References Irrigation 

method 

Investment 

cost  

(Yuan/ha) 

Electricity 

cost 

(Yuan/ha) 

Irrigation 

depth 

applied 

(mm) 

WP 

(kg/m3) 

Yield 

(kg/ha) 

Crop 

species 

Fang et al., 

(2018) 

Basin 700 

 

0.22 90 1.57 6217.5 Winter 

wheat 

Drip 4125 0.33 90 1.91 6937.8 

Pillow 3225 0.35 90 1.73 6898.3 

Tube 

Sprinkler 

4443 0.26 90 1.63 6614.5 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Comparison of different irrigation over investment cost 

 

3.2. Comparison of furrow and drip irrigation 

 

In a semiarid region a field study was conducted on drip and furrow irrigation for sugar 

beet to analyze WP. The drip tape irrigation method surpasses furrow method on sugar beet 

with higher WP. The details of water savings and yield are represented in Table 2 and Figure 

2.  
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Table 2: Comparison of furrow and drip irrigation on WP 

 

References Irrigation method  

 

Water savings compare to 

furrow  irrigation 

Average 

yield  

(t/ha) 

Crop 

species 

with 

monitoring  

without 

monitoring  

Ghamarnia 

et al., 

(2011) 

Drip (100% ET) 28.8% 38.4% 15.55 Sugar 

beets Drip (75% ET) 46.6% 53.8% 14.62 

Drip (50% ET) 64.5% 69.2% 11.78 

Drip (25% ET) 82.2% 84.6% 9.36 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Comparison of furrow and drip irrigation over WP 

 

3.3. Comparison of surface drip (DI) and subsurface drip irrigation (SDI) 
 

Irrigation efficiency is an important issue in semiarid region due to water scarcity. 

Detecting leakages and repairing them is difficult task in surface drip irrigation though it is 

very efficient method. To overcome the drawbacks mentioned above an alternative 

subsurface irrigation system was introduced in southern Spain. The subsurface drip irrigation 

WP was high comparing to traditional drip irrigation method and easy to install. Comparison 

of DI and SDI based on WP are outlined in Table 3.  

 

Table 3: Comparison of DI and SDI based on water WP and yield 

References Irrigation 

method 

WP 

(kg/m3) 

Average 

yield 

(kg/tree) 

Emitter Clogging issue 

 

 

Crop 

species 

Martinez and 

Reca, (2014) 

DI 

 

0.22 17.15 More exposure to emitter 

clogging and difficulty to 

detect clogged emitters and 

leakages. 

Organic 

olive 

orchard 

SDI 

 

0.24 19.24 Reduced exposure to emitter 

clogging and also easy to 

detect and replace clogged 

emitters. 
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3.4. Analysis of sprinkler and drip irrigation 
 

The drip and sprinkler irrigation strategies were compared on delivery efficiency (DE), 

maintenance cost and economy. The WP in drip irrigation system was lower than sprinkler 

irrigation system, in most of the plots water supply was higher than the actual requirement of 

water by crops. According to water users associations the sprinkler irrigation system has 

higher EWP than drip irrigation system (Corcoles et al., 2011). The comparison of sprinkler 

and drip irrigation performance are summarized in Table 4. 

 

Table 4: Comparison of drip and sprinkler irrigation on economy and efficiency 

 

References Irrigation 

method 

DE 

(%) 

MOMId 

(€/m3) 

Energy 

Cost 

OIa 

(€/ha) 

Crop species 

 

Corcoles 

et al., 

(2011) 

Sprinkler 92.7 0.05 45% of 

MOM 

4,408.16 Maize, Barley, Alfalfa, 

Onion, Carrot, Vineyard 

Drip 80 0.13 20% of 

MOM 

2,388.16 Vineyards, Olive trees, 

Almond trees 
MOMId = Management, Operation and Maintenance cost per unit irrigation delivery, OIa = Economic 

output per unit irrigation area. 

 

4.  Soft Computing (SC) Techniques for Irrigation System 

 

SC is a space of software engineering that emulates marvel of human mind (Gocic et 

al., 2015). The perspectives, for example, cognizance and perception are key highlights of SC 

strategies. The SC techniques abuse obstruction for vulnerability and imprecision and also 

guarantee similarity and offers prudent arrangements. (Keskin and Terzi, 2006). To assemble 

smart and reasonable machines SC strategies have been utilized in numerous applications 

including ET0. The ET0 is a significant measurement to comprehend the harvest water 

prerequisites to acquire good yield (Temesgen et al., 2005). The ET0 is crucial parameter for 

estimation of irrigation water requirements (Allen et al., 1991). 

 

4.1. Neural networks (NN) for irrigation system 

 

NN is an anatomical organization utilized for modelling non-linear systems using 

artificial intelligence methods. The NN data preparing structure is made like human neural 

organization and it comprises of three fundamental components, for example, input, 

concealed layers and yield. Shrouded layers among info and yield have number of neurons, 

hubs or cells. Information signal from the info layer arrives at the following connection by 

following all conceivable association ways and at each connection signal goes through 

change. NN comprises of many handling components arranged by connections and loads 

since its gigantic equal framework (Keskin and Terzi, 2006). The NN can gauge the cycle 

conduct even with halfway data. To gauge ET0 neural organization models were utilized with 

various methodologies. In this section different neural organization strategies utilized for 

forecast of ET0 are described.  

 

The Artificial NN (ANN) and NN integrated with auto regressive external input 

(NNARX) models performance were analyzed in hot and dry environment (Piri et al., 2009). 

Multiple regression (MLR) and NN model efficiency was analyzed considering humidity and 

temperature data (Laaboudi et al., 2012). Adaptive neuro-fuzzy inference system (ANFIS) 

model was analyzed for climate data of Kerman and Isfahan station (Karimaldini et al., 
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2011). The ANN and Evolutionary NN (ENN) models were analyzed for forecast of ET0. The 

feed forward back propagation NN (FFBP-NN) and second order NN (SONN) models were 

investigated for forecast of ET0 (Adamala et al., 2013). Cuckoo search algorithm (CSA) was 

integrated with NN (ANN+CSA) and ANFIS was integrated with CSA (ANFIS+CSA) for 

forecast of ET0 over twelve stations climate data of Serbia (Shamshirband et al., 2015). Back 

propagation neural networks (BPNN) was applied to forecast ET0 with the help of hybrid 

particle based back propagation (PF-BP), Imperialist competition algorithm (ICA-BP) was 

used for forecast of ET0 over Tabriz weather station data (Nazari and Shamshirband, 2018). 

Regression technique was applied for ET0 prediction (Khoshravesh et al., 2017). The survey 

reveals that PF-BP and ENN model surpasses the different NN methods for forecast of ET0. 

 

4.2. Support vector machines (SVM) for irrigation system 

 

SVM is a measurable learning hypothesis created by Vapnik. The informational 

collections of non-linearly distinct can be grouped by SVM utilizing kernels for plotting the 

information into high-dimensional component space. Support vector regression (SVR) is a 

way to deal with decide relapse through SVM. The fitting choice of bits and its boundaries 

portrays the performance of SVR model. Radial basis function (RBF) is the kernel function 

for SVM due to its favourable performance (Deo and Samui, 2017). Least square support 

vector machine (LSSVM) approach was applied to forecast ET0 considering weather data 

from Shihez station of China and the prediction of LSSVM method was compared with ANN 

(Chen, 2011). The SVR approach was applied for forecast of ET0 using regression procedures 

with SVM. The SVR model outperformed the other variants of SVM (Kisi and Cimen, 2009). 

 

4.3. Genetic programming (GP) for irrigation system 

 

The GP model discovers solution for issues utilizing traverse and change rules. Genetic 

calculation upholds equal inquiry dependent on Darwin development hypothesis. GP has self 

boundary choice potential to draw the features for improving the model without client 

impedance and it describes the program linearly.  Genetic algorithm and back propagation 

(GABP) NN approach was applied to estimate ET0 considering weather data of Tabriz 

station, Iran (Nazari and Shamshirband, 2018). A linear GP (LGP) was applied to forecast 

plant water requirement (Kisi and Guven, 2010). Gene expression programming (GEP) 

approach was applied to forecast plant water requirement using Egypt weather data (Mattar 

and Alazba, 2018). The LGP surpasses other GP variants for forecast of ET0. 

 

5. Intelligent Irrigation Systems  

 

Approximately 60% of the flooded land must be smoothed out by adopting innovative 

irrigation methods to satisfy future global food demand and to extend WP (Alexandratos and 

Bruinsma, 2012; Playan et al., 2013). The SC strategies, agent technology, wireless Sensor 

Networks (WSN), Fuzzy decision support system (FDSS), Internet of Things (IoT) and have 

great potential to extend water savings in irrigation management. The review of innovative 

irrigation system exhibits the key features which help to improve the performance of 

irrigation system. The Fuzzy decision support system (FDSS) for irrigation was planned to 

address the particular issues of online water system model called IRRINET (Giusti and 

Marsili-Libelli, 2015). Agent based irrigation was planned considering soil properties, crop 

thirst affectability, development stage and net return estimation of harvest yield. The day by 

day water revive model was planned thinking about precipitation, ET0, and introductory 

profundity of field water. The specialist model increases WP without yield reduction using 
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regulated deficit irrigation. The depth of water required for daily recharge to maintain soil 

water balance was decided using volume of soil moisture depleted. The experiment was 

conducted for multi-crop farm land using priority based irrigation scheduling, which exhibits 

increased water productivity (Anthony and Birendra, 2018). To optimize water for 

agricultural crops automated irrigation system was developed. An intelligent irrigation 

system was designed using WSN, which comprises of temperature and dampness sensors 

inserted in the root zone of the yields, detected and handled information moved to a web 

machine. Based on temperature and soil moisture data for real time monitoring and 

programming of irrigation graphical user interface software was implemented (Gutierrez et 

al., 2014). The drip irrigation scheduling was implemented using java application software 

tool called IRRIX. The water balance model was employed for forecast of plant water 

requirement and recharge strategy was applied to balance the soil water, based on the 

feedback data of soil and plant sensor. Experiments were conducted for automated full and 

deficit irrigation with conventional method. Automated irrigation surpasses the conventional 

method through increase in WP and economy (Casadesus et al., 2012). Multi-intelligent 

control system (MICS) was used with the help of IoT for irrigation management. MICS 

provides reliable and satisfactory solution and also increases WP and EWP over conventional 

irrigation system (Hadipour et al., 2020). A smart irrigation system was proposed using IoT 

and neural networks approach. Crop water requirement data set was used to train the neural 

networks algorithm to get the accurate results. Intelligent irrigation was compared with 

normal drip and conventional irrigation methods, where in intelligent irrigation model 

surpasses the conventional methods through increased water productivity (Nawandar and 

Satpute, 2019). Automated drip irrigation was proposed using smart phone and 

microcontroller for paddy crop. It was compared with flood and normal drip irrigation. The 

smart phone captures the soil image, estimates the moisture and passes the data onto the 

microcontroller using GSM module. Automated drip out performs the normal drip and flood 

irrigation system (Barkunan et al., 2019). 

 

5.1. Irrigation scheduling based on crop water stress  

 

Intelligent root zone water quality model based irrigation was used to predict crop 

water pressure progressively. The depth of water needed for day by day revive to deal with 

soil water balance was set considering the depth of soil dampness drained. The yield water 

pressure based water system was adjusted with field water system utilizing drip and sprinkler 

technique for corn and soybean crops individually. The model expands the water system 

proficiency in low precipitation territory and it burns-through somewhat more water in moist 

territories with expanded harvest yield (Gu et al., 2017). The software model anticipated 

irrigation was calibrated with field drip irrigation, which is highlighted in Table 5. 

 

Table 5: Comparison of software model based irrigation over field drip irrigation 

 

References Software 

model based 

irrigation 

Water savings when calibrated with 

field drip irrigation for 3 years 

Crop  Crop yield 

2008 2009 2010 

Gu et al., 

(2017) 

 

Simulated for 

full water 

supply 

30.5% 17.3% 7.1% Corn Negligible 

decrease 

between 

0.03-

3.81% 
Simulated for 

60-90% of full 

water supply 

35% 30% 16% 
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The crucial input parameters are identified in the survey considering various irrigation 

systems and which can be used as features for machine learning based irrigation system. 

Comparison of machine learning, IoT, cloud and agent based irrigation systems over water 

savings are outlined in Table 6. The vital input features required for efficient irrigation 

systems are outlined in Table 7. 

 

Table 6:  Comparison of various software based irrigation systems on water savings 

 

References Technology  Water 

savings 

 

Irrigation 

method 

Crop 

species 

Additional 

benefits 

Experiment 

duration 

Anthony 

and  

Birendra, 

(2018) 

Agent 

technology 

22.11%  

Without 

affecting 

the crop 

production

. 

Not 

mentioned 

Pastures 

Maize 

Tomato 

Potato  

High 

profit with 

priority-

based 

water 

allocation 

Not 

mentioned 

Gutierrez et 

al., 

(2014) 

Wireless 

sensor 

networks  

60% Drip Sage 

Thyme 

Origanum 

 Basil 

Energy 

autonomy  

And 

 Low cost 

18 Months 

Giusti and  

Marsili-

Libelli, 

(2015) 

Fuzzy logic  13.55 % 

compare 

to irrinet 

model 

Not 

mentioned 

Corn 

Kiwi 

Potato 

Vegetable  

and 

 Fruit 

crops 

Robust 

and 

Consistent 

2006-08 

 

Gu et al., 

(2017) 

RZWQM2 35% Drip, 

Sprinkler 

Corn 

 Soybean 

Crop 

production 

improvem

ent of 291 

kg/ 

hectare 

2008-10 

 

Niu et al., 

(2017) 

Machine 

learning 

 

Not 

mentioned 

Not 

mentioned 

Reeds 

Typha  

Orientalis 

Paddy 

High 

Accuracy 

Not 

mentioned 

Severino et 

al., 

(2018) 

 

Internet of 

things  

(IoT) 

Not 

mentioned 

Drip Not   

Mentioned 

Usage of 

recycled 

water 

 

Not 

mentioned 

Zhou and 

Li,  

(2017) 

Cloud 

services 

 

Not 

mentioned 

Not 

mentioned 

Not   

Mentioned 

Great 

market 

prospect 

Not 

mentioned 
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Table 7: Key features identified for efficient intelligent irrigation system 

 

References SM HU ST IM CS CG CD ET RF DP RO 

Anthony and Birendra, 

(2018) 
✔  ✔  ✔ ✔ ✔ ✔ ✔   

Gutierrez et al., (2014) ✔ ✔  ✔ ✔       

Giusti and Marsili-Libelli, 

(2015) 
✔ ✔ ✔ ✔ ✔ ✔  ✔ ✔   

Gu et al., (2017) ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ 

Niu et al., (2017) ✔ ✔   ✔ ✔  ✔ ✔   

Severino et al., (2018) ✔  ✔ ✔ ✔ ✔ ✔ ✔ ✔   

Zhou and Li, (2017) ✔ ✔   ✔ ✔  ✔    

SM= Soil moisture, HU= Humidity, ST= Soil type, IM= Irrigation method, CS= Crop 

species, CG=Crop growth stage, CD= Crop drought sensitivity, RF= Rain fall, DP= Deep 

percolation, RO= Runoff. 

 

6.  Performance Indicators for Irrigation System 

 

The performance indicators play a vital role in rating irrigation systems (Pereira et al., 

2012). In this section the key terminologies used for analyzing irrigation system performance 

are outlined. The ET determines the plant water requirement but how efficiently the irrigation 

system satisfies the need is computed through application efficiency (𝐴𝑒).  The AE is defined 

as the ratio of average depth of irrigation water consumed by crops and average depth of 

irrigation water applied. The aim of irrigation system is every part of the field should receive 

same amount of water. The distribution uniformity is defined as the ratio of average points of 

smallest water depth accumulated and average depth of water stored in all points. The 

irrigation efficiency (𝐼𝑒) is the ratio of beneficially used irrigation water and gross volume of 

irrigation water that leaves the boundary. The irrigation consumptive use coefficient (𝐼𝑐𝑢) is 

defined as the ratio of depth of irrigation water consumptively used and gross volume of 

irrigation water that leaves the boundary. The irrigation sagacity (Is) is the ratio that covers 

water usage for societal purpose along with crops consumption and gross volume of irrigation 

water that leaves the boundary. The other performance indicators such as adequacy (Aq), 

equity of water distribution (Eq), dependability of water supply (Dp), net Returns (Nr), yield 

Response, deep percolation ratio (Dr), tail water ratio (Tr), yearly relative water supply (Yrw), 

yearly relative irrigation supply (Yri), Transmission loss (Tl), Outcome per planted area (Opa), 

outcome per unit irrigated area (Oui), outcome per unit irrigation applied (Oia), outcome per 

unit irrigation depth consumed (Oic), relative water supply (Rw), relative irrigation supply 

(Ri), irrigation water delivery capability (Idc), dependability of duration (Dd), annual income 

(Ai), annual profit (Ap), net irrigation requirement (Nir), net regulated deficit irrigation (Nrdi), 

seasonal irrigation performance index (Sipi) are outlined  in the following section. The survey 

of irrigation performance indicator model exhibited that, the water productivity and economic 

water productivity models are the effective measures to understand water savings and 

economy (Pereira et al., 2012). The irrigation performance indicator model to measure 

application efficiency is outlined in Table 8. The Irrigation performance indicator model to 

measure   distribution uniformity (low quarter) is outlined in Table 9. The Irrigation 

performance indicators considering crop transpiration, evaporation, yield and profit are 

outlined in Table 10 (Appendix). 
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Table 8: Application efficiency models used in irrigation system 

 

References Model Variables considered  

Burt et al., 

(1997) 
𝐴𝑒= 

𝐴𝑡

𝐴𝑎
 × 100 

Ae: Application Efficiency 

At: Average depth of irrigation water 

providing to target 

Aa: Average depth of  Irrigation water 

applied 

Ghamarnia

et al., 

(2011) 

𝐴𝑒= 
Ia+ Ic

Is

 

 

Ae: Application Efficiency 

Ia: Irrigation depth accumulated upon 

root zone (m3) 

Ic: Irrigation depth consumed on the 

root zone (m3) 

Is: Total Irrigation depth supplied  (m3) 

Raghuwans

hi et al., 

(2010) 

𝐴𝑒= 
Ia

q
0
WTe

 × 100 

Ae: Application Efficiency 

Ia: Depth of irrigation water  

accumulated upon root zone (m3) 

q0: Flow in rate per unit border  extent 

(m3/ m/s) 

W: Border  extent (m) 

Te: End time (s) 

Reca et al., 

(2018) 

𝐴𝑒 = 1 + 𝑓 (
𝐷𝑟

𝐷𝑔
− 1) −

(𝐶𝑣 - 
v2

2
)

(√
     𝜋

     2
  )

 

 

Ae: Application Efficiency  

f: Fragment of the command area unit 

that is adequately  irrigated. 

Dr : Irrigation depth requirement 

Dg : Total irrigation depth 

Cv:  Coefficient  variation  of irrigation 

depth  applied 

v: Cumulative variable 

 

Table 9: Distribution uniformity low quarter (DUlq) models used in irrigation system  

 

References Model Variables considered  

Burt et al., 

(1997) 

𝐷𝑈𝑙𝑞 = 
𝐴𝐷𝑙𝑞

𝐴𝐷𝑒𝑓
 

 

𝐴𝐷𝑙𝑞 : Average depth of  irrigation water accrued in  low 

quarter field 

𝐴𝐷𝑒𝑓 : Average depth of  irrigation water accrued in entire 

field elements 

Raghuwanshi 

et al., 

(2010) 

 

𝐷𝑈𝑙𝑞= 
AP1q
̅̅ ̅̅ ̅̅

AP̅̅ ̅̅
 

 

𝐴𝑃𝑙𝑞
̅̅ ̅̅ ̅̅  : Average percolated depth for low field quarter (mm) 

AP̅̅̅̅  : Average percolated depth (mm) 

 

7. Conclusion 

 

Irrigation practices and software techniques applied for agricultural water management 

was reviewed to determine the effective method considering water productivity and economy. 

This paper reveals that, software techniques should be integrated with traditional irrigation 

methods to offer economical and efficient irrigation system. The empirical irrigation 
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strategies were analyzed for water productivity and economy. This paper exhibits that, 

suppose if economy is the decision making factor, then surface irrigation is the best method 

over expensive micro-irrigation. Suppose if water savings is the key objective, then micro-

irrigation technique is the best approach over surface irrigation system. The review of 

intelligent irrigation systems exhibits that, the software model based crop stress irrigation was 

the most effective technique with 30.5% water savings compared to field drip irrigation and 

this paper also reveals that software based irrigation system significantly improves  water 

productivity. The soft computing model based forecast of reference evapotranspiration 

approach outperforms conventional models with minimal number of input features.  

 

The survey opens-up future research on machine learning based surface irrigation 

system, which offers efficient and economical agricultural water management system. The 

machine learning based irrigation framework safeguards the advantage of low initial venture 

of conventional surface irrigation system with higher water productivity through the aid of 

artificial intelligence techniques. Real-time irrigation framework based on machine learning 

technique makes a significant improvement in water productivity. 
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APPENDIX 

 

Table 10: List of irrigation performance indicator models  

 

References Performance 

indicators 

Model Variables considered  

Arunkumar 

and 

Ambujam,  

(2010) 

 

𝑇𝑙: 

Transmission 

loss 

𝑇𝑙 = 
𝑅𝑖 - 𝑅𝑜

Aw × 𝑅𝑙
 

𝑅𝑖: Reach flow in rate 

(m3/s) 

𝑅𝑜: Reach flow out rate 

(m3/s) 

𝑅𝑙: Reach length (m) 

Aw: Avg. Wet area (m2) 

Opa: Outcome 

per planted area 

(Rs/ha) 

 

Opa = 
𝐶𝑃𝑣

Pa

 
𝐶𝑃𝑣: Crop 

 production value as per 

local market price (Rs) 

Pa: Planted area (ha) 

Oui: Outcome 

per unit 

irrigated area 

(Rs/ha) 

Oui = 
𝐶𝑃𝑣

A𝑢𝑖
 

𝐶𝑃𝑣: Crop 

 production value as per 

local market price (Rs) 

A𝑢𝑖: Unit irrigated area 

(ha) 

Oia: Outcome 

per unit 

irrigation depth 

applied  

(Rs/m3) 

O𝑖𝑎 = 
𝐶𝑃𝑣

Dia

 
𝐶𝑃𝑣: Crop 

 production value as per 

local market price (Rs) 

Dia: Depth of irrigation 

applied (m3) 

Oic: Outcome 

per unit depth 

of  irrigation 

consumed 

(Rs/m3) 

Oic= 
𝐶𝑃𝑣

Dic

 
𝐶𝑃𝑣: Crop 

 production value as per 

local market price (Rs) 

Dic: Unit depth of 

irrigation consumed 

(m3) 

Rw: Relative 

water supply 

 

𝑅𝑤 = 
𝐺𝑖𝑑

ETc

 
𝐺𝑖𝑑: Gross irrigation 

depth supply (m3) 

ETc: Crop ET 

requirement (m3) 



196 PRADEEP H.K. ET AL. [Vol. 19, No. 2 

Arunkumar 

and 

Ambujam,  

(2010) 

𝑅𝑖: Relative 

irrigation 

supply 

𝑅𝑖 = 
𝐼𝑎

𝐼𝑟
 

𝐼𝑎: Irrigation applied 

(m3) 

𝐼𝑟: Irrigation need  

𝐼𝑑𝑐: Irrigation 

water delivery 

capability 

𝐼𝑑𝑐 = 
Co

RPeak

 
Co: Outflow capability 

of  irrigation water at 

the system head 

RPeak: Peak 

consumptive 

requirement 

𝐷𝑑: 

Dependability 

of duration 

𝐷𝑑 = 
da

dp

 
da: Actual span of 

water supply (days) 

dp: Planned span of 

water supply (days) 

 

Broner and 

Lambert, 

(1989) 

 

𝑁𝑟: Net Returns 

 

𝑁𝑟 = (Y  * C ) –  (𝐼𝑎*  𝐼𝑒) 
 

Y: Yield (kg/ha) 

C: Cost ($/kg) 

 𝐼𝑎: Irrigation depth  

applied (cm) 

𝐼𝑒: Irrigation 

expenditure ($/cm) 

Burt et al., 

(1997) 

 

𝐼𝑒: Irrigation 

efficiency 
𝐼𝑒= 

𝐷𝑏

𝐷𝑎- 𝐷𝑠
 ×100% 

𝐷𝑏: Depth of irrigation 

water beneficially 

utilized 

𝐷𝑎:  Depth of applied 

irrigation water 

𝐷𝑠:  Depth of irrigation 

water storage 

𝐼𝑐𝑢: Irrigation 

consumptive 

use coefficient 

𝐼𝑐𝑢= 
𝐷𝑐

𝐷𝑎- 𝐷𝑠
 ×100 % 

𝐷𝑐: Depth of irrigation 

water consumptively 

utilized 

𝐷𝑎:  Depth of applied 

irrigation water 

𝐷𝑠:  Depth of irrigation 

water storage 

𝐼𝑠: Irrigation 

sagacity 
𝐼𝑠= 

𝐷𝑏/𝑟

𝐷𝑎- 𝐷𝑠
 ×100 % 

𝐷𝑏/𝑟:  Depth of 

irrigation water 

beneficially  / 

reasonably  utilized 

𝐷𝑎:  Depth of applied 

irrigation water 

𝐷𝑠:  Depth of irrigation 

water storage 

Corcoles et 

al., (2011) 
𝑌𝑟𝑤: Yearly  

relative water 

supply 

𝑌𝑟𝑤= 
𝑌𝑖𝑑+ Ep

ETc

 
𝑌𝑖𝑑: Yearly irrigation 

depth release (m3) 

Ep: Effective 

precipitation (m3) 

ETc: Crop water 

consumption (m3) 
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Corcoles et 

al., (2011) 
𝑌𝑟𝑖: Yearly 

relative 

irrigation 

supply 

𝑌𝑟𝑖= 
𝑌𝑖𝑑

ETc- Ep

 
𝑌𝑖𝑑: Yearly irrigation 

depth release (m3) 

Ep: Effective 

precipitation (m3) 

ETc: Crop water 

consumption (m3) 

Hargreaves 

and Samani, 

(1984) 

Yield response 
(1 −

Ya

Ym

) =  𝐾𝑦 (1 −
ETa

ETm

) 
Ya: Actual crop 

production 

Ym: Maximum crop 

production 

𝐾𝑦: Production 

response 

ETa: Actual crop water 

consumption 

ETm: Maximum crop 

water consumption 

Memon et 

al., (1986) 
𝐴𝑖: Annual 

income 

𝐴𝑖 = 𝑅𝑦 ∗ 𝑃𝑦 ∗ 𝑃𝑟 𝑅𝑦: Relative yield 

𝑃𝑦: Potential yield 

𝑃𝑟: Price 

𝐴𝑝: Annual 

profit 

𝐴𝑝 = 𝐴𝑖 − 𝐺𝑎𝑐 𝐴𝑖: Annual income 

𝐺𝑎𝑐: Gross annual cost 

Raghuwanshi 

et al., (2010) 

 

𝐷𝑟: Deep 

percolation ratio 
𝐷𝑟= 

Ddp

q
o
𝐵𝑒Te

 
Ddp: Depth of deep 

percolation (m3) 

q
o
: Flow in rate per unit 

border  extent (m3/ m/s) 

𝐵𝑒: Border  extent (m) 

Te: End time (s) 

𝑇𝑟: Tail water 

ratio 
𝑇𝑟 = 100 − 𝐷𝑟 − 𝐴𝑒 Dr: Deep percolation 

ratio 

Ae: Application 

efficiency 

Rowshon et 

al., (2014) 

 

Aq: The 

adequacy  of 

irrigation 

Aq= 
1

t
∑ {∑ [

1

i
(

Q
d

Q
r

)]

i

1

}

i

1

 

t:  Time periods for 

water supply 

i: Unit area belongs to a 

channel released by the 

system over time t. 

