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Abstract
This paper deals with the classical problem of determining the minimum sample size

(n) required in clinical studies for estimating the population prevalence p’ of a characteristic.
The popularly used formula for n requires prior knowledge on p’ which may not be known
as a crisp value. It can be estimated from a pilot study or specified as a range of values
reflecting some uncertainty. In the first part we characterise n as a random variable whose
values depend on the uncertainty in the anticipated p’ modelled by a Beta distribution and
thereby determine the expected sample size and its variance. In the second part of this paper
we also propose a novel method to improve the formula by considering a triplet where a,b
and c denote the minimum, most likely and maximum values of p’, derive a new formula and
show that it is more consistent than the classical method. We demonstrate the utility of the
formula with illustrations and compare them with alternative ways of presenting the inputs.
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1. Introduction

Sample size determination is a basic requirement in the design and analysis of clinical
studies including community trails. If enough subjects are not included in the study, the
real effect or situation prevailing in the target group cannot be estimated correctly. A large
sample needs more resources to achieve the desired precision than a small sample. Further,
non-sampling errors erupt while executing a large study. Statistical methods offer a scientific
approach to determine the minimum sample size such that sample-related risks of incorrect
decisions are minimized. We discuss some interesting issues on sample size determination
with clinical objectives as background, but the arguments apply to other areas too. We can
broadly divide clinical studies into two viz.,

a) Descriptive studies in which the chief objective is to describe a population by estimating
the characteristics from sample data and
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b) Comparative studies in which comparison of outcomes among two or more groups (like
mean or percentage) is the main objective.

There are two broad ways of summarizing any data depending on whether the outcome
is a count or a measurement. In case of dichotomous categorical data, the proportion of the
outcome of interest is the summary measure, denoted by p’ which is called prevalence when
observed over a period of time. If the events are observed in new cases, p’ is called incidence
or occurrence rate. An estimate of p’ is p = k

n
where k subjects out of n are found to have the

outcome of interest and n denotes the sample size. The true proportion in the population
is however unknown unless the entire population is studied. The behaviour of p is modelled
by Binomial distribution.

On the other hand, when the outcome in the sample is a measured characteristic like
blood glucose level, it is summarized as the arithmetic mean (m) (or median in some cases)
of the sample values along with standard deviation(s) of the values. The behaviour of m,
over different samples of the population is modelled by normal distribution.

In both situations, a 100(1 − α)% Confidence Interval (CI) can be provided around
the sample estimate such that the true mean/proportion falls in this interval with desired
confidence usually 95%. According to the Central Limit Theorem in statistics, the sampling
distribution of both p or m tend to be normal when n is large. Hence the 95% CI for p or
m are constructed making use of the standardized normal variable (Z).

1.1. Sample size for p based on margin of error

We briefly outline the method of determining the sample size with desired margin of
error (d) when the objective is to estimate (a) the proportion of dichotomous outcomes or
(b) the mean of a characteristic. This method is known as precision-based method because
smaller margin of error leads to higher precision.

Let p be the estimate of p’obtained from a random sample of size n drawn from the
population. Then the 100(1 − α)% CI for the population prevalence is given byp - Z1−α/2

√
p (1 − p)

n
, p + Z1−α/2

√
p (1 − p)

n

 (1)

The quantity d = (Z1−α/2

√
p (1−p)

n
)denotes the margin of error and (Z1−α/2)is the inverse of

the cumulative standard normal distribution corresponding to the chosen α(like 0.05).

The objective is to determine n such that p is contained in (1). Since the precision
of the estimate increases when d is small, one way of estimating n is to keep d ≤ d0 where
d0 is the desired upper limit, like 5%. Solving for n in d leads to n ≥

z2
1−α/2p(1−p)

d2
0

. Hence for
a fixed choice of d, the expression for the minimum sample size will be

n =
z2

1−α/2p(1 − p)
d2 (2)

Formula (2) is known as Cochran’s formula (Cochran, 1977) applicable for large populations.
When the population size is finite, like the number of employees of a company, then n’= n

1+ n
N
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gives the sample size corrected for finite population size. The chief input for implementing
(2) is p.

