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Abstract

The scalar skew normal distribution introduced has been used to model asymmetric
types of data sets which are unimodal in nature. In order to provide more flexibility in
modelling, several classes of asymmetric normal distributions that can accomodate pluri-
modal data sets has been appeared. Throughout the present note, we provide a comparison
between asymmetric normal distributions based on certain stochastic orderings as well as
their tail behavior.
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1. Introduction

The normal distribution is the basis of many statistical works and it has a unique
position in statistical theory and applications. The importance of normality is that, many
of the distributions including sampling distributions can be approximated by normal dis-
tribution. Also, the distributions corresponding to most of the natural processes are either
normally distributed or can be approximated to normal, so it is an important tool for analyz-
ing all types of numerical data. But it is noticed that in many of the practical situations, the
data set exhibit a departure from normality, and consequently unrestricted usage of normal
distribution creates several types of errors. Even though to handle normal distribution is an
easy task, it is not an appropriate tool to handle the quantities which are near to normal
but skewed naturally.

Consequently, there has been an increased interest in constructing classes of distri-
butions that can account skewness. Azzalini (1985) initiated a methodology to introduce
skewness in normal distribution and termed this class of distributions as “the skew normal
distribution (SND)”. The SND has been further studied by Liseo (1990), Ball and Mankiw
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(1995), Azzalini and Dalla-Valle (1996), and several others. A detailed account of the SND is
available in the books due to Genton (2004) and Azzalini (2014). Following Azzalini (1985),
several generalizations came forward. For example, see Kim (2005), Sharafi and Behboodian
(2008), Jamalizadeh et al. (2008, 2009), Gupta et al. (2013)etc. These generalizations can be
mainly classified into three broad classes of asymmetric normal distributions those contains
the existing types of SND and some of their modified versions. In this direction, Kumar and
Anusree (2011, 2013, 2015) considered three classes of asymmetric normal distributions that
can accomodate plurimodality and skewness.

In many practical situations, the actuarial and financial data more often exhibits
asymmetrically distributed structures with extreme values resulting in tails which are heavier
than that of the normal and the tails turn out to behave differently. Tail behaviour of
scalar skew normal distribution has been studied in detail by Capitanio (2010),Xin et al.
(2013). Also, for the asymmetric normal distributions tail behavior and its properties has
not been deeply explored, in this context through the present note, we attempt to compare
these classes of distributions with their corresponding sub-classes based on some stochastic
ordering and nature of tail behavior. The paper is organized as follows. Section 2 contains
the description of various asymmetric normal distributions. In Section 3, stochastic ordering
of classes of distributions were discussed in detail and the tail behavior in practice of the
theoretical results is analyzed in Section 4 and in Section 5, a numerical discussion is carried
out.

2. The classes of skew normal distributions
Azzalini (1985) defined the SND as given below.

Definition 1: A random variable X is said to have SND with skewness parameter A € R =
(—00, 00) denoted by SND()), if its probability density function (p.d.f.) is of the following
form, for z € R.

g1(z; A) = 2f(z)F(Ax), (1)

where f(-) and F(-) are respectively the p.d.f. and cumulative distribution function
(c.d.f.) of a standard normal variate and this class of distribution owns the strict inclusion
of the normal distribution. The density is strongly unimodal and is not suitable for the
analysis of plurimodal situations. Buccianti (2005) remarked that normal and skew normal
models are not adequate for describing the situations of plurimodality. There are several such
phenomena which cannot be described by either the normal or the skew normal distributions.
In order to accommodate plurimodality, Kumar and Anusree (2011) developed a class of
asymmetric normal distribution as a modified version of the SN D()), namely “the modified
skew normal distribution (MSND)”. They developed the MSND as a generalized mixture of
standard normal and skew normal distributions, through the following p.d.f.,

g (@A, @) = f(@) [L+ aF(Ar)], (2)

