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Abstract

In this study, the Nakagami distribution is examined in the context of reliability anal-
ysis, focusing on key reliability measures. Various estimation techniques for the distribution
parameters are explored and compared. A novel approach for deriving different estimators
is introduced. Asymptotic confidence intervals for the parameters are constructed based on
both MLE and log-MLE methods. In addition, hypothesis testing procedures are developed
for different scenarios. The performance of the proposed estimation methods is assessed
through a comprehensive Monte Carlo simulation study. Finally, the applicability of these
methods is demonstrated using a real data set, providing clarity and practical insight into
the estimation process.
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1. Introduction and preliminaries

Reliability function is the probability that a system performs its intended function
without any failure at time t under the prescribed conditions. So, if we suppose that life-
time of an item or any system is denoted by the random variate X then the reliability is
R(t) = Pr(X > t). The other important measure of reliability is P = Pr(X > Y ) and this
represents reliability of X (random strength) subject to Y (random stress). This is known as
the reliability of an item under the stress strength set up. This measure is very useful to find
the reliability of an item in no time like in case we want to test the reliability of an electric
wire. Various authors have conducted estimation and testing of the reliability measure R(t)
and P considering different distributions. For literature, one can refer Pugh (1963), Basu
(1964), Tong (1974, 1975), Johnson (1975), Sathe and Shah (1981), Chao (1982). Chaturvedi
and Surinder (1999) developed the inferential procedures for testing these reliability mea-
sures of exponential distribution. Awad and Gharraf (1986) estimated P in case of Burr
distribution. Tyagi and Bhattacharya (1989) and, Chaturvedi and Rani (1998) done esti-
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mation related to Maxwell and generalized Maxwell distributions respectively. Chaturvedi
and Pathak (2012) derived inferential procedures for exponentiated Weibull and Lomax dis-
tributions. Chaturvedi and Rani (1997) and Chaturvedi and Tomer (2003) draw inferences
for R(t) and P for the families of lifetime distributions which are very useful as they cover
many distributions as particular cases. Chaturvedi and Vyas (2018) have done estimation of
R(t) and P for three parameter Burr distribution under different censoring schemes.
In the present communication, a very important distribution known as the Nakagami distri-
bution is taken into consideration which is most useful in communication engineering. It was
Nakagami (1960) who proposed this distribution which models the fading of radio signals by
name as Nakagami-m distribution with shape parameter m.
If a random variable (rv) X follows the Nakagami distribution with shape parameter α ≥ 0.50
and scale parameter λ > 0 then its probability density function (P.d.f) is as follows

f(x; α, λ) = 2
Γα

(
α

λ

)α

x2α−1exp

(
− α

λ
x2
)

; x > 0, α ≥ 0.5, λ > 0. (1)

Hereafter, we denote Nakagami distribution by ND(α, λ), where shape parameter α is known
and scale parameter λ is unknown. The corresponding cumulative distribution function (cdf)
of ND(α, λ) is given by,

F (x) = 1
Γα

Γ
(

α

λ
x2, α

)
; x > 0, α ≥ 0.5, λ > 0. (2)

where Γ(x, a) =
∫ x

0 ta−1e−tdt is the lower incomplete gamma function.
The reliability function of ND(α, λ) is

R(t) = 1 − 1
Γα

Γ
(

α

λ
t2, α

)
; t > 0, α ≥ 0.5, λ > 0 (3)

The failure rate of ND(α, λ) is

h(t) =

2
Γα

(
α
λ

)α

t2α−1exp

(
− α

λ
t2
)

1 − 1
Γα

Γ
(

α
λ
t2, α

) ; t > 0, α ≥ 0.5, λ > 0. (4)

1.1. Relations with other distribution

1. For α = 0.5, ND(α, λ) reduces to Half Normal distribution.

2. With α = 1, ND(α, λ) becomes Rayleigh distribution.

3. If rv Y is distributed as Gamma(k, λ) with shape k and scale λ then
√

Y follows
ND(k, kλ).

4. If Z follows chi-square with parameter 2α and 2α is integer-valued then
√

λ
2α

Z is
ND(α, λ) variate.
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This distribution has found applications in various disciplines such as in hydrology,
multimedia data traffic over networks, medical imaging studies, in modeling of seismogram
envelope of high frequency etc. For review, one may see Schwartz et al. (2013). Using
the Monte Carlo simulation technique, Abdi and Kaveh (2000) made comparison of three
different estimators of Nakagami-m distribution. Cheng and Beaulieu (2001) estimated
the distribution using Maximum Likelihood method. Schwartz et al. (2013) discussed the
estimation of the shape parameter using improved maximum likelihood estimation and also
gave some distributional properties.

