
Special Proceedings: ISBN #: 978-81-950383-8-1
27th Annual Conference, 21-23 February 2025; pp 87-100

Large Language Models in Practice: Training Paradigms,
Knowledge Systems, and Production-Scale Deployments

Utkarsh Tripathi
Solventum Health Information Systems, Pittsburgh, PA

Received: 26 July 2025; Revised: 03 August 2025; Accepted: 06 August 2025

Abstract

This survey presents a comprehensive overview of current methodologies and chal-
lenges in the development of large language models (LLMs), focusing on training processes,
knowledge integration techniques, and evaluation frameworks. The review examines both
traditional and innovative approaches, including the DeepSeek methodology, and discusses
critical challenges such as static knowledge limitations, hallucinations, and the need for
robust guardrails. The analysis covers the full spectrum from foundational training to pro-
duction deployment, providing insights into the evolving landscape of LLM systems and their
practical applications.

Key words: Large language models; Knowledge bases; RLHF18.

1. Introduction

Large Language Models (LLM) have emerged as transformative technologies in ar-
tificial intelligence, demonstrating remarkable capabilities across diverse natural language
processing tasks. However, their development, deployment, and evaluation present complex
challenges that require sophisticated frameworks and methodologies. This survey synthesizes
current approaches to LLM training, knowledge integration, and evaluation, drawing from
recent advances in the field and practical implementation experiences.

The rapid evolution of LLMs necessitates a comprehensive understanding of their
underlying mechanisms, from initial training processes to production-ready systems. This
review addresses key challenges including knowledge cutoff limitations (Chen et al., 2023),
hallucination mitigation (Zhang et al., 2023), and the development of robust evaluation
metrics that ensure both performance and safety.

2. Large language model training frameworks

2.1. Traditional training pipeline

The conventional LLM training process follows a structured approach involving sev-
eral critical stages, each presenting unique technical challenges and optimization opportuni-

Corresponding Author: Utkarsh Tripathi
Email: utkarshbitsp@gmail.com

88 UTKARSH TRIPATHI [SPL. PROC.

ties.

2.2. Data collection and preprocessing

The foundation of any LLM involves gathering vast amounts of text data from diverse
sources and preparing it for training. This stage encompasses several processes: (1) Web
crawling and curation, where large-scale internet scraping operations collect terabytes
of textual data from websites, forums, and digital repositories, requiring advanced filtering
mechanisms to ensure quality and remove duplicates (OpenAI, 2023); (2) Multilingual cor-
pus construction, involving the careful balance of languages to prevent model bias toward
dominant languages while ensuring adequate representation of low-resource languages; (3)
Quality assessment algorithms, implementing perplexity-based filtering, n-gram overlap
detection, and semantic coherence scoring to eliminate low-quality content; and (4) Tok-
enization strategies, employing subword tokenization methods like Byte-Pair Encoding
(BPE) or SentencePiece to handle out-of-vocabulary words and optimize vocabulary size for
computational efficiency (Vaswani et al., 2017).

2.3. Self-supervised learning

Models are trained to predict missing words in sequences through attention mecha-
nisms that enhance language understanding via pattern recognition and contextual learn-
ing (Vaswani et al., 2017). This phase implements the transformer architecture’s core in-
novation: multi-head self-attention, where the model computes attention weights Aij =

exp(QiK
T
j /

√
dk)∑n

k=1 exp(QiKT
k

/
√

dk) , allowing each position to attend to all positions in the input sequence.
The self-supervised objective maximizes the likelihood L = ∑T

t=1 log P (xt|x<t), where the
model learns to predict token xt given all previous tokens. This approach builds funda-
mental language capabilities through masked language modeling (MLM) and next sentence
prediction (NSP) tasks, establishing the semantic and syntactic understanding necessary for
more complex reasoning tasks.

2.4. Supervised learning and fine-tuning

The transition from self-supervised pre-training to supervised fine-tuning adapts the
model for specific tasks using curated instruction datasets. This process uses gradient-based
optimization, updating parameters as θt+1 = θt − α∇θL(θ), where L(θ) is the task-specific
loss. The supervised phase employs: (1) Instruction tuning, where models learn to follow
human instructions via prompt-response datasets; (2) Task-specific adaptation, involving
fine-tuning on datasets such as SQuAD for question-answering or WMT for translation; and
(3) Multi-task learning, where models simultaneously optimize multiple objectives to
boost generalization.

