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Abstract
The scalar skew normal distribution introduced has been used to model asymmetric

types of data sets which are unimodal in nature. In order to provide more flexibility in
modelling, several classes of asymmetric normal distributions that can accomodate pluri-
modal data sets has been appeared. Throughout the present note, we provide a comparison
between asymmetric normal distributions based on certain stochastic orderings as well as
their tail behavior.
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1. Introduction

The normal distribution is the basis of many statistical works and it has a unique
position in statistical theory and applications. The importance of normality is that, many
of the distributions including sampling distributions can be approximated by normal dis-
tribution. Also, the distributions corresponding to most of the natural processes are either
normally distributed or can be approximated to normal, so it is an important tool for analyz-
ing all types of numerical data. But it is noticed that in many of the practical situations, the
data set exhibit a departure from normality, and consequently unrestricted usage of normal
distribution creates several types of errors. Even though to handle normal distribution is an
easy task, it is not an appropriate tool to handle the quantities which are near to normal
but skewed naturally.

Consequently, there has been an increased interest in constructing classes of distri-
butions that can account skewness. Azzalini (1985) initiated a methodology to introduce
skewness in normal distribution and termed this class of distributions as “the skew normal
distribution (SND)”. The SND has been further studied by Liseo (1990), Ball and Mankiw
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(1995), Azzalini and Dalla-Valle (1996), and several others. A detailed account of the SND is
available in the books due to Genton (2004) and Azzalini (2014). Following Azzalini (1985),
several generalizations came forward. For example, see Kim (2005), Sharafi and Behboodian
(2008), Jamalizadeh et al. (2008, 2009), Gupta et al. (2013)etc. These generalizations can be
mainly classified into three broad classes of asymmetric normal distributions those contains
the existing types of SND and some of their modified versions. In this direction, Kumar and
Anusree (2011, 2013, 2015) considered three classes of asymmetric normal distributions that
can accomodate plurimodality and skewness.

In many practical situations, the actuarial and financial data more often exhibits
asymmetrically distributed structures with extreme values resulting in tails which are heavier
than that of the normal and the tails turn out to behave differently. Tail behaviour of
scalar skew normal distribution has been studied in detail by Capitanio (2010),Xin et al.
(2013). Also, for the asymmetric normal distributions tail behavior and its properties has
not been deeply explored, in this context through the present note, we attempt to compare
these classes of distributions with their corresponding sub-classes based on some stochastic
ordering and nature of tail behavior. The paper is organized as follows. Section 2 contains
the description of various asymmetric normal distributions. In Section 3, stochastic ordering
of classes of distributions were discussed in detail and the tail behavior in practice of the
theoretical results is analyzed in Section 4 and in Section 5, a numerical discussion is carried
out.

2. The classes of skew normal distributions

Azzalini (1985) defined the SND as given below.

Definition 1: A random variable X is said to have SND with skewness parameter λ ∈ R =
(−∞, ∞) denoted by SND(λ), if its probability density function (p.d.f.) is of the following
form, for x ∈ R.

g1(x; λ) = 2f(x)F (λx), (1)

where f(·) and F (·) are respectively the p.d.f. and cumulative distribution function
(c.d.f.) of a standard normal variate and this class of distribution owns the strict inclusion
of the normal distribution. The density is strongly unimodal and is not suitable for the
analysis of plurimodal situations. Buccianti (2005) remarked that normal and skew normal
models are not adequate for describing the situations of plurimodality. There are several such
phenomena which cannot be described by either the normal or the skew normal distributions.
In order to accommodate plurimodality, Kumar and Anusree (2011) developed a class of
asymmetric normal distribution as a modified version of the SND(λ), namely “the modified
skew normal distribution (MSND)”. They developed the MSND as a generalized mixture of
standard normal and skew normal distributions, through the following p.d.f.,

g1
∗(x; λ, α) = 2

α + 2f(x) [1 + αF (λx)] , (2)