1.2. Sensitivity of n to changes in p

The formula in (2) requires p as input which is known only when a pilot study is
carried out. When pilot study is not possible, we can get p from previous research reports
or by a personal guess. For instance, if p is known as 0.9 it means that there is 90% chance
that the desired condition occurs. Then for α = 0.05 we get (Z1−α/2) = 1.96 and with
d = 0.05 we get n = 385. This value quickly drops to 96 if d is taken as 0.10, keeping
other parameters unchanged. Approximating (Z1−α/2) by 2, the constant appearing in (2)
is approximately 1600. When p = 0.5 we get n = 400 while the actual value with 1.96 is
385. Hence the reliability of n depends on the precision with which p known. 1 shows the
pattern of n against p which is concave reaching a maximum of 385 at p = 0.50. We see

Figure 1: Sensitivity of n against p for different values of d

that n changes rapidly with d but symmetric around p = 0.5. The decrease in n for values
of p away from 0.5 may be called the gain due to information. In section-2 we develop
a methodology to formulate the distribution of n viewing p as a random variable using
beta distribution. We also study the empirical distribution of n under the chosen model by
estimating its parameters, instead of using a single p value. In section 3 we develop a new
method of determining n when the input value of p is not precisely known but expressed as
an interval, along with a middle value, which we call a triplet. The new estimate is proposed
as a weighted average of the expected sample size at each of the three elements of the triplet.
We call this triplet estimation and study the properties this new estimate.
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2. A model for the probability distribution of n

The formula given in (2) can be stated as n = kp(1 − p) where k = z2
1−α/2

d2 is constant
for pre-determined values of α and d. We wish to identify a probability distribution for n
by viewing p as a continuous random variable (Y) in [(0, 1) so that n = kY (1 − Y ) and the
type-1 beta distribution is natural choice for the distribution of Y specified by the density
function

f(y) = 1
β(u, v) yu−1(1 − y)v−1for 0<y<1, u, v>0 (3)

The parameters (u, v) are related to E(Y) and V(Y) and given as

u = E(Y )
{

E(Y ) (1 − E(Y ))
V (Y ) − 1

}
and v = {1 − E(Y )}

{
E(Y ) (1 − E(Y ))

V (Y ) − 1
}

(4)

In fact p is the anticipated point-mass on the Bernoulli distribution which varies with the
discretion of the researcher. When p is specified a fixed value there exists a single unique
value of n from (3). Instead, we assume a probability distribution in the domain (0,1) with
peak density at p so that we can account for the uncertainty in p and thereby determine
the theoretical mean and variance of Y. The triangular distribution (0, p, 1) is one choice
for distribution of Y which help to obtain adhoc estimates of E(Y) and V(Y), while the
beta-PERT distribution on (a,b,c) where a = 0, b = p and c = 1 is another. We use the
Triangular distribution only to summarize the Bernoulli p since the truncation limits for the
distribution of Y are not known at this stage. For the triangular distribution we have

E(Y ) = {1 + p}
3 ) and V (Y ) = ({p2 − p + 1}

18 (5)

Thus we have transformed the single anticipated p into a probability distribution and cap-
tured its mean and variance as summary. As a result, for each value of p we can uniquely
identify a β(u,v) distribution and estimate the parameters using (3).

Remark: If we use PERT (0,p,1) distribution instead of triangular distribution to estimate
E(Y) and V(Y) we get u = 1+4p and v = 1+4(1-p) but (u+v) = 6 which is irrespective of u
and v, which is a constraint on the parameters, not defined for the beta distribution. Hence
we use triangular distribution to supply primary inputs to estimate u and v. Consider the
following proposition.

Proposition-1: With Y ∼ Beta(u,v) the empirical distribution of n is proportional to that
of Y by a constant k.

The empirical distribution of n can be obtained by simulating random deviates from
β(u, v). Table (1) gives summary of the empirical distribution of n for selected values of
p, taking 95% confidence level and d = 0.05. This gives k = 1536.584 and the value of n
rounded to the upper integer.