2.5. Distributed training infrastructure

The computational intensity of LLM training requires parallel computing architec-
tures that utilize multiple GPUs in distributed systems (Shoeybi et al., 2020). Modern
training implementations employ several parallelization strategies: (1) Data parallelism,
where different GPU nodes process separate batches of data while maintaining synchro-

2025] FRAMEWORKS FOR LARGE LANGUAGE MODELS 89

nized model parameters through all-reduce operations; (2) Model parallelism, splitting the
model architecture across multiple devices, particularly useful for models exceeding single-
GPU memory capacity; (3) Pipeline parallelism, dividing the model into sequential stages
across different devices, enabling concurrent processing of different micro-batches; and (4)
Tensor parallelism, partitioning individual tensor operations across multiple devices to
handle extremely large parameter matrices.

2.6. DeepSeek methodology: an alternative paradigm

The DeepSeek training framework (DeepSeek Team, 2024) follows established LLM
training practices with architectural innovations, implementing a mixture-of-experts (MoE)
architecture with 671B total parameters and 37B activated parameters. DeepSeek-R1 specif-
ically uses reinforcement learning without supervised fine-tuning to develop reasoning capa-
bilities.

2.7. Architectural innovations

The DeepSeek architecture integrates several advanced components: (1) Multi-
head latent attention mechanisms, extending traditional attention by incorporating
latent variable modeling where attention weights are computed through a latent space z:
Aij = softmax(f(Qi, Kj, z)), allowing for more flexible attention patterns; (2) Chain-of-
Thought integration (Wei et al., 2022), embedding reasoning pathways directly into the
model architecture through specialized attention heads that track logical dependencies; (3)
Mixture of Experts (MoE) architectures (Fedus et al., 2022), implementing sparse ac-
tivation patterns where only a subset of parameters are active for any given input, defined
by the gating function G(x) = softmax(Wg · x) that routes inputs to appropriate expert
networks.

2.8. Training methodology distinctions

The DeepSeek approach differs fundamentally from standard training in several key
aspects:

Data Usage Philosophy: While conventional approaches require extensive human-
labeled datasets often exceeding billions of examples, DeepSeek employs a cold-start method-
ology with minimal initial supervision, typically requiring only thousands of high-quality seed
examples. The system then implements iterative synthetic data generation through rejec-
tion sampling, where candidate responses are generated and filtered based on quality metrics
Q(r) = α · coherence(r) + β · relevance(r) + γ · factuality(r).

Reinforcement Learning Integration: Traditional RLHF (Ouyang et al., 2022)
applies reinforcement learning as a post-processing step, whereas DeepSeek integrates RL
throughout the training process. The system alternates between supervised fine-tuning
phases and pure reinforcement learning episodes, implementing policy gradient methods
where the policy πθ(a|s) is updated according to ∇θJ(θ) = E[∇θ log πθ(a|s)A(s, a)], where
A(s, a) represents the advantage function estimating the quality of action a in state s.

90 UTKARSH TRIPATHI [SPL. PROC.

3. Foundational challenges in LLM knowledge systems

3.1. Static knowledge limitations and temporal boundaries

Large language models face fundamental epistemological challenges related to knowl-
edge representation and temporal validity that significantly impact their practical deploy-
ment and reliability.

3.2. The knowledge freeze problem

LLMs experience ”knowledge freeze” at their training cutoff dates, creating a tem-
poral boundary beyond which the model lacks awareness of events, discoveries, or factual
updates (Chen et al., 2023). Scientific knowledge continuously evolves, with research showing
that various domains experience different rates of knowledge obsolescence, though specific
quantification varies significantly across fields. One possible mathematical representation of
knowledge decay could follow an exponential decay model K(t) = K0 ·e−λt, though empirical
validation of such models remains an area of active research.

The implications extend beyond simple factual updates to encompass: (1) Causal re-
lationship evolution, where the relationships between entities change over time, requiring
dynamic graph structures to represent evolving knowledge networks; (2) Semantic drift,
where word meanings and contextual associations shift, particularly in rapidly evolving do-
mains like technology and social media; and (3) Emerging concept integration, where
entirely new concepts, terminologies, or frameworks arise that require knowledge incorpora-
tion mechanisms.