Qd: Daily actual 

discharge 

Qr: Irrigation need  

Eq: The equity 

of water 

distribution 

Eq=1 −
1

t
∑ Cvr

i

1

(
Q

d

Q
r

) 

Cvr: Spatial coefficient 

of variation 

Rowshon et 

al., (2014) 

 

Dp:The 

dependability  

of the water 

supply 

Dp=1 −
1

i
∑ Cvt

i

1

(
Q

d

Q
r

) 

When Q
d
≤ Q

r
 

Cvt: Temporal 

coefficient of variation 
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Stambouli et 

al., (2011) 
Nir: Net 

irrigation 

requirement 

Nir = (𝐾𝑐 ∗ 𝐸𝑇0) − 𝐸𝑟𝑓 ET0: Reference plant 

water consumption 

𝐸𝑟𝑓: Effective rain fall 

𝐾𝑐: Plant Coefficient 

Nrdi: Net 

regulated deficit 

irrigation 

Nrdi = (𝐾𝑐 ∗ 𝐾𝑟𝑐 ∗ 𝐸𝑇0) − 𝐸𝑟𝑓 𝐾𝑟𝑐: Reduction 

coefficient 

𝑆𝑖𝑝𝑖: Seasonal 

irrigation 

performance 

index 

𝑆𝑖𝑝𝑖= 
𝑁𝑖𝑟

𝐼𝑎𝑑
 

𝑁𝑖𝑟: Net irrigation 

requirement 

𝐼𝑎𝑑: Irrigation 

application depth 

Pereira et al., 

(2012) 

 

WP: Water 

productivity 

(kg/ m3) 

WP = 
Y

𝐼𝑤𝑠
 

Y: Yield (kg/ha) 

𝐼𝑤𝑠: Irrigation water 

supplied (m3) 

Cetin and 

Kara, 

(2019) 

𝐸𝑊𝑃: 

Economic water 

productivity 

($/m3) 

𝐸𝑊𝑃 = 
𝑁𝑟

Ia

 
𝑁𝑟: Net returns ($) 

Ia: Irrigation depth 

applied (m3) 
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Abstract 

 

In family studies, usually, information on ages at onset of diseases is collected and the 

resulting data are often left censored.  When there is a possibility of multiple types of events 

(disease) in a left censored family (clustered) data, the concept of cause specific reversed 

hazard models and the concept of frailty are needed for modeling and analysis of the data. 

Hence, in this paper, for the analysis of clustered multiple event data with left censored 

observations, frailty models in terms of cause specific reversed hazard rates are introduced. 

The shared gamma frailty reversed hazards model for bivariate multiple event data are 

developed. The first model is developed for the analysis of data without the presence of 

covariates. In the second model, covariates are included and regression coefficients are 

assumed to be different for different type of events. The estimation of the parameters of the 

models by maximum likelihood method, using EM algorithm, is presented. The properties of 

the estimates are also discussed. Finally, the models are applied to real data sets. 

 

Key words: Reversed hazard rate; Competing risk; Frailty models. 

 

1. Introduction 

 

In family studies on diseases with ages at onset, assessing the familial association is often 

the problem of interest. When age at onset is considered, the data is often left censored. Left 

censored observations occur when the exact value of a response has not been observed and 

instead, an upper bound on that response is observed. Such observations also arise if a 

measuring instrument lacks the sensitivity needed to measure the observations below a known 

threshold. Then the measurement is taken and if the signal is below the instrument threshold, 

all which is known is that measurement is less than the threshold. Left censored observations 

also occur in studies determining the age at which a child learns to perform a specified task. 

Often, some children can already perform the task when they enter to the study. Such lifetimes 

are considered as left censored. The modeling and analysis of such left censored lifetime data 

is carried out using reversed hazard rate. The concept of reversed hazard rate (RHR) has been 

proposed as dual to hazard rate by Barlow et al. (1963) and is defined for a nonnegative random 

variable T as (𝑡) =  lim
∆𝑡→0

𝑃(𝑡−∆𝑡 < 𝑇 ≤ 𝑡+∆𝑡)

∆𝑡
. That is, in a small interval, the product of the RHR 

function and the length of the interval is the approximate probability of failure in the interval 

given failure before the end of the interval.  RHR was used for the estimation of the survival 
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function in the presence of left censored observations by Ware and DeMets (1976) for a baboon 

descent data. Later RHR was used for characterization of life distributions by Shaked and 

Shantikumar (1994), for investigating the properties for k  out of n  systems by Block et al. 

(1998) and for developing nonparametric estimators for right truncated data by Lawless (2003). 

Different authors, Chandra and Roy (2001), Gupta and Nanda (2001), Gupta and Wu (2001), 

Kalbfleisch and Lawless (1989), Nair, Sankaran and Asha (2005), Sankaran and Gleeja (2006), 

Bartoszewicz and Skolimowska (2006) and Faith (2017), extensively studied and presented 

results related to RHR.  

 

Sometimes in studies involving family or subgroups, lifetimes of individuals within the 

subgroup may be related. For modeling association between individual lifetimes within 

subgroups, the notion of frailty was introduced by Vaupel et al. (1979).  The model assumes 

frailty as a common random effect that acts multiplicatively on the hazard rates of all subgroup 

members. The most widely used frailty model is shared frailty model with gamma distribution 

as frailty distribution. It has been discussed in Vaupel et al. (1979), Clayton and Cuzick (1985), 

Klein (1992) and Andersen et al. (2003). Some other distributions for frailty like positive 

stable, Weibull, lognormal etc. are investigated in Hougaard (2000). The estimation of the 

parameters of shared frailty model using maximum likelihood method via the EM algorithm is 

developed in Nielson et al. (1992) and the asymptotic normality and efficiency of the estimators 

are studied and proved in Murphy (1994, 1995).  

 

The concept of frailty as a common random effect that acts multiplicatively on RHR has 

been introduced in Sankaran and Gleeja (2008). Let  1 2,T T  be the lifetimes of two related 

individuals. Then    0,j j j jm Z t Zm t  be conditional individual RHRs given frailty Z  where 

 0 j jm t , 1,2j   are the baseline reversed hazards. Assume that lifetimes  1 2,T T  are 

conditionally independent given frailty Z  and Z follows a gamma distribution with mean one 

and variance  . Then shared gamma frailty models is introduced by Sankaran and Gleeja 

(2011) as the distribution function of  1 2,T T ,      
 1/

1 2 01 1 02 2, 1F t t M t M t


 


      where 

 01 1M t  and  02 2M t  are the cumulative baseline reversed hazard function and   ≥ 0 .  

 

When time to failure of paired organs like kidney, lungs, eyes, ears, dental implants etc. 

are considered, it is more appropriate to model using shared frailty models. The estimation was 

done using maximum likelihood method via EM algorithm. Later, estimation of parameters 

involved in the shared frailty model by the Bayesian estimation procedure using the Markov 

chain Monte Carlo (MCMC) technique was discussed in Hanagal et al. (2014). The most 

commonly used frailty distribution is Gamma distribution, because of its mathematical 

convenience. Other distributions can be used as frailty distribution and Hanagal and Pandey 

(2015) developed three parametric shared frailty models with inverse Gaussian frailty using 

RHR. Gamma frailty models with different baseline distributions are discussed in Hanagal and 

Bhambure (2017) and Hanagal and Pandey (2017). Inverse Gaussian correlated frailty model 

with different baseline distributions are discussed in Hanagal (2020) and Hanagal and Pandey 

(2020). The shared frailty models are attracting recent interest of researchers and extensive 

research is being conducted on these models. While analyzing family data on age at onset of a 

particular disease, shared frailty models using RHR is very useful.  

 

But in certain studies on age at onset of diseases, individuals may be susceptible to more 

than one type of diseases or in some survival studies death can occur due to any one of the two 
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or more causes. When there are multiple types of causes for the event, the concept of competing 

risks facilitates analysis. Modeling and analysis of lifetime data with multiple type of events 

under right censoring is discussed in Crowder (2001), Kalbfleisch and Prentice (2002) and 

Lawless (2003). The analysis of competing risks data under left censoring using RHR has been 

carried out in Sankaran and Anjana (2014). Specifically, they presented the analysis of left 

censored data with multiple types of events using cause-specific RHR functions. Let  ,T J be 

a pair of random variables where T  is possibly a censored lifetime and J  represents cause of 

event. J  takes values on the set {1,2,...,r}. These r causes are mutually exclusive and 

exhaustive, so that the individual can have at most one realized lifetime with an identifiable 

cause. Then cause specific RHR of T is defined as 
0

( , / )
( ) limj

t

P t t T t J j T t
m t

t 

    



,  

j = 1,2,...,r. Thus ( )jm t  specifies the instantaneous rate of failure of an individual at time t due 

to cause j given that it failed before time t.  Then the marginal RHR of T  was given as 

 
1

( )
r

j

j

m t m t


 . Sankaran and Anjana (2016) introduced a proportional cause specific RHR 

model for modeling and analysis of left censored competing risks data in the presence of 

covariates. The model was given as     '

0| exp( )j jm t m tx βx , j=1,2,...,r  where  |jm t x is 

the cause-specific RHR due to cause j in the presence of covariate x and  x is a vector of  p 

covariates,  
'

1 2, ,..., p  β  is the vector of  p regression parameters, and  0 jm t is the 

baseline cause-specific RHR due to cause  j. The vector of regression parameters β measures 

the effect of the covariate vector on the cause-specific RHR. But these models are not 

appropriate for clustered data like family data, as it does not consider the association exist 

between members of the family.  

 

Thus, in order to analyze a left censored family (clustered) data with multiple types of 

events (diseases), a frailty-based competing risks models using RHR is needed. Motivated by 

this, in this paper, a shared gamma frailty model in terms of cause specific RHR is developed.  

 

The paper is organized as follows. In section 2, cause specific shared frailty proportional 

RHR model is developed with and without the presence of covariates. The estimation and the 

asymptotic properties of the parameters of models are studied in section 3. In section 4, the 

model is illustrated with data sets from Ying and Wei (1994) and McGilchrist and Aisbett 

(1991). Finally conclusions and discussions are given in section 5.  

 

2. Cause Specific Shared Frailty Proportional RHR Model  

 

The model is constructed to deal with a clustered or family data with multiple causes of 

event. The time to event is the variable of interest and let us consider bivariate situation.  

  

2.1. Cause specific shared frailty proportional RHR model without covariates 

 

Let  1 2,T T T  be the pair of lifetimes of two related individuals defined on a common 

probability space  , , P F with absolutely continuous distribution function. Let  1 2,F t t  and 

 j jF t  respectively denote the joint distribution function of T  and the marginal distribution 

function of jT , j=1,2.  Let the support of T  be 1 2[0, ] [0, ]D b b   where  1 2,b b  is such that 
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  inf 1|j jb t F t  , 1,2j  . Assume that each of the pair  1 2,T T  is subject to multiple 

causes of event. Let   1 2,C C C  denote the cause of event for T . Suppose that there are r 

causes for the event for each individual in the process. Assume that 
jC  is a unique element of 

the set {1,2,…,r},  j=1,2. We assume that individual can have at most one realized lifetime 

with an identifiable cause. Observations from the same cluster or family may share common 

environment or some other factors. Hence it is assumed that the pair of lifetimes shares a 

common unobserved frailty Z . First define the cause specific RHR of jT  for given frailty Z as  

 

      0,jk j jk jm Z t Zm t , j=1,2 and k=1,2,…,r                                                                                                                                                                

  

where  0 jk jm t  is baseline cause specific RHR function of jT , j=1,2 and Z  is an unobservable 

random variable having a probability density function ( )g z .  The marginal RHR of jT
 
for 

given frailty Z is obtained as  

 

     0

1 1

, ,
r r

j j jk j jk j

k k

m Z t m Z t Z m t
 

   , 
j=1,2. 

 

We assume that lifetimes  1 2,T T  are conditionally independent given frailty Z . Then the 

distribution function of   1 2,T T  given frailty Z  is 

 

        
1 2

1 2 1 2

1 1

, | exp , ,
r r

k k

k kt t

F t t Z m Z u du m Z v dv

 

 

  
   

  
    . 

 

Let  g z  be the joint density function of Z . Then the bivariate distribution function of   1 2,T T  

is  

 

                        1 2 1 2

0

, , |F t t F t t Z g z dz



    =   1 2, |E F t t Z  

                                    01 1 02 2

1 1

exp
r r

k k

k k

E Z M t M t
 

   
      

   
   

 

where  01 1kM t  and  02 2kM t  are the cumulative baseline cause specific reversed hazard 

function.   

 

The marginal distribution function of  
jT  is  

 

        01 1

10

| exp
r

j j j j k

k

F t F t z g z dz E Z M t





  
    

  
 , 1,2j  .   

 

Suppose that Z is i.i.d. random variable with the following gamma density function 
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 

   

1/ 1

1/

exp{ / }
( ) ,         0

1/

z z
g z








 




 


.  

    

The mean value of Z  is 1 and variance is  .  Then bivariate distribution function of   1 2,T T

is obtained as 

  

     
 1/

1 2 01 1 02 2

1 1

, 1
r r

k k

k k

F t t M t M t



 



 

 
   
 
 

       

where   ≥ 0.  (1) 

 

Thus, cause specific shared gamma frailty proportional RHR model can be represented by (1).

  

 

The marginal distribution function 
jT  is then obtained as  

 

                      
( 1/ )

0

1

1
r

j j jk j

k

F t M t









 
  
 
 , 1,2j  .   

    

Therefore, the bivariate distribution function of  1 2,T T  can be represented in terms of marginal 

distribution functions as  

 

             
 1/

1 2 1 1 2 2, 1F t t F t F t
  

    
 

      where   ≥ 0.  (2)

  

Remark 1: T1 and T2 are independent, when   = 0.  

 

Remark 2: The model given in (2) is identifiable. Let  1 2,F t t  be a known distribution 

function given as in (2), and 0  , and let    
1

0
r

i i ik i

k

m b m b


  , 1,2i  . 1,2,...,k r  for r 

different causes. 

 

We obtain the joint density function as  

 

   
         

   

1 1 2 2 1 1 2 2

1 1
1 2 1

2

1 1 2 2

1

,

1

r r

k k

k k

m t m t F t F t

f t t

F t F t

 

  


 

 

 
    





  
 

 
. 

 

Since    
1

0
r

i i ik i

k

m b m b


   and   1i iF b  , 1,2i  ,  we have 

 

                     
 

   
1 2

1 1 2 2

,
1

f b b

m b m b
   . 
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From the above expression it is clear that the identified value is unique. Then the model is 

identifiable. 

 

2.2.  Cause specific shared frailty proportional RHR model with covariates 

 

Often the lifetime of individual is influenced by age, gender, history or severity of 

diseases. If information is available about such factors, then the heterogeneity in a population 

arising from the influence of those factors can be incorporated in models by specifying them 

as covariates. Accordingly, cause specific RHR function of jT  in presence of covariates and 

frailty is defined as  

 

    '

0, exp( )jk j jk j k jm Z t Zm t β x  

 

for j = 1,2 and k = 1,2,…,r, where and  
'

1 2, ,...,j j j jpx x xx , j = 1,2  is a p×1 vector of 

covariates and  
'

1 2, ,...,k k k pk  β  is the vector of regression coefficients and are assumed 

to be different for different causes of events. 

 

Proceeding as in Section 2.1, bivariate distribution function of   1 2,T T  is obtained as  

 

       1 2 01 1 1 02 2 2

1 1

( , ) exp exp( ) exp( )
r r

k k k k

k k

F t t E Z M t M t
 

   
      

   
 ' '

β x β x .         (3) 

 

Assuming that frailty variable Z follows gamma distribution with mean one and variance  ,   

(3) reduces to  

 

           
 1/

1 2 01 1 1 02 2 2

1 1

, exp( ) exp( ) 1
r r

k k k k

k k

F t t M t M t



 



 

 
   
 
 ' '

β x β x where   > 0. (4) 

 

The marginal distribution function 
jT  is then obtained as  

 

      
( 1/ )

0

1

exp( ) 1
r

j j jk j k j

k

F t M t









 
  
 
 '

β x , 1,2j  . 

 

When the bivariate distribution function of   1 2,T T  is represented in terms of marginal 

distribution functions, (4) reduces to (2).  

 

The parameters of the model could be estimated from observed data only if the model is 

identifiable. The identifiable property of the models follows from Sankaran and Gleeja (2011). 

 

3.  Estimation  

 

The estimation procedures are developed for cause specific shared gamma frailty 

proportional RHR model when the data is left censored. Let  1 2,T T T  be the pair of lifetimes 
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of two related individuals and  1 2,U U U  be a pair of corresponding censoring times defined 

on a common probability space  , , P F with absolutely continuous distribution function.  

Under bivariate censoring, one could observe  * *

1 2 1 2 1 2, , , , ,T T C C    where * max( , )j j jT T U

and *( )j j jI T T   , j=1,2 with (.)I  as usual indicator function. Suppose that 

 * *

1 2 1 2 1 2, , , , ,i i i i i iT T C C   , i=1,2,…,n are n independent and identically distributed observations 

of  * *

1 2 1 2 1 2, , , , ,T T C C   . Define    * , 1,ijk ij ij ijN t I T t C k    ,    * ,ijk ij ijY t I T t C k  

, for i=1,2,…,n,  j=1,2, k=1,2,…,r . Define the predictable process  Y t  as   

      ,  1,2,..., ,  1,2,  1,2,...,ijkY t i n j k r   Y t   

and 

     ,  1,2,..., ,  1,2,  1,2,...,  ijkN t i n j k r   tN    

as a multivariate counting process with components 
ijkN

,
 where components with the same 

value of the first index i  share the same frailty variable iZ . Further it is assumed that 

conditional on Z , T and U are independent. 

 

3.1. Estimation of cause specific shared frailty proportional RHR model without 

covariates 

 

For the case without covariates, let the cause specific RHR of jT  for given frailty Z for 

the ith cluster is      0ijk i ijk jkm t Z Y t m t
, 

1,2,..., ,  1,2,  1,2,...,i n j k r   , where iZ  is 

unobservable i.i.d. random variable from Gamma (1/ ,  1/  ) distribution. The estimate of 

parameter   and cumulative baseline cause specific RHR function    0 0

b

jk jk

t

M t m s ds   is 

to be obtained. Assume that conditional on Z=z, censoring is non-informative. So the partial 

conditional likelihood based on  tN  is given by the product integral 

 

                     
 

 
 .1

.1
ijkN t N t

ijk

t i j k

dP m t dt m t dt
  

      
 

  ,    (5)  

 

where  
2

.

1 1 1

( )
n r

ijk

i j k

N t N t
  

  and    
2

.

1 1 1

n r

ijk

i j k

m t m t
  

 . Considered as a function of Z , 

(5) is proportional to conditional density of     t tN , Y  given Z z . Substituting the 

specification of  ijkm t  and evaluating the product integral, L( ) is obtained as  

 

 

   
        

 
1/ 1

0 01/

0

exp{ / }
( ) exp

1/

ijk

b
N t

i i
i ijk jk i ijk jk

i j k t

z z
L z Y s dM s z Y t dM t








 


   

   
   

  
 

(6) 

       

   
    

 

..1/ 1

0

0
01/

1
exp{ ( )}

1/

i

ijk

b
N b

i i ijk jk
N tj k

ijk jk

i j k t

z z Y s dM s

Y t dM t







 

 



 





 

  



 V.L. GLEEJA AND P.G. SANKARAN [Vol. 19, No. 2 206 

where  
2

..

1 1

( )
r

i ijk

j k

N b N b
 

 . Conditional on data, iZ  are still independent and gamma 

distributed with parameters    ..1/ iN b   and      0

0

1

b

ijk jk

j k

Y s dM s  . Integrating 

out Z  in (6), the marginal partial likelihood is obtained as  

 

         
 

         
   ..

.. 0

1/
2

1/

0

1 1 0

1/

( )

1/ 1

ijk

i

N t

i ijk jk

j k t

N b
bri

ijk jk

j k

N b Y t dM t

L

Y s dM s









  





 

 
  
   

    
   
    
     






.        (7) 

 

EM algorithm is used to maximize (7). The estimates of parameters which maximizes (7) 

maximizes (6) also. The E step is to estimate 

 

    
   

     

..

2

0

1 1 0

1/
ˆ

1

i

i br

ijk jk

j k

N b
z

Y s dM s




 






. 

 

The M step is then to calculate ̂ , the maximum likelihood estimator for   from (7), and 

to estimate cumulative baseline cause specific RHR function 

 

          
 

 
.

0
ˆ

ˆ

b
jk

jk

i ijkt
i

dN s
M t

z Y s
 

, where  .

1

( )
n

jk ijk

i

N s N s


  . 

 

The initial estimates of ˆ
iz  and  0M̂ t  are obtained by taking 0  . By general theory of 

EM algorithm, if this algorithm converges, it converges to a stationary point of  log L  .  

 

3.2.   Estimation of cause specific shared frailty proportional RHR model with covariates 

 

For the model with covariates, let the vector observed be  * *

1 2 1 2 1 2 1 2, , , , , , ,i i i i i i i iT T C C   x x

.  Then cause specific proportional RHR in presence of covariates and frailty is represented as  

 

       '

0 exp( )ijk i ijk jk k ijm t z Y t m t β x                                          (8)
 
 

 

for j = 1,2 and k = 1,2,…,r, where  
'

1 2, ,...,k k k pk    is the vector of regression coefficients 

and  
'

1 2, ,...,ij ij ij ijpX X Xx
, 

j=1,2  is a px1 vector of covariates. Then the likelihood function 

conditional on the covariate xij and frailty Zi for the model (8) is given as  
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    
 

   ' '

0 0

0

( , , ) exp( ) exp exp( )
ijk

b
N t

i ij i ijk k ij jk i k ij ijk jk

i j k t

L Z z Y t dM t z Y s dM s
   

   
   

  x β x β x . 

 

Let iZ be unobservable i.i.d. random variable from Gamma (1/ ,  1/  ) distribution. Then 

L(𝜃, 𝛃) is obtained as  

 

       

   
    

 

..1/ 1 '

0

'0
01/

1
exp{ ( exp( ) )}

( , ) exp( )
1/

i

ijk

b
N b

i i k ij ijk jk
N tj k

k ij ijk jk

i j k t

z z Y s dM s

L Y t dM t








 

 



 




 
 

β x

β x . 

 

Then loglikelihood function can be written as    1 2log ( , )L l l     where 

 

         1 ..

1 1
log log 1 1/ 1 log i

i i

i

z
l N b z  

  
         ,   

  

                (9) 

and 

            
 ' '

2 0 0

0

exp( ) log exp( )
ijk

b
N t

i k ij ijk jk k ij ijk jk

i j k j k t

l z Y s dM s Y t dM t
 

    
 

  β β x β x .  (10) 

 
Proceeding as in the case without covariates and using EM algorithm, estimate of Zi is 

obtained as  
 

               
   

     

..