in which λ ∈ R = (−∞, ∞) and α ≥ −1. In case of the SND(λ), for moderate values of λ
nearly all the mass accumulates either on the positive side or on the negative side depending
on the sign of the parameterλ. This can be accounted as one of the limitation of the SND(λ).
In such cases, SND(λ)closely resembles the half-normal density, with a nearly linear shape
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in the side with smaller mass. To partially mitigate such a limitation, Arellano-Valle et al.
(2004)introduced a family of asymmetric normal distributions which they termed as “the
skew generalized normal distribution (SGND)” that contains the SND as a special case and
it exhibits a better behavior, particularly at the sides with smaller mass. Arellano-Valle
et al. (2004) defined the SGND as given below.

Definition 2: A random variable Y is said to have SGND with parameters λ1 ∈ R =
(−∞, ∞) and λ2 ≥ 0, if its p.d.f. takes the following form, for y ∈ R.

g2(y; λ1, λ2) = 2f(y)F
(

λ1y√
1 + λ2y2

)
(3)

Following SGND and SND, Kumar and Anusree (2015) proposed a model called “the
modified skew generalized normal distribution (MSGND)”, which is capable for describing
asymmetric as well as plurimodal situations. Kumar and Anusree (2015) defined the MSGND
through the p.d.f.

g2
∗(y; λ1, λ2, α) = 2

α + 2f(y)
[
1 + αF

(
λ1y√

1 + λ2y2

)]
, (4)

in which α ≥ −1, λ1 ∈ R = (−∞, ∞) and λ2 ≥ 0. Another class of SND was due to Kim
(2005), which he defined as follows:

Definition 3: A random variable Z is said to have “two-piece skew normal distribution
(TPSND)” with parameter λ, if its p.d.f. takes the following form, for z ∈ R = (−∞, ∞).

g3(z; λ) = 2π f(x)F (λ|z|)
[π + 2tan−1 (λ)] (5)

Note that the TPSND is found to be bimodal for all values of its parameters. The
TPSND has been further studied by authors such as Jamalizadeh et al. (2012), Salehi et al.
(2014). From a practical point of view, based on the sign of the shape parameter λ, there
exists a symmetric behavior on either sides of the origin, which is a main drawback of the
TPSND. To overcome this limitation, Kumar and Anusree (2013) onsidered a modified class
of two-piece skew normal distribution, through the p.d.f. forz ∈ R, λ ∈ R and ρ ∈ [−1, 1].

g∗
3(z; λ, ρ) =

{
Cf(z)F (λz), z < 0
Cf(y)F (λρz), z ≥ 0,

(6)

where C = 2π [π − tan−1(λ) + tan−1(ρλ)]−1. A distribution with p.d.f. (5) we denoted as
TPSND (λ) and a distribution with p.d.f. (6) we denoted as MTPSND (λ, ρ).

3. Stochastic ordering

Here, first we present the definition of likelihood ratio order relation

Definition 4: Let X and Y be two absolutely continuous random variables with p.d.f. f(.)
and g(.) respectively. Then X is said to be larger than Y on the basis of likelihood ratio
ordering, if f(x)

g(x) is non-decreasing, as x increases.
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Thus, for comparing different types of asymmetric normal distributions discussed in
this paper, here we obtain the following theorems.

Theorem 1: Let X1 be a continuous random variable following the MSND with p.d.f.(2)
and U be a normal variate. Then X1 is larger than U on the basis of likelihood ratio ordering
if for all λ > 0, F (λx1) ≤ F (λu) .

Proof: Let X1 follows MSND with p.d.f.(2) and gU(x) be the p.d.f. of U. Then by definition
4, the ratio

2
(α + 2)f(x)f(x)[1 + αF (λx)]

is non decreasing only if for x1<x2

2f(x1)[1 + αF (λx1)]
(α + 2)f(x1)

≤ 2f(x2)[1 + αF (λx2)]
(α + 2)f(x2)

F (λx1) ≤ F (λx2) , for all λ > 0.