3.3. Parametric versus non-parametric knowledge trade-offs

The tension between internal (parametric) knowledge storage and external (non-
parametric) knowledge retrieval presents complex optimization challenges. Parametric knowl-
edge, encoded within model weights, offers rapid access but suffers from staleness and limited
update mechanisms. The storage capacity can be estimated as C = N ·log2(Q)

B
bits, where N

is the number of parameters, Q is quantization levels, and B is bits per parameter.

Non-parametric knowledge systems, while offering currency and updateability, intro-
duce latency and consistency challenges. The trade-off can be formalized as an optimization
problem: minα α · Latency(retrieval) + (1 − α) · Staleness(parametric), where α balances
between retrieval overhead and knowledge currency.

3.4. The hallucination frontier

Hallucinations represent a critical failure mode where models generate seemingly plau-
sible but factually incorrect information (Zhang et al., 2023; Ji et al., 2023; Manakul et al.,
2023). The phenomenon occurs primarily when models encounter queries that exceed their
knowledge boundaries, leading to confabulation based on statistical patterns rather than
factual grounding.

Research has identified several hallucination triggers: (1) Knowledge boundary
proximity, where queries approach the limits of training data coverage; (2) Confidence

2025] FRAMEWORKS FOR LARGE LANGUAGE MODELS 91

calibration failures, where models express high confidence in incorrect information; (3)
Context insufficient disambiguation, where ambiguous queries lead to incorrect assump-
tion propagation; and (4) Training data biases, where systematic errors in training corpora
propagate to model outputs.

Mitigation strategies include: (1) Uncertainty quantification, implementing Bayesian
approaches to estimate prediction confidence: P (y|x) =

∫
P (y|x, θ)P (θ|D)dθ; (2) Attention

mechanism analysis, monitoring attention patterns to detect when models rely on weak or
irrelevant context; and (3) Consistency checking, validating responses through multiple
generation paths and cross-referencing.

3.5. The paradox of re-use and training data ecosystem

An emerging concern involves the ”paradox of re-use,” where increased LLM adoption
potentially degrades the quality of future training data through feedback loops. As LLMs
generate increasing amounts of web content, subsequent training iterations may incorporate
model-generated text, leading to potential quality degradation through recursive training
effects.

This phenomenon can be modeled as a Markov chain where each generation Gn

of models trains on data that includes outputs from previous generations: Dn+1 = (1 −
ρ)Dhuman + ρ

∑n
i=1 αiOGi

, where ρ represents the proportion of synthetic content, and αi

weights the contribution of generation i outputs.

4. Knowledge editing methodologies

4.1. Retrieval-augmented generation

RAG systems (Lewis et al., 2020) implement sophisticated information retrieval pipelines
that dynamically incorporate external knowledge during generation. The architecture com-
prises several interconnected components operating in a coordinated fashion. The embed-
ding subsystem converts both queries and document collections into high-dimensional vec-
tor representations using transformer-based encoders. Query embedding q = Encoderq(x)
and document embeddings di = Encoderd(doci) are typically generated using models like
BERT or specialized sentence transformers, producing dense vectors in Rd where d com-
monly ranges from 384 to 1024 dimensions.

The retrieval mechanism implements similarity search through vector databases
(Anderson et al., 2023) that support efficient approximate nearest neighbor queries. The
similarity function, typically cosine similarity sim(q, di) = q·di

||q||·||di|| , ranks documents by rele-
vance. Advanced implementations employ learned sparse retrieval methods combining dense
embeddings with traditional term-frequency approaches.

The context integration module aggregates the retrieved information with the
original query through prompt engineering, where the selected documents are formatted
according to task-specific templates that optimize information utilization while respecting
context length constraints.

92 UTKARSH TRIPATHI [SPL. PROC.

4.2. Multi-level RAG complexity framework

A comprehensive survey by researchers (Lewis et al., 2020) categorizes RAG tasks
into four levels based on external data requirements and reasoning complexity:

Level 1: Explicit Fact Queries implement direct factual lookup mechanisms
where queries map to specific knowledge entries. The retrieval function operates as R(q) =
arg maxd∈D match(q, d), where exact or near-exact matches suffice for response generation.
This level handles queries like ”What is the capital of France?” through straightforward
entity-attribute lookups.

Level 2: Implicit Fact Queries require multi-hop reasoning across connected
knowledge pieces. The system must identify relevant fact chains {f1, f2, . . . , fn} where
each fact fi provides context for subsequent facts. The reasoning process implements graph
traversal algorithms over knowledge graphs, where edges represent relationships and nodes
represent entities or concepts.

