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Abstract
This study conduct a comprehensive spatial analysis of COVID-19 across districts

in India utilizing data from www.covidindia.org for confirmed cases and deaths, and inte-
grating population characteristics from the National Family Health Survey 5 (2019-2021)
and supplementary sources. The objective of the study is to uncover risk factors through
spatial modelling while mitigating multicollinearity using the concept of LASSO and ridge
regression. Employing spatial analysis, we identify COVID-19 hotspots and coldspots across
districts. High-impact districts including Mumbai, Pune, Chennai, Kolkata, and Bengaluru
are highlighted, along with lesser-affected districts in central and north-eastern regions. Anal-
ysis used geographical weighted regression (GWR) models, incorporating ridge and LASSO
techniques to assess the impact of demographic, socioeconomic, climatic, and comorbidity
factors on COVID-19 while accounting for spatial relationships. Notably, the GWR with
LASSO (GWL) outperforms the other models, with lower RMSE and a notably higher R2

value. This study reveal significant risk factors such as sanitation facilities, healthcare ameni-
ties, women’s education, tobacco/alcohol usage, urban population and density, comorbidity,
as well as climatic conditions. The GWL model’s localized coefficients offer valuable insights
into predictor relationships within each spatial unit.

Key words: COVID-19; Geographic weighted model; LASSO regression; Spatial association;
Ridge regression.

1. Introduction

The COVID-19 pandemic began in Wuhan, China, in December 2019, caused by
the SARS-CoV-2 virus (Li et al., 2020). The COVID-19 pandemic has had a profound
impact on individuals’ lives, the global economy, and public health. India has been hit
particularly hard, suffering economic disruption, unemployment, and a decline in GDP due
to COVID-19. The country’s healthcare system struggled with resource shortages, limited
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hospital space, and personnel shortages (Sridhar, 2023, Dutta et al., 2021). The pandemic has
also triggered social and psychological issues, including increased domestic violence, mental
health challenges, and gender inequality (Sardar et al., 2020). Numerous previous studies
have identified that social inequalities can facilitate the spread of diseases (Ahmed et al.,
2020). Poor living conditions (Pereira and Oliveira, 2020), population density (Rocklöv
and Sjödin, 2020), inadequate access to healthcare, and a large proportion of susceptible
population, such as the older and those with existing medical conditions (Dutta et al., 2021),
are all factors that make any region vulnerable to the spread of the virus. Temperature has
also been associated with COVID-19 severity, with similar findings in China (Chen et al.,
2020), Indonesia (Tosepu et al., 2020), Turkey (Chung et al., 2021), and the USA (Bashir
et al., 2020). Additional risk factors like the prevalence of slums within cities (Sridhar,
2023), smoking habits, and many more contribute to an increased risk of transmission and
disparities in access to prevention and treatment measures.

Spatial models have emerged as valuable tools for determining the relationships be-
tween the spread of infectious diseases and associated risk factors, incorporating the spatial
dimension. Spatial methods are employed to model particular variables at diverse geograph-
ical locations, allowing us to address the diversity caused by regional differences (known as
spatial heterogeneity) within the data. One effective method for identifying spatial hetero-
geneity is the Geographically Weighted Regression (GWR) model, which is highly effective
in accurately estimating parameters when analyzing COVID-19 data (Sarkar et al., 2021,
Ramı́rez-Aldana et al., 2020, Appiah-Otoo and Kursah, 2022, Adekunle et al., 2020). The
GWR model helps illustrate how the association between independent and dependent vari-
ables varies across distinct locations within the study area. However, a challenge arises
when the risk factors examined within each local model exhibit linear relationships, which
is referred to as local multicollinearity. This multicollinearity issue obstructs the precision
of parameter estimates and makes it difficult to distinguish the individual effects of these
variables.

In the context of addressing the challenge posed by multicollinearity in data, various
alternative methodologies have arisen as effective solutions. One such prominent technique is
ridge regression, initially proposed by Hoerl and Kennard in 1970 (Hoerl and Kennard, 1970),
which has become widely adopted for mitigating the issues associated with multicollinear-
ity. This shrinkage technique incorporates penalty terms into the regression framework to
shrink the coefficients, resulting in more stable parameter estimates and mitigate the effect
of multicollinearity. Ridge regression introduces a positive bias into the parameter estima-
tion process, effectively guiding the coefficients towards zero. Although this approach yeilds
baised results, it reduces variance. Recognizing the potential benefits of combining different
methodologies, researchers have explored various approaches, such as combining ridge re-
gression with the Liu estimator (Kejian, 1993) or integrating ridge regression with principal
component regression (Baye and Parker, 1984, Chandra and Sarkar, 2016), among others.
Additionally, in 1996, Tibshirani introduced a novel technique that has gained extensive at-
tention. The technique combines the advantages of ridge regression with variable selection
method, known as the Least Absolute Shrinkage and Selection Operator (LASSO) (Tib-
shirani, 1996). LASSO leverages the LARS algorithm (Least Angle Regression) to shrink
estimated coefficients towards zero and selectively sets less significant variables to precisely
zero. The resulting model is notably interpretable, retaining only the most meaningful pre-
dictors relevant to the outcome variable.