o+ 2
in which A € R = (—00,00) and o > —1. In case of the SND()), for moderate values of A
nearly all the mass accumulates either on the positive side or on the negative side depending
on the sign of the parameter\. This can be accounted as one of the limitation of the SN D(\).
In such cases, SN D(\)closely resembles the half-normal density, with a nearly linear shape
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in the side with smaller mass. To partially mitigate such a limitation, Arellano-Valle et al.
(2004)introduced a family of asymmetric normal distributions which they termed as “the
skew generalized normal distribution (SGND)” that contains the SND as a special case and

it exhibits a better behavior, particularly at the sides with smaller mass. Arellano-Valle
et al. (2004) defined the SGND as given below.

Definition 2: A random variable Y is said to have SGND with parameters A\; € R =
(—00,00) and Ay > 0, if its p.d.f. takes the following form, for y € R.

.2 = 210 F (2 ) ®

Following SGND and SND, Kumar and Anusree (2015) proposed a model called “the
modified skew generalized normal distribution (MSGND)”, which is capable for describing
asymmetric as well as plurimodal situations. Kumar and Anusree (2015) defined the MSGND
through the p.d.f.

2" (Y; A1, Ao, ) = f(y)

a+2

Ay
l+aF [ —2Y )| 4
()] 2
in which a > =1, A\ € R = (—00,00) and Ay > 0. Another class of SND was due to Kim
(2005), which he defined as follows:

Definition 3: A random variable Z is said to have “two-piece skew normal distribution
(TPSND)” with parameter A, if its p.d.f. takes the following form, for z € R = (—o00, 00).

_ 27 fe)F(Az])

95(2;A) = [+ 2tan™! (\)] (5)

Note that the TPSND is found to be bimodal for all values of its parameters. The
TPSND has been further studied by authors such as Jamalizadeh et al. (2012), Salehi et al.
(2014). From a practical point of view, based on the sign of the shape parameter A, there
exists a symmetric behavior on either sides of the origin, which is a main drawback of the
TPSND. To overcome this limitation, Kumar and Anusree (2013) onsidered a modified class
of two-piece skew normal distribution, through the p.d.f. forz € R, A € R and p € [-1,1].

X Cf(z)F(\z), 2<0
93(z A, p) = { Cny%FE)\p)z), z<2 0, (6)

where C' = 27 [1 — tan™*(\) + tan—(pA)] . A distribution with p.d.f. (5) we denoted as
TPSND ()) and a distribution with p.d.f. (6) we denoted as MTPSND (A, p).
3. Stochastic ordering

Here, first we present the definition of likelihood ratio order relation

Definition 4: Let X and Y be two absolutely continuous random variables with p.d.f. ()
and g(.) respectively. Then X is said to be larger than Y on the basis of likelihood ratio

ordering, if % is non-decreasing, as X increases.
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Thus, for comparing different types of asymmetric normal distributions discussed in
this paper, here we obtain the following theorems.

Theorem 1: Let X; be a continuous random variable following the MSND with p.d.f.(2)
and U be a normal variate. Then X is larger than U on the basis of likelihood ratio ordering
if for all A > 0, F(Az1) < F(\u) .

Proof: Let X; follows MSND with p.d.f.(2) and gy (z) be the p.d.f. of U. Then by definition

4, the ratio
2

(a+2)f(z)
is non decreasing only if for x;<x
2f(z1)[1 + aF (Axq)] < 2f(z2)[1 + aF (Ax2)]

(a+2)f(z1) - (a+2)f(x2)
F(Ax1) < F(Axg), forall A>0.

f(@)[1 + aF(\x)]

O

Theorem 2: Let X; be a continuous random variable following the MSND with p.d.f.(2)
and X follows SND(X). Then X is said to be larger than X on the basis of likelihood ratio
ordering if F(Az) < F(Ax;) for all A > 0.