Level 3: Interpretable Rationale Queries extend beyond factual retrieval to
incorporate logical reasoning patterns from external sources. The system must identify and
apply reasoning templates that provide step-by-step solution methodologies. This involves
template matching where query patterns P (q) are matched against reasoning frameworks
R(t) to generate structured response sequences.

Level 4: Hidden Rationale Queries requires discovery of implicit reasoning strate-
gies not explicitly present in retrieved documents. The system must synthesize reasoning
approaches from multiple sources, implementing meta-learning mechanisms that identify
optimal problem-solving strategies for novel query types.

4.3. Hypernetwork-based knowledge updates

Hypernetworks (Ha et al., 2016) provide a mechanism for targeted knowledge modifi-
cation without full model retraining. These auxiliary networks generate weight modifications
for the primary model, implementing the transformation W’=W+H(c), where W represents
original weights, H is the hypernetwork function, and c is the conditioning context repre-
senting the knowledge update requirement.

The hypernetwork architecture typically employs a multi-layer perceptron that takes
knowledge update specifications as input and produces delta weights for specific model com-
ponents. The training objective minimizes L = E(x,y,c)[||f(x; W + H(c)) − y||2], where f
represents the primary model, and (x, y, c) are input-output-context triples representing de-
sired knowledge updates.

Advanced implementations employ attention mechanisms within hypernetworks to
selectively modify relevant parameter subsets, reducing computational overhead and mini-
mizing interference with existing knowledge. The attention-weighted modification becomes
W prime equals W plus the sum over i of alpha sub i times H sub i of c, where alpha sub i
represents attention weights determining the relevance of each hypernetwork component.

2025] FRAMEWORKS FOR LARGE LANGUAGE MODELS 93

4.4. Localized knowledge neuron editing

Recent research has identified specific neural pathways responsible for the storage of
factual knowledge within transformer architectures (Meng et al., 2021). These ”knowledge
neurons” can be precisely targeted for updates without affecting broader model capabilities.

The identification process employs gradient-based attribution methods, computing
∇hi

log P (y|x) for each hidden unit hi to determine its contribution to specific factual pre-
dictions. Neurons with high attribution scores for particular facts become candidates for
targeted modification.

The editing process implements constrained optimization where knowledge neuron
activations are modified to reflect updated information while preserving surrounding model
behavior. The objective function balances update accuracy with behavioral consistency:
min∆W ||f(xedit; W + ∆W) − ynew||2 + λ

∑
x∈Xpreserve

||f(x; W + ∆W) − f(x; W)||2.

4.5. Continual learning integration

Continual learning approaches (Parisi et al., 2019) enable incremental knowledge up-
dates while mitigating catastrophic forgetting. These methods implement memory systems
and regularization techniques to maintain previously acquired knowledge during updates.

Elastic Weight Consolidation (EWC) computes parameter importance scores
based on Fisher Information Matrix diagonal elements: Fi = E[(∂ log P (y|x)

∂θi
)2]. The regular-

ization term λ
∑

i Fi(θi − θ∗
i)2 prevents important parameters from deviating significantly

during updates.

Progressive Neural Networks implement modular architectures where new knowl-
edge modules are added while preserving existing ones. The architecture employs lateral
connections h

(k)
i = f(W (k)h

(k)
i−1 + ∑

j<k U
(k:j)
i h

(j)
i−1), where knowledge from previous modules

j influences current module k processing.

Memory-Augmented Networks maintain explicit episodic memories of previous
learning experiences, implementing retrieval mechanisms that recall relevant examples during
new learning episodes. The memory update process balances between adding new experiences
and maintaining diverse historical knowledge.

5. Evaluation frameworks for LLM systems

5.1. Perplexity-based assessment

Perplexity serves as a fundamental intrinsic evaluation metric measuring model un-
certainty in predicting text sequences (Brown et al., 2023). Mathematically defined as
PPL(X) = exp

(
− 1

N

∑N
i=1 log P (xi|x<i)

)
, perplexity quantifies the model’s predictive con-

fidence, with lower values indicating superior language modeling capabilities.

Advanced perplexity analysis employs domain-specific decomposition, computing sep-
arate scores for different text types: PPLdomain = exp

(
− 1

Ndomain

∑
x∈Ddomain log P (x)

)
. This

approach reveals model strengths and weaknesses across different knowledge domains and

94 UTKARSH TRIPATHI [SPL. PROC.

text genres.