The main aim of this paper is to develop point estimation and hypotheses testing pro-
cedures for two measures of reliability viz., R(t) and P . In Section 2, we present point estima-
tion when shape parameter is known but scale parameter is unknown. Uniformly Minimum
Variance Unbiased Estimators (U.M.V.U.Es), Maximum Likelihood Estimators(M.L.Es) and
Moment estimators have been found in this section. Section 3 comprises of point estima-
tion when both scale and shape parameters are unknown. Asymptotic confidence intervals
are developed for the parameters in Section 4. Section 5 is devoted for developing testing
procedures for testing different hypotheses. In Section 6, we present the simulation study
using Monte Carlo techniques with Section 6.1 devoted for the case when shape parameter
α is known and scale parameter λ is unknown, Section 6.2 for the case when both α and
λ are unknown and Section 6.3 for hypotheses testing . In Section 7, a real data study is
performed and finally the paper is concluded in Section 8.

2. Point estimation when shape parameter is known

Let us take a random sample X1, X2, . . . , Xn from the model (1) having size n. Taking
α to be known, the likelihood function of the parameter λ given the sample observations x
comes out to be

L(λ|x) =
n∏

i=1
f(xi, λ) =

(
2αα

Γα

)n 1
λαn

n∏
i=1

xi
2α−1exp

(
− α

λ

n∑
i

xi
2
)

(5)

Theorem 1: For q ∈ (−∞, ∞), q ̸= 0, U.M.V.U.E of λq is

λ̃q =


{

Γ(nα−q)
Γ(nα)

}
Sq ; nα > q

0 ; Otherwise
(6)

Proof: From the likelihood (5) and factorization theorem Rohtagi and Saleh (2012, pp.361)
it can be easily obtained that S = ∑n

i=1 xi
2 is a sufficient statistic for λ and the P.d.f of S is

fs(S|λ) = Snα−1

Γ(nα)λnα
exp

(
− S

λ

)
(7)

From (7), since the distribution of S belongs to the exponential family, it is also complete
Rohtagi and Saleh (2012, pp.367).
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Now, from (7), we have

E[S−q] = 1
Γ(nα)λnα

∫ ∞

0
Snα−q−1exp

(
− S

λ

)
dS

=
{

Γ(nα − q)
Γ(nα)

}
1
λq

and the theorem holds on using Lehmann-Scheffe theorem Rohtagi (1976, pp.357).

Theorem 2: The U.M.V.U.E of the reliability function is

R̃(t) =

1 − I t2
S

[α, (n − 1)α] ; t2 < S
α

0 ; Otherwise
(8)

where Ix(p, q) = 1
β(p,q)

∫ x
0 yp−1(1 − y)q−1 dy; 0 ≤ y ≤ 1, x < 1, p, q > 0 is the incomplete beta

function.

Proof: Let us define a random variable as

V =
{

1, X1 > t

0, Otherwise
(9)

which is based on a single observation and is an unbiased estimator of R(t). Using Rao-
Blackwellization and (9), we have

R̃(t) = E(V |S)
= P (X1 > t|S)

= P

(
v1 >

t2

S

)
, say; (10)

where v1 = X12

S
. From (7), we see that v1 follows beta distribution of first kind with

parameters [α, (n − 1)α]. Applying Basu’s theorem, from (10), we have

R̃(t) = 1 − P

(
v1 ≤ t2

S

)

= 1 −
β[ t2

S
; α, (n − 1)α]

β[α, (n − 1)α] (11)

and the theorem holds.

Corollary 2.1: The Reliability estimate of the distribution for which α = 1 is

R̃(t) =


(

1 − t2

S

)n−1

; t2 < S

0 ; Otherwise
(12)
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Corollary 2.2: The U.M.V.U.E of sampled P.d.f (1) at a specified point x is :

f̃(x; λ) =


(

α
S

)α
x2α−1

β[α,(n−1)α]

(
1 − αx2

S

)(n−1)α−1

; x2 < S
α1

0 ; Otherwise
(13)

Let us take two independent random variables X and Y with P.d.fs f(x, α1, λ1) and
f(y, α2, λ2) respectively, where

f(x; α1, λ1) = 2
Γα1

(
α1

λ1

)α1

x2α1−1exp

(
− α1

λ1
x2
)

; x > 0, α1 ≥ 0.5, λ1 > 0. (14)

and
f(y; α2, λ2) = 2

Γα2

(
α2

λ2

)α2

x2α2−1exp

(
− α2

λ2
y2
)

; y > 0, α2 ≥ 0.5, λ2 > 0. (15)

Now draw a random sample X1, X2, . . . , Xn from f(x; α1, λ1) and random sample Y1, Y2, . . . , Ym

from f(y; α2, λ2). Denote S = ∑n
i=1 xi

2 and T = ∑m
i=1 yi

2.