Proof: Let X follows MSND with p.d.f.(2) and gx(z) be the p.d.f. of X. Then by definition

4, the ratio % is non decreasing only if for z;<ws

2f(z1)[1 + aF (Axq)] < 2f(x9)[1 + aF (Axg)]
(a+2)2f(x)F (Axy) = (a+2)2f(xe)F (Ax2)
F(Axg) < F(Axy), forall A>0.

]

Theorem 3: Let Y; be a random variable following MSGND with parameters \; € R,
A >0 and a > —1 and U be a normal variate. Then Y] is said to be larger than U on

the basis of likelihood ratio ordering if for all Ay > 0,y > 0, F ()‘”’”) <F <’\1“>

\/ 1+HX2y? v/ 1+ Aou?
Proof: Y] follows MSGND with p.d.f. (4) and gU( ) be the p.d.f. of U. Then by definition
4, the ratio o +2)f(:v)[1 + aF( (1’\;;“ - ) ) is non decreasing only if for x;<xa,

2 oop( e N o2 [ e
(@+2) | J1+ a2 | T (a+2) 14 Aoa?
[ ATy ] 1o
1+ ol | ——— 1+ ol | ————
L (\/14-)\237%)_ (\/14-)\21‘%)

F<A1wl - F(W),foram1>0,A220-

V1+Xa?) 1+ Aoz}

IN
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]

Theorem 4: Let Y; be a random variable following MSGND with parameters \; € R,
Ay > 0and a > —1 and Y follows SGND(A, Ay). Then Y] is said to be larger than Y on the

. . . . . . > My < A1y1 )
basis of likelihood ratio ordering if for all A; > 0, Ay > 0, F (m> < F (\/m

Proof: Y] follows MSGND with p.d.f. (4) and gy (y) be the p.d.f. of Y. Then by definition
4, the ratio

whl ) [L+ar (2]
2/ ()P ()

is non-decreasing only if for z; < s,

2 Az 2 Nz
1+OJF(1—1>]< [1—|—04F( 172 >}
(a+2)F<\/>‘1—z_12) [ v/ 14+Xoz? - (a+2)F< Ao 2) v/ 14+Xoz2
1+>\2$1 /1+>\2:E2
1 1
at—r—o| < |a+
ZSEA _xg
F( ). P ()

Ia )\11’2 F )\1331
\/l—l—)\g.’L‘% B \/1+)\2$% 7

AN

for all AL > 0, Ay > 0.
O

Theorem 5: Let Y; be a random variable following MSGND with parameters \; € R,
Ao > 0 and o« > —1 and X; follows MSND (A, «). Then Y; is said to be larger than X; on
the basis of likelihood ratio ordering if A(x1,y:1) < B(x1,y1) where

_ A1y1 2 A1y1
A(z1,11) = aF (A\x1) + oF (\/m> +a’F <m> F (Az1) and

Bly1,21) = aF () + oF (ﬁ) +?F (\/AHT) F ()

Proof: Y, follows MSGND with p.d.f. (4) and gx, (z) be the p.d.f. of X;. Then by definition
4, the ratio

a0 [1+aF ()
2f(x)F(\x)

is non-decreasing only if for x7 < 9,

Az 2f(xzq) Az
1+aF< 171 >:| 3 14aF | —2122
\/1+)\21% (o+2) \/ 1+)\2z2
= < 2
2f(x — 2f(x
(i(+21)) [1+aF(Az1)] (ig_;)) [14aF(Az2)]

2f(=1)
(a+2)
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[1 +aF <A)] 1+ aF (Azy)] < {1 +aF (*)} [+ aF (A1)

\/m v/ 14+A222
M 2p (—um A2
W2 F (ﬁ) F (\z1) holds for all A\, > 0,3 > 0,a > —1, and A > 0. O
2T5

Theorem 6: Let Z; be a random variable following MTPSND with parameters A € R,
p € [—1,1], and U be a normal variate. Then Z; is said to be larger than U on the basis of
likelihood ratio ordering if for A > 0 and pe[0, 1].