2024] COVID-19 SPATIAL PATTERN IN INDIAN DISTRICTS 145

Similar to their role in classical regression models, Ridge and LASSO techniques serve
to mitigate the impact of multicollinearity in spatial context. Likewise, in the context of
GWR model, tackling local multicollinearity is achievable through the incorporation of ridge
regression and the LASSO method. Specifically, the utilization of ridge regression within the
GWR framework is referred as GWRR, while the integration of the LASSO method with
GWR as GWL (Wheeler, 2007). In this study, GWRR and GWL models were applied to
investigate spatial heterogeneity and address multicollinearity concerns during the analysis
of the COVID-19 pandemic across 626 districts in India.

2. Data

2.1. Data collection

This study included districts from all states and union territories in India, except six
states: Assam, Delhi, Goa, Manipur, Telangana, and Sikkim, with no available COVID-19
updates at the district level in the state bulletin. This study took into account district
boundaries as of 2019. We extracted district-level data on daily confirmed cases of COVID-
19 and associated deaths in India from the website www.covidindia.org. This public domain
collects data through state bulletins and official handles. They halted the operation after 18
months of daily updates. As a result, this study limits the availability of data until October
2021. So far, several variables have impacted COVID-19 spread during these pandemic
outbreaks, from which some of the essential independent variables that may have affected
COVID-19 spread in Indian districts have been selected. Table 1 lists these independent
variables, their descriptions containing the reason behind taking these variables into our
study, and the sources from which they were obtained.

The data were sourced from various sources, with the primary contributor being
National Family Health Survey (NFHS-5). It is initiated by the Ministry of Health & Family
Welfare (MoHFW), Government of India, plays a vital role in assessing health conditions
in India. This extensive health survey is periodically conducted nationwide, offering health-
related indicators at the district, state, and national levels. NFHS-5 was conducted in India
during the time period of 2019-2021.

2.2. Data preparations and cleaning

India has undergone several surges of COVID-19 since the onset of the pandemic.
Specifically, India encountered two distinct waves of COVID-19 between December 2019 and
October 2021. These waves occurred during the periods of March 2020 to December 2020 and
January 2021 to October 2021, respectively. This research studied the cumulative confirmed
cases (CCC ) and cumulative deaths (deaths) during the first and second waves at the district
level in India. To facilitate the analysis, initial data preparation with a data cleaning pro-
cedure aimed at addressing issues like incomplete and duplicate entries by cross-referencing
data from various sources. Given the multi-sourced nature of the data, a pivotal step in-
volves data merging, wherein information from diverse origins is consolidated to establish
a unified reference point. As the data on risk factors and COVID-19 incidences originates
from distinct sources, it is imperative to standardize the data before any analysis can take
place. Standardization, in this context, entails bringing different variables onto a common
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Table 1: Lists of independent variables, their descriptions and justification and
the sources

Abre-
viation Indicators Assumptions/ Justifications Data sources

V1 Population below age
15 years

Older population have higher risk of
death after infected.

National Family
Health Survey
(NFHS-5) (2019-21)
(District factsheet)

V2 Population living in
households with electricity The environment in which people live

plays a significant role in the transmission
of COVID-19. Factors such as overcrowding,
sanitation and hand hygiene all contribute to
susceptibility and should not be overlooked.

V3
Population living in
households that use an
improved sanitation facility

V4 Households using clean
fuel for cooking

V5
Households with any usual
member covered under a
health insurance

Accessible healthcare systems,
affordability, capacity, and health security
are vital for managing epidemics and
promoting treatment-seeking.

V6 Women who are literate Women’s literacy empowers them with
knowledge, enabling them to understand
COVID-19 prevention, access reliable
information, and make informed decisions.

V7
Educated women
with 10+ years
of schooling

V8 Proportion of women
undernourished Undernourished and obesity weakened

immunity and elevate risk due to underlying
health problems when facing COVID-19.V9 Proportion of women

obese
V10 Tobacco use among

those 15+ Smoking or tobacco or any kind of alcohol
being exposed in any form can reduce the
risk of COVID-19 infection (WHO 2020).V11 Alcohol use among

those 15+
V12 Population Density High population density and urban areas

posing a higher risk for the spread of the
highly contagious SARS-CoV-2 virus.

Office of the
Registrar General
of IndiaV13 Proportion of urban

population

V14 Health Center [Sub center
+PHCs+ CHCs]

Higher population per healthcare institution
lower resilience in dealing with COVID-19.

Rural Health
statistics

V15 Hypertension among Adults Blood Sugar Level and Hypertension among
Adults (age 15+) may regulate the severity
of COVID-19 cases.