Theorem 3: The U.M.V.U.E of P is

P̃ =



1
2β[α2,(m−1)α2]

∫ α2S

α1T

0 {1 − I T z
α2S

[α1, (n − 1)α1]}zα2−1(1 − z)(m−1)α2−1 dz

;
(

S
α1

) 1
2 ≤

(
T
α2

) 1
2

1
2β[α2,(m−1)α2]

∫ 1
0 {1 − I T z

α2S
[α1, (n − 1)α1]}zα2−1(1 − z)(m−1)α2−1 dz

;
(

S
α1

) 1
2 >

(
T
α2

) 1
2

Proof:

Proceeding as in case of proving Corollary 2, we can rewrite U.M.V.U.E of P in terms
of R̃(y, λ1) as follows

P̃ =
∫ ∞

y=0

∫ ∞

x=y
f̃(x; λ1)f̃(y; λ2) dx dy

=
∫ ∞

y=0
R̃(y; λ1)f̃(y; λ2) dy

Now, using Theorem 2, we have

P̃ =
∫ min

[(
S

α1

) 1
2

,

(
T

α2

) 1
2
]

0

[
1 − I y2

S

(α1, (n − 1)α1)
]

(
α2

T

)α2 y2α2−1

β[α2, (m − 1)α2]

(
1 − α2y

2

T

)(m−1)α2−1

dy

=

(
α2
T

)α2

β[α2, (m − 1)α2]

∫ min

[(
S

α1

) 1
2

,

(
T

α2

) 1
2
]

0[
1 − I y2

S

(α1, (n − 1)α1)
]
y2α2−1

(
1 − α2y

2

T

)(m−1)α2−1

dy (16)
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Now from (16), when
(

S
α1

) 1
2 ≤

(
T
α2

) 1
2

P̃ = 1
2β[α2, (m − 1)α2]

∫ α2S

α1T

0
{1 − I T z

α2S
[α1, (n − 1)α1]}zα2−1

(1 − z)(m−1)α2−1 dz

and we have the first assertion.

Furthermore, for
(

S
α1

) 1
2 >

(
T
α2

) 1
2 ,

P̃ = 1
2β[α2, (m − 1)α2]

∫ 1

0
{1 − I T z

α2S
[α1, (n − 1)α1]}zα2−1

(1 − z)(m−1)α2−1

and this proves the second assertion.

Corollary 3.1: U.M.V.U.E of P when α1 = α2 = 1 is given by

P̃ =

 1
2β[1,m−1]

∫ S
T

0 {1 − IT z
S

[1, (n − 1)]}(1 − z)(m−2 dz; S
1
2 ≤ T

1
2

1
2β[1,m−1]

∫ 1
0 {1 − IT z

S
[1, (n − 1)]}(1 − z)(m−2) dz; S

1
2 > T

1
2

We provide M.L.E. of λq, R(t) and P under the assumption that α is known in the
following given theorems.
From (5), M.L.E of λ is

λ̂ = S

n
(17)

Theorem 4: The M.L.E. of λq is
λ̂q =

(
S

n

)q

(18)

Theorem 5: The M.L.E. of R(t) is given by

R̂(t) = 1 − 1
Γα

Γ
(

nαt2

S
, α

)
(19)

We obtain M.L.E. of sampled P.d.f with the help of Theorem 5 in the following
corollary. This will be used to obtain M.L.E. of P .

Corollary 5.1: The M.L.E. of f(x; λ) at a specified point x is

f̂(x; λ) = 2
Γα

(
nα

S

)α

x2α−1exp

(
− nαx2

S

)
(20)

Theorem 6: The M.L.E. of P is

P̂ = 1 − 1
Γα1Γα2

∫ ∞

z=0
zα2−1e−z Γ

(
nα1zT

mα2S
, α1

)
dz (21)
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Proof: We know that

P̂ =
∫ ∞

y=0

∫ ∞

x=y
f̂(x; λ1)f̂(y; λ2) dx dy

=
∫ ∞

y=0
R̂(y; λ1)f̂(y; λ2) dy

Now using (20) and Theorem 5, we have

P̂ =
∫ ∞

y=0

[
1 − 1

Γα1
Γ
(

nα1y
2

S
, α1

)]
2

Γα2

(
mα2

T

)α2

.y2α2−1exp

(
− mα2y

2

T

)
dy

Substituting mα2y2

T
= z and solving for the above integral, we get the desired result.