Theorem 2: Let X1 be a continuous random variable following the MSND with p.d.f.(2)
and X follows SND(λ). Then X1 is said to be larger than X on the basis of likelihood ratio
ordering if F (λx) ≤ F (λx1) for all λ > 0.

Proof: Let X1 follows MSND with p.d.f.(2) and gX(x) be the p.d.f. of X. Then by definition
4, the ratio [1+αF (λx)]

(α+2)F (λx) is non decreasing only if for x1<x2

2f(x1)[1 + αF (λx1)]
(α + 2)2f(x1)F (λx1)

≤ 2f(x2)[1 + αF (λx2)]
(α + 2)2f(x2)F (λx2)

F (λx2) ≤ F (λx1) , for all λ > 0.

Theorem 3: Let Y1 be a random variable following MSGND with parameters λ1 ∈ R,
λ2 ≥ 0 and α ≥ −1 and U be a normal variate. Then Y1 is said to be larger than U on
the basis of likelihood ratio ordering if for all λ1 > 0, λ2 ≥ 0, F

(
λ1y1√
1+λ2y2

1

)
≤ F

(
λ1u√

1+λ2u2

)
.

Proof: Y1 follows MSGND with p.d.f. (4) and gU(x) be the p.d.f. of U. Then by definition
4, the ratio 2

(α+2)f(x)[1 + αF
(

λ1x√
(1+λ2x2)

)
]/f(x) is non decreasing only if for x1<x2,

2
(α + 2)

1 + αF

 λ1x1√
1 + λ2x2

1

 ≤ 2
(α + 2))

1 + αF

 λ1x2√
1 + λ2x2

2


1 + αF

 λ1x1√
1 + λ2x2

1

 ≤

1 + αF

 λ1x2√
1 + λ2x2

2


F

 λ1x1√
1 + λ2x2

1

 ≤ F

 λ1x2√
1 + λ2x2

2

 , for all λ1 > 0, λ2 ≥ 0.
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Theorem 4: Let Y1 be a random variable following MSGND with parameters λ1 ∈ R,
λ2 ≥ 0 and α ≥ −1 and Y follows SGND(λ1, λ2). Then Y1 is said to be larger than Y on the
basis of likelihood ratio ordering if for all λ1 > 0, λ2 ≥ 0, F

(
λ1y√

1+λ2y2

)
≤ F

(
λ1y1√
1+λ2y2

1

)

Proof: Y1 follows MSGND with p.d.f. (4) and gY (y) be the p.d.f. of Y . Then by definition
4, the ratio

2
(α+2)f(y1)

[
1 + αF

(
λ1y1√
1+λ2y2

1

)]
2f(y)F

(
λ1y√

1+λ2y2

)
is non-decreasing only if for x1 < x2,

2

(α+2)F
(

λ1x1√
1+λ2x2

1

) [1 + αF
(

λ1x1√
1+λ2x2

1

)]
≤ 2

(α+2)F
(

λ1x2√
1+λ2x2

2

) [1 + αF
(

λ1x2√
1+λ2x2

2

)]
α + 1

F
(

λ1x1√
1+λ2x2

1

)
 ≤

α + 1

F
(

λ1x2√
1+λ2x2

2

)


F

 λ1x2√
1 + λ2x2

2

 ≤ F

 λ1x1√
1 + λ2x2

1

 ,

for all λ1 > 0, λ2 ≥ 0.