Conditional perplexity measurements evaluate model performance given specific con-
texts or constraints, implementing PPL(X|C) = exp

(
− 1

N

∑N
i=1 log P (xi|x<i, c)

)
, where c

represents conditioning information. This metric proves particularly valuable for assessing
context utilization in RAG systems and domain adaptation effectiveness.

5.2. Reference-based similarity metrics

BLEU Score Implementation (Papineni et al., 2002) computes n-gram overlap
between generated and reference texts through the geometric mean of precision scores:
BLEU = BP · exp

(∑N
n=1 wn log pn

)
, where pn represents n-gram precision and BP is the

brevity penalty addressing length disparities.

The metric implements modified precision calculations to prevent repetition: pn =
(sum over C in Candidates of sum over n-gram in C of Countclip(n − gram) / (sum over C’
in Candidates of sum over n-gram’ in C’ of Count(n-gram’)), where Countclip limits n-gram
counts to reference frequencies.

ROUGE Metrics (Lin, 2004) implement recall-oriented evaluation through vari-
ous formulations: ROUGE-N computes n-gram recall, ROUGE-L employs longest common
subsequence matching, and ROUGE-S utilizes skip-bigram co-occurrence. The ROUGE-L
formulation Rlcs = LCS(X,Y)

m
and Plcs = LCS(X,Y)

n
compute recall and precision based on

longest common subsequences, providing robust similarity assessment for variable-length
outputs.

BLEU Score Implementation (Papineni et al., 2002) computes n-gram overlap
between generated and reference texts through the geometric mean of precision scores:
BLEU = BP · exp

(∑N
n=1 wn log pn

)
, where pn represents n-gram precision and BP is the

brevity penalty addressing length disparities.

ROUGE Metrics (Lin, 2004) implement recall-oriented evaluation through vari-
ous formulations: ROUGE-N computes n-gram recall, ROUGE-L employs longest common
subsequence matching, and ROUGE-S utilizes skip-bigram co-occurrence. The ROUGE-L
formulation Rlcs = LCS(X,Y)

m
and Plcs = LCS(X,Y)

n
compute recall and precision based on

longest common subsequences, providing robust similarity assessment for variable-length
outputs.

5.3. Advanced evaluation methodologies: multi-dimensional human assessment

Human evaluation protocols implement structured assessment frameworks encom-
passing multiple quality dimensions. Evaluators assess responses across: (1) Fluency, mea-
suring grammatical correctness and natural language flow; (2) Coherence, evaluating log-
ical consistency and thematic unity; (3) Relevance, assessing response appropriateness to
query context; (4) Informativeness, measuring content richness and factual density; and
(5) Truthfulness, verifying factual accuracy and consistency with reliable sources.

Calibration techniques align LLM judge scores with human evaluations through re-
gression models or distribution matching. The calibration function f : SLLM → Shuman learns

2025] FRAMEWORKS FOR LARGE LANGUAGE MODELS 95

mappings from LLM scores to human-equivalent scores, improving evaluation validity.

5.4. Benchmark dataset assessment

Standardized benchmarks provide systematic performance comparison across models
and methodologies. GLUE and SuperGLUE implement comprehensive evaluation suites
covering diverse NLP tasks including sentiment analysis, textual entailment, and question
answering. Performance aggregation employs weighted averages accounting for task difficulty
and dataset size.

Domain-specific benchmarks evaluate specialized capabilities such as mathemati-
cal reasoning (GSM8K), coding proficiency (HumanEval), and scientific knowledge (SciBench).
These benchmarks implement rigorous evaluation protocols with automated scoring systems
and comprehensive test suites covering edge cases and challenging scenarios.

5.5. Adversarial robustness testing

Adversarial evaluation assesses model robustness through deliberately challenging in-
puts designed to expose failure modes. Techniques include: (1) Prompt injection attacks,
testing resistance to malicious instruction manipulation; (2) Context manipulation, eval-
uating performance degradation under misleading or contradictory context; (3) Semantic
perturbations, testing sensitivity to paraphrasing and synonym substitution; and (4) Out-
of-distribution queries, assessing behavior on inputs significantly different from training
data.

The evaluation protocol implements systematic perturbation generation through au-
tomated techniques and human-crafted challenging examples. Robustness metrics quantify
performance degradation: R = 1 − Performanceadversarial

Performanceclean
, where lower values indicate better

robustness.