Next, we provide moment estimators for the parameters. For this, below given theorem
provides the rth moment generating function of the distribution.

Theorem 7: For r = 1, 2, 3 . . . , the moment generating function rth is given by

ur = E(Xr) =
Γ(α + r

2)
Γ(α)

(
λ

α

) r
2

(22)

From (22), we have

u1 =
Γ(α + 1

2)
Γ(α)

(
λ

α

) 1
2

and

u2 =
Γ(α + 2

2)
Γ(α)

(
λ

α

) 2
2

= λ

Equating the population moments with the sample moments, we have

λ̂m = S

n
(23)

Using (23), the moment estimator α̂m of α is obtained by the solution of

X̄ −
Γ(α + 1

2)
Γ(α)

√√√√√
 λ̂m

α

 = 0 (24)

uniroot function in R-software is used for finding the roots of the above equation.

3. Point estimation when shape parameter is unknown

Now we discuss the case when both the parameters are unknown. The log-likelihood
function of the parameters α and λ given the sample observations x is:

l(λ|x) = nlog(2αn) − nlog(Γα) − nαlog(λ) +
n∑

i=1
log(xi

2α−1) − α

λ

n∑
i

xi
2
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The M.L.E of α is given by the solution of the following equation

∂l

∂α
= n2

α
− nΨ0(α) − nlog(λ) + 2

n∑
i=1

log(xi) − 1
λ

n∑
i=0

xi
2 = 0 (25)

where Ψ0 is a polygamma function of order zero and Ψ0(α) = ∂logΓ(α)
∂α

is diagamma function.

∂l

∂λ
= −nα

λ
+ α

λ2

n∑
i=1

xi
2 = 0 (26)

=⇒ λ̂ = S

n

Since (25) do not have a closed form solution, therefore any iterative procedure have to be
use to compute M.L.E.

Theorem 8: The M.L.E. of R(t) is given by:

R̂(t) = 1 − 1
Γα̂

Γ
(

nα̂t2

S
, α̂

)
(27)

Corollary 8.1: The M.L.E. of f(x; α, λ) at a specified point x is

f̂(x; α, λ) = 2
Γα̂

(
nα̂

S

)α̂

x2α̂−1exp

(
− nα̂x2

S

)
(28)

Theorem 9: The M.L.E. of P is

P̂ = 1 − 1
Γα̂1Γα̂2

∫ ∞

z=0
zα̂2−1e−z Γ

(
nα̂1zT

mα̂2S
, α̂1

)
dz (29)

4. Asymptotic confidence intervals

The Confidence Intervals (C.I) can be obtained by using the variance-covariance
matrix of the M.L.Es of the parameters. The asymptotic variance-covariance matrix of
η̂ = (α̂, λ̂) is the inverse of the following Fisher Information matrix

I(η) = −E

[
∂2l
∂2α

∂2l
∂α∂λ

∂2l
∂λ∂α

∂2l
∂2λ

]
This is very cumbersome to obtain the exact distributions of the M.L.Es and the alternative
is to use the observed Fisher information matrix which is

I(η̂) =
[

− ∂2l
∂2α

− ∂2l
∂α∂λ

− ∂2l
∂λ∂α

− ∂2l
∂2λ

]

Thus, we have observed variance-covariance matrix as

I−1(η̂) =
[

V̂ ar(α̂) Ĉov(α̂, λ̂)
Ĉov(λ̂, α̂) V̂ ar(λ̂)

]
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Assuming asymptotic normality of the M.L.Es, confidence intervals for α and λ are con-
structed. Let σ̂2(α̂) and σ̂2(λ̂) be the estimated variances of α and λ. Then the two
sided equal tail asymptotic 100(1 − δ)% confidence intervals for the parameters α and λ

are
(

α̂ ± Z δ
2
σ̂(α̂)

)
and

(
λ̂ ± Z δ

2
σ̂(λ̂)

)
, respectively, where Z δ

2
is the

(
δ
2

)th
percentile of the

standard normal distribution. The coverage probabilities (CP) are given as,

CPα = P

[∣∣∣∣∣ α̂ − α

σ̂(α̂)