2
'

0

1 1 0

1/
ˆ

1 exp( )

i

i br

k ij ijk jk

j k

N b
z

Y s dM s




 




 β x

. 

 

The M step is then to calculate ̂  and ˆ
kβ , the maximum likelihood estimator for    and 

k  from
 
(9) and (10) respectively and to estimate cumulative baseline cause specific RHR 

function  

 

 
 

 
.

0 '
ˆ

ˆ exp( )

b
jk

jk

i k ij ijkt
i

dN s
M t

z Y s
  β x

. 

 

  For testing of independence of variables 1T  and 2T , likelihood ratio test can be used. The 

case of shared frailty model with no covariates and with standard conditions on the censoring 

distribution is discussed in Maller and Zhou (2003). They obtained that the likelihood ratio 

statistic has an asymptotic null distribution which is an equal mixture of a point mass at zero 

and a chi-square distribution with one degree of freedom.  For testing 0 : 0H   , the likelihood 

ratio test statistic is ˆ-2log  = 2 (log ( )-log (0))Q L L . When 2 2
0, 1,-2log  0.5( )Q     , the 

null hypothesis is rejected at 5% level of significance. 

 

The asymptotic properties of the estimators follow from Sankaran and Gleeja (2011). 

The consistency of the estimators is established in Theorem 1. 
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Let 1T  be the first jump of N , 0  lies in a known interval [0, ] S  and true cumulative 

baseline reversed hazard 
0 jkM  be strictly decreasing and continuous on [0, ] b  for <b  .  

 

Theorem 1: Assume that  

i. Y  is a non-decreasing step function and   1  P Y t   has at most finite number of 

discontinuities in  0,t b , 

ii. 
 

  
0,

0
u b

Inf E Y u


 , 

iii.   1 1 1P Y T   , 

then 
 

   0 0
0,

ˆ 0jk jk
t b

Sup M t M t


   almost surely (a. s.) and 
0

ˆ 0    a. s. 

 

Proof: The assumption (i) is used to prove that  0
ˆ

jkM t  does not diverge to infinity, (ii) is 

used to ensure that counting process N  has sufficient activity on the entire interval so as to 

estimate the parameters, and (iii) excludes the possibility of N  having at most only one jump. 

The model becomes unidentifiable if all iN  have only one jump. The rest of the proof is similar 

to the one given in Murphy (1994). 

 

The asymptotic normality of the estimators can be established in the following way.  

Set      0 1 0

0

ˆ0 1

b

jkt jkM th u dM u   and 
2

ˆ
t th    for 1h  a function and 2h  a scalar, and 

differentiate at 0t   to get   0 1 2
ˆˆ , ,n jkF M h h . Then, if  0

ˆˆ ,jkM   maximizes  log L  , then

  0 1 2
ˆˆ , , 0n jkF M h h   for all  1 2,h h . The form of nF  is given by 1 2n n nF F F  , where   

 

  
 1

1

1 0 1 1 1 0

1 10 0
0

0

,

b bn
ijk

n jk ijk ijk jkb
i

ijk jk

N b
F M h n h dN hY dM

Y dM










 


 



 


 

 

and    
 

 
 1

2 0 2 2

1 0

,
1

bn
ijk

n jk ijk

i ijk

N u
F M h h n dN u

N u











  

   
 1

2

0 1 0

10 0
0

0

log 1

b b
ijk

ijk jk ijk jkb

ijk jk

N b
Y dM hY dM

Y dM


  









 
 

     
    
 

 


 

 

 For 0  , the last term is taken as its limit as   approaches zero to get 

 

2

0 0

0 0

2

b b

ijk jk ijk ijk jkY dM N b Y dM
  
   
   
  . The class of h  is taken to be the space of bounded 

variation cross the reals. Define the norm to be 
1 2H v

h h h  , where 
1 v

h  is absolute value 

of  1 0h  plus the total variation of 1h  on the interval  0,b . Define 
pH  to be the product space 
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of bounded variation functions on  0,b  and real valued scalars with norm 

1 2H v
h h h p   . If p   , then the inequality is strict. In the following p  is assumed to 

be finite unless stated otherwise. Define   0 1 0 2

0

,

b

jk jkM h h dM h   . Then the parameter 

space   can be considered to be a subset of  pl H , which is the space bounded by real 

valued functions on 
pH  under the supremum norm  sup

ph H

U U h


 . The score function nF  is 

a random map from   to  pl H  for all finite p . 

 

Theorem 2: Assume that  

i.  
 

   0 0
0,

ˆ 0jk jk
t b

Sup M t M t


   a.s. and 
0

ˆ 0    a. s., 

ii. There exist a constant K  for which Y K  and  N b K  a.s. , 

iii. 
 

  
0,

0
u b

Inf E Y u


 , 

iv.   1 1 1P Y T   , 

then     0 0 0
ˆˆ .jk jkn M t M t n    G  on  pl H ; G  is a tight Gaussian process on 

 pl H  with mean zero and covariance process 

            1 1

01 2
, ' '

b

1 jk 2

0

Cov h h'  = h h dM h h  G G , where  1 2,    is a continuously 

invertible linear operator from H  onto H  with inverse 
    1 1 1

1 2
,     . The form of    

is as follows: 
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where 

   

 

 
   

0 0

2

2
2 0

0 1 0

2 ,
1 00

0 0

0

log ( , )
|

1
1

jk

b

ijk jkbn
jk ijk

ijk ijk bM
i ijk

ijk jk

Y dM
L M N u

n dN u N b
N u

Y dM



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



 
 

             
 






 

  

2

0 0 0 0

3 0 0
0 0 0

0
0 0 0 0

0 0

1
2 ln 1

2
1 1

b b

jk jkb

ijk jk b b

ijk jk ijk jk

dM dM

Y dM

Y dM Y dM

 

 

 



  
  

             
   

 


 

. 

 

When 0 0  , the last term above is defined by its limit, which is 

3
2

0

1 1 0

2

3

br

ijk jk

j k

Y dM
 

 
 
 

  . 

 

Proof: Proof of the theorem follows from Murphy (1995). 

 

4.  Data Analysis 

 

The analysis of the proposed model is illustrated with data concerning the times to tumor 

appearance or death of mice from the same litter in a tumor genesis experiment by Mantel and 

Ciminera (1979), reported in Ying and Wei (1994).  The observations from drug treated rat ( 1T

) and its litter matched control ( 2T ) which were either dead ( 1, 1,2iC i   ) or appeared with 

tumor ( 0, 1,2iC i   ) are considered for the analysis. The observations with the value 60 

indicate left censored observations. The indicator function 0,  1,2i i  
 
if observation is left 

censored, 1,  1,2i i   if it is not censored. The data consist of 22 pairs. The analysis of data 

is carried out with cause specific shared frailty proportional RHR model without covariates. 

Then the maximum likelihood estimate for   is obtained as 0.7557 and is significantly greater 

than zero (p<0.001) using likelihood ratio test. Hence the pairs are not independent. The value 

of frailty variable estimated is given in Table 1.  
 

Table 1: Estimates of frailty variable for mice in the same litter 
Drug 

( 1T ) 

Control 

( 2T ) 

1  2
 

1C
 

2C
 

Zi 
Drug 

( 1T ) 

Control 

( 2T ) 

1  2  1C  2C  Zi 

60 60 0 0 0 0 0.1558 77 79 1 1 1 1 0.9270 

60 60 0 0 0 0 0.1558 89 90 1 1 0 1 1.2745 

81 69 1 1 1 1 0.3670 102 80 1 1 0 1 1.3389 

60 77 0 1 1 1 0.4267 86 94 1 1 0 1 1.3499 

67 68 1 1 0 0 0.4560 104 77 1 1 0 0 1.3830 

80 73 1 1 0 1 0.4686 103 91 1 1 0 1 1.6442 

76 74 1 1 1 1 0.4959 92 102 1 1 0 0 1.6924 

73 66 1 1 0 0 0.5160 88 99 1 1 1 1 1.7022 

70 77 1 1 0 1 0.5600 91 92 1 1 1 1 1.7225 

80 76 1 1 0 1 0.6460 103 84 1 1 0 0 1.7461 

76 78 1 1 1 0 0.7655 93 103 1 1 1 1 2.2075 
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If realization of Z is less than one, then members of the group tend to experience the 

event earlier. Hence most fragile ones have values less than one. The value of Z increases with 

increase in lifetime.  The estimates of cumulative baseline cause specific reversed hazard 

function for time to event for drug treated rat and its litter matched control is shown in Figure1 

and Figure 2. It can be seen that in drug treated rat, based on cumulative baseline reversed 

hazard function, tumor appearance is more than death without tumor. But in case of control, 

based on cumulative baseline reversed hazard function, tumor appearance is less than death 

without tumor.  

 

Figure 1: Cumulative baseline cause specific RHR for time to event of drug treated rats 

 
 

Figure 2: Cumulative baseline cause specific RHR for time to event of control rats 

 
 

 

For illustration of the model with covariates, excerpt of the bivariate data set given in 

McGilchrist and Aisbett (1991), is being used. This data shows the infection times at the point 

of insertion of catheter for kidney patients using portable dialysis equipment. The observations 

with value 10 indicate left censored observations. Data for the first two occurrences of infection 

are given. Let 1T  and 2T  represents the first and second occurrences of infection. Disease 

types, glomerulo nephritis = (0), acute nephritis = (1), polycystic kidney disease = (2), others 

= (3), are treated as four different causes for infection. Let C1 is the variable denoting cause for 

first occurrence and C2 is the variable denoting cause for second occurrence. It takes value 0, 

1, 2, or 3, depending on the disease type causing infection.  Gender is considered as the 
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covariate for the study, 1=male and 0=female. In the model, it is assumed that regression 

coefficients associated with covariate gender are different for different types of diseases. Let 

1 , 2 , 𝛽3 and
 4  denote the regression coefficients associated with covariate for different 

disease types glomerulo nephritis, acute nephritis, polycystic kidney disease and others 

respectively.  Estimates of parameters of the model are given in Table 2. Estimates are 

significant (p<0.001) using likelihood ratio test. Being a male increase the risk of getting 

infected at earlier time compared to that of female for all disease types. Males with disease type 

glomerulo nephritis and polycystic kidney disease are more prone to infection. As   is 

significant, pairs are not independent. The value of frailty variable estimated is given in Table 

3.   
 

Table 2: Estimates of parameters 

 

Parameter   1  2  3  4  

Estimate 0.0069 -1.1952 -0.4877 -1.1952 -0.9258 

Standard error 0.0012 0.0661 0.0485 0.0661 0.0655 

 

Table 3:  Estimates of frailty variable for kidney patients 

 

1T  2T  1  2  1X
 

1C  2C  Z 

10 16 0 1 1 3 3 0.9929 

22 28 1 1 1 3 3 1.0037 

447 318 1 1 0 3 3 1.0119 

30 12 1 1 1 3 3 1.0024 

24 245 1 1 0 3 3 1.0017 

511 30 1 1 1 0 0 1.0046 

53 196 1 1 0 1 1 1.0091 

15 154 1 1 0 0 0 1.0071 

10 333 0 1 1 1 1 0.9917 

96 38 1 1 0 1 1 1.0002 

185 177 1 1 0 3 3 1.0070 

292 114 1 1 0 3 3 1.0066 

15 108 1 1 0 3 3 0.9871 

152 562 1 1 0 2 2 1.0090 

13 66 1 1 1 1 1 1.0010 

12 40 1 1 0 1 1 0.9996 

132 156 1 1 1 0 0 1.0077 

34 30 1 1 0 1 1 0.9899 

10 25 0 1 0 0 0 0.9914 

130 26 1 1 1 0 0 0.9928 

27 58 1 1 0 1 1 1.0020 

152 30 1 1 0 2 2 0.9909 

119 10 1 0 0 3 3 0.9811 
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If realization of Z is less than one, then members of the group tend to experience the 

event earlier. Hence most fragile ones have values less than one. The value of Z increases with 

increase in lifetime. The estimates of cumulative baseline cause specific reversed hazard 

function for time to first and second occurrence of infection are presented in Figure 3 and 

Figure 4. 

 

Figure 3: Cumulative baseline cause specific RHR for time to first occurrence of infection 

 
 

Figure 4: Cumulative baseline cause specific RHR for time to second occurrence of 

infection 

 
 

5.  Conclusion and Discussion 

 

In this paper, a shared gamma frailty model in terms of cause specific RHR has been 

introduced for the analysis of competing risks data under left censoring. The gamma 

distribution with mean one and variance   is chosen as distribution of the frailty random 
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variable. The model is discussed with and without the presence of covariates. The parameters 

of the models were estimated by maximum likelihood method, using EM algorithm, and 

discussed the properties of the estimators. The proposed models were applied to real life data 

sets. The data in Mantel and Ciminera (1979) was analyzed for checking the adequacy of 

gamma frailty distribution with marginal proportional hazard model by Cui and Sun (2004). 

They obtained the estimate of parameter of gamma distribution as 0.888 which is very close to 

the value obtained by the present model.  Existence of strong association and dependency in 

litter matched pairs is reported in Anisha (2012). The present model helps to quantify the 

strength of association in litter matched pairs for left censored data. The data in McGilchrist 

and Aisbett (1991) were analysed by several authors. The report on analysis by Hanagal and 

Dabade (2013) and  Hanagal (2020) depicts gender as the significant covariate and observes 

that females are at lower risk. The same result holds for the present model and different 

regression coefficients are estimated for different causes in the present model. It was observed 

that more fragile individuals are having realization of frailty variable as less than one and those 

who experience the event of interest at a later stage are having the value greater than one. The 

models discussed in Anisha (2012), Cui and Sun (2004) and Hanagal and Dabade (2013) were 

able to consider only right censored or complete observations. Those models were not dealing 

with left censored data. So, in order to analyse a left censored family data with multiple type 

of diseases, shared gamma frailty model in terms of cause specific reversed hazard rates is 

more appropriate and is recommended.  
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Abstract
For a distribution, spacing is defined as the gap between order statistics. In character-

ization of any distribution, spacings play a pivotal role. Spacing originating from uniform
distribution is called uniform spacing. Identical distribution of the first and any k-th spac-
ings for some k = 2, · · · , n of a sample of size n guarantees a uniform distribution structure
of parent population, subject to some underlying conditions. The uniqueness and tractabil-
ity of uniform spacings propelled them as the focal point of many statistical investigations.
However, for the regular statistics practitioners, the theory of spacings remain outside fron-
tiers. In an effort to fill the lacuna, this article presents a succinct and lucid review of related
results and applications of uniform spacings.

Key words: Order statistics; Spacings; Uniform distribution; Exponential distribution; Char-
acterization of distribution.

AMS Subject Classifications: 60E05; 62G30; 62E10

1. Introduction

Spacing literally means gaps or distance between two successive points. In statistics,
spacings gauge the distance between two successive order statistics. Let X1, X2, · · · , Xn be
a set of independent and identical random variables from a continuous distribution function
F with support [a, b]. Let the corresponding order statistics be a < X1:n < X2:n < · · · <
Xn:n < b. By j-th spacing Yj:n, we mean

Yj:n = Xj+1:n −Xj:n ; j = 0, 1, 2, · · · , n. (1)

In particular, we assume two marginal order statistics as X0:n = a and Xn+1:n = b. Thus, in
particular, Y0:n = X1:n − a, Yn:n = b−Xn:n. So clearly, for n random variables there would
be (n+ 1) gaps or spacings. Theory of spacings gained steam in many fields of statistics —-
goodness of fit tests, statistical estimation theory, reliability analysis, survival analysis and
applications to name a few. For inciting readers’ interest, a quick flavour on applicability of
spacings may be presented from its latest advancement in estimation theory.

In estimating an unknown parameter θ ∈ Θ, under a distribution Fθ(.), Maximum
Likelihood Estimation (MLE) is a widely used technique. Moreover, MLE is asymptotically
unbiased and efficient under some regularity conditions. As an alternative to MLE some
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authors proposed estimation process based on spacings. Cheng and Amin (1983) suggested
the Maximum Product Spacing Estimator(MPSE) by maximizing

G =
(

n∏
i=0

Yi:n

) 1
n+1

where Yi:n being the i-th spacing. The estimator of θ by maximizing G is known as the
MPSE of θ and denoted by θ̂n. The MPS estimator of the underlying distribution Fθ would
be Fθ̂n

. MPSE is specially suited to the cases where one of the parameters is an unknown
shift origin. This occurs, for example, in the three parameter lognormal, gamma and Weibull
models. For such J-shaped distributions, under the condition of shape parameter less than
unity, no stationary point can yield a consistent MLE due to unboundedness of likelihood
equations. Thus not only global but also local maximum likelihood estimator breaks down.
In fact, Johnson and Kotz (1976) recommended in the three parametric gamma/Weibull
distribution that MLE should not be used if shape parameter < 2. On the contrary to MLE,
MPS estimation too ensures consistent estimators but under much more general conditions
than ML estimation. Also Cheng and Amin (1983) showed that MPSE is asymptotically
normal and asymptotically efficient as MLE when both exist.

Later Renneby (1984) proposed independently another attractive alternative method
as an approximation for the Kullback-Leibler measure of information. This spacing estimator
is called Maximum Spacing Estimator (MSE), that can be obtained by maximizing

S = 1
n− 1

n∑
j=0

ln[(n+ 1)(Fθ(Xj+1:n)− Fθ(Xj:n))]

where F (X0:n) = 0 and F (Xn+1:n) = 1. Maximizing S would furnish MSE of θ. MSE is
conducive in tracking the true distribution from the angle of empirical distribution function.
In order to address on consistency of MPSE/MSE under much weaker regularity conditions as
compared to those required in MLE, Shao and Hahn (1999) can be endorsed. The regularity
conditions proposed by them are very general in the sense that they cover most of the known
counter examples against the universal appeal of the ML method.

Regarding the robustness of spacing estimator, both MPSE and MSE are minimax
robust in Hellinger metric neighbourhoods of the given parametric model. A threadbare
discussion about the robustness on general m-th order spacing with respect to certain infor-
mation measure was accommodated in Ekstrorm (2001). He introduced a class of estimation
methods, ensuring asymptotically efficient and robust estimator. MSE/MPSE method in-
cludes as a special case.

Following the footsteps of MPSE and MSE, Ghosh et al. (2001) introduced a general
class of maximum spacing estimator.

T (θ) =
n∑
i=1

h(n(Fθ(X(i))− Fθ(X(i−1)))

where h : (0,∞)→ R is a strict convex function. For better understanding a handy example
might be referred below.
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Example 1: Let X(1), X(2), · · · , X(n) be ordered observations from U(0, θ), θ ∈ (0,∞).
The MLE of θ is θ̂ = X(n). Note that here MLE fails to be asymptotic efficient as the
regularity conditions for Cramer Rao lower bound of an estimate are not met. On the
contrary, generalized spacing estimate of θ is ˆθGSE = n

n−1X(n) which is obtained by minimis-
ing T (θ) = ∑n

i=1 h(n(Fθ(X(i)) − Fθ(X(i−1))) with h(x) = −logx. Both MLE and GSE are
consistent but their asymptotic distributions are different.

n(θ − θMLE) d−→ Exponential(0, θ)
n(θ − θGSE) d−→ Exponential(−θ, θ)

The two asymptotic distributions have the same variance, but the first has expectation θ
while the second has expectation zero and thus is centered better. Moreover,
E(n(θ − θMLE))2 → 2θ2 while E(n(θ − θMSE))2 → θ2. This yields MLE less admissible.
Eventually, generalized spacing estimate is also the UMVUE of θ.

Generalized spacing estimator, under the assumption of existence of continuous deriva-
tive of p.d.f. with respect to θ, is consistent, asymptotically normal and robust (Ghosh et al.
(2001)). These estimators are not always explicitly obtainable but can always be computed
through numerical methods. Theory of spacings evolved its journey primarily in goodness
of fit test and characterization of distributions. Characterization of distribution, through
the view point of spacing, stems from the concept of elementary uniform spacings. Due to
its comprehensiveness and computational tractability, uniform spacings are considered as
benchmarks in spacing theory.

Under the set up, mentioned in equation (1), if Fθ is considered as uniform(0, 1) then
{Yj:n,j≥1} is the sequence of uniform spacing variables. Clearly the sum Y0:n + Y1:n + Y2:n +
· · ·+Yn:n = 1. Due to this linear constraint the random vector Y = (Y0,n, Y1:n, Y2:n, · · · , Yn:n)
has a singular distribution. Moreover, Y has the joint probability density function as
fY(y0:n, y1:n, y2:n, · · · , yn:n) = n! if yi:n ≥ 0 ∀i. Also, the distribution of Y affirms that
distribution function is unaltered under any permutation of the co-ordinates. Using this
fact, p.d.f of Yi:n can be easily computed. The p.d.f. is fYi:n(x) = n(1 − x)n−1, ∀i where
0 < Yi:n < 1. Clearly, this form is a beta(1, n) distribution.

As the order statistics from any absolutely continuous distribution with distribution
function F (x) can be transformed by order preserving probability integral transformation
u = F (x) to the order statistics from a uniform distribution, spacing from any continuous
distribution can be explained through uniform spacings. This signifies the prime impor-
tance of uniform spacings in distribution free interval estimation and many nonparametric
applications.

Theory of spacings received its pioneering thrust from Greenwood’s (1946) foundational
work, although some ground works by Bortkiewicz(1915) and Morant (1920) left a stamp in
literature. In those primitive studies, hints of uniform spacings emerged as the distribution
of intervals between successive events of Poisson process given the number of events in a
specified interval. The basic methodology on the characterization through uniform spacings
was documented in the literature by Darling(1953). The most general method on limit
theorems of spacings was disseminated by Lecam(1958). A little later, R.Pyke’s classic paper
‘Spacing’ (1965) grabbed the readers’ attention wholly on the wide applicability of spacing
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theory in the context of distribution free goodness of fit tests as well as characterization
problem. Pyke’s article, much inclined to theory of uniform spacings, unfurled the idea of
construction and limiting theory of spacing at length. Further, Wichura (1968) and Bickel
(1969) generalized Le Cam’s result and thus provided a concise collection of limit theorems
in the context of uniform spacings.

More recently, Ali and Mead (1969), Ahsanullah (1989), Gather et al. (1968) and
Hamedani and Volkmer (2005) did a good deal of work on spacings. Specifically, Huang
et al. (1979) established that under the assumptions of continuity and super-additivity the
identical distribution of the first and the k-th (k = 2, · · · , n) spacing characterizes uniform
distribution.

The current article surveys the theoretical developments in the context of uniform
spacings that exist in literature so far. This review, mostly, presents a bunch of useful results
without delving into the intricate mathematical exposition. Of most interest of this review
is results on uniform spacing as they arise in characterization of distributions. Authors’
objective is to popularize the results of uniform spacing in characterization of distribution,
crafted under a milder tone of discussion. The rest of the article is outlined as follows.
Section 2 contains main results related to characterization, based on uniform spacing. Some
preliminary ideas on uniform characterization are also included. Additionally, results on
ordered uniform spacings are mentioned. In third section, results on asymptotic properties
on uniform spacing are documented. Finally, a short conclusion ends the article.

2. Main Results

2.1. Genesis of uniform spacings

This subsection discusses some preliminaries that explore a few basic construction
techniques of uniform spacings. Recalling the setting, already mentioned in Introduction,
Y1:n, Y2:n, · · · , Yn:n being the spacings formed from uniform(0, 1), the following results are
presented.

Result 1: As fYi:n(x) = n(1−x)n−1 for 0 < Yi:n < 1 and fYi:n,Yj:n(x, y) = n(n−1)(1−x−y)n−1

standard technique nails down to deduce

E(Yi:n) = 1
n+ 1 , V (Yi:n) = n

(n+ 1)2(n+ 2) , Cov(Yi:n, Yj:n) = − 1
(n+ 1)2(n+ 2)

Higher order moments of uniform spacings were derived by Greenwood (1946); Renyi(1953).

Result 2: For positive constants vi ; i = 1, 2, . . . , r with r ≤ n and ∑r
i=1 vi ≤ 1 the joint

survival function of Y1:n, Y2:n, · · · , Yn:n is given by

Prob(Y1:n > v1 · · ·Yr:n > vr) = (1−
r∑
i=1

vi)n−1.

This leads that under n→∞,

Prob(nY1:n > v1 · · · , nYr:n > vr) =
r∏
i=1
{exp(−vi)}, v1, · · · , vr > 0.
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So the limiting distribution of nYi:n is Exponential(1).

The following theorem exudes a connective relation for the characterization of uniform
spacings variables through exponential distribution.

Theorem 1: Let E1, E2, · · · , En, En+1 be a sequence of iid exponential variables. Y1:n, · · · , Yn+1:n
is distributed as E1∑n+1

i=1 Ei
, · · · , En=1∑n+1

i=1 Ei
. Furthermore, let Gn+1 be a gamma variable with pa-

rameter (n+ 1). Then Y1:nGn+1, · · · , Yn+1:nGn+1 is distributed as E1, E2, · · · , En+1.

As we know that sum of i.i.d. exponentials follow Gamma distribution. Ratio of an
exponential random variable and Gamma variable (of which numerator is a member) lies
between 0 to 1, Tacitly, from basic sampling distribution theory each ratio Ei∑n+1

i=1 Ei
follows a

beta(1, n) distribution. Theorem 1 is an important theorem as a lot of results follow from it.
Any standard, degree course text book would be a sufficient resource of those basic results.

