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Abstract
Mathematical and statistical models serve as valuable tools for the analysis and sim-

ulation of infectious disease transmission. This study explores the dynamics of Covid-19
through the utilization of a deterministic epidemic model denoted as SEIIaIqHR, incorpo-
rating interventions. The investigation focuses on essential aspects such as the positivity,
boundedness, existence of various equilibria based on the basic reproduction number (R0),
and asymptotic behavior of solutions around these equilibria in the deterministic model.
Recognizing the significance of environmental noise and the involvement of random fac-
tors in real-world disease propagation systems, we also develop a stochastic version of the
SEIIaIqHR model to account for the impact of noise. We establish the necessary conditions
for the existence and uniqueness of solutions for the system and discuss the ergodic station-
ary distribution as well as the conditions for system extinction. To validate our analytical
findings, we conduct numerical studies. Our results indicate that the rate of intervention
and the fraction of the population in quarantine actively influence disease control efforts.

Key words: Stochastic model; Disease intervention; Extinction; Stationary distribution; Sieve
bootstrap test.
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1. Introduction

Infectious diseases are the leading cause of deaths in the low-income countries (W.H.O.,
2020). As of 2019, all communicable diseases together accounted for 36% of all deaths world-
wide (W.H.O., 2020). Some example of communicable diseases are SARS, MERS-CoV,
COVID-19, Dengue, Malaria, etc. Severe acute respiratory syndrome (SARS) is a viral res-
piratory disease caused by a SARS-associated coronavirus. Burden of SARS outbreak in 2003
in Asian countries is around USD $60 billion (Ding and Zhang, 2022). Middle East Respira-
tory Syndrome (MERS) is viral respiratory illness and it was first occurred in 2012 in Saudi
Arabia. Approximately 35% of MERS cases reported to WHO have died (W.H.O., 2022).
Recent outbreak of COVID-19 infection causes around 7 million deaths worldwide (W.H.O.,
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2023b). Dengue is a viral infection caused by the bite of infected mosquitoes. Around half of
the world population are at risk of dengue infection with 100–400 million infections occurring
each year (Bhatt et al., 2013). Along with the dengue, as of 2021, around half of the world
population at risk of Malaria with around 247 million cases and approximately 0.61 million
deaths currently occurring each year (W.H.O., 2023a).

In epidemiology, compartmental SIR type models can provide an overall understand-
ing of the dynamics of infectious diseases. Information like spread dynamics, incidence peak
timing, transmission severity, effect of disease control strategies etc. can be obtained by
studying mathematical models (Cai et al., 2017; Ding and Zhang, 2022; Tang et al., 2020; Li
et al., 2020). Classical epidemiological models of communicable diseases are mainly deter-
ministic compartmental systems (Choisy et al., 2007; Wearing et al., 2005). However, disease
incidence growth in general random in nature since uncertainty in contact rates (Cai et al.,
2013; Allen, 2017). Furthermore, disease incidence also depend on population demographic
rates which in-general follows Markovian process therefore, it is related to environmental
noise (Cai et al., 2013; Allen, 2017). Thus, stochastic differential equation (SDE) based
models can provide more realistic information on disease spread at initial stage of infec-
tion (Allen, 2008, 2017; Cai et al., 2013; Mao, 2007; Oksendal, 2013).

Recently, there are few works on infectious diseases can be found in literature based
on stochastic differential equations (Cai et al., 2013; Lahrouz and Omari, 2013; Ding and
Zhang, 2022; Cai et al., 2017; Rao et al., 2012; Din et al., 2021; Sun et al., 2022; Din et al.,
2020; Tuckwell and Williams, 2007). Randomness in these models are incorporated either
by adding random noise in the state equations or by considering environmental fluctuations
in some model parameters (Allen, 2008, 2017). Cai et al. (2013) found that random fluctua-
tions can suppress the disease outbreak that leads some insight on disease control strategies.
Lahrouz and Omari (2013) considered a SIRS epidemic model with general incidence rate
in a population of varying size. They analytically determined the sufficient conditions for
the extinction and the existence of a unique stationary distribution. Ding and Zhang (2022)
developed a stochastic SIRS epidemic model with information intervention. Author’s de-
termined that the average in time of the second moment of the solutions of the stochastic
system is bounded for a relatively small noise. Furthermore, they found that information
interaction response rate have a vital role in reducing disease incidence, and as the intensity
of the response increases, the number of infected population decreases, which is beneficial
for disease control (Ding and Zhang, 2022). Cai et al. (2017) considered a stochastic version
of SIRS epidemic model with ratio-dependent incidence rate. Author’s mathematically de-
rived some results on permanence and extinction of the proposed stochastic epidemic model.
Rao et al. (2012) determined stability of an epidemic model with diffusion and stochastic
perturbation. Din et al. (2021) use a stochastic Markovian dynamics approach to describe
the spreading of dengue and the threshold of the disease. Some mathematical properties of
the stochastic epidemic model are determined.