∣∣∣∣∣ ≤ Z δ
2

]

and

CPλ = P

∣∣∣∣∣∣ λ̂ − λ

σ̂(λ̂)

∣∣∣∣∣∣ ≤ Z δ
2


The asymptotic C.I based on log(M.L.E) has better coverage probability as reported by
Meeker and Escober (1998). An approximate 100(1 − δ)% C.I for log(α) and log(λ) are

{
log(α̂) ± Z δ

2
σ̂[log(α̂)]

}
and

{
log(λ̂) ± Z δ

2
σ̂[log(λ̂)]

}
,

where σ̂2[log(α̂)] and σ̂2[log(λ̂)] are the estimated variance of log(α) and log(λ) respectively,
and are approximated by

σ̂2[log(α̂)] = σ̂2(α̂)
α̂2 and σ̂2[log(λ̂)] = σ̂2(λ̂)

λ̂2 .

Hence, approximate 100(1 − δ)% C.I for α and λ are

(
α̂e

±Z δ
2

σ̂(α̂)
α̂

)
and

(
λ̂e

±Z δ
2

σ̂(λ̂)
λ̂

)
.

5. Testing of statistical hypotheses

Under this section, we consider the following three cases of hypothesis testing.
1. H0 : λ = λ0 versus H1 : λ ̸= λ0, when α is known.
2. H0 : λ ≤ λ0 versus H1 : λ > λ0, when α is known.
3. H0 : P = P0 versus H1 : P ̸= P0, when α1 = α1 is known.
Testing H0 : λ = λ0 against H1 : λ ̸= λ0 is considered to be the most important. From (5),
we can have the likelihood of observing λ given the sample observations x as

L(λ|x) =
(

2αα

Γα

)n 1
λαn

n∏
i=1

xi
2α−1exp

(
− α

λ

n∑
i

xi
2
)

(30)

Under H0, we have

sup
Θ0

L(λ; x, α) =
(

2αα

Γα

)n 1
λαn

0

n∏
i=1

xi
2α−1exp

(
− α

λ0

n∑
i

xi
2
)

; Θ0 = {λ : λ = λ0} (31)
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and

sup
Θ

L(λ; x, α) =
(

2αα

Γα

)n (
n

S

)αn n∏
i=1

xi
2α−1exp

(
− nα

S

n∑
i

xi
2
)

; Θ0 = {λ : λ > 0} (32)

Therefore, the Likelihood Ratio (L.R) is given by

ϕ(x) = supΘ0 L(λ; x, α)
supΘ L(λ; x, α)

=
(

S

nλ0

)nα

exp
[
−α

(
S

λ0
− n

)]
(33)

From Right Hand Side (R.H.S) of above equation, it is clear that first term is an increasing
whereas the second term is monotonically decreasing function in S. As 2 S

λ0
∼ χ2

(2n), where
χ2

(2n) is the Chi-Square statistics with 2n degrees of freedom, the critical region is given by

{0 < S < γ0} ∪ {γi
0 < S < ∞},

where the constants γ0 and γi
0 are obtained such that

P

[
χ2

(2n) < 2γ0

λ0
or 2γi

0
λ0

< χ2
(2n)

]
= ε

Thus,

γ0 =
λ0χ

2
(2n)

(
1 − ε

2

)
2

and

γi
0 =

λ0χ
2
(2n)

(
ε
2

)
2

where ε is the probability of type I error.

The second important hypothesis is H0 : λ ≤ λ0 versus H1 : λ > λ0. For λ1 > λ2, we
have from (5)

L(λ1|x)
L(λ2|x) =

(
λ2

λ1

)nα

exp
[
−S

(
α

λ1
− α

λ2

)]
(34)

From (34), we can see L(λ, x) has Monotone Likelihood Ratio (M.L.R) in S. Thus,
the Uniformly Most Powerful Critical Region (U.M.P.C.R) for testing H0 : λ ≤ λ0 against
H1 : λ > λ0 is given as Lehmann (1959, pp.88)

ϕ(x) =
{

1, S ≤ γii
0

0, Otherwise.

where, γii
0 is obtained such that P

[
χ2

(2n) < 2γii
0

λ0

]
= ε. Therefore,

γii
0 =

λ0χ
2
(2n) (1 − ε)

2



2025] ESTIMATION OF NAKAGAMI DISTRIBUTION 111

It can be seen that for two independent random variables X and Y with α1 = α2 = 1,

P = λ1

λ1 + λ2

Let us test H0 : P = P0 against H1 : P ̸= P0. Thus, H0 is equivalent to λ1 = kλ2, where
k = P0

1−P0
. Therefore, H0 : λ1 = kλ2 and H1 : λ1 ̸= kλ2.