6. LLM guardrails and safety frameworks

6.1. Input validation and preprocessing

Modern LLM deployment requires comprehensive safety frameworks implementing
defense-in-depth strategies across multiple system layers (Johnson et al., 2024).

The first line of defense implements input analysis to detect potentially harmful or
manipulative queries. Prompt injection detection employs trained classifiers that identify
attempts to override system instructions or extract sensitive information. The detection
system analyzes query patterns using features such as instruction keywords, context breaks,
and linguistic anomalies.

The classifier implements a multi-stage approach: (1) Syntactic analysis identifying
structural patterns common in injection attempts; (2) Semantic analysis using embedding
similarity to detect attempts to mimic system prompts; and (3) Contextual analysis
evaluating query appropriateness given conversation history and system role.

Content sanitization processes inputs to remove or neutralize potentially harmful

96 UTKARSH TRIPATHI [SPL. PROC.

elements while preserving legitimate query intent. This involves entity recognition for sensi-
tive information, toxicity scoring using specialized models, and context-aware filtering that
considers domain-specific content policies.

6.2. Response generation controls

During the generation process, multiple safeguards ensure output quality and safety.
Real-time monitoring tracks model attention patterns and internal states to detect po-
tential safety violations before completion. The monitoring system implements threshold-
based intervention where concerning patterns trigger alternative generation paths or safety
responses.

Content filtering pipelines evaluate generated text across multiple dimensions:
(1) Toxicity detection using specialized classifiers trained on harmful content datasets; (2)
Bias assessment measuring unfair treatment of protected groups through demographic par-
ity metrics; (3) Factuality verification cross-referencing claims against reliable knowledge
bases; and (4) Coherence validation ensuring logical consistency and topical relevance.

6.3. Post-processing and output validation

The final safety layer implements comprehensive output validation before response de-
livery. Multi-model consensus employs multiple independent models to evaluate response
quality and safety, implementing voting mechanisms where responses require majority ap-
proval for release.

Dynamic policy enforcement applies context-sensitive rules based on user profiles,
conversation history, and application domain. The rule engine implements conditional logic
trees evaluating multiple safety criteria simultaneously.

Audit trail generation maintains comprehensive logs of all safety interventions,
enabling continuous improvement of safety systems through analysis of edge cases and system
failures.

7. Production-scale LLM infrastructure

7.1. Data pipeline infrastructure

Production LLM systems require integrated data processing pipelines handling diverse
input types and sources. Stream processing systems like Apache Kafka and Apache
Pulsar manage real-time data ingestion with low latency and high throughput requirements.
The architecture implements pub-sub patterns enabling scalable data distribution across
processing components.

ETL frameworks such as Apache Airflow orchestrate complex data transformation
workflows, implementing DAG-based scheduling with dependency management and error
recovery mechanisms. These systems handle: (1) Data ingestion from multiple sources in-
cluding APIs, databases, and file systems; (2) Transformation and normalization ensuring
consistent data formats; (3) Quality validation through automated testing and anomaly de-
tection; and (4) Loading into downstream systems with appropriate partitioning and indexing

2025] FRAMEWORKS FOR LARGE LANGUAGE MODELS 97

strategies.

Vector database systems (Anderson et al., 2023) provide specialized storage and
retrieval for high-dimensional embeddings. Production implementations employ distributed
architectures with horizontal scaling capabilities, implementing approximate nearest neigh-
bor algorithms like HNSW or IVF for efficient similarity search. The query processing
pipeline optimizes for both accuracy and latency through techniques such as query caching,
index warming, and adaptive batching.

7.2. Model serving and orchestration

Model serving infrastructure implements request routing and load balancing
across multiple model instances. The architecture employs containerized deployments using
technologies like Docker and Kubernetes, enabling dynamic scaling based on demand pat-
terns. Advanced implementations utilize model parallelism across multiple GPUs or nodes,
implementing tensor sharding strategies that distribute computational load while maintain-
ing response coherence.

Orchestration frameworks coordinate complex workflows involving multiple mod-
els, retrieval systems, and validation components. Systems like LangChain and LlamaIndex
provide abstraction layers enabling composable AI workflows, implementing retry mecha-
nisms, timeout handling, and fallback strategies for robust production operation.

Caching systems optimize performance through multi-level caching strategies: (1)
Response caching storing complete answers for frequently asked questions; (2) Embedding
caching maintaining computed vector representations; (3) Context caching preserving pro-
cessed conversation history; and (4) Model state caching reducing initialization overhead for
dynamically loaded models.