Further, Theorem 1 could be applied in order to generate spacing variables from Uni-
form(0,1) directly. By this we mean that it is not necessary to generate U1, U2, · · · , Un first
and then apply some sorting method, rather generating a bunch of uniform spacing variables
at first hand. First we generate iid exponential random variables E1, E2, · · · , En. Next we
would compute the sum of all these random variables G. Then using Theorem 1 we could
run a loop of continuation as U(j−1) + Ej

G
= U(j).

2.2. Results on characterization of uniform spacings

Characterization of any distribution is a certain distributional property of statistic/statistics
that uniquely ascertains the probability structure of underlying distribution. Characteriza-
tion of uniform distribution can be studied via spacings. An insightful investigation was
done by Huang et al. (1979) where they asserted the identical distributions of two or more
spacings characterize an uniform parent distribution. Keeping in mind that all uniform spac-
ings are identically distributed as beta(1, n), one can characterize the parent cdf uniquely
with the aid of some distributional properties of the spacings. Naturally the question arises
if identical distributions of two or more spacings are sufficient to characterize a uniform dis-
tribution. To address this question Huang et al. (1979) assumed that under the condition of
(i) continuity, (ii) super-additivity (or, sub-additivity), and (iii) boundedness of support of
F identical distributions of Y1:n and Yk:n for k = 1, . . . , n characterize a uniform distribution.
Before unveiling the crux of the result, let us have a sneak peek on what super-additivity
(or, sub-additivity) of F is.

Definition 1: A distribution function F is super-additive for all x, y ∈ R and x, y, x+ y ∈
support(F ) if

F (x+ y) ≥ (≤) F (x) + F (y).

The final statement of the result comes as follows.

Result 3: Continuity and super-additivity of F, under which Y0;n and Yk;n for some k =
1, 2, . . . , n, have identical distribution, characterize a uniform distribution.

Instead of super-additivity, the bounded support of F too leads to the similar charac-
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terization.

Result 4: If F has bounded support and continuous density, then the identical distribution
of Y0;n and Yk;n characterizes a uniform distribution.

Next lemma is conducive in establishing some properties of F which emerge as imme-
diate consequences of the identical distribution of Y0;n and Yk;n for some k = 1, . . . , n− 1.

Lemma 1: If F is continuous and the spacings Y0;n and Yk;n for some k = 1, . . . , n have
identical distribution, then (a) F(0)=0, (b) if F (x1) = F (x2) for some 0 < x1 < x2, then
F (x1) = 1, and (c) F (x) > 0 for all positive x.

Remark 1: Using this lemma, we can conclude that for some k = 1, . . . , n − 1 when Y0;n
and Yk;n have identical distribution, the support of F is either a finite interval [0, a] or an
infinite one [0,∞).

The forthcoming results are going to be discussed upon the condition that support of
F is either finite or some other stronger conditions implying the support to be finite.

Remark 2: (1) If F is sub-additive and support(F ) is finite, then F is uniform on [0, a],
for some a > 0.

(2) Neither the identical distribution of Y0;n and Yk;n nor that of Yk;n and Yj;n for some
1 ≤ k < j ≤ n−1 solely guarantees that the parent distribution is uniform distribution
on [0, a], a > 0.

Clearly, all symmetric distribution functions F will satisfy the identical distribution
of Y0;n and Yn;n as well as the identical distribution of Yk;n and Yn−k;n, k = 1, . . . , n − 1.
This type of identical distribution of spacings has been utilized in characterization theory by
other authors as well. Some of the profound works include characterizations of exponential
and geometric distribution by Puri et al. (1970), only exponential by Ahsanullah (1976) and
the fairly recent work on general class of continuous distributions by Mirakhmedov et al.
(2013).

Another meticulous finding of Huang et al. would surely grip the researchers’ attention.

Theorem 2: Let F be a continuous distribution function of a bounded variable X. Y0;n
and Y1;n have identical distribution. Moreover, if F has a density f which is continuous on
(0, a) with finite limits f(0+) and f(a−), then F is uniform on [0, a].

Remark 3: As the byproduct of Theorem 8, one can list few remarks as mentioned below.

(1) Theorem does not state that for any arbitrary k, Y0;n and Yk;n have identical distribu-
tion.

(2) If F has bounded support [0, a] and the regularity conditions mentioned in the theorems
hold then the identical distribution of Yn;n and Yn−1;n leads to the fact that F has
uniform distribution on [0, a].

(3) However in Theorem 2 some smoothness conditions on F is required, otherwise it might
be misleading. For example, if a random sample X1, . . . , Xn is drawn from a Bernoulli
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distribution with the probability of success n/(n+ 1), then Y0;n and Y1;n have identical
distribution, even though the parent distribution is not uniform.

Again taking cue from Huan et al. (1979) two more further explorations are mention-
worthy in characterization theory by uniform spacing.

Result 5: (Ahsanullah (1989))
Let F be absolutely continuous with density function f , F (0) = 0, F (1) = 1, and f is
monotonic on (0, 1). Then F ∼ U [0, 1] iff there exists a pair (r, n), 2 ≤ r ≤ n, such that

Xr;n −Xr−1;n ∼ Xr−1;n −Xr−2;n.

Let F be absolutely continuous, symmetric, either super-additive or sub-additive, F (0+) = 0,
F (1) = 1. Then F ∼ U [0, 1] iff Xn;n −X1;n ∼ Xn−1;n for some n ≥ 2.

Result 6: ( Madreimov, Petumin (1983))
Let F be continuous and let X1, . . . , Xn, X ∼ F be independent random variables. Then

(1) F ∼ U [0, 1] iff E(Xn,n − Xi,n) = Probability(X ∈ (Xi,n , Xn,n)) for all i ∈ N and
n ≥ i.

(2) F ∼ U [0, 1] iff there exists a pair (i, j), 1 ≤ i < j ≤ n, such that

E(Xi,n) = P (X ∈ (Xj−1,n , Xj,n)) for all n ≥ 2.

Characterization of the uniform distribution is further extended by Hamedani and
Volkmer (2005) in the probability structure of more than one step spacing variables.

Result 7: Let us imagine (s− r) th step spacing, (unlike the distance between consecutive
order statistics) Xs:n−Xr:n, s > r. If F is uniform(0, a), Xs:n−Xr:n ∼ Xs+k:n−Xr+k:n ∀1 ≤
r < s < s+ k ≤ n.

Special case of the above result appears when s = r + 1 and k = 1.

Theorem 3: Let X be a positive-valued random variable having an absolutely continuous
cdf F . If the corresponding pdf f is monotone on support(F ) which is an interval, and the
above result holds on s = r + 1, k = 1 for some r, then X has a uniform distribution on
support(F ).

Remark 4: (1) Sometimes Result 7 and the consequent theorem might hold for some
s = r + 1 and k = 1 for some r but it still does not guarantee that F is uniformly
distributed. For example, whenever f is symmetric on [a, b] (i.e. f(x) = f(b− a− x))
for all x, then Theorem 3 holds for the choices r = k = 1 and n = 3. That is, the
monotonicity of f on [a, b] is important to satisfy the condition of the theorem.

(2) If the assumption that support(F ) fails to be an interval the above theorem fails as
well. Here is a thought provoking example from Hamidani et al. Consider the following
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pdf

f(x) =


3
2 if x ∈

[
0, 1

3

] ⋃ [2
3 , 1

]
0 otherwise

Then f is monotone on support(F )=
[
0, 1

3

] ⋃ [2
3 , 1

]
. Since f is symmetric as f(1−x) =

f(x), Result 7 holds for a particular choice, say, r = k = 1 and n = 3, but clearly F is
not U(0, 1).

2.3. Results on ordered uniform spacings

Arranging the spacings Y1:n, · · · , Yn+1:n in increasing order we obtain ordered uniform
spacings. In Levy(1939); Renyi(1953); Barton and David (1956); Pyke (1965) and Devroye
(1981) distributional and asymptotic results on smallest and largest uniform spacings, are
discussed at length. Relatively little was done in the context of general ordered uniform
spacings. A concrete idea on ordered uniform spacings is developed in Bairamov (2010).

Let us denote the ordered spacings as ∆0:n < ∆1:n < · · · < ∆n+1:n where ∆i:n being the
i-th largest spacing. Tacitly, for (n+ 1) number of spacings we would have same number of
ordered spacings.

Result 8: (n − k − 1)(∆k+1:n − ∆k:n) d= ∆1:n (k = 0, · · · , n) where d= means that the
statistics are distributionally same (Pyke (1965)).

In particular, distribution of the k-th (1 ≤ k ≤ n + 1) ordered uniform spacing ∆k:n
is deduced by Bairamov et al. (2010). Let the domain of uniform distribution (0, 1) be
presented as the sum of non overlapping intervals

(0, 1) = I1,n ∪ I2,n ∪ · · · ∪ In+1,n

where I1,n = (0, 1
n+1) and Im,n = ( 1

n+3−m ,
1

n+2−m).

Theorem 4: The distribution of the k-th (1 ≤ k ≤ n + 1) ordered uniform spacing is
presented by

P{∆k:n ≤ x} = 0 (x < 0)
P{∆k:n ≤ x} = 1 (x(n+ 2− k) ≥ 1)

and for x ∈ Im,n,m = 1, 2 · · · , k

P{∆k:n > x} = (−1)k−1(n+ 1)
(

n

k − 1

)
k∑

i=m

(−1)i−1

(n+ 2− i)

(
k − 1
i− 1

)
(1− x(n+ 2− i))n.

As a corollary of the last theorem the distribution of minimal ordered spacing and
maximal spacing can be presented.

Corollary 1: The distribution of the minimal spacing is given by

P{∆1,n > x} = (1− x(n+ 1))n, x ∈ I1,n
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Simultaneously, the distribution of maximal spacing is given by

P{∆n+1,n > x} = (−1)n(n+ 1)
n+1∑
i=m

(−1)i−1

n+ 2− i

(
n

i− 1

)
(1− x(n+ 2− i))n

.

Theorem 4 allows the readers to compute the expectation of k-th ordered uniform
spacing which is 1

n+1
∑n+1
i=n+2−k

1
i

(k = 1, · · · , n+ 1).

3. Limiting Results on Uniform Spacings

Limiting theories for spacings depicts some of the more interesting results. Here, we
present several results from the limiting theory of uniform spacings chronologically. Mostly
every case affirms on the asymptotic distribution as normal distribution.

Result 9: Levy (1939) obtained the limiting distributions of the maximal spacing ∆n+1,n =
maximum ordered spacing from the uniform distribution on [−1, 1] as

P{n∆n+1,n

log n ≤ x} → exp(−exp(−x)); x ∈ R

Result 10: Devroye (1981) established that

lim
n→∞

sup
[
n∆n+1,n

2 log log n

]
= 1 a.s.

Result 11: Let F (x) be a continuous distribution function. If X1:n, . . . , Xn:n is an ordered
sample of n values from the population whose distribution function is F (x) then the random
variable

ωn = 1
2

n∑
i=1

∣∣∣∣F (xi:n)− F (xi−1:n)− 1
n+ 1

∣∣∣∣
is asymptotically normally distributed with mean E(ωn) and variance var(ωn) (Sherman
(1947)), i.e., the standardized random variable

ωn − E(ωn)√
var(ωn)

approaches towards a Standard Normal variate as n→∞.

Result 12: Kimball (1947) proved the asymptotic normal distribution of

αn = 1
2

n∑
i=1

(
F (Xi:n)− F (Xi−1:n)− 1

n+ 1

)2

which is also a measure of deviation from uniform spacing.
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Result 13: Moran (1972) considered a similar statistic

βn =
n+1∑
i=1

(F (Xi,n)− F (Xi−1,n))2

and proved that βn is asymptotically normal.

All of these results on asymptotic theory of uniform spacings could serve as handy tools
for constructing the goodness of fit tests as the distributions are asymptotically normal. For
the exact expressions of expectation and variance, readers are recommended to go through
the respective articles. Recently, Eryilmaz and Stepanov (2008) studied runs based uniform
order statistics and developed even more complex limit results related to uniform spacings
from the results obtained for runs. One may be interested in the asymptotic behavior of
ordered uniform spacing ∆k,n. A solid and meticulous discussion is found in Bairamov et al.
(2010). In this article we restrain from mentioning all those critical results as that might
spoil the flow of simplicity of the article. Instead we can concentrate our attention on the
asymptotic behavior of the expectation of ∆k,n (k th ordered uniform spacing ) which is
relatively simpler.

Result 14: (1) For finite k ≥ 1 and n→∞ ,

E(∆k:n) = O
( 1
n2

)
→ 0.

(2) For finite k ≥ 1 and n→∞ we have

E(∆n+2−k:n) ∼ logn

n
→ 0.

(3) If k = kn →∞ such that kn = o(n), then

E(∆kn:n) ∼ kn
n2 → 0.

(4) If k = kn →∞ such that kn = o(n), then

E(∆n+2−kn:n) ∼ log(n/kn)
n

→ 0.

The recent trend in characterization through spacings is escalated by investigations in
probability distribution of adjacent spacings. By adjacent spacing we mean the neighborhood
around an order statistic, i.e., the points encapsulated in (Xk:n− d,Xk:n) or (Xk:n, Xk:n + d)
where the d may or may not be dependent on n. Pakes and Steutel (1997); Balakrishnan and
Stepanov(2005); Dembinska et al. (2007); Dembinska and Balakrishnan (2010) are few worth
references. Further Nagaraja et al. (2014) accelerated this route by discussing joint limiting
distribution of adjacent spacings (Yk:n, · · · , Yk+r:n) and (Yk:n, · · · , Yk−s:n) around three types
of order statistics in particular – central, intermediate or an extreme order statistic. When
n → ∞, these three different scenarios arise and (i) Central case where k

n
→ p, 0 < p < 1,
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(ii) Intermediate case where k, n− k →∞ and k
n
→ 0, (iii) Extreme case where k or n− k

is kept fixed. Borrowing the knowledge of extreme value theory they showed that in the
first two cases (r + s) spacings converge weakly to a batch of i.i.d. standard exponential
random variables but in extreme case, this weak convergence would hold only in the domain
of attraction of Gumbel (heavy tail distribution) or Weibull type (short ended, finite end
point distribution).

4. Conclusion

The main purpose of this review article is to elucidate some instructive results re-
lated to uniform spacings arising in the context of characterization theory, without much
dipping down to mathematical complexity. Other than the usual uniform and exponential
spacings, some relevant investigations were done by several authors on the characterization
of the Gamma, Normal and Weibull distributions as well as on some discrete distributions
like Geometric, Poisson, Negative Binomial distributions etc. Still characterization of uni-
form distribution through spacings draws fundamental importance in a wide variety of fields.
Apart from characterization theory; spacing, specially uniform spacing, is applicable in few
other fields as well e.g. distribution-free goodness of fit test, information theory, time series
analysis etc. A couple of topics of interest might be worth mentioning here.

Goodness of fit test is used to verify if the distribution function is equal to a spec-
ified one. By probability integral transformation, any specified continuous distribution func-
tion can be converted to uniform(0,1). Thus the null hypothesis of interest boils down to
H0 : F (x) = x, 0 ≤ x ≤ 1. To test this Ho, Greenwood (1946) introduced a statistic on the
basis of sum of squares of disjoint uniform spacings. The statistic, called Greenwood statis-
tic, is G = 1

n

∑n−1
0 (nY(i:n))2. By virtue of Pitman asymptotic efficiency (AE) Greenwood test

is proved as optimal among the goodness of fit tests within the class of symmetric tests.

All the more, Greenwood statistic could be generalized by Gn = n−1∑n−1
i=0 h(nY(i:n))

where h(.) is a function that satisfies some mild regularity conditions. Clearly, the choice of
h(x) = x2 would turn it to Greenwood’s original statistic. h(x) = xr for r > 0 was proposed
by Kimball (1950) who obtained the limiting distribution of statistic under H0. Another
popular choice of h(.) is h(x) = logx, suggested by Darling (1953).

Periodogram analysis is an effective device in frequency analysis of time series. For
a stationary, random time series periodogram ordinates are exponentially distributed and
independent. Actually ordinates have the same distribution as the uniform distributions of
the spacings. Thus to test for the peak , i.e., the largest ordinate of periodogram test statistic
might be considered as largest uniform spacing (For details see Durbin (1960)). Also, in the
context of distribution of serial/auto correlation coefficients; any order of serial correlation
coefficient can be put in the form of linear functions of spacings. The joint distribution of
several linear functions of the spacings was derived by Watson (1956) which could explain
out the distribution of serial correlations.

In applied economics, auction theory holds current trend of attraction. Motivated
by the upsurge of auctions in online advertisements, like auction through eBay and Amazon,
the query on expected revenues in auctions is quite of interest in recent years. Uniform
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spacings (or spacings as a whole) might come out as an effective tool in such stochastic
auction theory where the following spacings–Y2:n and Yn:n would represent auction rents in
buyers’ auction and reverse auction in the second-price business auction under identical bids.
One might be inquisitive on stochastic modeling of second price (explained by second order
uniform spacing) or if the expected revenues depending on the number of bidders.

So far what we presented here is all about univariate spacings. An intrinsic question
might trigger regarding the exact distribution of bivariate/multivariate uniform spacings.
There are myriad examples in which samples are drawn from bivariate/multivariate set-up
for which it is pertinent to study the spacings of the observations. As a stepping stone,
one can start with multivariate uniform distribution and investigate on multivariate uni-
form spacings accordingly. Barton and David (1962) studied the distribution on spacings
computed on the random points drawn on the two-dimensional plane but still now num-
ber of organized works in multivariate spacings is almost nil, probably due to its degree of
computational difficulty.
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Bortkiewicz, L. Von (1915). Über die Zeitfällinger Ereignisse. Bulletine of International
Statistical Institute, 20(2), 30-111.

Cheng, R. C. H., and Amin, N. A. K. (1983). Estimating parameters in continuous univariate
distributions with a shifted origin. Journal of the Royal Statistical Society: Series B
(Methodological), 45(3), 394-403.



2021] UNIFORM SPACING 229

Darling, Donald A. (1953). On a class of problems related to the random division of an
interval. The Annals of Mathematical Statistics, 24, 239-253.

David, H. A. and H. N. Nagaraja (2003). Order Statistics, John Wiley & Sons, New York.
Dembinska, A., Stepanov, A. and Wesolowski, J. (2007). How many observations fall in a

neighborhood of an order statistic? Communications in Statistics-Theory and Methods,
36(5), 851-867.

Dembinska, A. and Balakrishnan, N. (2010). On the asymptotic independence of numbers
of observations near order statistics. Statistics, 44(5), 517-528.

Devroye, Luc (1981). Laws of the iterated logarithm for order statistics of uniform spacings.
The Annals of Probability, 9, 860-867.

Durbin, J. (1960). Some methods of constructing exact tests. Biometrika, 48(1-2), 41-65.
Ekstrom, M. (2001). Consistency of generalized maximum spacing estimates, Scandinavian

Journal of Statistics, 28(2), 343-354.
Eryilmaz, S., and Stepanov, A. (2008). Runs in an ordered sequence of random variables.

Metrika, 67(3), 299-313.
Gather, U., Udo Kamps., and Schweitzer, N. (1998). Characterizations of distributions via

identically distributed functions of order statistics. Handbook of Statistics, 16, 257-290.
Ghosh, K., and Rao Jammalamadaka, S. (2001). A general estimation method using spac-

ings. Journal of Statistical Planning and Inference, 93(1-2), 71-82.
Greenwood, M. (1946). The statistical study of infectious diseases. Journal of the Royal

Statistical Society, 109(2), 85-110.
Hamedani, G. G., and Volkmer, H. W. (2005). Certain characterizations of the uniform

dstribution. Metrika, 61(2), 117-125.
Huang, J. S., Arnold B. C., and Ghosh, M. (1979). On characterizations of the uniform

distribution based on identically distributed spacings. Sankhya: The Indian Journal
of Statistics, Series B, 109-115.

Johnson, N. J., and Kotz, S. (1970). Continuous Univariate Distributions-2. Houghton
Mifflin, Boston.

Kimball, Bradford F. (1947). Some basic theorems for developing tests of fit for the case
of the non-parametric probability distribution function. The Annals of Mathematical
Statistics, 18(4), 540-548.
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Abstract 

In the context of ROC curve analysis, the most widely used ROC form is the Binormal 

ROC curve.  But due to the theoretical structures and distributional assumptions, many more 

bi-distributional ROC curve models have been proposed over the years.  In this paper, an 

attempt has been made to overcome few limitations of ROC curve that emanated from 

exponential distribution. To address this, we have considered different forms of Lindley 

distributions and taking its mathematical advantages and mathematical flexibility, three new 

ROC curves are proposed.  The proposed methodology is supported by simulation studies. 

Key words: ROC curves; Lindley distribution; Power Lindley; Extended Lindley distributions 

and AUC. 

1. Introduction 

 

In statistical theory and practice, classification problems have gained lot of attention by 

many researchers in solving problems that are trivial as well as complex.  Identification of class 

label is one of the major objectives in classification, for which several statistical techniques 

have been developed and proposed.  Basing on the prominence and demand to handle such 

problems, those varieties of statistical tools have emerged and were brought under the hub of 

Statistical Decision Theory (SDT). The common problem of interest in classification is in 

allocating an individual or object to one of the predefined groups (or populations) by using a 

threshold. These problems were addressed by using a performance tool namely, Receiver 

Operating Characteristic (ROC) Curve, which evolved during World War II. 

ROC Curve analysis was first presented to Psychologists by Tanner and Swets (1954), 

who brought out the concept from the Theory of Signal Detectability (TSD), which was 

introduced by Peterson et al. (1954) during World War II for analyzing the radar signals to 

detect enemy objects in battlefield i.e., identifying the signal as signal and noise as noise. Its 

expansion to other fields was prompt, for instance, in Psychology it was used to study the 

perceptual detection of stimuli (Swets, 1996). In medicine, one of the earliest applications was 

proposed by Lusted (1971), in which he postulated that to measure the worth of a diagnostic 

test, one must measure the performance of observers with the test and argued that ROC Curve 

provides an ideal means of studying observer performance.  

mailto:vrstatsguru@gmail.com
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Swets and Pickett (1982) noted two other key features of ROC Curves that make them 

ideal for studying diagnostic tests. First, the curves display all possible cut points and thus 

supply estimates of the frequency of various outcomes (i.e., true positives, true negatives, false 

positives, and false negatives) at each cut point. Second, the curve allows the use of previous 

probabilities of condition, as well as calculations for the benefits of correct and incorrect 

decisions, to determine the best cut point for a given test in a given set up. Suppose the outcome 

S of a medical test is a measurement on a continuous scale (score), then there exists a threshold 

t of the test score, which can be used to classify subjects. For instance, a person with S ≤ t may 

be classified as healthy (normal or benign), otherwise as diseased (abnormal or malignant). 

Basing on the above classification, a 2 × 2 contingency table, namely the “confusion matrix” 

can be generated with four possible states, viz., True Positives (TP), True Negatives (TN), False 

Positives (FP) and False Negatives (FN). Relatively few diagnostic tests correctly classify all 

subjects tested as diseased “D” (abnormal) or healthy “H” (normal). Sometimes, the threshold 

considered for classification, classifies few healthy ones as diseased and vice versa. This wrong 

classification leads to the terminology of False Positive Rate (FPR) and False Negative Rate 

(FNR). The probabilistic definitions pertaining to four possible states are given below: 

i. The probability that an individual from D is correctly classified. 

 True Positive Rate, TPR = P(S > t | D)          (Sensitivity) 

ii. The probability that an individual from H is misclassified. 

 False Positive Rate, FPR = P(S > t | H)         (1-Specificity) 

iii. The probability that an individual from H is correctly classified. 

 True Negative Rate, TNR = P(S ≤ t | H)          (Specificity) 

iv. The probability that an individual from D is misclassified. 

 False Negative Rate, FNR = P(S ≤ t | D). (1-Sensitivity) 

 

These four probabilities describe the performance of the test at this cutoff. It is important 

to note that all the intrinsic measures correspond to a given value t. As t changes these measures 

change. One of the problems of interest is to determine such t which optimizes one or more 

intrinsic measures, usually referred as “optimal cutoff”. With these probabilistic definitions of 

intrinsic measures, the ROC Curve can be defined as ROC(t) = f(FPR(t), TPR(t)). This means 

that the ROC Curve is generated by a set of pairs of FPR and TPR, which are obtained at every 

threshold point, that are actually observed test scores. So, each test score will act as a cutoff, 

which in turn generates the co-ordinates (FPR, TPR). ROC Curve is a tradeoff between FPR 

and TPR at every t. A test is said to be a better one, if it has maximum TPR and a reasonably 

low FPR. 