We observe the following from Table (1):

(a) The values of variance of n are much larger than the corresponding mean, due the fact
the mean and variance of Y(1-Y) are multiplied by k and k2 respectively.
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Table 1: Empirical distribution of n with 1000 simulations.

p n at p E(Y) V(Y) (u,v) E(n) V(n) Empirical Empirical
Mean of n variance of n

0.25 288 0.4166 0.0451 (1.826, 2.557) 373 4810.81 304 7548.13
0.35 350 0.4500 0.0429 (2.145, 2.621) 380 4349.40 314 5820.16
0.5 384 0.5000 0.0416 (2.500, 2.500) 384 4098.56 323 4991.42
0.65 350 0.5500 0.0429 (2.621, 2.145) 380 4348.08 312 6198.41
0.75 288 0.5833 0.0451 (2.557, 1.826) 373 4810.81 306 7059.36

Figure 2: E(n) and V(n) as a function of p.

(b) The expected n and its variance are both symmetric around p = 0.5 and the empirical
values also exhibit a similar pattern. When compared to the true n obtainable from
(2) using the single value of p, the values of E(n) are higher and this can be because
the former does not account for the impreciseness in p but E(n) takes into account a
background triangular model to determine the mean.

(c) The empirical distribution has a shape that is similar to a beta distribution.

Figure (2) shows the pattern of E(n) and V(n) against values of p. The variance of n de-
creases symmetrically as p increases and reaches a minimum at p = 0.5 while E(n) moves
in the opposite direction and reaches a maximum at the same p. In the following discus-
sion we propose a method of summarizing the distribution of Y(1-Y) the moments of beta
distribution. The empirical distribution of Y(1-Y) is shown in Figure-3.

Proposition-2: If we write T = Y(1-Y) with Y∼ Beta(u,v) then the mean and variance of
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Figure 3: Empirical distribution of Y and Y(1−Y) for p = 0.25

T can be obtained as E(T) = E(Y){1-E(Y)} and V(T) = V(Y){1-V(Y)} which reduce to

E(T ) = uv

(u + v)2 and V (T ) = (uv)2

(u + v)4(1 + u + v)2 (6)

Further the expected sample size is

E(n) = k
uv

(u + v)2 and V (n) = k2 (uv)2

(u + v)4(1 + u + v)2 (7)

Proof: The results follow by replacing Y and (1-Y) with their expected values and noting
that E(Y ) = u

(u+v) and E(1 − Y ) = v
(u+v) . Similarly V(T) follows by noting that V (Y ) =

uv
(u+v)2(1+u+v) and V(1-Y) is the same as V(Y). Finally E(n) = kE(T ) and V (n) = k2V (T )
which lead to (6) and (7). Hence the proof. With this background, we develop a new estimate
of n as (i) a weighted mean of the n values obtainable at the triplet values under the beta
distribution model and (ii) using PERT summary as a single input in (2).

3. The triplet estimate to handle imprecise estimates

When a single precise value of p is not available it is customary to specify the same
as a triplet (p1, p2, p3) where p2 is the most likely value and (p1, p3) are the lower and
upper values of p such that p1 < p2 < p3. This approach is used in project management
studies to describe the activity durations and latter summarized into mean and SD using
beta distribution. Malcolm et al. (1959) and Clark (1962) used this approach to summarise
the activity durations in project management and to estimate the time to completion the
project. Books on Operations Research widely discuss this method (Taha, 2013).
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Applying this logic to (p1, p2, p3) we obtain p0 = (p1+4p2+p3)/6 as the mean preva-
lence. If we use this p0 in (2) we get a single value of n denoted by n0. Our new approach
is to evaluate n at each of the three values of the triplet and summarize them as a weighted
average to get a new crisp value.

We now use the method of triplet inputs to determine the sample size for estimating
the population prevalence. Here is another proposition.

We now use the method of triplet inputs to determine the sample size for estimating
the population prevalence. Here is another proposition.