(NFHS-5)
V16 Adults’ blood sugar levels

(Age 15+)

V17 Average
temprature The severity of COVID-19 associated

with temperature and relative humidity
NASA open
data portal

V18 Relative
Humidity

V19 Proportion of poor
population

Studies have shown that areas with high
poverty rates tend to have higher rates of
COVID-19 infections.

Global Data Lab
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scale to enable comparisons across variable types. These steps were undertaken prior to the
transformation of the data into district-level counts and its merging with India’s district
administrative boundary shape file from the DIV-GIS database using ArcGIS Desktop 10.7.

2.3. Data description

This study involves 19 dependent variables and two independent variables (CCC and
deaths), with data collected from diverse sources across 626 districts in India, resulting in
around 13,000 observations—an extensive dataset for analysis. Emphasizing spatial analysis
as the foundation, we prioritize reviewing the data before applying statistical methods.

During the first and second phases of the pandemic, specific Indian districts, includ-
ing Bangalore, Mysuru, Belagavi, Pune, Mumbai, Thane, Nagpur, Ernakulam, Malappuram,
Nashik, Kollam, Kolkata, Chennai, Coimbatore, Chittoor, and others in Kerala, Tamil Nadu,
Andhra Pradesh, West Bengal, witnessed elevated COVID-19 cases and deaths. Geographi-
cal variations were evident, with northern and central states like Lucknow, Varanasi, Kanpur,
Jaipur, Jodhpur, Ludhiana, and Jalandhar heavily affected, while areas like Hathras, Ma-
hoba, Burhanpur, Agar Malwa, Mandla, and Baranala reported fewer cases. Central and
northeastern regions generally had lower confirmed cases and deaths in both waves.

According to the data, higher population density is observed in Bihar, West Bengal,
and Kerala, with 29 districts among the top 10%. On average, 4.24% of the population in
these districts is aged 65 and above. Notably, Maharashtra, Kerala, Karnataka, Goa, and
Punjab display a significant prevalence of districts with an aging population. Specifically,
15 out of Maharashtra’s 36 districts and 9 out of Kerala’s 14 districts rank in the top
10% for the percentage of elderly population. On average, 20.19% of households in Indian
districts lack water supply within their premises. The data reveal pronounced water supply
challenges in numerous districts of Odisha, Madhya Pradesh, and Rajasthan. Noteworthy
is that 12 out of 14 districts in Kerala and 21 out of 30 districts in Tamil Nadu are in the
highest quartile (>27%) for the proportion of women grappling with obesity. Additionally, 10
districts in Andhra Pradesh and 5 in Maharashtra fall into this category. Kerala, Goa, Tamil
Nadu, and Andhra Pradesh also exhibit a significant presence of districts with the highest
percentages (>7.5%) of the population facing elevated blood sugar levels. The data highlight
certain districts in Rajasthan, such as Jaisalmer and Barmer, known for extremely high
temperatures. Districts in the northern plains, including parts of Uttar Pradesh, Bihar, and
Haryana, may also experience high temperatures. Gujarat, Maharashtra, and certain parts
of Kerala might encounter high humidity levels. Alcohol and tobacco consumption is notably
high in districts of northeastern states, Punjab, Goa, and select districts in Rajasthan.

According to the National Family Health Survey (NFHS-5), about 41% of India’s
total population has at least one member enrolled in health insurance or a health scheme.
Rajasthan and Andhra Pradesh lead with the highest proportions of households covered (88%
and 80%, respectively), while the Andaman and Nicobar Islands and Jammu and Kashmir
show the lowest coverage, each below 15%.
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2.4. Visualization and exploration

By using visualization techniques, patterns and discrepancies in the data are identi-
fied. The most widely used approach for visualizing this type of data is through choropleth
maps that employ quantile breaks. These maps use various colors to depict the intensity of
variables of interest in each geographic region. Such maps have been included in the study to
present the spatial distribution of COVID cases and deaths in further sections. Exploration
of spatial data includes cluster analysis to identify whether observed spatial patterns are
random, using either nonspecific (global) or specific (local) techniques. Moran’s I statistic,
a global technique, is employed to ascertain cluster presence across the entire study area.
Moran’s I computes global spatial autocorrelation among observations and ranges from -1
to 1. Negative values indicate dispersion (clustering of dissimilar values), positive values in-
dicate clustering (clustering of similar values), and values near zero suggest absolute spatial
randomness, implying no autocorrelation. However, because Moran’s I statistic is incapable
of providing precise information on cluster locations, the LISA (local indicators of spatial
association) tool was utilized to calculate local spatial autocorrelation. This method de-
scribes significant correlations at specific locations as local spatial clusters (hot spots) or
correlations between observations and neighboring observations Anselin (1995). The next
section is about the models and estimators considered in this study.