 

An assumption in ROC curve is that the test scores of diseased populations will be greater 

than that of the healthy populations. For instance, if the Creatinine (one of the indicators of 

severe kidney impairment) levels are 5.0 or more in adults, then those adults are classified as 

risk group and the rest are non-risk group.  Similar examples are HbA1c, LDL, Cholesterol, 

etc., The bi-distributional ROC curves namely Bi-Normal, Bi-Exponential, Bi-Gamma etc., 

will fit to the above situation.  But, these ROC forms do not fit to deal with situation where 

lower values of variables indicate risk and higher indicate non-risk group. For example, if the 

HDL is less than 40mg/dL (for men aged more than 20), then such individuals are considered 

as at risk and may be prone to cardiac issues and higher values relates to non-risk group.  Few 

more variables that take similar phenomena as that of HDL are copper, iron, etc. Thus, it is 

important to address the problem of defining an ROC curve and also the corresponding intrinsic 

measures that can fit for the situation of lower test scores indicating risk group and higher 

scores indicate non-risk group.   
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With this background, we have considered Lindley (L) (Lindley, 1958; Ghitany et al., 

2008), Power Lindley (PL) (Ghitany et al., 2013) and Extended Power Lindley (EPL) 

distributions (Said, 2015) to propose new ROC forms. The parameter combinations of these 

distributions have some interesting points that help us in constructing the ROC forms of the 

required nature.  Another main reason to consider variant forms of Lindley is that it has a better 

fit than the exponential distribution (Ghitany et al., 2008). It is also known that the power 

transformation and having additional parameter for basic Lindley form provides a lot of 

mathematical flexibility in explaining the shape and dispersion of heavy tail. 

 

2. Family of Some Lindley Distributions 

 

In this section, we start with the probability density functions and cumulative distribution 

function of the three distributions i.e., Lindley, Power Lindley and Extended Power Lindley 

respectively.   

 

2.1. Lindley distribution 

     𝑓(𝑥, 𝜃) =
𝜃2

𝜃+1
(1 + 𝑥)𝑒−𝜃𝑥     ;  𝜃, 𝑥 > 0                                        (1) 

     𝐹(𝑥) = 1 − (1 +
𝜃𝑥

𝜃+1
) 𝑒−𝜃𝑥     ;  𝜃, 𝑥 > 0                                      (2) 

where 𝜃 ∈ (0,1), is a scale parameter. 

2.2. Power Lindley distribution 

      𝑓(𝑥; 𝜃, 𝛼) =
𝛼𝜃2

𝜃+1
(1 + 𝑥𝛼)𝑥𝛼−1𝑒−𝜃𝑥𝛼

     ; 𝜃, 𝛼, 𝑥 > 0       (3) 

                 𝐹(𝑥; 𝜃, 𝛼) = 1 − (1 +
𝜃

𝜃+1
𝑥𝛼) 𝑒−𝜃𝑥𝛼

     ; 𝜃, 𝛼, 𝑥 > 0                   (4) 

where θ is a scale parameter and α is a shape parameter.  The purpose and reason to work on 

Power Lindley distribution is to overcome the theoretical and practical limitations of Lindley 

distribution.  PL distribution is more flexible and this can be viewed as mixture of Weibull 

distribution due to the power transformation (shape α and scale θ), and a generalized gamma 

distribution (with shape parameters 2, α and scale θ), with mixing proportion p = θ/(θ + 1) 

(Ghitany et al. 2013).  For the values of α between 0 and 1, and with θ >0, we can have the 

increasing and decreasing nature of the density function. 

2.3. Extended Power Lindley distribution 

      𝑓(𝑥; 𝜃, 𝛽, 𝛼) =
𝛼𝜃2

𝜃+𝛽
(1 + 𝛽𝑥𝛼)𝑥𝛼−1𝑒−𝜃𝑥𝛼

     ; 𝜃, 𝛽, 𝛼, 𝑥 > 0                    (5) 
 

𝐹(𝑥; 𝜃, 𝛽, 𝛼) = 1 − (1 +
𝜃𝛽

𝜃+𝛽
𝑥𝛼) 𝑒−𝜃𝑥𝛼

     ; 𝜃, 𝛽, 𝛼, 𝑥 > 0    (6) 

EPL distribution can be shown as the mixture of Weibull distribution (with shape  and 

scale ), and a generalized gamma distribution (with shape parameters 2,  and scale ), with 

mixing proportion p  θ/(θ + 𝛽).  

3. Family of Three Lindley ROC Curves 

In this section, we have developed a family of Lindley ROC Curves based on the 

considered Lindley distributions. 
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3.1. Bi-Lindley (L) ROC curve 

It is assumed that the test scores (S, which is attributed as random variable) of 

normal/population I (denoted with “0”) and abnormal/population II (denoted with “1”) follow 

Lindley Distribution and the expression for the FPR (1- specificity) is defined as 

                                𝐹𝑃𝑅 = 𝑥(𝑡) = (1 +
𝜃0

𝜃0+1
𝑡) 𝑒−𝜃0𝑡   (7) 

The threshold values can be obtained using the following formula 

𝑡 = [(
𝜃0+1

𝜃0
2 ) log (

1

𝑥(𝑡)
)]     (8) 

Here, an approximation of the type log(1+x) ≈ x is used in driving the expression of “t”, since 

our interest is only involved in the first order term in ROC form and the TPR (sensitivity) is obtained 

as 

𝑇𝑃𝑅 = 𝑦(𝑡) = (1 +
𝜃1

𝜃1+1
𝑡) 𝑒−𝜃1𝑡    (9) 

on substituting the “t” value in above expression, the Lindley ROC Curve can be estimated as 

   𝑦(𝑡) = (1 +
𝜃1

𝜃1+1
[(

𝜃0+1

𝜃0
2 ) log (

1

𝑥(𝑡)
)]) 𝑒

−𝜃1[(
𝜃0+1

𝜃0
2 ) log(

1

𝑥(𝑡)
)]

             (10) 

Further, the Area under the Lindley ROC Curve can be estimated as 

                        𝐴𝑈𝐶 = ∫ (1 +
𝜃1

𝜃1+1
[(

𝜃0+1

𝜃0
2 ) log (

1

𝑥(𝑡)
)]) 𝑒

−𝜃1[(
𝜃0+1

𝜃0
2 ) log(

1

𝑥(𝑡)
)]1

0
𝑑𝑥(𝑡)            (11) 

on further simplification, the expression for AUC is 

     𝐴𝑈𝐶 =
𝜃0

2

𝜃0
2+𝜃1(𝜃0+1)

[
𝜃1(𝜃0+1)(𝜃1+1)+𝜃0

2(𝜃1+1)+𝜃1(𝜃0+1)

(𝜃1+1)(𝜃0
2+𝜃1(𝜃0+1))

]               (12) 

 

3.2. Bi-Power Lindley (PL) ROC curve 

The FPR for the Power Lindley distribution can be derived as follows 

𝐹𝑃𝑅 = 𝑥(𝑡) = (1 +
𝜃0

𝜃0+1
𝑡𝛼0) 𝑒−𝜃0𝑡𝛼0

                  (13) 

From the above expression, the threshold value can be found at each and every test score as 

𝑡 = [(
𝜃0+1

𝜃0
2 ) log (

1

𝑥(𝑡)
)]

1

𝛼0               (14) 

Further, the expression for the TPR under Power Lindley distribution is derived as 

𝑇𝑃𝑅 = 𝑦(𝑡) = (1 +
𝜃1

𝜃1+1
𝑡𝛼1) 𝑒−𝜃1𝑡𝛼1

            (15) 

on substituting the expression for “t” in the above equation, the Power Lindley ROC Curve can 

be obtained as 
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 𝑦(𝑡) = (1 +
𝜃1

𝜃1+1
[(

𝜃0+1

𝜃0
2 ) log (

1

𝑥(𝑡)
)]

𝛼1
𝛼0) 𝑒

−𝜃1[(
𝜃0+1

𝜃0
2 ) log(

1

𝑥(𝑡)
)]

𝛼1
𝛼0

                   (16) 

Further, the Area under the Power Lindley ROC Curve can be estimated as follows 

      𝐴𝑈𝐶 = ∫ (1 +
𝜃1

𝜃1+1
[(

𝜃0+1

𝜃0
2 ) log (

1

𝑥(𝑡)
)]

𝛼1
𝛼0) 𝑒

−𝜃1[(
𝜃0+1

𝜃0
2 ) log(

1

𝑥(𝑡)
)]

𝛼1
𝛼0

1

0
𝑑𝑥(𝑡)             (17) 

The above expression does not have a closed form solution and has to be evaluated by 

numerical integration method. 

3.3. Bi- Extended Power Lindley (EPL) ROC curve 

ROC Curve based on the EPL distribution is constructed as follows. The False Positive 

Rate is given by 

𝐹𝑃𝑅 = 𝑥(𝑡) = (1 +
𝜃0𝛽0

𝜃0+𝛽0
𝑡𝛼0) 𝑒−𝜃0𝑡𝛼0

                            (18) 

on further simplification, the expression for the threshold ‘t’ is given by 

𝑡 = [(
𝜃0+𝛽0

𝜃0
2 ) log (

1

𝑥(𝑡)
)]

1

𝛼0                           (19) 

The True Positive Rate is given by 

𝑇𝑃𝑅 = 𝑦(𝑡) = (1 +
𝜃1𝛽1

𝜃1+𝛽1
𝑡𝛼1) 𝑒−𝜃1𝑡𝛼1

              (20) 

The Extended Power Lindley ROC (EPLROC) Curve can be defined on substituting the 

expression for “t” in the above equation as follows. 

𝑦(𝑡) = (1 +
𝜃1𝛽1

𝜃1+𝛽1
[(

𝜃0+𝛽0

𝜃0
2 ) log (

1

𝑥(𝑡)
)]

𝛼1
𝛼0) 𝑒

−𝜃1[(
𝜃0+𝛽0

𝜃0
2 ) log(

1

𝑥(𝑡)
)]

𝛼1
𝛼0

             (21) 

 

Further, the Area under the EPLROC Curve can be derived as follows, 

𝐴𝑈𝐶 = ∫ (1 +
𝜃1𝛽1

𝜃1+𝛽1
[(

𝜃0+𝛽0

𝜃0
2 ) log (

1

𝑥(𝑡)
)]

𝛼1
𝛼0) 𝑒

−𝜃1[(
𝜃0+𝛽0

𝜃0
2 ) log(

1

𝑥(𝑡)
)]

𝛼1
𝛼0

1

0
𝑑𝑥(𝑡)           (22) 

 

The above expression does not have a closed form solution and has to be evaluated by 

numerical integration method. 

4. Simulation Studies 

 

The application of the proposed three new ROC forms is demonstrated using simulated 

data.  For each ROC type, that is L, PL and EPL, the random numbers (RNs) are generated 

according to their distribution functionalities.  With respect to Lindley distribution, the RNs 

are generated using quantile function. For Power Lindley and Extended Power Lindley forms, 

the RNs are generated using mixture of Weibull and Generalized Gamma distributions 

(Ghitany et al. (2013) and Said (2015)). 
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To demonstrate different forms of ROC curves (worst, moderate and best), simulations 

are carried out with different parameter combinations and the optimal threshold is deduced 

using Youden’s index (J) for each of the combinations.  In table 1, the results pertaining to all 

the three ROC curves are reported and the figures (ROC Curves) are depicted in Figure 1, 

which shows the comparison between the proposed ROC curves.  The ROC curves are in the 

order of the parameter combination which is displayed as in Table 1. 

 
Table 1: AUC and J values of L, PL and EPL ROC curves 

 
θ0 θ1 AUCL JL 

0.6 0.5 0.4530 0.095 

0.9 0.5 0.6265 0.2958 

1 0.5 0.6675 0.3442 

1.3 0.5 0.7567 0.4564 

1.8 0.5 0.8396 0.5765 

 

 

θ0 θ1 α0 α1 AUCPL JPL 

0.6 0.5 2 0.5 0.7486 0.6438 

0.9 0.5 2 0.5 0.786 0.6784 

1 0.5 2 0.5 0.795 0.6870 

1.3 0.5 2 0.5 0.8148 0.7077 

1.8 0.5 2 0.5 0.8357 0.7318 

 

 

θ0 θ1 β0 β1 α0 α1 AUCEPL JEPL 

0.6 0.5 3 2.5 2 0.5 0.7487 0.7006 

0.9 0.5 3.2 2.5 2 0.5 0.7945 0.7335 

1 0.5 3.5 2.5 2 0.5 0.8016 0.7413 

1.3 0.5 3.8 2.5 2 0.5 0.8243 0.7604 

1.8 0.5 4 2.5 2 0.5 0.8504 0.7826 
 

 

 

In Figure 1, the advantage of power transformation to Lindley and its extension by having 

additional parameter can be seen clearly.  That is, the ROC curve of Lindley is very close to 

the chance line, which is not a preferable form for a better classification, whereas with 

additional shape parameter, the ROC forms of PL and EPL have shifted towards the top left 

corner of the unit square plot.  In the context of ROC methodology, any test’s or procedure’s 

ROC curve should be far away from the chance line indicating that the test/procedure can 

classify the subjects with greater accuracy.  Here, with these simulations, the advantage of 

having additional shape parameter has boosted the performance of a classifier witnessing a 

better ROC curve.  However, with increase in the scale parameter values of population I, the 

ROC curve of Lindley distribution gradually shifted towards the top left corner of unit square 

plot.  The gradual improvement in ROC curve of each L, PL and EPL ROC curves can be seen 

in Figure 2. 
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Figure 1: Graphical Comparison between L, PL and EPL ROC curves 

 

 

Figure 2: L, PL and EPL ROC curves with different parameter combinations 

 

One more illustration is also carried out to address the question; “what happens to the 

nature of the ROC curve if the parameter combinations of population I are kept constant and 

varying parameter values in population II?”. In the previous illustration, the simulations and 

ROC curves are exhibited for the case where the parameter values of population II are fixed.  

With the second illustration, it is observed that it affects the performance of the classifier and 

will not have impact in having a better accuracy (Table 2).  With a large difference of scale and 

shape values between the populations I and II, some sort of improvement in ROC curves can 

be witnessed (Figures 3 and 4).  This is due to the basic nature of the distribution forms that 

the values of population I should be at the higher side than that of population II, which is a very 

rare phenomenon in the general context of ROC methodology.  Hence, the distributional forms 

of L, PL and EPL distributions has a very rare functionality of having higher values on 

population I (Normal or Healthy) than that of population II (Abnormal or Diseased), and these 

proposed ROC forms can be applied to such situations to explain the accuracy and other 

measures. 
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Table 2: AUC and J values of L, PL and EPL ROC curves 

 

 

 

 

 

 

 

 

 

θ0 θ1 AUCL JL 

1.8 1.8 0.4766 0.0000 

1.8 1.5 0.5342 0.0871 

1.8 1.2 0.6052 0.1942 

1.8 0.9 0.6929 0.3295 

1.8 0.6 0.8001 0.5057 

 

 

 

 

 

 

 

 

θ0 θ1 α0 α1 AUCPL JPL 

1.8 1.8 2 2 0.4766 0.0000 

1.8 1.5 2 1.7 0.5201 0.0916 

1.8 1.2 2 1.4 0.5858 0.2183 

1.8 0.9 2 1.1 0.6788 0.3927 

1.8 0.6 2 0.8 0.7974 0.6201 

 

θ0 θ1 β0 β1 α0 α1 AUCEPL JEPL 

1.8 1.8 4 4 2 2 0.3615 0.0000 

1.8 1.5 4 3.7 2 1.7 0.4167 0.1094 

1.8 1.2 4 3.4 2 1.4 0.5052 0.2558 

1.8 0.9 4 3.1 2 1.1 0.6350 0.4470 

1.8 0.6 4 2.8 2 0.8 0.7924 0.6769 

 

 

Figure 3: Graphical Comparison between L, PL and EPL ROC curves 
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Figure 4: L, PL and EPL ROC curves with different parameter combinations 

 

5. Conclusion 

 

Different ROC curves have been studied in this paper by taking into consideration the 

three variant forms of Lindley distribution. The reason being certain mathematical and 

functional advantages such as superiority of Lindley over Exponential, the ease of Power 

transformation to the basic Lindley form and having additional shape parameter to the Power 

Lindley distribution.  These considerations have been the support and motivation to propose 

three ROC curves namely, L, PL and EPL ROC forms.  The advantages and flexibility of having 

power transformation and additional parameter is well demonstrated through simulation studies 

and also using graphical comparisons. Further, from the simulations and parameter 

combinations, an interesting fact that the ROC pattern and assumption of scores in population 

I and population II are in reverse pattern than that of the usual assumption made in several bi-

distributional ROC forms such as Bi-Normal, Bi-Gamma and Bi-Exponential ROC curves etc., 

was revealed.  At most attention to the type of data is needed before fitting the proposed ROC 

Curves.  The three L, PL and EPL ROC curves are quite applicable and apt to the practical 

contexts where the above said situation is witnessed.  
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Abstract 
 

In this paper, the measure of agreement is evaluated in terms of interchangeability 

among the set of treatment groups through the concordance correlation coefficient (CCC) for 

the longitudinal data using generalized linear mixed model (GLMM) and zero inflated model 

to account for the presence of zero observations in the data. CCC allow us to 

retain/interchange the treatment groups and provide scope for many experimental researches. 

Apart from CCC, this study also considers intra class correlation coefficient (CC), precision 

and accuracy for the evaluation. A simulation study is carried out to evaluate the performance 

of CCC followed by an application to a psychometric data that reveals there is no 

interchangeability in the nutritional supplements based on a school lunch intervention study. 

 

Key words: Concordance correlation coefficient; Generalized linear mixed model; Poisson 

model; Zero inflated model.   

 

1. Introduction 
 

In many psychological studies, the measurement of variables could be ordinal, count or 

continuous using different methods. Further, in the case of longitudinal data, each subject is 

measured at different time points to obtain repeated measurements. Generally, measurements 

of agreement such as kappa measure in statistics are commonly used to identify the degree of 

concordance between the two or more observers. However, for the longitudinal data, there 

exists a necessity to assess the agreement between repeated measurements produced by a 

single observer or among multiple measurement methods.  

 

The concordance correlation coefficient (CCC) proposed by Lin (1989, 1992) is one of 

the most widely applied procedures to assess agreement between observers on a quantitative 

scale by measuring the variation of linear relationship between each pair of data from a 45-

degree line through the origin and it degenerates into kappa and weighted kappa for binary 

and ordinal data. The CCC was formerly defined as the Euclidean distance between paired 

data from two observers and the concordance line, and it was conveniently scaled to [-1, 1] 

interval, where -1 indicates perfect inverse agreement, 1 indicates perfect agreement, and 

value 0 is interpreted as complete disagreement. Further, each pair of measurements should 

fall on the 45-degree line, otherwise some disagreement is present in the data and hence that 

particular method becomes interchangeable. Traditionally, CCC is said to be a measure of 

total agreement and it can also be expressed as intra class correlation coefficient (CC) 

discussed in Carrasco and Jover (2003) and demonstrated its equivalence using mixed effect 

model by two methods namely variance components and moment method. Carrasco and 
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Jover (2005) extended the CCC for measuring agreement with count data by means of intra 

class CC derived from a GLMM. 

 

Literature is abundant in studying the measure of agreement in psychological studies 

(Barchard, 2012; Ma et al., 2010) and for more than two observers in discrete data (King and 

Chinchilli, 2001; Carrasco and Jover, 2005; Carrasco et al., 2009). Lin et al., (2007) studied 

CCC based on the variance components under linear mixed model for quantitative/ 

qualitative data. Here, we have extended CCC to generalized version so that this can be 

applied to various kinds of data based on the generalized linear mixed model (GLMM) for 

the longitudinal and repeated measure data (Ge et al., 2016). Carrasco (2010) proposed an 

index to measure the degree of agreement as the extended version of concordance correlation 

coefficient (CCC) through variance component (VC) approach for count data using GLMM 

framework. Moreover, CCC has been estimated with weights of a diagonal matrix between 

various repeated measurements over time for the longitudinal data. In the case of count data, 

Carrasco (2010) adopted a two-way GLMM with subject and observer specific random 

effects and random subject observer interaction effects. We extend this to a three-way 

GLMM and estimate the CCC for longitudinal count data. Thus, the aim of this work is to 

evaluate the impact of the CCC for count data with the presence of zeroes by means of a 

generalized expression in the CCC (GCCC) based on the intra class CC through GLMM 

approach count data. The idea behind the GCCC is first to fit the data using the most 

appropriate GLMM, and subsequently to develop the expression of the CCC based on the 

model parameters. Usually, the correlations have been studied for the identification of the 

relationship as strong or weak, but the methods/treatments are not interchangeable. In the 

context of CCC, it is expressed to improve the measure of agreement by interchanging the 

variables. CCC and intra class CC are the statistics that quantify the proportion of variance 

explained by a random factor in multilevel/hierarchical data.  

 

The focus of this article is to explore the applicability of the measure of agreement 

CCC and intra class CC for each observer through GLMM for longitudinal data. Further, an 

extended three-way GLMM for longitudinal count data in the presence of zeros is considered 

to measure the agreement between the variables together with inter class CC, intra class CC, 

and total agreement. The paper is organized as follows. Section 2 introduces the dataset 

considered to examine the application of CCC. The existing methodology of generalized 

linear mixed model is reviewed together with the measurement of agreements CCC in 

Section 3. The results based on application of CCC for longitudinal data is discussed in 

Section 4. Section 5 provides the conclusion. 

 

2. School Lunch Intervention Data 
 

The cognitive data is a secondary data consisting of school lunch intervention given to 

children in rural Kenya (Neumann et al., 2003). The intervention study is designed with three 

feeding groups of school children and also a control group who received no nutritional 

supplements. Each treatment group is comprised of 12 centres with children aged 6–14 years. 

The school lunch intervention was carried out in 9 out of 12 schools and students at the other 

three schools formed a control group. Data collected in Round 1 served as baseline before the 

intervention and called as pre-intervention scores. Round 2 was taken during the term after 

the intervention started and data in rounds 3, 4, and 5 were recorded during the second, 

fourth, and sixth terms after intervention started as post intervention scores. A total of 554 

participants have been recorded including missing entries in the data. Data associated with 

374 participants, excluding the missing observations is considered for this study: out of which 
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188 were boys and 186 were girls. Among the 374, 97 children were given calorie 

supplement, 127 children were given meat supplement, 78 were given milk and 72 were 

considered as control group in this study. 

 

For the intervention study, recorded data was on general intelligence factor called G- 

factors (Raven’s coloured progressive matrix) and other three S-factors (Verbal meaning, 

Arithmetic score and Digit span total), with nutritional supplements in order to study the 

measurement of agreement of interchangeability. Five repeated rounds of lunch intervention 

have been recorded from the schools and a summary of the data is presented in Table 1. From 

Table 1, it is evident that the there is an increasing trend in the overall mean for all the 

response variable considered. In addition, verbal meaning shows higher mean value since 

higher order cognitive function involving reasoning abilities on linguistic domain. The 

recorded data has been subjected to GLMM for count data and inflated GLMM for data with 

zeroes. 

 

Table 1: Human intelligence - Overall mean for all response group 

 

Time RCPM AS VM DS 

Round 1 17.11 7.02 26.68 4.90 

Round 2 17.47 7.16 27.27 5.37 

Round 3 18.02 7.52 29.03 6.20 

Round 4 18.41 8.04 32.03 6.97 

Round 5 19.40 8.75 33.96 7.80 

 RCPM: Raven’s Coloured Progressive Matrices; AS: Arithmetic Score; VM: Verbal Meaning; DS: Digit Span 

 

3. Models and methods 
 

Consider a study where n  subjects are measured m  times by J  observers. Let ijklY  be 

the thl  reading ),...,1( Ll   made by the thj  observer ),...,1( Jj   at the thk  time ),...,1( Kk   

on the thi  subject ),...,1( ni  .  Since a sample of subjects is included in the data, the subject 

and the subject-by-observer interaction effects are assumed to be random effects. If the 

interest lies only in measuring the agreement among those observers included in the dataset 

as in many situations, then the same could be considered as observer-specific and are 

assumed as fixed effect. However, as mentioned by Carrasco and Jover (2003), when 

defining the agreement index, it is convenient to consider the observer effect as random to 

account for the systematic differences between observers as a source of disagreement. The 

index would otherwise, measure consistency rather than agreement. Thus, the present study, 

has considered variance components model as appropriate to fit the data with, subject-

specific, subject-observers, subject–time interaction effects, ),,( ikijiijku   as sources 

of variability.  

 

The random-effects vector ijku  are independently distributed from an exponential 

family with mean ijkijkijkl uYE )|(  and variance )()|var( ijkijkijkijkl vvuY   where )(v  is 

a user specified variance function and   is a unknown dispersion parameter. Through the 

link function ijkijkg  )( , the conditional mean associated with a linear predictor is given by 
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,ijkijkijkijk uzx         (1) 

 

where ijkx )1( p  and ijkz )1( q  are independent variables with the fixed effects   and the 

random effects ijku .  

 

We extend the three-way LMM proposed by Carrasco et al., (2009) and Tsai (2017) to 

the GLMM  incorporating repeated measurements rated by an observer at a certain time for 

each subject. The extended three-way GLMM can be written as 

 

jkikijkjiijk   ,    (2) 

 

where   is the overall mean, i  is the subject-specific random effect assumed to be 

distributed as ),0(~ 2

 Ni , j  is the observer-specific fixed effect, k  is the time-specific 

fixed effect, ij  is the random subject–observer interaction effect assumed to be distributed 

as ),0(~ 2

 Nij , ik  is the random subject–time interaction effect assumed to be 

distributed as ),0(~ 2

 Nik , and jk  is the fixed observer–time interaction effect and all 

the three parameters are mutually independent. From the equation (1) and (2), fixed effect is 

expressed as ),.....,,,...,,,...,,( 1111 JKKJ    and random effect as 

),,( ikijiijku  , ),0(~ GMVNuijk  where G  is a diagonal matrix with elements 

2

 ,
2

  and 
2

  on the diagonal and zero otherwise. 