F(Az) <F(Au),z <0,u<0
F(pAz1) < F(pAu),z > 0,u >0

Proof: 7, follows MTPSND with p.d.f. (6) and gy(x) be the p.d.f. of U. Then by definition

4, the ratio
Cf(x)F(A\x)
o T < 0
Cf(a:f)(i%w\x) L > 0

is decreasing only if for z;<wo

{ cf(@1) F(Az1) cf (w2) F(Az2)

(w2 , X1 < O, Ty < 0, r1 < To

Cf(rzf)(};fgx\wz)’ T, > O, To > O, 1 < Ty

f(z1)
cf (z1) F'(pAz1)
f(z1)

VARVAN

F()\ZL’l) < F()\IL’Q), T < O, To < 0, T < T9
F(pAx1) < F(pAza), x1 >0, 23>0, 21 < 29
for all A > 0 and p € [0, 1].
[

Theorem 7: Let Z; be a random variable following MTPSND with parameters A € R,
p € [—1,1], and Z follows TPSND (\). Then Z; is said to be larger than Z on the basis of
likelihood ratio ordering if for any A > 0 and p € [0, 1],

F()\Zl) < F()\Z),Zl < O,Z <0
F(pAz1) < F(pAz),z1 > 0,u <0

Proof: Z; follows MTPSND with p.d.f. (6) and gz(z) be the p.d.f. of Z. Then by definition
4, for x1 < x5 the ratio

f(z1) = fng)
Cf)F(pAr1)  Cf(x2)F(pAz2)

f(z1) - f(z2)

{ Cf@)FQz1) - Cf(z2)F(Az2)

F(Axy) < F(Axg), 11 <0, 29 < 0,77 < 29
F(pAzy) < F(pAxs), ©1 >0, 23> 0,21 < 29

for any A > 0 and p € [0, 1]. O
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4. Tail behavior of the distribution
Tail behaviors are discussed with reference to Tse (2009).

Definition 5: Let X and Y be two absolutely continuous random variables with probability
density functions f(x) and g(x) respectively. Then, the tail behavior of the two distributions
can be considered as the limiting ratio of their densities. That is, tail of the numerator
density will be thinner (or thicker) than the denominator density as the ratio approaches to
zero (or infinity).

Now we obtain the following theorem’s, which are helpful for the comparison of dif-
ferent types of asymmetric normal distribution based on the nature of their tail behaviour.
Theorem 8: Let X follows SND(A) with p.d.f (1) and X follows MSND (A, ) with p.d.f.
(2). Then X has thinner tail than that of X, when oo — —1 and X # 0.

Proof: The limiting ratios of the densities of the variables X; and X is given by

oxi(@) 1 =2 f@)I+aP(w)
Jim "0y = I e row

o [Lrar0w)]
o004 2)F(Ax)
1 +a
g JorA# 0 (7)
Thus, the right hand side expression of (7) tends to zero only when o — —1. O]

Theorem 9: Let Y follows MSGND (A1, A2, ) with p.d.f. (4) and Y follows SGND (A, \2)
with p.d.f. (3). Then (i) Y; has thinner tail than that of Y if « — —1, Ay — o0 or
a — —1, Ay — 0 and (ii) Y; has thicker tail than that of Y if « — —1 and A\ — —o0 or
a— 0and \y — —o0.

Proof: Case (i): The limiting ratios of the densities of the variables Y; and Y can be written

as
oo ()
lim by, (x) _ lim w2 “ 1+Aga?
T—00 hY( ) T—00 Az

2f(x)F

14+Apz2

AT
14+ aF Tr,\ﬂ?)

,as a — —1

(a+2)F (
)

(1+>\295
()

(1+>\2:t)

— 0, as Ay —
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Thus, Y is thinner than that of Y if @« — —1 and A\ — oo.
In a similar way;,

Al
14+aF A
lim @) _ <v <1“2”2>

z=300 hy (z) (a+2)F< Az )

v/ (1+2r222)
=2 450y =0

(a+2)”

—0, asa — —1
Thus, Y is thinner than that of Y if « — —1 and Ay — 0.