3. The models and estimators

3.1. Geographical weighted regression (GWR)

The GWR model estimated local interactions between the dependent and independent
variables by fitting a regression model to each feature (spatial unit) in the dataset (Brunsdon
et al. (1998)). The GWR model for each feature is

yi = βi0 +
m∑

j=1
Xijβij + ϵi, i = 1, 2, ..., n. (1)

where yi represents the dependent variable at a specific location i, βi0 stands for the intercept
parameter at that same location i, βij symbolizes the local regression coefficient pertaining
to the jth explanatory variable at location i, Xij signifies the value of the jth explanatory
variable at location i, and ϵi corresponds to the random error observed at location i. The
parameters estimates for each independent variable at ith location is given by

ˆβ(i) = (XT W (i)X)−1XT W (i)y (2)

where ˆβ(i) is m × 1 vector of parameter estimates, W (i) is spatial weight matrix calculated
by the exponential kernel function which is defined as

wk(i) =


[
1 −

(
dik

bw

)2
]2

, if k ∈ {Ni}

0, if k /∈ {Ni}
(3)

where dik is the distance between feature location i & k with bandwidth bw derived from
the Euclidean distance between observation locations and neighboring points, this measure
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ensures that the region remains influenced by proximate neighbors within this radius. The
set Ni includes observations within this N th nearest neighbor distance. Weights are zero for
observations beyond this range, except for observation i which gets a weight of 1. Kernel
function assigns higher weights to observations that are closer to the calibration location i.
To fit the GWR model, the kernel bandwidth is estimated through cross-validation (CV)
using all feature locations, followed by weight calculation using (3). CV function is outlined
as

CV (bw) =
n∑

i=1
[yi − ŷ ̸=i(bw)]2 (4)

where, ŷ ̸=i(bw) is the estimated value of y achieved by excluding the data point at the ith

location during prediction. The bandwidth bw will be derived through an iterative procedure
aiming to minimize the CV score.

3.2. Addressing multicollinearity: diagnosis and remediation

Collinearity’s presence among independent variables can diminish the precision of co-
efficients (Wheeler and Tiefelsdorf (2005)). There are valuable diagnostic tools designed to
uncover collinearity issues that might disrupt the interpretation of estimated regression coef-
ficients. These diagnostic methods are derived from conventional regression techniques. Ap-
proaches for identifying collinearity among independent variables comprise metrics like vari-
ance inflation factors (VIF) and condition indices. Moreover, Ridge regression and LASSO
are frequently employed methods for mitigating the multicollinearity.

Ridge regression

Ridge regression was uniquely formulated to alleviate the impacts of collinearity
through the imposition of penalties on the magnitudes of regression coefficients. This strat-
egy diminishes the impact of variables with comparatively low variance within the model.
The parameter for ridge regression is determined by minimizing the sum of squared errors,
introducing constraints that compel coefficients to approach zero (Hoerl and Kennard, 1970).
More precisely, the ridge estimator coefficient is derived by minimizing the equation

β̂R =
n∑

i=1

yi − β0 −
m∑

j=1
xijβi

2

(5)

with ∑m
j=1(βi)2 ≤ ρ, where ρ is a control shrinkage amount. Then parameter estimates is

obtained by
ˆβ(i)R = (XT X + CI)−1XT y (6)

where I is an identity matrices and C represents positive coefficient bias.

Least Absolute Shrinkage and Selection Operator (LASSO)

LASSO is the regularization and penalization technique which shrinks the regres-
sion coefficients towards zero, also puts least significant variable coefficients to zero. This
leads to a simplified and interpretative model, retaining only the significant predictors for
the outcome variable (Tibshirani, 1996). The coefficients of Lasso parameters cannot be
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directly calculated through closed-form equations, unlike Ridge regression. Instead, they are
determined using quadratic programming techniques. LASSO is defined as follows as

β̂ = argmin
n∑

i=1

yi − β0 −
p∑

j=1
xijβj

2

. (7)

where ∑p
i=j|β̂j| ≤ tp (threshold parameter). It is established that tp is a parameter governing

the level of shrinkage in LASSO coefficient estimation, where tp ≥ 0.

3.3. Geographic Weighted Ridge Regression (GWRR)

GWRR is a modified technique within the domain of spatial regression, in which
GWR model combine with the ridge regression (Wheeler, 2009). Estimator of parameters of
GWRR model at ith location is obtained by

ˆβ(i)GW RR = (XT W (i)X + CI)−1XT W (i)y. (8)

The process involves predicting bandwidth values to form a weighted matrix, minimizing
bias using CV, and iteratively determining the coefficient value C for each bandwidth. These
results are then applied to estimate spatial model with ridge regression coefficients.

3.4. Geographically Weighted LASSO (GWL)

LASSO’s application within a GWR model, later recognized as Geographically Weighted
LASSO (GWL), addresses spatial variations and local multicollinearity. GWL offers unbiased
coefficient estimates and enhances prediction accuracy (Wheeler, 2009). LASSO parameter
estimation in GWL is executed concurrently, relying on a pre-established kernel bandwidth.
During the GWL parameter estimation process, the shrinkage (s) value is determined prior
to the final LASSO solution. Shrinkage parameter estimation in GWL’s LASSO model is
achieved through cross-validation (CV), resulting in a distinct shrinkage parameter for each
geographical location.