Theorem 5: Let Y1 be a random variable following MSGND with parameters λ1 ∈ R,
λ2 ≥ 0 and α ≥ −1 and X1 follows MSND (λ , α). Then Y1 is said to be larger than X1 on
the basis of likelihood ratio ordering if A(x1, y1) ≤ B(x1, y1) where

A(x1, y1) = αF (λx1) + αF
(

λ1y1√
1+λ2y2

1

)
+ α2F

(
λ1y1√
1+λ2y2

1

)
F (λx1) and

B(y1, x1) = αF (λy1) + αF
(

λ1x1√
1+λ2x2

1

)
+ α2F

(
λ1x1√
1+λ2x2

1

)
F (λx1)

Proof: Y 1 follows MSGND with p.d.f. (4) and gX1(x) be the p.d.f. of X1. Then by definition
4, the ratio

2
(α+2)f(x)

[
1 + αF

(
λ1x√

1+λ2x2

)]
2f(x)F (λx)

is non-decreasing only if for x1 < x2,

2f(x1)
(α+2)

[
1+αF

(
λ1x1√
1+λ2x2

1

)]
2f(x1)
(α+2) [1+αF (λx1)]

≤
2f(x2)
(α+2)

[
1+αF

(
λ1x2√
1+λ2x2

2

)]
2f(x2)
(α+2) [1+αF (λx2)]
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[
1 + αF

(
λ1x1√
1+λ2x2

1

)]
[1 + αF (λx2)] ≤

[
1 + αF

(
λ1x2√
1+λ2x2

2

)]
[1 + αF (λx1)]

αF (λx2) + αF
(

λ1x1√
1+λ2x2

1

)
+ α2F

(
λ1x1√
1+λ2x2

1

)
F (λx2) ≤ αF (λx1) + αF

(
λ1x2√
1+λ2x2

2

)
+

α2F
(

λ1x2√
1+λ2x2

2

)
F (λx1) holds for all λ1 ≥ 0, λ2 ≥ 0, α ≥ −1, and λ ≥ 0.

Theorem 6: Let Z1 be a random variable following MTPSND with parameters λ ∈ R,
ρ ∈ [−1, 1], and U be a normal variate. Then Z1 is said to be larger than U on the basis of
likelihood ratio ordering if for λ ≥ 0 and ρϵ[0, 1].{

F (λz1) ≤ F (λu) , z1 < 0, u < 0
F (ρλz1) ≤ F (ρλu) , z1 > 0, u > 0

Proof: Z1 follows MTPSND with p.d.f. (6) and gU(x) be the p.d.f. of U. Then by definition
4, the ratio 

Cf(x)F (λx)
f(x) , x < 0

Cf(x)F (ρλx)
f(x) , x ≥ 0

is decreasing only if for x1<x2
cf(x1)F (λx1)

f(x1) ≤ cf(x2)F (λx2)
f(x2) , x1 < 0, x2 < 0, x1 < x2

cf(x1)F (ρλx1)
f(x1) ≤ cf(x2)F (ρλx2)

f(x2) , x1 > 0, x2 > 0, x1 < x2

{
F (λx1) ≤ F (λx2) , x1 < 0, x2 < 0, x1 < x2

F (ρλx1) ≤ F (ρλx2) , x1 > 0, x2 > 0, x1 < x2

for all λ ≥ 0 and ρ ∈ [0, 1].

Theorem 7: Let Z1 be a random variable following MTPSND with parameters λ ∈ R,
ρ ∈ [−1, 1], and Z follows TPSND (λ). Then Z1 is said to be larger than Z on the basis of
likelihood ratio ordering if for any λ ≥ 0 and ρ ∈ [0, 1],{

F (λz1) ≤ F (λz), z1 < 0, z < 0
F (ρλz1) ≤ F (ρλz), z1 > 0, u < 0

Proof: Z1 follows MTPSND with p.d.f. (6) and gZ(x) be the p.d.f. of Z. Then by definition
4, for x1 < x2 the ratio 

Cf(x1)F (λx1)
f(x1) ≤ Cf(x2)F (λx2)

f(x2)
Cf(x1)F (ρλx1)

f(x1) ≤ Cf(x2)F (ρλx2)
f(x2){

F (λx1) ≤ F (λx2), x1 < 0, x2 < 0, x1 < x2
F (ρλx1) ≤ F (ρλx2), x1 > 0, x2 > 0, x1 < x2

for any λ ≥ 0 and ρ ∈ [0, 1].
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4. Tail behavior of the distribution

Tail behaviors are discussed with reference to Tse (2009).