 

Following, Barnhart et al., (2005) and Lin et al., (2007), the total, intra class CC and 

inter class CC based on the GLMM approach can be expressed as follows   

 

)var(

),cov( ''

ijkl

lijkijkl

CCC
Y

YY
    (3) 

 

where ),cov( ''lijkijkl YY  and )var( ijklY  stand for the marginal covariance of the thl  reading 

),...,1( Ll   made by the 
thj  observer ),...,1( Jj   at the thk  time ),...,1( Kk   on the thi  

subject ),...,1( ni  . The marginal variance and covariance are developed as 

 

)}|{var()}|({var)var( ijkijkluijkijkluijkl uYEuYEY   

  )}({)(var ijkuijku hE    

    )}.,|,{cov()}|(),|({cov),cov( '''''''' ijkijklijkijkluijklijkijkijklulijkijkl uuYYEuYEuYEYY   

 

Since 
ijklY  and 

''lijkY  are conditioned effects considered independent, the marginal 

covariance reduces to (McCulloch and Searle, 2001) 

 

)}|(),|({cov),cov( ''''' ijklijkijkijklulijkijkl uYEuYEYY   

            ).,(cov 'ijkijku   
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In addition, the CCC may also be divided into two components namely the precision 

and accuracy (Lin, 1989; Lin et al., 2007) so that 

 

apCCC  .    (4) 

 

The precision component 
p , is the intra class CC considering the observers as fixed in 

equation (6), i.e., not considering the between-observers variability as a source of 

disagreement. Additionally, the accuracy index a , measures the distance between the 

observers’ means, i.e., the systematic differences among the observers. Thus, using the 

expressions of the marginal variance and covariance in the CCC equation (3), the following is 

obtained: 

 

)}({)(var

),(cov '

ijkuijku

ijkijku

GCCC
hE 





    (5) 

 

where   is the dispersion parameter and )(h  the corresponding variance function associated 

random effects, which can be considered as a generalization of CCC (GCCC) to fit GLMM 

approach. Further, Lin et al., (2007) defined the intra class CC as a measure of proportion of 

total variance attributable to the subjects and can be expressed as  

 

)',(

''intra

)(var

),(cov

lljijklu

lijkijklu

GCCC
Y

YY
  

)}({|)(var

|)(var

)',(

)',(

ijkulljijku

lljijku

hE 




    (6) 

 

where )',( llj  be the reading measured m  times based on 
thj  observer. Additionally, the 

conditional variance and covariance of 
ijklY ,

''lijkY  given )',( llj  is defined in equation (6). 

Furthermore, an intra class CC can also be defined as a measure of intra-observer agreement 

(Barnhart et al., 2005; Lin et al., 2007) where the observer effect is considered as fixed. This 

index should be interpreted, for each rater, as a measure of the proportion of the total variance 

(subjects plus error) attributable to subjects. It is also possible to define an inter class CC if 

the data have replicated readings )1( m  by considering the data as the average of those m  

readings  

 

)(var

),cov(

.

'..inter

ijk

ijkijk

GCCC
Y

YY
  

m

hE ijku

ijku

lljijkijku

)}({
)(var

|),(cov )',('








    (7) 

 

where ijkY  stands for the average of m readings of the 
thj  observer on the thi  subject and 

along with 
thk  time point. Specifically, two models are considered for the count data based 

on the presence or absence of zero observations. 
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3.1. Poisson model 
 

Let uXY ,|  follows a Poisson distribution and the conditional mean of ijklY  given ijku  is 

kjii

ijk e





  and the conditional variance is given by ijkijkijkl uY )|var( . The marginal 

expectation over the random effects is expressed in terms of its generating function and is 

given by  
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CCC for the Poisson GLMM as explained by Carrasco (2010) becomes 
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Further, CCC would reduce to 
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in the case of no subject-observer interaction. When 02   or ,, 22   the CCC will 

tend to 0 (independence) and conversely, when 2

  or  ,0, 22   it will reach a value 

of 1 (perfect agreement) if ., 222

    It is to be noted that the CCC is defined using the 

variance components, thus it cannot result in negative values. 

 

3.2. Zero Inflated Poisson (ZIP) model 
 

Let ijkY  denote the longitudinal response for 
thj  observer ),...,1( Jj   at the 

thk  time 

),...,1( Kk   on the thi subject ),...,1( ni  . Then, the distribution of ijkY  is expressed as  
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where ijk  denotes the probability of the observation arising from the degenerated distribution 

at zero and ijk  represents the mean of the Poisson distribution. This formulation incorporates 

more zeros than permitted under the Poisson assumption (i.e., where 0ijk ). The 

probability distribution function of the longitudinal ZIP model can be written as 
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where 10  ijk  and  ijk0 . Here ijkX  and ijkZ  can be mutually exclusive, partially, or 

completely overlapping to achieve modeling flexibility. This model has the same 

specification as that of the Poisson model but the variance function is expressed by 

)()}({ ijkuijkijkuijku EEE    and the total CCC for ZIP model becomes 
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To estimate the CCC and related quantities for the ZIP case, the data are fitted by 

penalized quasi-likelihood (PQL) through the SAS GLIMMIX and NLMIXED (Zhu et al., 

2015). The goal of the analysis is to determine the degree of agreement between each 

treatment group in order to decide if a new type of treatment could replace any other 

treatment. The interchangeability of treatment in this study will be considered only if the 

CCC value is at least 0.9 (Carrasco 2010). The following section describes the application of 

CCC for school lunch intervention study. 

 

4. Simulation Study 
 

The aim of the simulation study is to evaluate the impact of zero counts present in the 

dataset and assess the performance of CCC obtained from ZIP model. The parameter values 

of each combination were used as initial values to start the estimation process, with regard to 

the ML procedure. Carrasco (2010) studied to evaluate the impact of the over dispersion 

when estimating the CCC assuming a Poisson distribution. Similar, CCC estimate from a 

normal linear mixed model (Normal) whose behavior is related to the classical Lin’s sample 

moment approach (Lin, 1989; Carrasco and Jover, 2003). 

  

Following Carrasco (2010) simulation has been further extended to ZIP model and built 

three levels of agreement (as discussed in Section 1) through CCC values namely, below 20 

as low, between 20 and 200 as medium and above 200 as high. Similarly, simulating the data 

into multiple zero values and classified as low (below 30), moderate (between 30 and 120), 

high (between 120 and 300) and extremely high (above 300) and repeated 1000 times. For 

each case, CCC was estimated using ZIP model using ML method of estimation and the 
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simulation is performed in PROC GLIMMIX and PROC NLMIXED using SAS software. 

Table 2 explains the CCC values for the above mentioned scenarios.  

 

Table 2: Results of the simulation scenarios 

 

Multiple zeros Agreement level Comb. Mean CCC  

Low  

Low 1 11.65 0.2922  

Medium 2 21.06 0.3397  

High 3 29.78 0.4812  

Moderate  

Low 4 65.18 0.5461  

Medium 5 97.87 0.6424  

High 6 115.75 0.6997  

High 

Low 7 150.02 0.7495  

Medium 8 208.12 0.7948  

High 9 282.52 0.8542  

Extremely 

Low 10 565.14 0.8999  

Medium 11 729.45 0.9206  

High 12 1314.19 0.9958  

 

The following are the findings from Table 2: 

(i) The CCC values show increasing trend irrespective of the zero counts with the 

increasing levels. 

(ii) In the case of extremely high zero counts, there is an improvement in the measure of 

agreement with an increasing rate of mean. Similarly, CCC increases as the mean 

increases for the case of medium and high zero counts in the data.  

(iii) It is clear that the CCC value reaches 0.9 when the mean value of the data is 

extremely high irrespective of the zero counts and this provides an insight in 

interchangeability of the methods used for the study. 

 

The simulation results paved the way for a better understanding of CCC with different 

categories of mean and zero counts in the data and motivates us to incorporate the same in the 

real time data set as explained in the following section.  

 

5. Data Analysis  
 

The school lunch intervention data introduced in Section 2 were considered for data 

analysis. To capture the measurement of agreement, various assumptions about the 

distribution of the random effects has been made. There is also baseline covariate information 

on each subject including age, gender, socio economic status, intake of nutritional 

supplements such as milk and meat, duration of the follow-up study. Furtther, measurement 

of G-factor in the analytical ability as assessed by Raven’s coloured progressive matrices and 

S-factor involving reasoning ability, linguistic ability and immediate memory and are 

assessed by Verbal meaning, Arithmetic scores and Digit span total respectively. Obviously, 

it is expected that improvement of children cognitive skills is correlated with the nutrition 

supplements and this association is studied using GLMM. We considered Poisson regression 

model and zero inflated Poisson model for analyzing the concept of interchangeability of 

nutritional supplements such as milk, meat, calories and control groups. From 

),,( ikijiijku  , a variance component model is used to fit the data including subjects-

specific, subject-observers, subject–time interaction effects as sources of variability. 

Following Carrasco and Jover (2003), the observer effect is treated to be random since it 

accounts for the systematic difference between the observers by means of disagreement. 
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However, if the measures of agreement in CCC value is at least 0.9, then the particular 

treatment can be interchanged (Carrasco 2010). 

 

The CCC is estimated using the variance components of a Poisson GLMM and the 

model is fitted by maximum likelihood (ML) using Gauss-Hermite quadrature through the 

NLMIXED SAS procedure. For each case, the CCC and its standard error are estimated. 

Table 3 gives the results of CCC on (8), precision, accuracy, intra class CC based on (3) to 

(7) for the Poisson model.  

 

Table 3: Human intelligence - Results for Poisson model 

 
  

CCC Precision Accuracy 
Intra class CC 

Observer 1 

Intra class CC 

Observer 2 

Intra class CC 

Observer 3 

 Analytical ability by Raven’s coloured progressive matrices test 

Calorie 
0.3926 

(0.0298) 

0.897 

(0.0798) 

0.4329 

(0.0333) 

0.897 

(0.0798) 

0.9029 

(0.0805) 

0.9085 

(0.0810) 

Meat 
0.4089 

(0.0299) 

0.8951 

(0.0786) 

0.4587 

(0.0352) 

0.8951 

(0.0786) 

0.9011 

(0.0802) 

0.9068 

(0.0808) 

Milk 
0.4356 

(0.0327) 

0.8979 

(0.0798) 

0.4931 

(0.0398) 

0.8979 

(0.0798) 

0.9037 

(0.0806) 

0.9093 

(0.0812) 

Control 
0.3797 

(0.0279) 

0.8964 

(0.0797) 

0.4063 

(0.0316) 

0.8964 

(0.0798) 

0.9024 

(0.0803) 

0.908 

(0.0809) 

  Numerical ability by Arithmetic score 

Calorie 
0.3127 

(0.0239) 

0.6513 

(0.0552) 

0.3609 

(0.0273) 

0.6513 

(0.0551) 

0.6634 

(0.0565) 

0.6755 

(0.0577) 

Meat 
0.3263 

(0.0242) 

0.6465 

(0.0545) 

0.3934 

(0.0298) 

0.6465 

(0.0545) 

0.6589 

(0.0559) 

0.6712 

(0.0570) 

Milk 
0.3589 

(0.0256) 

0.6526 

(0.0553) 

0.4082 

(0.0302) 

0.6526 

(0.0554) 

0.6647 

(0.0566) 

0.6768 

(0.0581) 

Control 
0.3004 

(0.0213) 

0.6477 

(0.0546) 

0.3589 

(0.0255) 

0.6477 

(0.0546) 

0.6602 

(0.0561) 

0.6725 

(0.0572) 

  Linguistic ability by Verbal meaning 

Calorie 
0.4871 

(0.0383) 

0.8298 

(0.0729) 

0.5329 

(0.0432) 

0.8298 

(0.07287) 

0.8484 

(0.0746) 

0.8653 

(0.0768) 

Meat 
0.4936 

(0.0399) 

0.8234 

(0.0723) 

0.5412 

(0.0447) 

0.8234 

(0.0723) 

0.8426 

(0.0736) 

0.8601 

(0.0764) 

Milk 
0.5031 

(0.0403) 

0.8329 

(0.0731) 

0.5532 

(0.0452) 

0.8329 

(0.0731) 

0.8511 

(0.0752) 

0.8678 

(0.0775) 

Control 
0.4724 

(0.0372) 

0.829 

(0.0728) 

0.5216 

(0.043) 

0.8290 

(0.0728) 

0.8477 

(0.0743) 

0.8647 

(0.0767) 

  Immediate memory by Digit span total 

Calorie 
0.3264 

(0.0226) 

0.8422 

(0.0743) 

0.3721 

(0.0277) 

0.8422 

(0.0743) 

0.8567 

(0.076) 

0.8702 

(0.0778) 

Meat 
0.3315 

(0.0233) 

0.8383 

(0.0730) 

0.3824 

(0.0288) 

0.8383 

(0.073) 

0.8532 

(0.0753) 

0.867 

(0.077) 

Milk 
0.3561 

(0.0256) 

0.8452 

(0.0744) 

0.3987 

(0.0293) 

0.8452 

(0.0242) 

0.8594 

(0.0762) 

0.8727 

(0.078) 

Control 
0.3129 

(0.0213) 

0.8387 

(0.07308) 

0.3621 

(0.0262) 

0.8387 

(0.0248) 

0.8537 

(0.0757) 

0.8674 

(0.0773) 
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The following are the observations from Table 3: 

(i) Concerning Raven’s coloured progressive matrices with milk supplement 

produces a high degree of agreement (with CCC 0.4356) than other treatments 

but insufficient to declare that the treatment is interchangeable.  

(ii) Based on the Koo and Li (2016) guidelines for interpreting the intra class CC 

be classified as poor (below 0.5), moderate (0.5 to 0.75) and excellent (above 

0.9). In this study, the intra class CC was closer to one in all cases, so one 

could conclude that the methods adopted are  reliable. However, we can see 

that there are few cases where the intra class CC falls between 0.6 and 0.8, but 

still are not closer to zero. Thus, we can say that these methods are reliable to 

fit under GLMM. 

(iii) For the S factor through responses namely Arithmetic, Verbal meaning and 

Digit span, the treatment group milk produces a higher degree of agreement 

than other treatments. 

 

Further, to handle the zero counts in the data, we fit the Zero inflated Poisson model on 

(9), the CCC behaves the same as in Poisson model yielding that there can be no 

interchangeability in treatments.  

 

Table 4: Human intelligence - Results for Zero Inflated Poisson model 

 
  

CCC Precision Accuracy 
Intra class CC 

Observer 1 

Intra class CC 

Observer 2 

Intra class CC 

Observer 3 

   

Analytical ability by Raven’s coloured progressive matrices test 

Calorie 
0.3327 

(0.0237) 

0.9008 

(0.0801) 

0.3818 

(0.0279) 

0.9008 

(0.0801) 

0.8777 

(0.0783) 

0.8846 

(0.0786) 

Meat 
0.3428 

(0.0241) 

0.8953 

(0.0789) 

0.3836 

(0.028) 

0.8953 

(0.0791) 

0.9062 

(0.0807) 

0.9117 

(0.0812) 

Milk 
0.3538 

(0.0256) 

0.8914 

(0.079) 

0.3863 

(0.0281) 

0.8914 

(0.0789) 

0.9068 

(0.0808) 

0.9123 

(0.0814) 

Control 
0.3288 

(0.0232) 

0.9 

(0.08) 

0.3806 

(0.0278) 

0.9 

(0.0800) 

0.8907 

(0.07987) 

0.8969 

(0.0792) 

   

Numerical ability by Arithmetic score 

Calorie 
0.2684 

(0.0152) 

0.6554 

(0.0556) 

0.3017 

(0.0205) 

0.6554 

(0.055) 

0.6381 

(0.0531) 

0.6507 

(0.0552) 

Meat 
0.2736 

(0.0171) 

0.6448 

(0.0541) 

0.3069 

(0.021) 

0.6448 

(0.0541) 

0.6711 

(0.0568) 

0.6831 

(0.0582) 

Milk 
0.2883 

(0.0189) 

0.6452 

(0.0546) 

0.3082 

(0.0214) 

0.6452 

(0.0545) 

0.6615 

(0.0562) 

0.6737 

(0.0573) 

Control 
0.2491 

(0.0144) 

0.6552 

(0.0554) 

0.3002 

(0.0201) 

0.6552 

(0.0554) 

0.6273 

(0.0527) 

0.64 

(0.0536) 

   

Linguistic ability by Verbal meaning 

Calorie 
0.4186 

(0.0313) 

0.8346 

(0.0726) 

0.4949 

(0.0397) 

0.8346 

(0.0725) 

0.8091 

(0.0705) 

0.8294 

(0.0715) 

Meat 
0.4318 

(0.0325) 

0.831 

(0.0720) 

0.4919 

(0.0395) 

0.831 

(0.0719) 

0.8368 

(0.0729) 

0.8548 

(0.0758) 

Milk 
0.4536 

(0.0352) 

0.8218 

(0.0712) 

0.4962 

(0.0399) 

0.8218 

(0.0712) 

0.8441 

(0.0739) 

0.8613 

(0.0765) 

Control 
0.4003 

(0.0301) 

0.876 

(0.0781) 

0.4938 

(0.0396) 

0.676 

(0.0579) 

0.8532 

(0.07539) 

0.8678 

(0.0774) 
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  Immediate memory by Digit span total 

Calorie 
0.2201 

(0.0118) 

0.8484 

(0.0746) 

0.3092 

(0.0218) 

0.8484 

(0.0746) 

0.804 

(0.0702) 

0.8214 

(0.0709) 

Meat 
0.2239 

(0.0126) 

0.8382 

(0.0735) 

0.3131 

(0.0223) 

0.8382 

(0.0732) 

0.8534 

(0.0755) 

0.8671 

(0.0771) 

Milk 
0.2282 

(0.014) 

0.8335 

(0.0726) 

0.3134 

(0.0227) 

0.8335 

(0.0722) 

0.8687 

(0.0776) 

0.8812 

(0.0784) 

Control 
0.2164 

(0.011) 

0.7287 

(0.0631) 

0.2014 

(0.0101) 

0.7853 

(0.0753) 

0.8760 

(0.0781) 

0.8914 

(0.0789) 

 

The result in Table 4 based on (3) to (7) revealed that CCC on (11) is higher for the 

treatment milk in the entire response group namely Raven’s coloured progressive matrices, 

Arithmetic score, Verbal meaning and Digit span total. This is significant because identifying 

the correct nutritional supplements in the development of cognitive function improves the 

intelligence of school children. 

 

6. Concluding Remarks 
 

The field of psychometric studies focus on developing a proper measure that can 

accurately summarize or give an idea of an individual’s intellectual abilities and mental state. 

Longitudinal studies are common in many psychometric studies particularly on cognitive 

ability of school children and psychometric factors involving mental illness. Further, the 

policy makers are interested in identifying suitable interventions by providing nutritional 

supplements like milk, meat, pulses etc., to enhance the intellectual abilities of the students. 

There is also a need to examine the interchangeability of various nutritional supplements 

provided to children.  

 

Gokul et al., (2021) proposed a joint model, based on GLMM approach, for Kenya 

school lunch intervention study and suggested that the nutritional supplements show gradual 

improvement in cognitive behavior among the students. However, the choice of nutritional 

supplements, also play an important and unique role in promoting children's growth and 

development. There have been arguments and counter arguments through various studies that 

nutritional supplements like meat, milk and calories provide suitable interventions in the 

intellectual abilities of children. It is in this direction the present study considers CCC 

approach as an appropriate measure to study the agreement or otherwise of various nutritional 

supplements in enhancing the mental abilities (Carrasco 2010).  

 

In this study, the concept of interchangeability in the treatment groups through CCC, 

intra class CC, proposed by Tsai and Lin (2018) is adopted for analyzing the longitudinal 

school lunch intervention data. Further, in psychological studies, data are often of count or 

ordinal in nature involving more number of zeroes. Thus, we considered Poisson GLMM for 

count data, and inflated models in the presence of zero observations to capture the measure of 

agreement through the concordance correlation co-++efficient. The performance and 

applicability of the CCC has been first demonstrated with a simulation study followed by the 

Kenyan real time dataset from a psychological study. The results of CCC based on the real 

data suggests lesser degree of agreement for the interchangeability among the four considered 

treatment groups. The study has established in a limited way that the nutritional supplement 

of milk as an appropriate intervention for the growth of intellectual abilities among children. 

On the whole, the methodology provides an insight to researchers working on longitudinal 

data with zeros to derive the benefit of using CCC method based on GLMM as a suitable 

measure of agreement. 
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Abstract 

The USDA triangle is the most widely used model for soil texture classification. The 

problem with USDA triangle model was, it needs critical analysis for identification of soil 

textural class. To simplify the soil textural class prediction process the USDA triangle model 

was automated using finite state machine technique. The experimental results exhibited the 

equivalence between USDA triangle and automated soil textural classification model. The 

proposed automated model is efficient, reliable and user-friendly for prediction of soil 

textural class. 
 

Key words: Clay fraction, Sand fraction, Silt fraction, Software model. 

1. Introduction 

 

Soil includes supplements, water, minerals and micro-organism, which gives living 

environment to all plants. Jha and Ahmad (2018). The dirt quality varies overtime due to 

changes in properties. Karlen et al. (2003), Ghosh et al. (2017), Doran et al. (1999), Rajan et 

al. (2016). The organic and physical property of soil has immense impact on fertility. 

Schoenholtz et al. (2000), Crittenden and de Goede (2016). Soil fertility is the ability to give 

supplements to the yield development. Peigne et al. (2017). The poor soil surface influences 

hydro coherent and biochemical procedures. Moncada et al. (2017). Soil properties variation 

has high effect on irrigation management. The dirt properties and land suitability are integral 

factor for structuring water system frameworks. Cho et al. (2016). Artificial Intelligence 

approaches are efficiently used for soil classification. Wu et al. (2018), Sirsat et al. (2017). 

The dirt texture has high impact on tillage practices, plant nutrients and liming application. 

Jovic et al. (2019). Modeling soil classes play crucial role in irrigation system water 
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productivity. Zeng et al. (2016). The soil classification has long history, wherein the USDA 

triangle model is the widely used model worldwide. Hartermink (2015). The objective of the 

proposed study is automation of USDA triangle model. The finite state machine (FSM) 

approach is most widely used technique for automation of multidiscipline theoretical 

concepts. In the proposed model the USDA triangle model is automated and also retained the 

logical equivalence of manual approach over soil texture classification. In USDA triangle 

model, for many cases there are multiple transitions for a same sand, silt or clay fraction 

value, hence we have chosen non-deterministic finite state machine to design automated 

framework of USDA triangle soil texture classification. 

 

2. Materials and Methods 

The USDA triangle soil texture model and FSM concepts are integrated to design soil 

texture automation framework. An input string is passed to the model one character at a 

time, in which the model considers the current state and the new character and chooses the 

next state. In FSM model one of the states is designated as start state and consists of one or 

more final states. Final or accepting states are represented using double circle. In FSM 

model, if it runs out of the input and halts at final state then it accepts the input string 

otherwise, it rejects. The number of steps FSM executes is exactly equal to number of 

characters present in the string. The FSM has two variants, Non-Deterministic Finite State 

Machine (NDFSM) and Deterministic Finite State Machine (DFSM). In NDFSM, there will 

be multiple moves for one input symbol, the behavior is non-deterministic. In this section the 

USDA triangle model represented in Figure 1 is automated using NDFSM model. 

Groenendyket al. (2015).  

 

 

 
 

Figure 1: USDA triangle soil textural classification model 

The sand, silt and clay fraction threshold values of twelve USDA triangle model 

classes are considered to identify the input parameters for NDFSM framework. The NDFSM 

model variables are defined in Table 1. 
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Table 1: Preprocessing of USDA triangle soil texture data to fit into NDFSM 

 

Sand 

Fraction 

(%) 

Sand Input 

Variables 

Silt 

fraction 

(%) 

Silt Input 

Variables 

Clay 

fraction 

(%) 

Clay Input 

Variables 

0-20 a1 0-15 b1 0-7 c1 

20-23 a2 15-20 b2 7-10 c2 

23-42 a3 20-28 b3 10-12 c3 

42-45 a4 28-30 b4 12-15 c4 

45-50 a5 30-40 b5 15-20 c5 

50-52 a6 40-50 b6 20-27 c6 

52-65 a7 50-52 b7 27-35 c7 

65-70 a8 52-60 b8 35-40 c8 

70-80 a9 60-73 b9 40-55 c9 

80-85 a10 73-80 b10 55-60 c10 

85-90 a11 80-87 b11 60-100 c11 

90-100 a12 87-100 b12 - - 

 

2.1.1. Design of automated model for soil texture classification using NDFSM 

 

The NDFSM approach is one of easiest method of finite automata used for designing 

abstract machines. In the proposed model automated soil texture classification model is 

designed using NDFSM. NDFSM is formally defined as set of five attributes which are 

described in the following section for USDA triangle model.  

 

NDFSM = {S, Σ, F, s0, δ} 

States (S): {s0, s1, s2, s3, s4, s5, s6, s7, s8, s9, s10, s11, s12, s13, s14, s15, s16, s17, s18, s19, 

s20,  s21, s22, s23, s24, s25, s26, s27, s28, s29, s30, s31, s32, s33, s34}.  

Start State is s0 and ∈ S.  