Proposition-3: Let ni be the sample size when the anticipated prevalence is pi for i = 1,2,3.
Then E(ni) = k uivi

(ui+vi)2 and V(ni) = k2 (uivi)2

(ui+vi)4(1+ui+vi)2 where (ui, vi) denote the parameters
of the underlying beta distribution for i = 1,2,3 and k is the constant by design. Then the
new estimate of n will be

ncap =
3∑

i=1
wiE(ni ) (8)

where w i ≥ 0 and w1+w2+w3 = 1. We call this the triplet estimate of n and V (ncap ) =∑3
i=1 w2

i V (ni ). It also true that V (ncap ) ≤ V (ni ) for i = 1,2,3.

One way of assigning weights is to take w2 = 0.5 and w1 = w3 = 0.25 so that E (n2)
receives more weight than the other two because p2 is more likely valid than the other two
values of the triplet. Another set of weights is {1/6. 4/6, 1/6} corresponding to {w1, w2,
w3} which are the weights used in PERT calculations.

Vardhan and Sarma (2010) have used the triplet method in the context of ROC curve
analysis. Sarada et al. (2018); Vedururu et al. (2019) used this method in the context of
measuring the process capability index in quality control.Venkatesu et al. (2019) have applied
this method to redesign a control chart. In all these applications, it was found that the new
estimator has lower SE than the classical point estimator.

Instead of pre-defined fixed weights, an objective way is to define weights which reflect
the uncertainty in the specification of p (in terms of a triplet). We propose the following
weights.

Proposition-4: The weight wi for E(ni) will be the ordinate of the β(u,v) distribution at
pi for i = 1,2,3 and normalized to make the sum equal to unity.

This method allots weight as a function of pi and hence accounts for the anticipated
uncertainty in specifying p. We cannot determine the weights with PERT distribution, since
the density of vanishes at p2 and p3 (truncation limits) and hence ncap cannot be evaluated.
Hence the full beta distribution without truncation will be used. Here is an illustration.

Illustration-3

Let us take p1 = 0.25, p2 = 0.35, p3 = 0.5. From the intermediate results from Table-1
we see that the vector of means as (373, 380, 384) and the corresponding variance vector is
(4810.76, 4348.74, 4099.11). The vector of weights from beta distribution with corresponding
(ui, v i) becomes w = (1.5492, 1.6330, 1.6976). Dividing each weight by the sum of weights
and applying (8) gives ncap = 380 and V(ncap) = 1467.96 which smaller than the minimum
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of the three variances.

Table (2) shows some experimental results comparing ncap with the n obtainable when
we use only a single value p2 as the input in (2).

Table 2: Triplet estimate of n with arbitrary window around the middle.

p2 Triplet (p1, p2, p3) n2 (at p2) V(n2) ncap V (ncap)
0.25 (0.15, 0.25, 0.35) 373 4810.76 370 1682.01
0.35 (0.25, 0.35, 0. 50) 380 4348.74 380 1467.95
0.50 (0.30, 0.50, 0.65) 384 4099.11 381 1441.74
0.65 (0.45, 0.65, 0.75) 380 4348.74 380 1471.39
0.75 (0. 50, 0.70, 0.75) 377 4548.01 379 1489.95

Suppose we take fixed weights instead of deriving from beta density. We consider two
types of fixed weights and compare the resulting ncap and its variance.

Table 3: Triplet estimate of n under different schemes of weights.

Triplet (p1, p2, p3) w = {1/6, 4/6, 1/6} w = {1/3, 1/3, 1/3}
ncap V(ncap) ncap V(ncap)

(0.15, 0.25, 0.35) 373 2413.01 372 1634.11
(0.25, 0.35, 0. 50) 380 2180.27 379 1473.18
(0.30, 0.50, 0.65) 383 2068.96 381 1443.98
(0.45, 0.65, 0.75) 380 2181.03 379 1476.22
(0. 50, 0.70, 0.75) 378 2268.83 378 1495.32

4. Stepwise procedure

The following is a stepwise procedure to handle the calculations.