Under H0, we can have
λ̂1 = S + Tk

(n + m)
and

λ̂2 = S + Tk

k(n + m)
Thus, for C (a generic constant), we have the likelihood of observing λ1 and λ2 as

L(λ1, λ2|x, y) = C

λ1
nλ2

m exp
[
−
(

S

λ1
+ T

λ2

)]
(35)

Thus,

sup
Θ0

L(λ1, λ2|x, y) = C

[
k(n + m)
S + Tk

]n+m

exp [−(n + m)] ; Θ0 = {λ1, λ2 : λ1 = kλ2} (36)

and

sup
Θ

L(λ1, λ2|x, y) = C
(

n

S

)n (m

T

)m

exp [−(n + m)] ; Θ = {λ1, λ2 : λ1 > 0, λ2 > 0} (37)

From (36) and (37), the Likelihood ratio criterion is

ϕ(x, y) =
C
(

S
T

)n

(
1 + S

T k

)n+m (38)

Let us denote the F - statistic with (a, b) degrees of freedom by Fa,b(.). As

S

T
∼ nλ1

mλ2
F(2n,2m),

the critical region is {
S

T
< γ2 or

S

T
> γ2

i
}

,

where γ2 and γ2
i are obtained such that

P

{
nkγ2

m
< F2n,2m ∪ nkγ2

i

m
> F2n,2m

}
= ε

Thus, we have γ2 = nk
m

F2n,2m

(
1 − ε

2

)
and γ2

i = nk
m

F2n,2m

(
ε
2

)
.
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6. Simulation study

For validating the results obtained theoretically in Section 2 and Section 4, we, firstly
present results which are based on Monte Carlo simulation technique. We have computed
Mean Square Error (M.S.E) for comparison purpose. All the analyses have been done using
R 3.4.3 software R Core Team (2013).

6.1. When shape parameter is known

For acquiring the performance of λ̃q and λ̂q, we have generated 1000 random samples
from (1) of different sizes n = (20, 30, 40, 60) with α = (0.8, 0.9, 1.0). We have computed
average λ̃q, λ̂q, corresponding average biases and M.S.E, and approximate (1−δ)100%, where
δ = 0.05, confidence intervals for λq. As q ∈ (−∞, ∞), q ̸= 0, we choose a negative and a
positive power of q to have better look into the performance of the estimators. For q = −1
and q = 1, results are given in Table ??. The 1st, 2nd, 3rd row represents average estimates,
average bias, M.S.E and 4th row represents the confidence interval. From Table ??, we can
infer that for negative values of q, U.M.V.U.E is performing better than the M.L.E but for
positive value of q M.L.E is performing better than U.M.V.U.E. It can be seen that as the
value of sample size is increasing M.S.E is decreasing for both the estimators. The length
of the confidence interval is shorter for both estimators in all cases which means it is more
informative. So, U.M.V.U.E should be preferred if we want to estimate the negative power
of λ and for positive power, we should opt for M.L.E. It is interesting to note here that for
α = 1 and q = −1 both estimators are yielding the same results for all values of sample sizes.

Now, to acquire and compare the performance of the two estimators of R(t), 1000
random samples are generated from (1) of different sizes n = (10, 20, 30, 40, 60) with α = 3
and λ = 0.5. Taking values of t = (0.10, 0.15, 0.20, 0.25, 0.35), R̃(t) and R̂(t), corresponding
biases, M.S.E and approximate (1 − δ)100% C.I have been calculated. The obtained results
are presented in Table 2 where Ist, 2nd, 3rd row represents average estimates, average bias,
M.S.E and 4th row represents the C.I.
Looking at M.S.E values in Table 2, we can say that performance of M.L.E of R(t) is better
than that of U.M.V.U.E of R(t). Performance of estimators is decreasing with the increase
in time t as the M.S.E values are increasing. Estimators tends to perform better in case
of large sample sizes. Table 3 presents Moment estimators α̂m and λ̂m of the parameters α
and λ are given for different values of n=(500,1000,1500) and different set of the parameters
(α, λ) = (0.6, 0.8), (1.5, 0.8) and (1.5, 1.0). The moment estimator and M.L.E of λ are equal
and both the estimators are the functions of the sufficient statistics. So, both M.L.E and
Moment estimators are equally efficient and works good.