A state is a circumstance of a framework relying upon past sources of info and causes a 

response on current information sources. States indicate the step by step procedure for soil 

textural class identification based on the sand, silt and clay fraction input. Suppose if sand 

fraction is 85-100%, silt fraction is 0-15% and clay fraction is 0-10% then in the FSM model 

state transitions takes place in the path s0->s1->s2->s3. The state s0 is the initial state, s1 

and s2 are intermediate states and s3 is the final state, which represents sand soil textural 

class. Suppose if sand fraction is 70-90%, silt fraction is 0-30% and clay fraction is 0-15% 

then in the FSM model state transitions takes place in the path s0->s4->s5->s6. The state s0 

is the initial state, s4 and s5 are intermediate states and s6 is the final state, which represents 

loamy sand textural class. Similarly for all the 12 soil  texture classes there are different state 

transition paths based on the sand, silt and clay fraction values which are represented in 

Figure 2.  

Input Alphabets (Σ): {a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, a12, b1, b2, b3, b4, 

b5, b6, b7, b8, b9, b10, b11, b12, c1, c2, c3, c4, c5, c6, c7, c8, c9, c10, c11}.  The sand 

fraction values are represented using the template “ai”, in which the symbol ‘a’ represents the 

sand fraction and ‘i’ represents the parameter number. The parameter number is assigned 
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based on the sand fraction threshold values of USDA triangle model soil textural classes. 

Suppose if sand fraction value is 0-20% then the corresponding input parameter is mapped as 

“a1”. Suppose if sand fraction value is 20-23% then the corresponding input parameter is 

mapped as “a2”. Likewise, for all the unique sand fraction range the input parameters are 

assigned, which are reported in Table 1. 

 

The silt fraction values are represented using the template “bi”, in which the symbol ‘b’ 

represents the silt and ‘i’ represents the parameter number. The parameter number is assigned 

based on the silt fraction threshold values of USDA triangle model soil textural classes. 

Suppose if silt fraction value is 0-15% then the corresponding input parameter is mapped as 

“b1”. Suppose if silt fraction value is 15-20% then the corresponding input parameter is 

mapped as “b2”. Likewise, for all the unique silt fraction range the input parameters are 

assigned, which are reported in Table 1.  

 

The clay fraction values are represented using the template “ci”, in which the symbol 

‘c’ represents the clay and ‘i’ represents the parameter number. The parameter number is 

assigned based on the clay fraction threshold values of USDA triangle model soil textural 

classes. Suppose if clay fraction value is 0-7% then the corresponding input parameter is 

mapped as “c1”. Suppose if clay fraction value is 7-10% then the corresponding input 

parameter is mapped as “c2”. Likewise, for all the unique clay fraction range the input 

parameters are assigned, which are reported in Table 1. 

 

Final States (F): {s3, s6, s9, s12, s15, s18, s21, s24, s26, s29, s31, s34} 

In USDA triangle model there are 12 soil texture classes accordingly in FSM model 12 

final states are defined. Each final state represents a soil texture class. The state “s3” 

represents sand class, “s6” represents loamy sand class, “s9” represents sandy loam, “s12” 

represents loam, “s15” represents silty loam, “s18” represents silt, “s21” represents sandy 

clay loam, “s24” represents clay loam, “s26” represents silty clay loam, “s29” represents 

sandy clay, “s31” represents silty clay and “s34” represents clay soil texture. For all valid 

input patterns the FSM model halts at one of the final state based on sand, silt and clay 

fraction values. 

 

Transition functions (δ): It maps from S (state) × Σ (Input symbol) = S (States), the 

outcome of transition function can have set of states in NDFSM}.In the following section the 

NDFSM model is designed for soil texture classification considering the transition functions 

represented in Table 2. 
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Figure 2: USDA triangle automated model for soil textural classification 

 

Transition functions of proposed NDFSM model are highlighted in the following 

section over all the input symbols.  For each state the possible movements on all the input 

parameters are represented using transition function. Suppose if the input comprises of sand 

fraction 91% then form start state s0 on input “a12” FSM moves to state “s1”, followed by 

suppose if silt fraction is 5% then from state s1 on input “b1” FSM moves to state “s2” and 

followed by suppose if clay fraction is 6% then from state “s2” on input “c1” FSM moves to 

state “s3” and the corresponding input pattern is accepted as sand soil texture class.  

Table 2: Transition functions defined for automated soil texture classification 

 

Transition functions for states 

s0,s1,s2,s4,s5,s6,s7 

Transition functions 

for states 

s8,s10,s11,s13,s14 

Transition functions 

for states 

s16,s17,s19,s20,s22 

Transition functions 

for states 

s23,s25,s27,s28, 

s30,s31,s32,s33 

Transitions from state s0: 

(s0, a1) = (s13, s16, s32) 

(s0, a2) = (s13, s19, s32) 

(s0, a3) = (s10, s13, s19, s32) 

(s0, a4) = (s7, s10, s13, s19, 

s32) 

(s0, a5) = (s7, s10, s13, s22, 

s27) 

(s0, a6) = (s7, s10, s22, s27) 

(s0, a7) = (s7, s22, s27) 

(s0, a8) = (s7, s22) 

(s0, a9) = (s4, s7, s22) 

(s0, a10) = (s4, s7) 

Transitions from 

state s8:  

(s8, c1) = (s9) 

(s8, c2) = (s9) 

(s8, c3) = (s9) 

(s8, c4) = (s9) 

(s8, c5) = (s9) 

Transitions from 

state s10:  

(s10, b4) = (s11) 

(s10, b5) = (s11) 

(s10, b6) = (s11) 

Transitions from 

Transitions from 

state s16: 

 (s16, b11) = (s17) 

(s16, b12) = (s17) 

(s16, b6) = (s25) 

(s16, b7) = (s25) 

(s16, b8) = (s25) 

(s16, b9) = (s25) 

(s16, b6) = (s30) 

(s16, b7) = (s30) 

(s16, b8) = (s30) 

Transitions from 

state s17:  

Transitions from state 

s23:  

(s23, c6) = (s24) 

(s23, c7) = (s24) 

Transitions from state 

s25:  

(s25, c7) = (s26) 

(s25, c8) = (s26) 

Transitions from state 

s27:  

(s27, b1) = (s28) 

(s27, b2) = (s28) 

Transitions from  
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3. Results and Discussions 

 

An analysis has been planned to scrutinize 12 classes in USDA soil textural triangle and 

its soil fraction ranges and developed a soft computing model to arrive at textural class. The 

objective of the proposed work is automation of USDA triangle soil texture classification 

concept using NDFSM. The data set comprises of 5000 records, in which each sample has 

sand, silt and clay particle size distribution. The summation of all three parameters particle 

size must be exactly 100 for all input samples. The 70% data was used for training, 20% data 

was used for testing and 10% data was used for validation. The testing and validation phase 

of experiment results exhibited the equivalence between USDA triangle model and FSM 

based automated software model. The model has been traced for many observed input 

patterns using JFALP. Rodger and Gramond (1998).The validation phase of the NDFSM soil 

texture classification model also obtained equivalence with USDA triangle over soil texture 

classification. 

 

(s0, a11) = (s1,s4) 

(s0, a12) = (s1) 

Transitions from state s1: 

(s1, b1) = (s2) 

Transitions from state s2:  

(s2, c1) = (s3) 

(s2, c2) = (s3) 

Transitions from state s4:  

(s4, b1) = (s5) 

(s4, b2) = (s5) 

(s4, b3) = (s5) 

(s4, b4) = (s5) 

Transitions from state s5:  

(s5, c1) = (s6) 

(s5, c2) = (s6) 

(s5, c3) = (s6) 

(s5, c4) = (s6) 

Transitions from state s7: 

(s7, b1) = (s8) 

(s7, b2) = (s8) 

(s7, b3) = (s8) 

(s7, b4) = (s8) 

(s7, b5) = (s8) 

(s7, b6) = (s8) 

 

state s11:  

(s11, c2) = (s12) 

(s11, c3) = (s12) 

(s11, c4) = (s12) 

(s11, c5) = (s12) 

(s11, c6) = (s12) 

Transitions from 

state s13:  

(s13, b7) = (s14) 

(s13, b8) = (s14) 

(s13, b9) = (s14) 

(s13, b10) = (s14) 

(s13, b11) = (s14) 

Transitions from 

state s14: 

 (s14, c1) = (s15) 

(s14, c2) = (s15) 

(s14, c3) = (s15) 

(s14, c4) = (s15) 

(s14, c5) = (s15) 

(s14, c6) = (s15) 

 

(s17, c1) = (s18) 

(s17, c2) = (s18) 

(s17, c3) = (s18) 

Transitions from 

state s19:  

(s19, b2) = (s20) 

(s19, b3) = (s20) 

(s19, b4) = (s20) 

(s19, b5) = (s20) 

(s19, b6) = (s20) 

(s19, b7) = (s20) 

Transitions from 

state s20:  

(s20, c7) = (s21) 

(s20, c8) = (s21) 

Transitions from 

state s22: 

(s22, b1) = (s23) 

(s22, b2) = (s23) 

(s22, b3) = (s23) 

 

 

state s28:  

(s28, c8) = (s29) 

(s28, c9) = (s29) 

Transitions from state 

s30: 

(s30, c9) = (s31) 

(s30, c10) = (s31) 

Transitions from state 

s32: 

(s32, b1) = (s33) 

(s32, b2) = (s33) 

(s32, b3) = (s33) 

(s32, b4) = (s33) 

(s32, b5) = (s33) 

Transitions from state 

s33: 

(s33, c9) = (s34) 

(s33, c10) = (s34) 

(s33, c11) = (s34) 
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Figure 3: NDFSM model step by state tracing over the sand fraction value “a7” 

 

The input pattern “a7b2c9” was traced using Java Formal Languages and Automata 

Package (JFLAP), in which the state transitions are observed over the sand fraction input 

“a7”. The transitions indicate the possible movements from state s0 over the input “a7” are 

s7, s22 and s27 which are highlighted in Figure 3. 
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Figure 4: NDFSM model step by state tracing over the silt fraction input “b2” 

 

The input pattern “a7b2c9” was traced using JFLAP, in which the state transitions are 

observed over sand fraction input “a7” followed by the silt fraction “b2”. The transitions 

indicate the possible movements over the input “a7b2” are s8, s23 and s28 which are 

highlighted in Figure 4. 

 

 

 
 

Figure 5: NDFSM model step by state tracing over the input symbol ‘c9’ 

 

The input pattern “a7b2c9” was traced using JFLAP, in which the state transitions are 

observed over sand fraction input “a7” followed by the silt fraction “b2”and followed by 

clay fraction “c9”. The transitions indicate the possible movements over the input “a7b2c9” 

are s29 which is final state highlighted in Figure 5 and represents sandy clay texture. Initially 

the execution starts from start state s0 over the input symbol “a7”, from s0 the control moves 
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to s7, s27 and s22 because from s0 there are transitions to all the above mentioned states on 

the input symbol “a7”. Further, from state s7 on input symbol “b2” the control moves to state 

s8, from state s22 on input symbol ‘b2’ control moves to state s23 and from state s27 it 

moves to state s28 over the input “b2”. Finally, the transitions are checked from the states s8, 

s23 and s28 over the input symbol “c9”, wherein only the state s28 has transition to the state 

s29. The state s29 is the accepting state because it’s represented using double circle and it 

accepts the input pattern and predicts the soil texture as Sandy clay for the input “a7b2c9”. 

The same pattern is also traced using state by state execution method, in which the path 

obtained is s0->s27->s28->s29 and the corresponding process is represented in Figure 6. 

Automated model has been validated considering soil textural data set of Jangamakotte and 

Bhaktarahallipedonds of Kolar district, Karnataka, India. Rajan et al. (2014). 

 

 

 
 

Figure 6: NDFSM model state by state tracing over the input pattern “a7b2c9” 

 

 

The input pattern “a9b9c9” was tested using automated model which is represented in Figure 

7. 
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Figure 7: The input pattern “a9b9c9” was tested using automated model 

 

The symbol “a9” of input pattern represents the sand fraction range as 70-80% and the 

symbol “b9” of input pattern represents the silt fraction range as 60-73% and also the symbol 

“c9” of input pattern represents clay fraction as 40-55%. Suppose if we consider the sample 

value of sand fraction as 71%, silt fraction as 61% and also clay fraction as 41%, then 

summation of all there particles size would be 173. For any soil texture sample the 

summation of sand, silt and clay fraction size must be exactly 100 otherwise the input sample 

is considered as invalid. The automated model rejected sample input is represented in Figure 

8.  

 

 
 

Figure 8: The input pattern “a9b9c9” was rejected by automated model 
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Additionally, multiple soil profile data records can be loaded and predicted at the same time 

using JFLAP tool and the corresponding details are represented in Figure 9. 

 

 
 

Figure 9: Validation results of automated NDFSM soil texture classification model 

 

4. Conclusion 

 

In this paper the USDA Triangle soil texture classification model is automated using 

the proposed Non-Deterministic Finite State Machine (NDFSM). The experimental results of 

NDFSM model exhibited the logical equivalence with USDA triangle model during the 

testing and validation phase over soil texture classification. The NDFSM soil texture 

classification model was validated using laboratory tested soil profile dataset. For all the 

validated patterns the predicted texture of NDFSM model was same as USDA triangle soil 

texture classification. The proposed automated model simplifies the job of soil texture class 

prediction. 
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Abstract 

 

In this paper, the estimation of the future density of wind direction conditioned on the 

past and present wind direction data using the Sufficiency Approach of Predictive Inference 

under the l-modal Circular Normal model, followed by the equal tail area predictive interval 

estimation has been done. Point predictive estimator of future observation, termed as the 

frequentist predictive point estimator under the circular loss function has been obtained 

Finally, some basic properties of the estimator have been explored. 

 

Keywords: Sufficiency approach of predictive inference; l-modal circular normal model; 

Equal tail area predictive interval estimation; Circular loss function; frequentist predictive 

point estimator. 

 

 

1. Introduction 

 

The prediction of the pattern of future occurrences, based on the occurrences in past, 

is an important aim of statistics and according to some authors; it is the sole aim of this 

subject. The object of interest to be predicted can be a single value, a set of values or a 

function of these. The literature boasts of a number of techniques to obtain predictive 

likelihoods and density functions. Cox and Hinkley (1974) had initially conditioned the data 

on a minimal sufficient statistic of the parameter and it was Butler (1986) who later on 

incorporated the future observation in the data and suggested the expression for conditional 

predictive likelihood based on the minimal sufficient statistic. This constitutes the Sufficiency 

Approach. In the Bayesian Approach of predictive density estimation, the conditional 

distribution of the future observation(s) given the past data is obtained simply by 

marginalization of the joint distribution of the future observations and the population 

parameter(s) with respect to the parameter. For this purpose, at the outset, the prior densities 

of the parameters are assumed to be known. The Profile or Maximum Likelihood method 

consists in predicting the density of future observation from the maximum likelihood function 

based on the maximum likelihood estimate of both the given and future observation. 

 

After having predicted the future observations(s), one might be interested in carrying 

out both the point and interval estimation based on the predictive density, followed by 

evaluating the error or loss incurred in predicting the true value of the observation by its 

estimator. The loss incurred can be quantified using a loss function. In prediction problems, 

as stated by Hennig and Kutlukaya (2007), the quality of a predictor is judged with the help 
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of loss function, which depends on the observed value and predicted value of the observation. 

Jammalamadaka and Sen Gupta (1998) had derived the predictive density estimation of the 

future observation given present and previous data and then carried out the predictive Highest 

Posterior Density (HPD) interval estimation under von Mises model in circular case and von 

Mises-Fisher model in spherical case. In predictive analysis concerning circular data, the 

usual linear loss functions are not well-defined. Gelfand and Ghosh (1998) had proposed the 

Squared Predicted Errors (SPE) loss function and had used it to choose the best fitting model 

to circular data by minimizing the posterior predictive loss. Ravindran and Ghosh (2012) had 

proposed the Absolute Predicted Errors (APE) loss function and used it to choose the best 

fitting circular model by minimizing this loss with respect to the posterior predictive density. 

Under the circular loss defined by Sen Gupta and Maitra (1998), the same authors had studied 

the best equivariance and admissibility property of the maximum likelihood estimator of the 

mean direction for a single von Mises distribution and also for that of the several 

independently distributed circular normal distributions. In the linear statistics literature, the 

Bayes estimator of the parameters of different distributions is obtained by minimizing the 

posterior loss/predictive loss under different loss functions. Several properties of these loss 

functions have also been explored. However, in the circular statistics predictive inference 

literature, the estimation of parameters by minimization of predictive density has not been 

attempted yet. Another interesting prospect that still remains unexplored is studying the 

properties of these estimators. Keeping in view these points, the objectives of this paper have 

been decided upon. 

 

This paper attempts to predict the future density of wind direction conditioned on the 

past and present wind direction data using the Sufficiency Approach of Predictive Inference 

under the l-modal Circular Normal model and then carry out the equal tail area predictive 

interval estimation. Further, the predictive point estimation of the future observation under 

the circular loss function and for the same model has been carried out. Finally, some basic 

properties of the estimators obtained under the circular loss function are studied. 

 

For achieving the objectives of this paper, daily data on wind direction for Dibrugarh 

Meteorological station located in Assam, measured during morning for the Monsoon season 

(June-September) during the years 2012 and 2013 has been procured from the Regional 

Meteorological Center, Guwahati.  

 

2. Predictive Density Estimation of the Future Observation Through Sufficiency 

Approach Under the l-modal Circular Normal Model 

 

Suppose that 𝜃1, 𝜃2, … , 𝜃𝑛 is a sample from l-modal Circular Normal distribution, 

whose p.d.f is given by 

 

𝑓(𝛼; 𝜇, 𝜅) =
1

2𝜋𝐼0(𝜅)
𝑒𝑥𝑝{𝜅 cos 𝑙(𝜃 − 𝜇)}                0 < 𝜃, 𝜇 < 2𝜋;  𝜇 <

2𝜋

𝑙
 

 

Here, μ and κ represent the mean direction and concentration parameter of the 

population respectively and the parameter l stands for the number of modes of the distribution 

(Rao and Sengupta, 2001).  

 

Upon computation, while fixing the value of l as the number of modes in the sample as 

it appears in the corresponding histogram, the maximum likelihood estimators of μ and κ 

have been found to be 
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𝜇̂ =
1

𝑙
𝑎𝑟𝑐𝑡𝑎𝑛 {

∑ sin(𝑙𝜃𝑖)𝑛
𝑖=1

∑ cos(𝑙𝜃𝑖)𝑛
𝑖=1

}                   and                 𝜅̂ = 𝐴−1 [
1

𝑛
∑ cos 𝑙(𝜃 − 𝜇)𝑛

𝑖=1 ] 

 

𝐴−1(. ) being the inverse function of the ratio of the first and zeroth order Bessel functions of 

the first kind, both of which are evaluated at a specified non-negative real number. 

 

Now, for a known l, (𝐶𝑙,𝑛, 𝑆𝑙,𝑛) is a minimal sufficient statistic for (𝜇0, 𝜅) (Rao and 

SenGupta, 2001, pp.209), where 𝐶𝑙,𝑛 = ∑ cos 𝑙𝜃𝑖
𝑛
𝑖=1  and 𝑆𝑙,𝑛 = ∑ sin 𝑙𝜃𝑖

𝑛
𝑖=1 . Based on the 

(𝑛 + 1) observations, for which (𝐶𝑙,𝑛+1, 𝑆𝑙,𝑛+1) is the sufficient statistic, the conditional 

probability of the future observation 𝜃𝑛+1 given 𝜃1, 𝜃2, … , 𝜃𝑛 is given by 

 

𝑃𝑟( 𝜃𝑛+1|𝜃1, 𝜃2, … , 𝜃𝑛) =
𝑃𝑟(𝜃1, 𝜃2, … , 𝜃𝑛,  𝜃𝑛+1)

𝑃𝑟(𝐶𝑙,𝑛+1, 𝑆𝑙,𝑛+1)
 

=
[

1
2𝜋𝐼0(𝜅)

𝑒𝑥𝑝{𝜅 cos 𝑙(𝜃𝑖 − 𝜇)}]
𝑛+1

[
1

2𝜋𝐼0(𝜅)
𝑒𝑥𝑝{𝜅(𝐶𝑙,𝑛 sin 𝜇 + 𝑆𝑙,𝑛 cos 𝜇)}] 𝑙𝜓𝑛(𝑟𝑙)

 

=
1

(2𝜋)𝑛𝜓𝑛+1 (√𝐶𝑙,𝑛+1
2 + 𝑆𝑙,𝑛+1

2)

                                                                                                     (1) 

 

where 𝐶𝑙,𝑛+1 = ∑ cos 𝑙𝜃𝑖
𝑛+1
𝑖=1  , 𝑆𝑙,𝑛+1 = ∑ sin 𝑙𝜃𝑖

𝑛+1
𝑖=1  and 

 

𝜓𝑛(𝑟) = ∫ 𝐽0(𝑟𝑡)𝐽0
𝑛(𝑡)𝑡𝑑𝑡

∞

0

,                                0 ≤ 𝑟 ≤ 𝑛 

𝐽0(𝑧) being the Bessel function of zeroth order. 

 

Again, 

 

𝐶𝑙,𝑛+1 = 𝐶𝑙,𝑛 + cos 𝜃𝑙,𝑛+1 , 𝑆𝑙,𝑛+1 = 𝑆𝑙,𝑛 + sin 𝜃𝑙,𝑛+1 , 𝐶𝑙,𝑛 = 𝑅𝑙,𝑛 cos 𝜃̅𝑙,𝑛 , 𝑆𝑙,𝑛 = 𝑅𝑙,𝑛 sin 𝜃̅𝑙,𝑛, 

so that 𝑅𝑙,𝑛 = √𝐶𝑙,𝑛
2 + 𝑆𝑙,𝑛

2
 and 𝜃̅𝑙,𝑛 = arctan (

𝑆𝑙,𝑛

𝐶𝑙,𝑛
). 

Therefore, it follows from equation (1) that the predictive density of  𝜃𝑛+1 given 

𝜃1, 𝜃2, … , 𝜃𝑛 is 

𝑔( 𝜃𝑛+1|𝜃1, 𝜃2, … , 𝜃𝑛) =
1

(2𝜋)𝑛𝜓𝑛+1 (√𝑅𝑙,𝑛
2 + 1 + 2𝑅𝑙,𝑛 cos(𝜃𝑙,𝑛+1 − 𝜃̅𝑙,𝑛))

 

                               ∝  
1

𝜓𝑛+1 (√𝑅𝑙,𝑛
2 + 1 + 2𝑅𝑙,𝑛 cos(𝜃𝑙,𝑛+1 − 𝜃̅𝑙,𝑛))

 

 

(Rao and Sen Gupta, 2001, pp. 209). 

 

By Rayleigh’s approximation for large n of the length of the sample resultant length 

(Lord Rayleigh, 1880), it can be seen that 
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𝜓𝑛(𝑟) ≈
2

𝑛
𝑒𝑥𝑝 (−

𝑟2

𝑛
) 

Then it follows that  

𝑔( 𝜃𝑛+1|𝜃1, 𝜃2, … , 𝜃𝑛) ∝
1

𝑒𝑥𝑝 ((−
2𝑅𝑙,𝑛

𝑛 + 1) cos(𝜃𝑙,𝑛+1 − 𝜃̅𝑙,𝑛))

 

                                      ∝  𝑒𝑥𝑝 ((
2𝑅𝑙,𝑛

𝑛 + 1
) cos(𝜃𝑙,𝑛+1 − 𝜃̅𝑙,𝑛))  

 

which is the p.d.f of a von Mises distribution with center at 𝜃̅𝑙,𝑛 and concentration parameter 
2𝑅𝑙,𝑛

𝑛+1
 , i.e., 𝜇̂1 = 𝜃̅𝑙,𝑛 and 𝜅̂1 =

2𝑅𝑙,𝑛

𝑛+1
 . 

 

Thus, 

𝑔( 𝜃𝑛+1|𝜃1, 𝜃2, … , 𝜃𝑛)~𝑉𝑀 (𝜃̅𝑙,𝑛,
2𝑅𝑙,𝑛

𝑛 + 1
) 

 

We see that the predictive distribution is symmetric and unimodal in nature, the mode being 

at 𝜃̅𝑙,𝑛. In the following section, we discuss the predictive interval estimation. 

 

3.  Predictive Interval Estimation 

 

Let 𝑓(𝜃, 𝜇, 𝜅) be the predictive density of 𝜃𝑛+1 given 𝜃1, 𝜃2, … , 𝜃𝑛. A 100(1 − 𝛼)% 

Predictive Interval for 𝜃 is given by [𝜃𝐿 , 𝜃𝑈] where 𝜃𝐿 and 𝜃𝑈 are such that 

 

              ∫ 𝑓(𝜃, 𝜇, 𝜅)𝑑𝜃 =
𝜃𝑈

𝜃𝐿
 1 −  𝛼              (2) 

 

In addition to (2), if the area under the predictive density to the left of 𝜃𝐿 is equal to the 

area under the predictive density to the right of 𝜃𝑈, i.e. if 

∫ 𝑓(𝜃, 𝜇, 𝜅)𝑑𝜃 = ∫ 𝑓(𝜃, 𝜇, 𝜅)𝑑𝜃

2𝜋

𝜃𝑈

𝜃𝐿

0

=
𝛼

2
                                                                                     (3)     

then the corresponding predictive interval is termed as 100(1 − 𝛼)% equal tail area 

predictive interval. 