1. Obtain the anticipated prevalence as a triplet(p1,p2,p3) margin of error as d and level
of significance as α For each i = 1,2,3 calculate the following.

2. Transform each pi into as a point on triangular (0,1) distribution

3. Evaluate the trial values of mean and variance as µ1i and σ1i
2 respectively.

4. Identify a Beta distribution on (0,1) and estimate is parameters (ui, v i) Using µ1i and

σ1i
2 calculate E(ni) = k

uivi

(µi + νi)2 and V (ni) = k2 (uivi)2

(ui + vi)4 (1 + ui + vi)2 .

5. Find wi = yi∑3
i=1 yi

where yi denotes the ordinate of the Beta distribution corresponding
to pi

6. Evaluate ncap = ∑3
i=1 wiE(ni ) is the new triplet estimate of n and V (ncap ) =∑3

i=1 w2
i V (ni )
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5. Alternative way of summarising the triplet

The approach used to derive ncap may be called evaluate and summarize method
because we evaluate E(n) at each component of the triplet and then summarized them as a
weighted average. The variance of ncap was also obtained with this logic.

Alternatively, we may summarise the triplet and then evaluate as a single value from
which we can obtain E(n) and V(n) In this method we use p0 = (p1+4p2+p3)/6 basing on
the PERT weights.

Again with given p0 we again identify a triangular distribution with p0 at the peak
and obtain

E(Y ) = {1 + p0}
3 and V (Y ) = {p2

0 − p0 + 1}
18 (9)

With these values we can identify a beta distribution with parameters say (u0, v0) and
evaluate

E (T0) = u0v0

(u0 + v0)2 andV (T0) = (u0v0)2

(u0 + v0)4 (1 + u0 + v0)2 (10)

where T 0 denotes the quantity Y(1-Y) under this method. If we call this resulting n as n0
we get E(n0) = k E (T0) and V(n0) = k2 V (T0). Here is an illustration.

Illustration-4

Let us consider the triplet (0.25, 0.35, 0.50). We get p0 = 0.675, E(Y ) = 0.5583, V (Y ) =
0.0433, u0 = 2.6164, v0 = 2.0697. Using the k value from normal distribution with (1-α) =
0.95 and 5%margin of error (d), we get E(n0) = 379 and V(n0) = 4440.71. With different
triplets used in Illustration-3 we get the expected sample size and variance under this method
of ‘summarize and evaluate’ are shown in Table (4).

Table 4: Estimated sample size with a pre-summarized triplet.

Triplet (p1, p2, p3) n0 V(n0)
(0.15, 0.25, 0.35) 373 4810.76
(0.25, 0.35, 0. 50) 381 4321.43
(0.30, 0.50, 0.65) 384 4099.87
(0.45, 0.65, 0.75) 381 4295.74
(0. 50, 0.70, 0.75) 379 4440.71

We observe that sample size exhibits higher variance by this method when compared
with the method of evaluating three n values and summarizing them with beta density as
weights.

6. Conclusion

The problem of finding the minimum sample size to estimate a proportion is better
explained with a statistical model instead of simply evaluating the available formula with a
single anticipated value of the population proportion (p′). The triangular distribution plays
a key role in transforming the single p into random variable so that its mean and variance
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can be used to determine the parameters of the beta distribution, which has better shape
and properties than the triangular distribution. The uncertainty about p’ can be handled
by a beta distribution leading to a statistically summarised estimate of n. It also helps
in estimating the variance of n while the classical formula gives only single value. With
this logic we have proposed a new estimate of n basing on a triplet of input values for p
and summarised them as a weighted average. It is shown that the new estimate (ncap) has
smaller variance than the variance obtainable at each of the three p values. We have used
the weights from the density of beta distribution at the triplet values, so that they reflect
the baseline uncertainty in the inputs and normalized them. It is also established that this
method is more objective than using other methods of fixed weights, in terms of variance
of n. We conclude with the observation that sample size formula greatly depends on the
accuracy of the inputs given and the often found attitude among users, to adjust the inputs
until a comfortable number is reached should be avoided.
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