In order to investigate how well estimators of P performs, 1000 random samples are
generated from (14) and (15) of sizes (n, m) = (5, 10), (10, 5) and (10, 10) with α1 = 0.5
and α2 = 10, and (λ1, λ2) = (3, 5), (3, 6), (4, 5), (4, 6). The obtained results are presented
in Table 4 where Ist, 2nd, 3rd row represents average estimates, average bias, M.S.E and 4th

row represents the confidence interval. Data in table 4 reveals that M.L.E of P gives better
estimates than U.M.V.U.E of P for all combinations of (λ1, λ2) and (n, m).
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Figure 1: Estimates of Sampled Probability Density Function

The estimates of P.d.f obtained in Section 2 are plotted in Figure 1. From the figure,
we can see that the estimates of P.d.f fits well to the actual model.

6.2. When both scale and shape parameters are unknown

For obtaining the estimate of R(t) when both scale and shape parameters are un-
known, we have generated first random sample of size n = 15 from (1) with α1 = 5 and
λ1 = 4. Let it be X- population or random strength X given as
X- Population: 2.049508, 1.697911, 2.057258, 2.093914, 1.830376, 2.299230, 1.030369,
1.352851, 1.910835, 2.518206, 1.717836, 2.318662, 1.932082, 1.436255, 2.776821.
The M.L.Es of α and λ comes out to be α̂1 = 5.512470 and λ̂1 = 3.937005. For t = 0.2,
actual R(t) = 0.9999869 and R̂(t) = 0.9999869.
Now, for estimation of P , we have generated another random sample say Y population or
random stress Y from (1) of size m = 10 with α2 = 4 and λ2 = 3. The sample is
Y Population: 1.263758, 1.816875, 1.346044, 2.083317, 2.489531, 1.119266, 1.714329,
1.912815, 1.371682, 2.496376. The M.L.Es of α and λ comes out to be α̂2 = 4.118107
and λ̂2 = 3.321188. For t = 0.2, actual R(t) = 0.9964545 and R̂(t) = 0.9994916. The actual
P = 0.4363503 and the M.L.E of P comes out to be P̂ = 0.4696917. All the estimates can
be seen validating the theoretical results obtained.

6.3. Hypothesis testing

This section comprises of checking the validity of the hypothesis testing procedures
developed in section 5. Firstly, we test the hypothesis H0 : λ = λ0 = 4 against H1 : λ =
λ0 ̸= 4. For this we have generated a random sample of size 50 from (1) with (λ = 4, α = 5),
given by
Sample 1 : 1.8715040, 2.4957160, 1.3041026, 1.0625339, 1.9552509, 1.8412767, 1.4635787,
1.6677863, 2.1402472, 1.6651901, 1.4523474, 2.4088220, 1.6413565, 2.2162550, 1.6001383,
2.0236934, 2.0894237, 1.7744711, 2.0995504, 2.9366243, 2.3269415, 1.6324515, 1.5328350,
0.9560068, 2.4759661, 2.0723630, 2.2769360, 1.3536968, 2.0298724, 2.4644942, 2.0113171,
1.6845441, 1.8919575, 2.5608773, 1.9408668, 1.8201857, 2.3742209, 2.1374813, 2.5166206,
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2.4151387, 1.4238698, 1.4754821, 1.6192035, 2.1958351, 1.7966403, 2.2790533, 2.0138617,
1.4063136, 1.8715380, 1.6387806.
Now, using chi-square table at ε = 5% Level of Significance (LOS), we obtained γ0 = 259.12
and γi

0 = 148.44. From the sample we have S = 192.5144. Here, it can be seen that the
value of S is not lying in the critical region. So, we do not have enough evidence to reject
the null hypothesis at 5% LOS.

Consider the above sample 1 again for testing H0 : λ = λ0 ≤ 4 against H1 : λ = λ0 > 4
at 5% LOS, we obtained γii

0 = 148.68. As S = 192.5144 is not lying in the critical region
so we do not have sufficient evidence in support of alternate hypothesis. Thus, we do not
reject the null hypothesis.