4. Model selection criteria

Coefficient of determination (R2) and root mean square error (RMSE) were used to
compare the performances of various models. R2 measures the goodness of fit; its values
range from 0 to 1. Furthermore RMSE calculated how closely predicted values align with
actual observations by measuring the average error magnitude. The model with lower RMSE
value and higher value of R2 better fits the observed data. In this study, analysis have been
performed in R software version 4.3.1 using various packages such as sp, spgwr, spdep, gwrr,
and spatstat.

5. Empirical findings

5.1. Visualization and exploration

This study employed choropleth maps using quantile breaks to visualize the total
confirmed cases and total deaths during the pandemic outbreak, yielding successful results.
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These maps use various colors to depict the intensity of variables of interest in geographic
region. Referring to Figure 1, the districts that exhibited the highest numbers of confirmed
COVID-19 cases and deaths were Bangaluru, Mysuru, Belagavi, and 13 other districts in
Karnataka. Additionally, in Maharashtra, the districts of Pune, Mumbai, Thane, Nagpur,
and 29 out of 35 districts stood out. Similar trends were observed in Kerala, Tamil Nadu,
Andhra Pradesh, and West Bengal, particularly in districts such as Ernakulam, Malappu-
ram, Nashik, Kollam, Kolkata, Chennai, Coimbatore, Chittoor, and their adjacent districts.
These districts were among the most affected during the entire duration of the pandemic
analyzed in this study. There were marked geographical distinctions among the northern
and central states of India, with some districts like Lucknow, Varanasi, Kanpur, Jaipur,
Jodhpur, Ludhiana and Jalandhar experiencing a high level of contagion while other areas
like Hathras, Mahoba, Burahnpur, Agar Malwa, Mandla and Baranala and the locations
around them having a much lesser effect. In contrast, the central and northeastern regions
districts had the fewest confirmed cases and deaths in both waves. The global Moran’s I
statistic values for cumulative confirmed cases and deaths due to COVID-19 were significant
for both waves (0.31, 0.43, and 0.27, 0.43, respectively, with p-value=0.0001[< 0.05]), in-
dicating strong spatial autocorrelation among Indian districts. Further, the LISA tool was
employed to identify significant local clustering and detect non-clustered areas within the
study that may be missed by global tests.

Using the LISA tool, the study found that the districts with the highest concentra-
tion of confirmed cases and deaths during both waves were the same, including Maharashtra,
Kerala, Andhra Pradesh, West Bengal, and Karnataka. In contrast, the northern and cen-
tral regions exhibited low clustering during the first wave, and the central region was also
identified as having low clustering in the second wave (see Figure-2) and only a few districts
fell into the high-low and low-high clusters.

5.2. Spatial modelling

The dataset encompassing all independent variables used in this study exhibits con-
sistent values across both waves of COVID-19. With the aim of exploring the influence of
these variables on the occurrences of COVID-19 cases and related fatalities, a comprehen-
sive approach was adopted by examining the entire temporal span. The outcomes of the
Global Moran’s I test [Value of Global Morna’s I= 0.42 for CCC and 0.45 for deaths] and
the Breusch-Pagan test with p-value = 0.0001 < 0.05 indicate that the data employed in
this study exhibit noteworthy spatial heterogeneity.

5.2.1. Local multicollinearity

The presence of multicollinearity among independent variables can be ascertained
by examining the VIF values of local observations and the condition index specific to that
particular location. The summary of VIF values and condition indices is presented in the
Table 2 as the GWR model incorporates all these independent variables to predict total
confirmed cases and total number of deaths.

Upon referencing the table 2, it becomes evident that numerous locations exhibit VIF
values and condition indices exceeding 30, indicating a significant level of concern regard-
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(a) (b)

(c) (d)

Figure 1: Quantitative spatial distribution of Cumulative confirmed cases (a, c)
and Total deaths (b, d) in 1st wave and 2nd wave respectively in Indian districts
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(a) (b)

(c) (d)

Figure 2: LISA clusters of Cumulative confirmed cases (a, c) and Total deaths
(b, d) associated with COVID-19 in 1st wave and 2nd wave respectively in Indian
districts