[Vol. 23, No. 2

Case (ii): The limiting ratios of the densities of the variables Y; and Y can be written as

iz f(@) 1+aF<“””
lim 2@ — i - /142922
=

z300 hy (% T—00 2f () F Az )

A/ 1+rg22

% -V @@= 7
F Az
(\/ (1+)\212))
— 00, as A\{ — —00
Thus, Y, is thicker than that of Y if « — —1 and \; — —o0.
Similarly

s f ()

1+aF( A2
. h )
lim ™M@ — im

A/ 1+ xgz2

z—00 hy (2) T—r00 2f(z)F( Az >

-1 asa—0
2F( Az )

A/ (142g22)

— 00, aS A\] — —00
Thus, Y is thicker than that of Y if « — 0 and Ay — —o0.

]

Theorem 10: Let Z; follows MTPSND (A, p) with p.d.f.(6) and Z follows TPSND (\)
with p.d.f.(5). Then Z; is thinner than Z if p — 1 and A\ — —oo and is thicker than Z if

p— —land N - —.

Proof: The limiting ratios of the densities of the variables Z; and Z can be written in the
following way, in which C' = 27[r + 2tan~!(\)]"'and Cy = 277 — tan~*(\) + tan~1(pA)] '

92,() _ i Cof(@)F(pha)

z—00 Cf(x)F(\r)

A
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_ 7+ 2tan~1(\)
7 —tan"'(A) 4+ tan"' (p))

—0,asp—>1land A - —o0

Thus, Z; is thinner than Z if p — 1 and A\ — —o0. Also,

i 94 () 7+ 2tan~1(\)
v=o0 gy (z) 7 —tan"'(A) + tan"'(p))

— 00, asp——1land A — o0
Thus, Z; is thicker than Z if p — —1 and A — oo. O

Theorem 11: Let X; follows MSND (\, ) with p.d.f. (2) and Y follows MSGND (A1, Ag, @)
with p.d.f.(4). Then X is thinner than Y; when oo — —1.

Proof: The limiting ratios of the densities of the variables X; and Y is given by

25 f(@)[1+aF ()]

lim 9, (@) _ lim
T—00 hY1 (z) T—00 Lf(:):) LtaF A\
otz A/ 1+)\212
B 1+ aF(\x)
Az
1+ af <—1+/\2m22)
— 0,
when o« — —1. Thus, X is thinner than Y for  — —1. O

Theorem 12: Let X follows MSND (A, «) with p.d.f.(2) and Z; follows MTPSND (A, p)
with p.d.f.(6). Then X is thinner than Z; either if « -0 or a — —1 and p — —1.

Proof: The limiting ratios of the densities of the variables X; and Z; is

g @ g 2 f@)taF ()]
Jim e = M e F o)

_[m —tan™!(X) + tan~"(pA)]
B (o +2)

— 0,

when a — 0 ora — —1 and p — —1. Thus, then X, is thinner than Z; when « — 0 ora —
—land p — —1. O]

Theorem 13: Let Y follows MSGND (A1, Ay, &) with p.d.f.(4) and Z; follows MTPSND
(A, p) with p.d.f.(6). Then Y, is thinner than Z; if for A\; — oo either « — —1, p — 1 or
a——1, p— —1.
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Proof: The limiting ratios of the densities hy, (z) and kz, (z) of the variables Y and Z; is

2_f(z)|1+aF (Alz >:|

a+2 22
lim ™M@ _ iy Vi
zoookz, (z T—00 Cf(z)F(pAz)

[ — tan~"(A) + tan~"(p)\)] {1 +aF (

AT

RV 1—‘,—)\2:22

)

(o + 2)F(pAx)

1+aF S
\/ 1+/\2x2

(a+2)F(Ax)