Definition 5: Let X and Y be two absolutely continuous random variables with probability
density functions f(x) and g(x) respectively. Then, the tail behavior of the two distributions
can be considered as the limiting ratio of their densities. That is, tail of the numerator
density will be thinner (or thicker) than the denominator density as the ratio approaches to
zero (or infinity).

Now we obtain the following theorem’s, which are helpful for the comparison of dif-
ferent types of asymmetric normal distribution based on the nature of their tail behaviour.

Theorem 8: Let X follows SND(λ) with p.d.f (1) and X1 follows MSND (λ, α) with p.d.f.
(2). Then X1 has thinner tail than that of X, when α → −1 and λ ̸= 0.

Proof: The limiting ratios of the densities of the variables X1 and X is given by

lim
x→∞

gX1 (x)
gX(x) = lim

x→∞

2
α+2 f(x)[1+αF (λx)]

2f(x)F (λx)

= lim
x→∞

[1 + αF (λx)]
(α + 2)F (λx)

= 1 + α

2 + α
, forλ ̸= 0 (7)

Thus, the right hand side expression of (7) tends to zero only when α → −1.

Theorem 9: Let Y 1 follows MSGND (λ1, λ2, α) with p.d.f. (4) and Y follows SGND (λ1, λ2)
with p.d.f. (3). Then (i) Y1 has thinner tail than that of Y if α → −1, λ1 → ∞ or
α → −1, λ2 → 0 and (ii) Y1 has thicker tail than that of Y if α → −1 and λ1 → −∞ or
α → 0 and λ1 → −∞.

Proof: Case (i): The limiting ratios of the densities of the variables Y 1 and Y can be written
as

lim
x→∞

hY1 (x)
hY (x) = lim

x→∞

2
α+2 f(x)

[
1+αF

(
λ1x√

1+λ2x2

)]
2f(x)F

(
λ1x√

1+λ2x2

)

=
1 + αF

(
λ1x√

1+λ2x2

)
(α + 2)F

(
λ1√
λ2

)

→
F

(
−λ1x√
(1+λ2x2

)
F

(
λ1x√

(1+λ2x2)

) , as α → −1

→ 0, as λ1 → ∞
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Thus, Y 1 is thinner than that of Y if α → −1 and λ1 → ∞.
In a similar way,

lim
x→∞

hY1 (x)
hY (x) =

1+αF

(
λ1x√

(1+λ2x2

)
(α+2)F

(
λ1x√

(1+λ2x2)

)
= 1+α

(α+2) , asλ2 → 0

→ 0, as α → −1
Thus, Y 1 is thinner than that of Y if α → −1 and λ2 → 0.
Case (ii): The limiting ratios of the densities of the variables Y 1 and Y can be written as

lim
x→∞

hY1 (x)
hY (x) = lim

x→∞

2
α+2 f(x)

[
1+αF

(
λ1x√

1+λ2x2

)]
2f(x)F

(
λ1x√

1+λ2x2

)

=
1 + αF

(
λ1x√

(1+λ2x2)

)
(α + 2)F

(
λ1x√

(1+λ2x2)

)

→
F

(
−λ1x√
(1+λ2x2

)
F

(
λ1x√

(1+λ2x2)

) , as α → −1

→ ∞, as λ1 → −∞
Thus, Y 1 is thicker than that of Y if α → −1 and λ1 → −∞.
Similarly

lim
x→∞

hY1 (x)
hY (x) = lim

x→∞

2
α+2 f(x)

[
1+αF

(
λ1x√

1+λ2x2

)]
2f(x)F

(
λ1x√

1+λ2x2

)

→ 1

2F

(
λ1x√

(1+λ2x2)

) , as α → 0

→ ∞, as λ1 → −∞
Thus, Y 1 is thicker than that of Y if α → 0 and λ1 → −∞.