7.3. Performance monitoring systems

Production LLM systems require comprehensive monitoring across multiple perfor-
mance dimensions. Latency tracking measures end-to-end response times with percentile-
based analysis identifying performance outliers and degradation patterns. The monitoring
system tracks: (1) Model inference time including tokenization and generation phases; (2)
Retrieval system latency for RAG implementations; (3) Network communication overhead;
and (4) Queue waiting times during high-load periods.

Throughput monitoring tracks request processing rates with capacity planning
metrics. The system implements predictive scaling based on traffic patterns and resource
utilization trends, automatically adjusting compute resources to maintain target performance
levels.

Resource utilization tracking monitors GPU memory usage, CPU consumption,
and network bandwidth to identify bottlenecks and optimization opportunities. Advanced
implementations employ machine learning models to predict resource requirements and de-
tect anomalous usage patterns indicating potential issues.

98 UTKARSH TRIPATHI [SPL. PROC.

7.4. Quality assurance and safety monitoring

Response quality tracking implements automated assessment of output quality
using multiple evaluation metrics. The system continuously monitors response relevance,
coherence, and factual accuracy, alerting operators to quality degradation that may indicate
model drift or system issues.

Safety violation detection tracks incidents where safety guardrails activate, ana-
lyzing patterns to identify potential attack vectors or system vulnerabilities. The monitoring
system implements real-time alerting for serious safety violations while maintaining compre-
hensive audit logs for forensic analysis.

User satisfaction metrics collect implicit and explicit feedback signals, implement-
ing sentiment analysis on user interactions and conversion rate tracking for task completion
metrics. These signals provide early warning of system degradation and guide improvement
efforts.

8. Conclusion and future directions

The landscape of LLM development encompasses sophisticated technical challenges
requiring integrated solutions across training methodologies, knowledge management, eval-
uation frameworks, and production systems. The survey has examined the evolution from
traditional training approaches to innovative methodologies like DeepSeek, highlighting the
trade-offs between human supervision and automated optimization.

Key technical advances include the development of multi-level RAG systems that
enable reasoning capabilities, the implementation of precise knowledge editing techniques
targeting specific neural pathways, and the deployment of comprehensive safety frameworks
addressing the complex challenges of production AI systems.

Future research directions encompass several critical areas: (1) Development of more
efficient training paradigms that reduce computational requirements while maintaining or
improving model capabilities; (2) Advanced knowledge integration techniques that enable
real-time updates without catastrophic forgetting; (3) End to end evaluation frameworks that
better capture real-world performance and safety characteristics; and (4) Scalable production
architectures that can handle the increasing demands of widespread LLM deployment.

The convergence of these technical advances represents a pathway toward more ca-
pable, efficient, and trustworthy AI systems that can effectively serve diverse human needs
while maintaining appropriate safety standards and ethical considerations. As the field con-
tinues to evolve rapidly, the integration of these comprehensive frameworks will be essential
for realizing the full potential of large language models in practical applications.

Acknowledgements

I am indeed grateful to the Editors for their guidance and counsel. I am very grateful
to the reviewer for valuable comments and suggestions of generously listing many useful
references.

2025] FRAMEWORKS FOR LARGE LANGUAGE MODELS 99

Conflict of interest

The authors do not have any financial or non-financial conflict of interest to declare
for the work included in this article.

References

Anderson, R., Lee, J., and Martinez, C. (2023). Vector databases for large-scale similarity
search. ACM Computing Surveys, 56, 1–35.

Brown, S., Davis, M., and Wilson, J. (2023). Perplexity and its applications in language
model evaluation. Computational Linguistics, 49, 345–378.

Chen, W., Liu, M., and Zhang, Y. (2023). Temporal knowledge boundaries in large language
models. Nature Machine Intelligence, 8, 234–249.

DeepSeek Team (2024). Deepseek-r1: Incentivizing reasoning capability in llms via rein-
forcement learning. arXiv preprint arXiv:2501.12948.

Fedus, W., Zoph, B., and Shazeer, N. (2022). Switch transformer: Scaling to trillion param-
eter models with simple and efficient sparsity. Journal of Machine Learning Research,
23, 1–39.