 

It can further be seen that the 100(1 − 𝛼)% equal tail area predictive lower and upper 

limits, viz. 𝜃𝐿 and 𝜃𝑈 are nothing but the (
100𝛼

2
)th and (100 −

100𝛼

2
)th percentiles of the 

predictive distribution respectively, since the density is symmetrical. 

 

4.  Predictive Risk Function and Predictive Loss in Predictive Density Estimation of 

Circular Random Variable 

 

Analogous to the posterior expected loss in the Bayesian parametric inference 

literature; we have the concept of induced loss in the Predictive inference literature. 

Suppose 𝐿(𝑦, 𝑎) is the loss function associated with predicting the true value 𝑦 ∈ 𝑌 of a 

future observation (or set of observations) by 𝑎 ∈ 𝑌, where Y is the set of future 
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observation(s). Further assume that g(y|𝑥̃)  is the predictive density conditioned on the past 

and present observations 𝑥̃. 

Then the expected loss with respect to the predictive density 𝑔(𝑦|𝑥̃) is given by 

 

𝐿(𝑎) = ∫ 𝐿(𝑦, 𝑎)𝑔(𝑦|𝑥̃)𝑑𝑦

𝑦

 

 

In Bayesian predictive context, Aitchison and Dunsmore (1975) had termed this 

expected predictive loss as the “Induced Loss” and the value of a that minimized the induced 

loss had been called as the Bayes point predictor of the future observation y. 

In the Frequentist predictive inference literature, the expected loss w.r.t the predictive density 

may be termed as the predictive risk function and our aim would consist in minimizing the 

predictive risk function or equivalently, to find an optimum value of a for which the 

predictive risk function will be the minimum. This predictor may be termed as the frequentist 

predictive point estimator.  

 

Here, we are dealing with the predictive density estimation of a circular random 

variable which lies in the range (0,2𝜋). So, special loss functions need to be designed which 

consider the periodicity property of the circular r.v. The loss function is essentially a non-

negative function as the loss incurred is positive if the predicted value is different from the 

true value and zero, otherwise. In other words, the loss function should be an increasing 

function of the absolute difference between the true value and its predicted value. The 

circular loss function is hereby considered and the frequentist predictive point estimator of 

the future observation y under this loss function for the l-modal Circular Normal predictive 

density has been worked out. 

 

The circular loss function is defined in the literature as follows: 

 

𝐿(𝑦, 𝑎) = 1 − cos(𝑎 − 𝑦); 0 < 𝑎, 𝑦 < 2𝜋 
 

The circular loss function can be seen to be a mapping from the set [0, 𝜋] to [0,2]. 
 

The predictive risk function of  𝜃𝑛+1 under circular loss function is found to be 

 

1 − 𝐴(𝜅̂1) cos(𝑎 − 𝜇̂1) 

 

Solution of the equation 
𝑑

𝑑𝑎
𝐿(𝑎) = 0 yields the stationary value of a to be 

 

𝑎 = 𝑛𝜋 + 𝜇̂1     ,            𝑛 = 0,1 

 

We further see that the value a0 of a for which 
𝑑2

𝑑𝑎2
𝐿(𝑎)|𝑎=𝑎0

> 0 is attained and hence, 

becomes the frequentist predictive point estimator of  𝜃𝑛+1 given 𝜃1, 𝜃2, … , 𝜃𝑛 under the 

circular loss function is found to be 

 

𝑛𝜋 + 𝜇̂1     ,            𝑛 = 0 
 

or 
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                                                                𝜇̂1  =   𝜃̅𝑙,𝑛                                                                         (4) 

 

We, thus, see that the frequentist predictive point estimate under the circular loss 

function coincides with the mean direction of the observations 𝑙𝜃1, 𝑙𝜃2, … , 𝑙𝜃𝑛. 

 

5.    Properties of the frequentist predictive point estimate under the circular loss 

function 

 

The frequentist predictive point estimates under the circular loss function is equal to the 

sample circular mean direction of the observations 𝑙𝜃1, 𝑙𝜃2, … , 𝑙𝜃𝑛. It has the following 

properties: 

 

a) The conditional sampling distribution of 𝜃̅𝑙,𝑛 given the resultant length 𝑅 = 𝑟𝑙,𝑛, is 

given by 

𝑓(𝜃̅𝑙,𝑛 |𝑅 = 𝑟𝑙,𝑛)~𝑉𝑀(𝑙𝜇, 𝜅𝑟𝑙,𝑛) 

 

b) 𝜃̅𝑙,𝑛 is an unbiased estimate of 𝑙𝜇. 

 

The proofs of both these properties are deferred to the Appendix A. 

 

6. Result and Analysis 

 

6.1. l-modal circular normal distribution as density of the past data on wind direction 

 

Figure 1 displays the histogram of the daily wind direction data collected from 

Dibrugarh Meteorological station measured during morning for the Monsoon season (June-

September) during the years 2012 and 2013: 

 
 

Figure 1: Histogram of the wind direction data collected from Dibrugarh 

Meteorological station measured during morning for the monsoon season 

during the years 2012 and 2013 

 

The histogram of the wind direction data under consideration is showing the data to 

have 3 equidistant modes. The maximum likelihood estimates of the parameters of the l-

modal Circular Normal distribution are 
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𝜇̂ = 0.1745 (measured in radians), 𝜅̂ = 0.0127, 𝑙= 3. 

 

The goodness-of-fit test that has been employed here is based on Watson’s U2 test of 

circular uniformity (Mardia and Jupp, 2000). The critical value of the test statistic at 1% 

level of significance has been found to be 0.267 whereas the observed value is 0.2397. 

Thus, the l-modal Circular Normal distribution is found to be a good fit to the data on 

wind direction for Dibrugarh Meteorological station measured during morning for the 

Monsoon season (June-September) during the years 2012 and 2013. We, therefore, carry 

out the predictive density estimation of the future observation through sufficiency 

approach under the l-modal Circular Normal model. 

 

6.2. Predictive density estimation 

 

From the data, we have found 

 

𝜃̅𝑙,𝑛 = 0.5235 and  
2𝑅𝑙,𝑛

𝑛+1
= 0.0126 

Thus, 

𝑔( 𝜃𝑛+1|𝜃1, 𝜃2, … , 𝜃𝑛)~𝑉𝑀(0.5235,0.0126) 
 

i.e., the distribution of  𝜃𝑛+1 given 𝜃1, 𝜃2, … , 𝜃𝑛 is von Mises with parameters 0.5235 and 

0.0126. 

 

6.3.  Predictive Interval Estimation 

 

 A 95% equal tail area predictive interval for  𝜃𝑛+1 is given by [𝜃𝐿 , 𝜃𝑈] where 𝜃𝐿=2.5th 

Percentile and 𝜃𝑈=97.5th Percentile of  𝑉𝑀(0.5235,0.0126) distribution. 

 

Solving (3) for 𝛼 = 0.05 yields 

 

𝜃𝐿 = 0.157 and 𝜃𝑈=6.126 

 

Thus, the 95% equal tail area predictive interval for  𝜃𝑛+1 is given by [0.157, 6.126]. The 

interpretation of the above statement is “There is 95% chance that the future observation 

 𝜃𝑛+1 would lie between 0.157 and 6.126”. 

 

Similarly, a 90% equal tail area predictive interval for  𝜃𝑛+1, is represented by [𝜃𝐿′, 𝜃𝑈′] 
where 𝜃𝐿′=5th Percentile and 𝜃𝑈′=95th Percentile of  𝑉𝑀(0.5235,0.0126) distribution. 

 

Solving (3) for 𝛼 = 0.10 gives 

 

𝜃𝐿′ = 0.282  and    𝜃𝑈′ = 6.001 

 

Thus, the 99% equal tail area predictive interval for  𝜃𝑛+1 is given by [0.282, 6.001]. 
This means there is a 99% chance that the future observation  𝜃𝑛+1 would lie within the 

values 0.282 and 6.001. 
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6.4. Predictive risk function and frequentist predictive point estimator of the future 

observation under the circular loss function 

 

In this section, we determine the frequentist predictive point estimator of the future 

observation under the circular loss function. 

 

It can be seen from expression (4) that the frequentist predictive point estimator of the 

future observation  𝜃𝑛+1  under the Circular loss function (measured in radians) is 

 

 𝜃𝑛+1 = 0.5235 
 

7. Discussion 

 

Through this paper, the future density of wind direction prevailing at Dibrugarh 

Meteorological station located in Assam, measured during morning for the Monsoon season 

(June-September) during the years 2012 and 2013, conditioned on the past and present wind 

direction data using the Sufficiency Approach of Predictive Inference under the l-modal 

Circular Normal model has been derived and then the equal tail area predictive interval 

estimation of the future observation has been carried out. The predictive point estimator of 

the future observation under circular loss function has been obtained, which has been termed 

as the frequentist predictive point estimator. Lastly, the properties of the frequentist 

predictive point estimator have been explored and it has been found that it follows von Mises 

or Circular Normal distribution. 

 

 As a future scope of the present study, the frequentist predictive point estimator under 

the different circular distributions can be studied assuming several loss functions and 

compare their relative efficiencies. Having obtained these estimators, one can then attempt to 

explore the properties of these estimators. 
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APPENDIX A 

 

A.1: If  𝜃1, 𝜃2, … , 𝜃𝑛 is a random sample from l-modal Circular Normal distribution with 

mean direction 𝜇 and concentration parameter 𝜅, the conditional sampling distribution of 𝜃̅𝑙,𝑛, 

the mean direction of  𝑙𝜃1, 𝑙𝜃2, … , 𝑙𝜃𝑛 given the resultant length 𝑅 = 𝑟𝑙,𝑛, is given by 

 

𝑓(𝜃̅𝑙,𝑛 |𝑅𝑙,𝑛 = 𝑟𝑙,𝑛)~𝑉𝑀(𝑙𝜇, 𝜅𝑟𝑙,𝑛) 

 

Proof: Given the random sample  𝜃1, 𝜃2, … , 𝜃𝑛 from l-modal Circular Normal distribution 

with mean direction 𝜇 and concentration parameter 𝜅, the joint density of the observations 
( 𝜃1, 𝜃2, … , 𝜃𝑛) is given by 

 

𝑓𝜅,𝑙( 𝜃1, 𝜃2, … , 𝜃𝑛) =
1

𝐼0
𝑛(𝜅)(2𝜋)𝑛

𝑒𝜅 ∑ cos(𝑙𝜃𝑖−𝑙𝜇)𝑛
𝑖=1  

     =
1

𝐼0
𝑛(𝜅)(2𝜋)𝑛

𝑒𝜅 ∑ (cos 𝑙𝜃𝑖 cos 𝑙𝜇+sin 𝑙𝜃𝑖 sin 𝑙𝜇)𝑛
𝑖=1  

 

 =
𝑒(𝜅 cos 𝑙𝜇)(∑ cos 𝑙𝜃𝑖

𝑛
𝑖=1 )+(𝜅 sin 𝑙𝜇)(∑ sin 𝑙𝜃𝑖

𝑛
𝑖=1 )

𝐼0
𝑛(𝜅)(2𝜋)𝑛

 

 

                 = {
𝑒(𝜅 cos 𝑙𝜇)(∑ cos 𝑙𝜃𝑖

𝑛
𝑖=1 )+(𝜅 sin 𝑙𝜇)(∑ sin 𝑙𝜃𝑖

𝑛
𝑖=1 )

𝐼0
𝑛(𝜅)

}
1

(2𝜋)𝑛
 

 

                                               

= {
𝑒(𝜅 cos 𝑙𝜇)(∑ cos 𝑙𝜃𝑖

𝑛
𝑖=1 )+(𝜅 sin 𝑙𝜇)(∑ sin 𝑙𝜃𝑖

𝑛
𝑖=1 )

𝐼0
𝑛(𝜅)

} 𝑓0( 𝜃1, 𝜃2, … , 𝜃𝑛)         (5) 

 

𝑓0( 𝜃1, 𝜃2, … , 𝜃𝑛) being the joint density of a random sample from Circular Uniform 

distribution, whose concentration parameter 𝜅 = 0. 
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It was established by Kent et al. (1979) that for circular uniform samples, the resultant 

length 𝑅𝑙,𝑛 and 𝜃̅𝑙,𝑛 and hence, (𝜃̅𝑙,𝑛 − 𝜇) =  𝛽 is independently distributed and 𝑅𝑙,𝑛, 𝛽 have 

the following respective distributions: 

𝑓0(𝑟𝑙,𝑛) = 𝑟𝑙,𝑛𝜓𝑛(𝑟𝑙,𝑛),     𝑓0(𝛽) =
1

2𝜋
 

Again, we know that the sample mean direction is rotationally equivariant. So, (𝜃̅𝑙,𝑛 −

𝑙𝜇) =  𝛽′ (say) is also uniformly distributed in the range (0,2𝜋). 

 

Following Rao and Sen Gupta (2001), pp. 71, it can be seen that the pdf of cos 𝛽′ = 𝑐′ 

(say) is 

𝑓0(𝑐′) =
1

𝜋√1 − 𝑐′2
 

Consequently, the joint distribution of the resultant length 𝑟𝑙,𝑛 and 𝑐′ for a sample from 

circular uniform distribution is 

𝑓0(𝑟𝑙,𝑛, 𝑐′) =
𝑟𝑙,𝑛𝜓𝑛(𝑟𝑙,𝑛)

𝜋√1 − 𝑐′2
 

 

The joint density of the resultant length 𝑅𝑙,𝑛 and the quantity cos(𝜃̅𝑙,𝑛 − 𝑙𝜇) = 𝑐′ for the l-

modal Circular Normal (𝜇, 𝜅) distribution can be obtained from the joint density in 

expression (5) by integrating over the samples that have given values of 𝑅𝑙,𝑛 and 𝑐′. 

 

Let 𝒜 = {( 𝜃1, 𝜃2, … , 𝜃𝑛): 𝑅𝑙,𝑛 = √(∑ cos 𝜃𝑖
𝑛
𝑖=1 )2 + (∑ sin 𝜃𝑖

𝑛
𝑖=1 )2 = 𝑟𝑙,𝑛, 𝑐′ = cos 𝛽′}. 

Thus, the joint density of (𝑟𝑙,𝑛, 𝑐′) for the l-modal Circular Normal distribution is given 

by 

𝑓𝜅,𝑙(𝑟𝑙,𝑛, 𝑐′) = ∫ 𝑓𝜅,𝑙( 𝜃1, 𝜃2, … , 𝜃𝑛)𝑑𝜃1𝑑𝜃2 … 𝑑𝜃𝑛
𝒜

 

 

                  

=
𝑒(𝜅 cos 𝑙𝜇)(∑ cos 𝑙𝜃𝑖

𝑛
𝑖=1 )+(𝜅 sin 𝑙𝜇)(∑ sin 𝑙𝜃𝑖

𝑛
𝑖=1 )

𝐼0
𝑛(𝜅)

∫ 𝑓0( 𝜃1, 𝜃2, … , 𝜃𝑛)𝑑𝜃1𝑑𝜃2 … 𝑑𝜃𝑛
𝒜

 

 

                  =
𝑒(𝜅 cos 𝑙𝜇)(∑ cos 𝑙𝜃𝑖

𝑛
𝑖=1 )+(𝜅 sin 𝑙𝜇)(∑ sin 𝑙𝜃𝑖

𝑛
𝑖=1 )

𝐼0
𝑛(𝜅)

𝑓0(𝑟𝑙,𝑛, 𝑐′) 

 

                  =
𝑒(𝜅 cos 𝑙𝜇)(𝑟𝑙,𝑛 cos 𝜃̅𝑙,𝑛)+(𝜅 sin 𝑙𝜇)(𝑟𝑙,𝑛 sin 𝜃̅𝑙,𝑛)

𝐼0
𝑛(𝜅)

𝑟𝑙,𝑛𝜓𝑛(𝑟𝑙,𝑛)

𝜋√1 − 𝑐′2
 

 

                  =
𝑒(𝜅𝑟𝑙,𝑛) cos(𝜃̅𝑙,𝑛−𝑙𝜇)

𝐼0
𝑛(𝜅)

𝑟𝑙,𝑛𝜓𝑛(𝑟𝑙,𝑛)

𝜋√1 − 𝑐′2
 

               

                  

=
𝑒(𝜅𝑟𝑙,𝑛)𝑐′

𝐼0
𝑛(𝜅)

𝑟𝑙,𝑛𝜓𝑛(𝑟𝑙,𝑛)

𝜋√1 − 𝑐′2
                                                                                             (6) 
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Integrating expression (6) over the range (−1,1) of 𝑐′, we get the marginal density of 

the resultant length  𝑅𝑙,𝑛 of a sample from the l-modal Circular Normal distribution as 

 

𝑓𝜅,𝑙(𝑟𝑙,𝑛) = ∫ 𝑓𝜅,𝑙(𝑟𝑙,𝑛, 𝑐′)𝑑𝑐′
1

−1

 

 

                = ∫
𝑒(𝜅𝑟𝑙,𝑛)𝑐′

𝐼0
𝑛(𝜅)

𝑟𝑙,𝑛𝜓𝑛(𝑟𝑙,𝑛)

𝜋√1 − 𝑐′2

1

−1

𝑑𝑐′ 

 

                =
𝑟𝑙,𝑛𝜓𝑛(𝑟𝑙,𝑛)

𝐼0
𝑛(𝜅)

∫
𝑒(𝜅𝑟𝑙,𝑛)𝑐′

𝜋√1 − 𝑐′2

1

−1

𝑑𝑐′ 

 

                =
𝑟𝑙,𝑛𝜓𝑛(𝑟𝑙,𝑛)

𝐼0
𝑛(𝜅)

∫
𝑒(𝜅𝑟𝑙,𝑛) cos 𝛽′

2𝜋

2𝜋

0

 𝑑𝛽′ 

 

                

=
𝐼0(𝜅𝑟𝑙,𝑛)

𝐼0
𝑛(𝜅)

𝑟𝑙,𝑛𝜓𝑛(𝑟𝑙,𝑛)                                                                                               (7) 

 

Again, as 𝑅𝑙,𝑛 and 𝜃̅𝑙,𝑛 are independently distributed for circular uniform samples, their joint 

distribution is 

𝑓0(𝑟𝑙,𝑛, 𝜃̅𝑙,𝑛) = 𝑟𝑙,𝑛𝜓𝑛(𝑟𝑙,𝑛)
1

2𝜋
 

 

Suppose ℬ = {( 𝜃1, 𝜃2, … , 𝜃𝑛): 𝑅𝑙,𝑛 = √(∑ cos 𝜃𝑖
𝑛
𝑖=1 )2 + (∑ sin 𝜃𝑖

𝑛
𝑖=1 )2 = 𝑟𝑙,𝑛, 𝜃̅𝑙,𝑛 =

𝑎𝑟𝑐𝑡𝑎𝑛
∑ sin 𝑙𝜃𝑖

𝑛
𝑖=1

∑ cos 𝑙𝜃𝑖
𝑛
𝑖=1

 } 

 

The joint density of (𝑟𝑙,𝑛, 𝜃̅𝑙,𝑛) for l-modal Circular Normal distribution is 

𝑓𝜅,𝑙(𝑟𝑙,𝑛, 𝜃̅𝑙,𝑛) = ∫ 𝑓𝜅,𝑙( 𝜃1, 𝜃2, … , 𝜃𝑛)𝑑𝜃1𝑑𝜃2 … 𝑑𝜃𝑛

ℬ

 

 

                         =
𝑒(𝜅 cos 𝑙𝜇)(𝑟𝑙,𝑛 cos 𝜃̅𝑙,𝑛)+(𝜅 sin 𝑙𝜇)(𝑟𝑙,𝑛 sin 𝜃̅𝑙,𝑛)

𝐼0
𝑛(𝜅)

𝑓0(𝑟𝑙,𝑛, 𝜃̅𝑙,𝑛) 

 

                          =
𝑒(𝜅𝑟𝑙,𝑛) cos(𝜃̅𝑙,𝑛−𝑙𝜇)

𝐼0
𝑛(𝜅)

𝑟𝑙,𝑛𝜓𝑛(𝑟𝑙,𝑛)
1

2𝜋
                                                        (8) 

 

Therefore, the conditional distribution of 𝜃̅𝑙,𝑛 given 𝑅𝑙,𝑛 = 𝑟𝑙,𝑛 is obtained as follows: 

 

𝑓(𝜃̅𝑙,𝑛 |𝑅𝑙,𝑛 = 𝑟𝑙,𝑛) =
𝑓𝜅,𝑙(𝑟𝑙,𝑛, 𝜃̅𝑙,𝑛)

𝑓𝜅,𝑙(𝑟𝑙,𝑛)
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=

𝑒(𝜅𝑟𝑙,𝑛) cos(𝜃̅𝑙,𝑛−𝑙𝜇)

𝐼0
𝑛(𝜅)

𝑟𝑙,𝑛𝜓𝑛(𝑟𝑙,𝑛)
1

2𝜋

𝐼0(𝜅𝑟𝑙,𝑛)

𝐼0
𝑛(𝜅)

𝑟𝑙,𝑛𝜓𝑛(𝑟𝑙,𝑛)

 

 

=
𝑒(𝜅𝑟𝑙,𝑛) cos(𝜃̅𝑙,𝑛−𝑙𝜇)

2𝜋𝐼0(𝜅𝑟𝑙,𝑛)
 

 

which is the pdf of Von Mises distribution with mean direction 𝑙𝜇 and concentration 

parameter 𝜅𝑟𝑙,𝑛. 
 

 

A.2: The mean direction 𝜃̅𝑙,𝑛 of  𝑙𝜃1, 𝑙𝜃2, … , 𝑙𝜃𝑛, where  𝜃1, 𝜃2, … , 𝜃𝑛 is a sample from the 

l-modal Circular Normal distribution with mean direction 𝜇 and concentration parameter 𝜅 is 

an unbiased estimator of 𝑙𝜇. 

 

Proof: In the context of circular statistics, an estimate t taking values on the unit circle is 

said to be unbiased for a parameter 𝛼 of a circular probability distribution (Mardia and Jupp, 

2000, pp.83) if 

 
𝐸(cos 𝑡, sin 𝑡)

∥ 𝐸(cos 𝑡, sin 𝑡) ∥
= (cos 𝛼, sin 𝛼) 

 

It follows from proof (1) that the for samples from l-modal Circular Normal distribution,  

 

𝜃̅𝑙,𝑛~𝑉𝑀(𝑙𝜇, 𝜅𝑟𝑙,𝑛) 

Thus, 

 

𝐸(cos 𝜃̅𝑙,𝑛, sin 𝜃̅𝑙,𝑛) = (𝐸(cos 𝜃̅𝑙,𝑛), 𝐸(sin 𝜃̅𝑙,𝑛)) 

 

                                     =  (
𝐼1(𝜅𝑟𝑙,𝑛)

𝐼0(𝜅𝑟𝑙,𝑛)
cos 𝑙𝜇,

𝐼1(𝜅𝑟𝑙,𝑛)

𝐼0(𝜅𝑟𝑙,𝑛)
sin 𝑙𝜇) 

 

                                     = (𝐴(𝜅𝑟𝑙,𝑛) cos 𝑙𝜇, 𝐴(𝜅𝑟𝑙,𝑛) sin 𝑙𝜇) 

 

and 

 

∥ 𝐸(cos 𝜃̅𝑙,𝑛, sin 𝜃̅𝑙,𝑛) ∥= √(𝐴(𝜅𝑟𝑙,𝑛) cos 𝑙𝜇)
2

+ (𝐴(𝜅𝑟𝑙,𝑛) sin 𝑙𝜇)
2
 

 

                                          = √(𝐴(𝜅𝑟𝑙,𝑛))
2

 

 

                                          = 𝐴(𝜅𝑟𝑙,𝑛) 

 

Finally, 



2021]   FREQUENTIST PREDICTIVE INFERENCE USING SUFFICIENCY APPROACH  279 

𝐸(cos 𝜃̅𝑙,𝑛, sin 𝜃̅𝑙,𝑛)

∥ 𝐸(cos 𝜃̅𝑙,𝑛, sin 𝜃̅𝑙,𝑛) ∥
=

(𝐴(𝜅𝑟𝑙,𝑛) cos 𝑙𝜇, 𝐴(𝜅𝑟𝑙,𝑛) sin 𝑙𝜇)

𝐴(𝜅𝑟𝑙,𝑛)
 

 

           = (cos 𝑙𝜇, sin 𝑙𝜇) 

or 𝜃̅𝑙,𝑛 is an unbiased estimator of 𝑙𝜇 

 

APPENDIX B 

 

Table B.1: Data set on daily wind direction for Dibrugarh Meteorological station 

located in Assam, measured (in degrees) during morning for the Monsoon season 

(June-September) during the years 2012 and 2013 
 

 

Wind direction measured in degrees 

50 230 150 230 

320 230 150 140 

150 20 270 320 

360 50 230 270 

320 180 180 150 

140 150 50 50 

150 320 180 50 

230 320 150 320 

20 270 320 320 

210 180 270 230 

20 270 50 360 

150 210 140 20 

320 230 20 270 

230 150 320 360 

150 50 150 150 

360 320 320 180 

210 270 50 230 

210 150 320 320 

150 20 150 230 

210 150 230 

 230 320 230 

  
Source: Regional Meteorological Center, Guwahati, Assam 

 

For the remaining days, no wind flow was detected and so, the measure of wind direction 

corresponding to those days were reported as NIL (and are, hence, excluded from the data 

set). 
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