Theorem 10: Let Z1 follows MTPSND (λ, ρ) with p.d.f.(6) and Z follows TPSND (λ)
with p.d.f.(5). Then Z1 is thinner than Z if ρ → 1 and λ → −∞ and is thicker than Z if
ρ → −1 and λ → −∞.

Proof: The limiting ratios of the densities of the variables Z1 and Z can be written in the
following way, in which C = 2π[π + 2 tan−1(λ)]−1and C0 = 2π[π − tan−1(λ) + tan−1(ρλ)]−1.

lim
x→∞

gZ1 (x)
gZ(x) = lim

x→∞
C0f(x)F (ρλx)
Cf(x)F (λx)
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= π + 2 tan−1(λ)
π − tan−1(λ) + tan−1(ρλ)

→ 0 , as ρ → 1 and λ → −∞

Thus, Z1 is thinner than Z if ρ → 1 and λ → −∞. Also,

lim
x→∞

gZ1(x)
gZ(x) = π + 2 tan−1(λ)

π − tan−1(λ) + tan−1(ρλ)

→ ∞ , as ρ → −1 and λ → ∞

Thus, Z1 is thicker than Z if ρ → −1 and λ → ∞.

Theorem 11: Let X1 follows MSND (λ, α) with p.d.f. (2) and Y 1 follows MSGND (λ1, λ2, α)
with p.d.f.(4). Then X1 is thinner than Y 1 when α → −1.

Proof: The limiting ratios of the densities of the variables X1 and Y 1 is given by

lim
x→∞

gX1 (x)
hY1 (x) = lim

x→∞

2
α+2 f(x)[1+αF (λx)]

2
α+2 f(x)

[
1+αF

(
λ1x√

1+λ2x2

)]

= 1 + αF (λx)

1 + αF
(

λ1x√
1+λ2x22

)
→ 0,

when α → −1. Thus, X1 is thinner than Y 1 for α → −1 .

Theorem 12: Let X1 follows MSND (λ, α) with p.d.f.(2) and Z1 follows MTPSND (λ, ρ)
with p.d.f.(6). Then X1 is thinner than Z1 either if α → 0 or α → −1 and ρ → −1.

Proof: The limiting ratios of the densities of the variables X1 and Z1 is

lim
x→∞

gX1 (x)
gZ1 (x) = lim

x→∞

2
α+2 f(x)[1+αF (λx)]

Cf(x)F (ρλx)

= [π − tan−1(λ) + tan−1(ρλ)]
π(α + 2)
→ 0,

when α → 0 orα → −1 and ρ → −1. Thus, then X1 is thinner than Z1 when α → 0 orα →
−1 and ρ → −1.

Theorem 13: Let Y 1 follows MSGND (λ1, λ2, α) with p.d.f.(4) and Z1 follows MTPSND
(λ, ρ) with p.d.f.(6). Then Y1 is thinner than Z1 if for λ1 → ∞ either α → −1, ρ → 1 or
α → −1, ρ → −1.
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Proof: The limiting ratios of the densities hY1(x) and kZ1(x) of the variables Y 1and Z1 is

lim
x→∞

hY1 (x)
kZ1 (x) = lim

x→∞

2
α+2 f(x)

[
1+αF

(
λ1x√

1+λ2x2

)]
Cf(x)F (ρλx)

=
[π − tan−1(λ) + tan−1(ρλ)]

[
1 + αF

(
λ1x√

1+λ2x2

)]
π(α + 2)F (ρλx)

=


1+αF

(
λ1x√

1+λ2x2

)
(α+2)F (λx) , as ρ → 1

[π−2 tan−1(λ)]
[

1+αF

(
λ1x√

1+λ2x2

)]
π(α+2)F (−λx) , as ρ → −1

→ 0, as α → −1, λ1 → ∞

Thus, Y1 is thinner than Z1 if for λ1 → ∞ either α → −1, ρ → 1 or α → −1, ρ → −1.