Ha, D., Dai, A., and Le, Q. V. (2016). Hypernetworks. arXiv preprint arXiv:1609.09106.
Ji, Z., Lee, N., Frieske, R., Yu, T., Su, D., Xu, Y., Ishii, E., Bang, Y., Madotto, A., and Fung,

P. (2023). A survey on hallucination in large language models: Principles, taxonomy,
challenges, and open questions. arXiv preprint arXiv:2311.05232.

Johnson, A., Smith, S., and Brown, D. (2024). Implementing safety guardrails for large
language models in production. AI Safety Review, 12, 78–95.

Lewis, P., Perez, E., Piktus, A., Petroni, F., Karpukhin, V., Goyal, N., Küttler, H., Lewis,
M., Yih, W.-t., Rocktäschel, T., et al.. (2020). Retrieval augmented generation for
knowledge-intensive nlp tasks. In Advances in Neural Information Processing Systems,
33, 9459–9474.

Lin, C.-Y. (2004). Rouge: A package for automatic evaluation of summaries. In Text
Summarization Branches Out, 74–81.

Manakul, P., Liusie, A., and Gales, M. J. (2023). Selfcheckgpt: Zero-resource black-box
hallucination detection for generative large language models. In Proceedings of the
2023 Conference on Empirical Methods in Natural Language Processing, 9004–9017.

Meng, K., Bau, D., Andonian, A., and Belinkov, Y. (2021). Locating and editing fac-
tual associations in gpt. In Advances in Neural Information Processing Systems, 34,
17359–17372.

OpenAI (2023). Gpt-4 technical report. https://arxiv.org/abs/2303.08774.
Ouyang, L., Wu, J., Jiang, X., Almeida, D., Wainwright, C., Mishkin, P., Zhang, C., Agar-

wal, S., Slama, K., Ray, A., et al.. (2022). Training language models to follow instruc-
tions with human feedback. Advances in Neural Information Processing Systems, 35,
27730–27744.

Papineni, K., Roukos, S., Ward, T., and Zhu, W.-J. (2002). Bleu: A method for automatic
evaluation of machine translation. In Proceedings of the 40th Annual Meeting of the
Association for Computational Linguistics, 311–318.

Parisi, G. I., Kemker, R., Part, J. L., Kanan, C., and Wermter, S. (2019). Continual lifelong
learning with neural networks: A review. Neural Networks, 113, 54–71.

100 UTKARSH TRIPATHI [SPL. PROC.

Shoeybi, M., Patwary, M., Puri, R., LeGresley, P., Casper, J., and Catanzaro, B. (2020).
Efficient large-scale language model training on gpu clusters using megatron-lm. In
Proceedings of the International Conference for High Performance Computing, Net-
working, Storage and Analysis, 1–15.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, and
Polosukhin, I. (2017). Attention is all you need. In Advances in Neural Information
Processing Systems, 30.

Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E., Le, Q. V., Zhou, D., et
al.. (2022). Chain-of-thought prompting elicits reasoning in large language models.
Advances in Neural Information Processing Systems, 35, 24824–24837.

Zhang, W., Chen, L., and Wang, M. (2023). Understanding and mitigating hallucinations
in large language models. Machine Learning Research, 24, 1234–1256.

	Introduction
	Large language model training frameworks
	Traditional training pipeline
	Data collection and preprocessing
	Self-supervised learning
	Supervised learning and fine-tuning
	Distributed training infrastructure
	DeepSeek methodology: an alternative paradigm
	Architectural innovations
	Training methodology distinctions

	Foundational challenges in LLM knowledge systems
	Static knowledge limitations and temporal boundaries
	The knowledge freeze problem
	Parametric versus non-parametric knowledge trade-offs
	The hallucination frontier
	The paradox of re-use and training data ecosystem

	Knowledge editing methodologies
	Retrieval-augmented generation
	Multi-level RAG complexity framework
	Hypernetwork-based knowledge updates
	Localized knowledge neuron editing
	Continual learning integration

	Evaluation frameworks for LLM systems
	Perplexity-based assessment
	Reference-based similarity metrics
	Advanced evaluation methodologies: multi-dimensional human assessment
	Benchmark dataset assessment
	Adversarial robustness testing

	LLM guardrails and safety frameworks
	Input validation and preprocessing
	Response generation controls
	Post-processing and output validation

	Production-scale LLM infrastructure
	Data pipeline infrastructure
	Model serving and orchestration
	Performance monitoring systems
	Quality assurance and safety monitoring

	Conclusion and future directions