[71'72 tan~1! ()\)] |:1+aF

,asp — 1

Az
A/ 1+Ag22

w(a+2)F(—\z)

—0,asa — —1, \y > o0

,asp — —1

Thus, Y7 is thinner than 7 if for Ay — oo either aa —» —1, p > lora — —1, p— —1. 0O

5. Numerical discussion

The tail behaviour is influenced by its skewness parameter where one tail becomes
heavier relative to the other depending shape parameter. It is very crucial in the study of
rare events, risk assessment, risk management and insurance. Here for numerical illustration
we have compared various distributions based on their Hill estimator value for particular
values of its parameters and is shown in Table 1. In a similar manner, one can compare
heavier tails using this method this value will typically be close to zero, indicating light tails
or tail is not heavy. Also, the tail behaviour of classes of distribution for various simulated
values of its parameter are obtained is as shown in Table 2.

Table 1: Simulated Hill Estimator values for SND and MSND, MSGND and
SGND, MTPSND and TPSND, MSND and MTPSND, MSGND and MTPSND
for particular values of (o =0.5,A = 0.5,p,A\; = 0.2 and Ay = 0.4)

Distributions | Hill Estimator
MSND 0.0045
MSGND 0.002
SGND 0.0048
MTPSND 0.0098
TPSND 0.56
MSND 0.432
MTPSND 0.0029
MSGND 0.395
MTPSND 0.23
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Table 2: Ratio of the densities and its behaviour for various values of its param-
eters

Distributions Ratio Behaviour
SND(0.5), MSND(0.5,-1) 0 0 0 0 Xj, X are Comparable
SND(0.5), MSND(0.5,0.55) 0.7828275 | 0.6817935 | 0.6359176 | 0.6169725 | X; thinner, X thicker
SND(0.5), MSND(0.5,0.65) 0.7910227 | 0.6938013 | 0.6496566 | 0.6314263 | X; thinner, X thicker
SND(0.5), MSND(0.5,0.75) 0.7986219 | 0.7049358 | 0.6623963 | 0.6448290 | X; thinner, X thicker
SND(0.5), MSND(0.5,0.85) 0.8056878 | 0.7152889 | 0.6742421 | 0.6572911 | X; thinner, X thicker
MSGND(0.5,0.6,-1), SGND(0.5,0.6) 0 0 0 0 Y1, Y are Comparable

MSGND(0.5,0.6,0.55), SGND(0.5,0.6) | 0.8156047 | 0.7709895 | 0.7577999 | 0.7525272 | Y, thinner, Y thicker
MSGND(0.5,0.6,0.65), SGND(0.5,0.6) | 0.8225630 | 0.7796314 | 0.7669395 | 0.7618658 | Y thinner, Y thicker
MSGND(0.5,0.6,0.75), SGND(0.5,0.6) 0.8290153 | 0.7876448 | 0.7754144 | 0.7705253 | Y thinner, Y thicker
MSGND(0.5,0.6,0.85), SGND(0.5,0.6) | 0.8350148 | 0.7950959 | 0.7832946 | 0.7785770 | Y, thinner, Y thicker
MSGND(0.5,0.6,-1), MSND(0.5,alpha) 0 0 0 0 X1, Y 1 are Comparable
MSGND(0.5,0.6,0.55), MSND(0.5,alpha) | 0.8350148 | 0.7950959 | 0.7832946 | 0.7785770 | X; thinner, Y; thicker
MSGND(0.5,0.6,0.65), MSND(0.5,alpha) | 0.8250121 | 0.7930089 | 0.7832946 | 0.7685571 | X, thinner, Y, thicker
MSGND(0.5,0.6,0.75), MSND(0.5,alpha) | 0.8250248 | 0.7940959 | 0.7852546 | 0.7685670 | X; thinner, Y; thicker
MSGND(0.5,0.6,0.85), MSND(0.5,alpha) | 0.8250314 | 0.7850959 | 0.7732946 | 0.7589670 | X; thinner, Y; thicker
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