5. Numerical discussion

The tail behaviour is influenced by its skewness parameter where one tail becomes
heavier relative to the other depending shape parameter. It is very crucial in the study of
rare events, risk assessment, risk management and insurance. Here for numerical illustration
we have compared various distributions based on their Hill estimator value for particular
values of its parameters and is shown in Table 1. In a similar manner, one can compare
heavier tails using this method this value will typically be close to zero, indicating light tails
or tail is not heavy. Also, the tail behaviour of classes of distribution for various simulated
values of its parameter are obtained is as shown in Table 2.

Table 1: Simulated Hill Estimator values for SND and MSND, MSGND and
SGND, MTPSND and TPSND, MSND and MTPSND, MSGND and MTPSND
for particular values of (α = 0.5, λ = 0.5, ρ, λ1 = 0.2 and λ2 = 0.4)

Distributions Hill Estimator
MSND 0.0045

MSGND 0.002
SGND 0.0048

MTPSND 0.0098
TPSND 0.56
MSND 0.432

MTPSND 0.0029
MSGND 0.395

MTPSND 0.23
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Table 2: Ratio of the densities and its behaviour for various values of its param-
eters

Distributions Ratio Behaviour
SND(0.5), MSND(0.5,-1) 0 0 0 0 X1, X are Comparable

SND(0.5), MSND(0.5,0.55) 0.7828275 0.6817935 0.6359176 0.6169725 X1 thinner, X thicker
SND(0.5), MSND(0.5,0.65) 0.7910227 0.6938013 0.6496566 0.6314263 X1 thinner, X thicker
SND(0.5), MSND(0.5,0.75) 0.7986219 0.7049358 0.6623963 0.6448290 X1 thinner, X thicker
SND(0.5), MSND(0.5,0.85) 0.8056878 0.7152889 0.6742421 0.6572911 X1 thinner, X thicker

MSGND(0.5,0.6,-1), SGND(0.5,0.6) 0 0 0 0 Y1, Y are Comparable
MSGND(0.5,0.6,0.55), SGND(0.5,0.6) 0.8156047 0.7709895 0.7577999 0.7525272 Y1 thinner, Y thicker
MSGND(0.5,0.6,0.65), SGND(0.5,0.6) 0.8225630 0.7796314 0.7669395 0.7618658 Y1 thinner, Y thicker
MSGND(0.5,0.6,0.75), SGND(0.5,0.6) 0.8290153 0.7876448 0.7754144 0.7705253 Y1 thinner, Y thicker
MSGND(0.5,0.6,0.85), SGND(0.5,0.6) 0.8350148 0.7950959 0.7832946 0.7785770 Y1 thinner, Y thicker
MSGND(0.5,0.6,-1), MSND(0.5,alpha) 0 0 0 0 X1, Y 1 are Comparable

MSGND(0.5,0.6,0.55), MSND(0.5,alpha) 0.8350148 0.7950959 0.7832946 0.7785770 X1 thinner, Y1 thicker
MSGND(0.5,0.6,0.65), MSND(0.5,alpha) 0.8250121 0.7930989 0.7832946 0.7685571 X1 thinner, Y1 thicker
MSGND(0.5,0.6,0.75), MSND(0.5,alpha) 0.8250248 0.7940959 0.7852546 0.7685670 X1 thinner, Y1 thicker
MSGND(0.5,0.6,0.85), MSND(0.5,alpha) 0.8250314 0.7850959 0.7732946 0.7589670 X1 thinner, Y1 thicker

Acknowledgements

We are indeed grateful to the Editors for their guidance and counsel. We are very
thankful to the reviewer for valuable comments and suggestions of generously listing many
useful references.