154 M. SHARMA AND S. CHANDRA [SPL. PROC.

Table 2: Summary table of VIF and condition index at local level

CCC deaths
VIF Min. Mean Max. min. Mean Max.
V1 3.049 3.23 3.416 3.037 3.954 4.955
V2 1.525 1.541 1.555 1.493 1.682 1.889
V3 2.516 2.657 2.87 2.208 3.056 5.138
V4 3.3 3.446 3.547 3.161 3.964 5.407
V5 1.339 1.419 1.452 1.327 1.828 2.244
V6 6.164 6.292 6.47 6.189 8.00 10.517
V7 5.055 5.194 5.462 4.759 6.672 9.71
V8 26.09 28.49 33.56 16.99 24.53 46.43
V9 19.36 20.12 22.43 14.28 21.31 31.89
V10 1.766 1.813 1.898 1.643 2.135 2.71
V11 1.688 1.814 2.155 1.18 1.877 3.338
V12 1.321 1.326 1.336 1.303 1.408 1.527
V13 2.509 2.551 2.593 2.302 2.63 3.096
V14 1.061 1.067 1.076 1.086 1.166 1.403
V15 25.89 28.06 32.71 17.13 23.41 42.63
V16 21.79 23.44 25.01 16.24 23.5 34.16
V17 1.829 2.008 2.336 1.275 3.074 7.281
V18 2.442 2.561 2.75 1.886 3.372 5.957
V19 2.546 2.71 2.906 1.876 3.298 4.901
CI 18.15 19.96 24.26 16.26 22.26 40.51

ing multicollinearity at particular location. This degree of multicollinearity contributes to
heightened variability in the coefficient parameters, leading to less stable results. Further-
more, the existence of multicollinearity gives rise to an unstable model, a fact that becomes
apparent through the modification of the classical GWR model. This modification involves
the integration of multicollinearity mitigation techniques such as LASSO and ridge regres-
sion. The enhanced GWR model’s effectiveness can be observed in the Table 3, where a
comparison is made between the GWR model, the GWRR (Geographically Weighted Ridge
Regression) model, and the GWL (Geographically Weighted LASSO Regression) model.

Table 3: Comparison table of modified and unmodified GWR model

GWR GWRR GWL

CCC
RMSE 0.7921 0.5322 0.4630
R2 0.4558 0.7162 0.8371
bw 4.9686 0.7724 0.0361

deaths
RMSE 0.6978 0.4597 0.4398
R2 0.534 0.8214 0.8625
bw 3.1805 0.6197 0.3012

Upon evaluating the RMSE scores and R-squared values, it becomes apparent that
the GWL model delivers the most accurate fit across the entire duration (refer to the Table
3). The GWL model is capable of explaining an average of 83% of the variation in cumulative
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COVID-19 cases and 86% of the variation in COVID-19-related deaths across all districts
of India, taking care of the challenge posed by multicollinearity. Furthermore, the GWL
model provides a coherent interpretation for the disparities in confirmed COVID-19 cases
and associated deaths among Indian districts. A comprehensive summary of coefficient
estimates for all independent variables within the GWL model will be presented in the
subsequent section.

5.2.2. GWL model summary

In GWL modelling, similar to how LASSO works, the importance of coefficients
gradually decreases until they become zero due to shrinkage. When a coefficient reaches
zero, it loses its influence on the outcomes of the model. Through an iteration process
driven by cross-validation, GWL yields a bandwidth value of 0.09 for CCC and 0.89 for
deaths. This bandwidth parameter, along with the associated shrinkage value, contributes
to the delineation of GWL’s specific parameters, all of which are detailed in the Table-4.

Referring to the summarized Table-4, it becomes evident that certain independent
variables - such as Population age, households with electricity, the percentage of women who
are obese, and relative humidity - possess either a zero or near-zero mean coefficient value
across all regions in the context of modelling total confirmed cases. This observation signifies
that these variables exert negligible influence on the incidence of COVID-19 cases. Similarly,
when it comes to predicting the number of deaths, both relative humidity and household
electrification also demonstrate insignificant effects. However, in contrast to COVID-19
cases, the prediction of COVID-19 deaths shows a positive association with individual age,
underscoring the elevated risk of mortality among the elderly population subsequent to
infection.

The cumulative confirmed COVID-19 cases in an Indian district are linked positively
to factors such as the availability of sanitation facilities and healthcare services, the per-
centage of undernourished women, tobacco and alcohol consumption, population density,
urbanization, average temperature, and the education level of women. Conversely, they are
negatively associated with the number of people living in poverty. However, concerning the
total number of COVID-19 related deaths, there is a negative correlation with the availability
of sanitation facilities and health insurance coverage.

The data presented in the Table-4 indicates that the GWL model zeroes out coef-
ficients for various factors in different locations, resulting in varied parameter magnitudes
across regions. As a result, the GWL model generates distinct models with differing coeffi-
cients for various locations. To illustrate this, we have provided the model for the two most
severely impacted districts (Pune and Bengaluru) in different zones.

y∗(TCCP une) = 4.55 − 0.0525V 3∗ + 0.115V 4∗ + 0.24V 6∗ + 0.13V 7∗

− 0.65V 8∗ + 0.11V 9∗ + 0.33V 11∗ + 0.33V 13∗ + 0.51V 16∗ + 0.20V 18∗

y∗(DeathsP une) = 2.33 + 0.09V 1∗ − 0.001V 3∗ + 0.0086V 4∗ + 0.076V 6∗

− 0.047V 8∗ + 0.032V 9∗ + 0.75V 11∗ + 0.007V 13∗ + 0.078V 16∗ + 0.0091V 17∗
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Table 4: Summary statistics for GWL parameter estimates