Now, to test H0 : P = P0 = 0.5 against H1 : P = P0 ̸= 0.5, we have generated
two random samples Xi and Yi of sizes n = 12 and m = 10 from the distribution with
λ1 = λ2 = 4 and α1 = α2 = 1 given by X= 0.6960666, 1.9268595, 2.1383461, 1.4266733,
1.8846088, 2.1335468, 2.0400911, 0.2361899, 3.8670944, 1.0444884, 1.5116124, 1.0438313
and Y=0.843277, 2.642273, 2.342635, 1.710249, 2.558351, 2.145001, 1.933631, 2.861752,
3.867026, 1.158481. From the two samples, we get S

T
= 0.766934. Using F-table at 5%

LOS, we computed γ2 = 2.7924 and γi
2 = 0.498. Thus, we do not reject the null hypothesis

on the basis above information.

7. Real data analysis

Now we present two real data set to understand and illustrate the procedures discussed
in the previous sections broadly.

7.1. First data set

The data set has been taken from Lawless (2003, pp.267). This was originally reported
by Schafft et al. (1987). This data represents the hours to failure of 59 conductors of 400-
micrometer length. The specimens are put on a test with same temperature and current
density and they all ran to failure at a certain high temperature with current density.
X-Population: 6.545, 9.289, 7.543, 6.956, 6.492, 5.459, 8.120, 4.706, 8.687, 2.997, 8.591,
6.129, 11.038, 5.381, 6.958, 4.288, 6.522, 4.137, 7.459, 7.495, 6.573, 6.538, 5.589, 6.087, 5.807,
6.725, 8.532, 9.663, 6.369, 7.024, 8.336, 9.218, 7.945, 6.869, 6.352, 4.700, 6.948, 9.254, 5.009,
7.489, 7.398, 6.033, 10.092, 7.496,4.531, 7.974, 8.799, 7.683, 7.224, 7.365, 6.923, 5.640, 5.434,
7.937, 6.515, 6.476, 6.071, 10.491, 5.923.
Kumar et al. (2017) used this data set and found that Nakagami distribution fits well to the
data with M.L.Es as α̂ = 4.8336 and λ̂ = 51.2823. For t = (0.1, 0.2, 0.3, 0.4, 0.5) we have
computed R(t) = (0.9985447, 0.9985376, 0.9985258, 0.998509, 0.9984872) and their M.L.Es
are R̂(t) = (0.9999184, 0.999918, 0.9999174, 0.9999164, 0.9999152).

7.2. Second data set

The second data set given below is taken from Murthy et al. (2004, pp.180)(2004,
pp.180). This data represents 50 items that are put on use at t=0 and failure times are in
recorded (in weeks). The data set is
Y-Population: 0.013, 0.065, 0.111, 0.111, 0.163, 0.309, 0.426, 0.535, 0.684, 0.747, 0.997,
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1.284, 1.304, 1.647, 1.829, 2.336, 2.838, 3.269, 3.977, 3.981, 4.520, 4.789, 4.849, 5.202, 5.291,
5.349, 5.911, 6.018, 6.427, 6.456, 6.572, 7.023, 7.291, 7.087, 7.787, 8.596, 9.388, 10.261,
10.713, 11.658, 13.006, 13.388, 13.842, 17.152, 17.283, 19.418, 23.471, 24.777, 32.795, 48.105.
Mudasir and Ahmed (2017) used this data set for analysis and comparison purpose in case
of weighted Nakagami distribution. The M.L.Es of α and λ came out to be α̂ = 4.1 and λ̂ =
144.2292. For t = (0.1, 0.2, 0.3, 0.4, 0.5), R(t) = (0.9966496, 0.9966451, 0.9966375, 0.9966269, 0.9
966132) and their M.L.Es are R̂(t) = (0.9995082, 0.9995075, 0.9995064, 0.9995049, 0.9995029).
The MLE estimate of R(t) for both data sets is plotted in Figure 2. From the figure, it can
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Figure 2: M.L.Es of R(t)

be seen that in both cases the survival is very high at initial time but as the time increases
survival probability goes on decreasing.
To evaluate M.L.E of P , first data set is taken as X population and second set as Y popu-
lation. Actual P came out to be P = 0.7377018 and its M.L.E is P̂ = 0.703271.

8. Conclusion

This paper presents estimation and testing procedures for the reliability functions
of the Nakagami distribution. A new, simpler technique for obtaining Uniformly Minimum
Variance Unbiased Estimators (UMVUEs) and Maximum Likelihood Estimators (MLEs) of
R(t) and P is introduced, requiring no explicit forms of the parametric functions. In addition
to these estimators, moment estimators for the parameters are derived. The efficiency of
MLEs and moment estimators is compared through simulations, showing similar performance
as both are functions of the sufficient statistic. Hypothesis testing is also performed, with
real data analysis on strength (X) and stress (Y) datasets.
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