Conflict of interest

The authors do not have any financial or non-financial conflict of interest to declare
for the research work included in this article.

References

Arellano-Valle, R. B., Gomez, H. W., and Quintana, F. A. (2004). A new class of skew normal
distribution. Communications in Statistics - Theory and Methods, 33, 1465–1480.

Azzalini, A. (1985). A class of distributions which includes the normal ones. Scandinavian
Journal of Statistics, 12, 171–178.

Azzalini, A. (2014). The Skew Normal and Related Families. Cambridge University Press.
Azzalini, A. and Dalla-Valle, A. (1996). The multivariate skew normal distribution.

Biometrika, 83, 175–726.
Ball, L. and Mankiw, N. G. (1995). Relative price changes as aggregate supply shocks. The

Quarterly Journal of Economics, 110, 161–193.
Buccianti, A. (2005). Meaning of the parameter of skew normal and log skew normal distri-

butions in fluid geo chemistry. In CODAWORK’05, pages 1–15.
Capitanio, A. (2010). On the approximation of the tail probability of the scalar skew-normal

distribution. Metron - International Journal of Statistics, LXVIII, 299–308.
Genton, M. G. (2004). Skew-elliptical Distributions and Their Applications: A Journey

Beyond Normality. Chapman and Hall/CRC, London.
Gupta, A. K., Aziz, M. A., and Ning, W. (2013). On some properties of the unified skew

normal distribution. Journal of Statistical Theory and Practice, 7, 480–495.



150 M. R. ANUSREE AND C. SATHEESH KUMAR [Vol. 23, No. 2

Jamalizadeh, A., Arabpour, A. R., and Balakrishnan, N. (2009). A generalized skew two-
piece skew-normal distribution. Statistical Papers, 79, 99–113.

Jamalizadeh, A., Arabpour, A. R., and Balakrishnan, N. (2012). A generalized skew two-
piece skew-normal distribution. Statistical Papers, 52, 431–446.

Jamalizadeh, A., Behboodian, J., and Balakrishnan, N. (2008). A two-parameter generalized
skew-normal distribution. Statistics and Probability Letters, 78, 1722–1726.

Kim, H. J. (2005). On a class of two-piece skew-normal distributions. Statistics, 39, 537–553.
Kumar, C. S. and Anusree, M. R. (2011). On a generalized mixture of standard normal and

skew normal distributions. Statistics and Probability Letters, 81, 1813–1821.
Kumar, C. S. and Anusree, M. R. (2013). A generalized two-piece skew normal distribution

and some of its properties. Statistics, 47, 1370–1380.
Kumar, C. S. and Anusree, M. R. (2015). On an extended version of skew generalized normal

distribution and some of its properties. Communications in Statistics - Theory and
Methods, 44, 573–586.

Liseo, B. (1990). The skew-normal class of densities, inferential aspects from a Bayesian
viewpoint. Statistica, 50, 71–82.

Salehi, M., Jamalizadeh, A., and Doostparast, M. (2014). A generalized skew two-piece skew
elliptical distribution. Statistical Papers, 55, 409–429.

Sharafi, M. and Behboodian, J. (2008). The Balakrishnan skew-normal density. Statistical
Papers, 49, 769–778.

Tse, Y. K. (2009). Non-life Actuarial Models, Theory Methods and Evaluation. Cambridge
University Press.

Xin, L., Zuoxiang, P., and Saralees, N. (2013). Tail properties and asymptotic expansions
for the maximum of the logarithmic skew-normal distribution. Journal of Applied
Probability, 50, 900–907.


	Introduction
	The classes of skew normal distributions
	Stochastic ordering
	Tail behavior of the distribution
	Numerical discussion