CCC deaths
Intercept V1 V2 V3 V4 Intercept V1 V2 V3 V4

Min. -2.361 -0.018 -0.016 -0.025 0.000 -2.516 -0.04321 -0.027 -0.147 0.000
1st Qu -0.150 0.000 0.000 0.000 0.011 -0.141 0.000 0.000 0.000 0.110
median 0.000 0.000 0.000 0.000 0.034 0.000 0.000 0.000 0.000 0.137
mean 0.039 0.001 0.000 0.002 0.036 0.0257 -0.003 0.000 -0.010 0.119
3rd Qu. 0.000 0.000 0.000 0.000 0.054 0.000 0.000 0.000 0.000 0.155
Max. 4.301 0.126 0.000 0.131 0.101 4.908 0.111 0.000 0.000 0.209

V5 V6 V7 V8 V9 V5 V6 V7 V8 V9
Min. -0.087 -0.054 0.000 -0.591 -0.514 -0.145 0.000 -0.016 -0.660 -0.413
1st Qu 0.000 0.000 0.075 0.000 0.000 0.000 0.000 0.000 0.000 0.000
median 0.000 0.000 0.104 0.000 0.000 0.000 0.036 0.016 0.000 0.000
mean -0.002 -0.001 0.117 0.003 -0.014 -0.001 0.048 0.020 -0.015 -0.005
3rd Qu. 0.000 0.000 0.169 0.000 0.000 0.000 0.076 0.034 0.000 0.000
Max. 0.029 0.037 0.355 0.070 0.000 0.000 0.337 0.143 0.000 0.000

V10 V11 V12 V13 V14 V10 V11 V12 V13 V14
Min. -0.002 -0.038 0.000 0.000 0.000 0.000 0 0.000 0.024 0.000
1st Qu. 0.000 0.000 0.030 0.110 0.000 0.000 0.000 0.143 0.080 0.000
median 0.000 0.000 0.094 0.125 0.000 0.000 0.000 0.199 0.090 0.000
mean 0.001 0.003 0.088 0.113 0.005 0.001 0.000 0.176 0.083 0.001
3rd Qu. 0.000 0.000 0.136 0.135 0.000 0.000 0.000 0.245 0.101 0.000
Max. 0.089 0.062 0.246 0.152 0.089 0.116 0.101 0.344 0.110 0.029

V15 V16 V17 V18 V19 V15 V16 V17 V18 V19
Min. 0.000 0.000 -0.003 -0.052 -0.119 0.000 0.000 -0.068 -0.182 -0.136
1st Qu. 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
median 0.027 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
mean 0.039 0.012 0.028 0.010 -0.003 0.006 0.006 0.024 0.000 -0.001
3rd Qu. 0.058 0.000 0.032 0.000 0.000 0.000 0.000 0.045 0.000 0.000
Max. 0.602 0.489 0.221 0.222 0.000 0.520 0.440 0.147 0.113 0.000

y∗(TCCBengaluru) = 0.213 − 0.0034V 6 + 0.029V 12∗ + 0.23V 13∗ − 0.65V 14∗

+ 0.063V 15∗ + 0.031V 16∗

y∗(DeathsBengaluru) = 1.84 + 0.004V 1∗ + 0.0076V 8∗ + 0.043V 9∗ + 0.0027V 13∗

+ 0.032V 16∗ + 0.0038V 17∗

6. Discussion

The current research implemented spatial analysis techniques to analyse the spatial
distribution and clustering of COVID-19 in Indian districts. The data indicated a significant
spatial heterogeneity in the distribution of COVID-19 across the country, with clusters of
cases and deaths found to be almost identical for both waves with high intensity. The main
reason for the lack of change in hotspots from the first to the second wave is attributed to
the need to identify and monitor hotspots in the first wave properly. Further, the resurgence
of cases has been linked to mass gatherings and non-adherence to safety protocols such as
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wearing masks, social distancing, and handwashing. Significant clustering of COVID-19 cases
was identified in specific districts of Maharashtra, Kerala, Andhra Pradesh, West Bengal,
and Karnataka, forming clusters characterized by high numbers of COVID-19 cases and
deaths. Conversely, districts in the northern and southern regions formed clusters with low
COVID-19 cases and deaths. These findings imply that the risk of infection was not same
across districts. The observed spatial autocorrelation suggests that the disease may spread
from high-risk districts to neighbouring areas, underscoring the importance of coordinated
efforts to control the spread of the disease across all districts. The findings of this study
suggest that proper identification and monitoring of hotspots in the first wave could have
enabled more effective management of COVID-19 cases in the second wave.

Spatial models have demonstrated their usefulness as tools for comprehending and
examining pandemic behaviour. Nevertheless, the issue of multicollinearity often poses a
challenge for these models. In the present study, it was observed that the independent
variables utilized to identify risk factors exhibited a considerable degree of collinearity. In
response to this concern, the ridge and LASSO techniques were initially employed on the
spatial models. It was discovered that among the spatial models implemented in this re-
search, the GWL model exhibited superior performance. By integrating spatially varying
coefficients, the GWL model effectively captured localized fluctuations and heterogeneity
in the association between the dependent and independent variables, while also addressing
collinearity concerns among the independent variables. Although the GWL model generates
different models and identifies significant independent variables for different locations, this
study also determined the independent variables that, on average, influence COVID-19 cases
and deaths across Indian districts.

The findings of the GWL model demonstrated a positive relationship between the
high temperatures and the spread of the COVID-19 virus. This relationship is supported by
epidemiological evidence indicating that an increase in ambient temperature can result in a
higher transmission rate (Chen et al. (2020), Tosepu et al. (2020), Bashir et al. (2020)). The
virus can endure in the air longer at higher temperatures and be more easily transmitted
through droplets. Additionally, greater access to healthcare facilities was positively corre-
lated with more accurate diagnosis and reporting of COVID-19 cases and deaths, which may
explain the higher number of cases and deaths in these areas. Furthermore, areas with a
high proportion of the population having alcohol and tobacco consumption, and high liter-
acy rates among women were also positively associated. Smoking and drinking habits can
weaken the immune system and make individuals more susceptible to the virus. High lit-
eracy rates among women could increase awareness of the virus and its symptoms, increase
testing, more accurate diagnosis and reporting of cases, and increase transmission oppor-
tunities. Consistent with prior investigations, the proportion of the population residing in
urban settings and the density of specific districts exerted anticipated effects on COVID-19
incidence and mortality within those particular areas. Conversely, certain variables like rel-
ative humidity, household access to electricity, and possession of health insurance exhibited
negligible influence on COVID-19 patterns in Indian districts. Furthermore, no specific age
group demonstrated disproportionate susceptibility to COVID-19; however, elderly individ-
uals were identified as having an elevated risk of mortality attributed to the virus.

The GWL model introduces spatial variability in coefficients, capturing differences in
various locations. The range of coefficients gives insight into how relationships between vari-
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ables change across space. The GWL model’s findings help understand the degree to which
the identified risk factors account for differences in COVID-19 cases and deaths in diverse
districts. For instance, districts like Mumbai, Chennai, Pune, Kolkata, Sagar, Jabalpur,
Narshimpur, Raisen, Porbandar, Junagarh, and Somnath exhibit significant variation in
COVID-19 outcomes (ranging from 80 to 86 percent). This highlights the strong impact
of the identified risk factors in these areas. Conversely, the considered variables struggle
to explain variations in certain districts, particularly in parts of Punjab (such as Bhatinda,
Faridkot, Moga) and the northeastern region. Similarly, regions like Sirsa, Panchkula, and
districts in Himachal Pradesh, JK, and Ladhak have limited explanatory capability. These
anomalous ranges of coefficient estimate in these regions suggest that other unaccounted
factors may play a more significant role in shaping COVID-19 outcomes.

The overall findings suggest that addressing multicollinearity in spatial models can
significantly enhance their robustness and reliability. By mitigating the impact of collinear-
ity among independent variables, researchers can obtain more accurate and trustworthy
results. Consequently, this enables the identification of high-risk districts where targeted
interventions can be implemented. Measures such as rigorous testing and contact tracing,
targeted lockdowns, and intensified public health messaging can be strategically deployed
to effectively control and mitigate the spread of the virus in these specific areas. However,
limitations of the study include its reliance on reported case counts and its focus on only
two waves of the pandemic due to data unavailability, which may not capture the full impact
of the virus. Therefore, future research should address these shortcomings to develop more
effective strategies for mitigating them.

7. Conclusion

This study aimed to employ spatial econometric modelling methods to enhance un-
derstanding of the spatial structures and associations among locations in India and to analyse
the transmission patterns of COVID-19. By considering spatial proximity, the study assessed
the impact of demographic, socioeconomic, climatic, and comorbidity on total COVID-19
cases and deaths across districts in India. Additionally, this study addressed the issue of mul-
ticollinearity in spatial models through the utilization of ridge and LASSO techniques. This
approach successfully reduced interdependence among variables and improved the model’s
accuracy, allowing for the identification of key risk factors associated with the phenomenon
under investigation. Significantly, the study brought to light the influence of distinct district
factors on the occurrence of COVID-19. These factors encompass sanitation facilities, acces-
sibility to healthcare, pre-existing medical conditions like high blood pressure and diabetes,
women’s educational levels, rates of tobacco and alcohol consumption, climatic conditions,
and the presence of undernourished women. Moreover, the research established that older
populations are at a heightened risk of mortality following infection with COVID-19. The
findings of this study can inform the development of prevention strategies and strengthen
public health capacities, particularly in regions where the healthcare system may be limited.
However, it is worth noting that a limitation of the analysis was the lack of district-level
data on deaths beyond October 2021 in India.
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