In this paper, we first develop a deterministic SEIIaIqHR epidemic model with fre-
quency dependent incidence rate based on the assumption that a susceptible individual may
get infection either by contacting a symptomatic or an asymptomatic or an exposed indi-
vidual. This deterministic model also considered the transmission variability among differ-
ent transmission rates from symptomatic, asymptomatic and exposed individuals. Further-
more, model also considered the awareness effect (for example spreading awareness program
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through media, proper hand sanitization, social distancing, wearing mask, etc), and infection
(exposed population) quarantine effect. Main objective of this work is to study the effect
of stochastic perturbations in the developed deterministic SEIIaIqHR epidemic model. In
particular, we focused on answering the following questions:

• A detailed study of the SEIIaIqHR epidemic model and its stochastic version. Then
comparison between their dynamics based on various factors.

• How the effect of intervention and quarantine effect influenced the dynamics of a disease
in presence of environmental fluctuations.

The rest of the paper is presented as follows: In section 2, detailed SEIIaIqHR model
is formulated. In section 3, some basic properties (example: positivity of solution, global
stability of the disease-free equilibrium, local stability of the endemic equilibrium, etc) of
the deterministic SEIIaIqHR model are studied. Detailed formulation of the stochastic
SEIIaIqHR model is shown in section 4. We also discussed Euler Maruyama scheme to de-
termine the numerical solution of the stochastic differential equation. Next, we analytically
studied the existence and uniqueness of the solution for the SDE model in section 5. More-
over, long term disease extinction, ergodicity of the solution is studied analytically through
various mathematical as well statistical concept. In section 6, we numerically studied the
deterministic system to support its analytical findings. We further studied the stochastic
system and generated various sample paths, average density paths, histograms of densities,
stochastic extinction scenario, etc. We have replicated the system very large times to adress
the role of quarantine population in the trend of infection. Finally, we discuss and conclude
our study.

2. The mathematical model

We start with a deterministic compartmental SIR-type model where population is
subdivided into seven mutually exclusive sub-classes namely susceptible (S), exposed (E),
symptomatic (I), asymptomatic (Ia), quarantined (Iq), hospitalized (H) and recovered (R),
respectively. We considered frequency dependent force of infection with the assumption that
susceptible can get infection in contact with the symptomatic (I), asymptomatic (Ia), and
exposed (E) cases, respectively. However, we also assumed that the probability of infection
form the exposed and asymptomatic cases are lesser compared to the symptomatic cases
with transmission modification parameters η1(0 ≤ η1 ≤ 1), and η2(0 ≤ η2 ≤ 1), respectively.
Furthermore, we also considered the effect of some intervention that reduce the transmission
rate β by a factor (1−k), where 0 ≤ k ≤ 1. In epidemiological point of view, this intervention
represents some awareness effect among the susceptible population that reduce the contact
with the infected populations (exposed, symptomatic and asymptomatic). The intervention
strategies includes the preventive measures such as lock-down, spreading awareness program
through media, proper hand sanitization, social distancing, wearing mask, etc. which results
in slowing down the disease transmission process.

We assume variable human population with recruitment rate Π. The susceptible
compartment reduced due to new infection and natural deaths at rate µd. Exposed popula-
tion increased due to new infection coming from the susceptible compartment and reduced
due to natural deaths at a rate µd. After the incubation period 1

σ
, a fractions ρ1 and ρ2 of

the exposed population become symptomatic and asymptomatic infected and the remaining
fraction (1 − ρ1 − ρ2) of the exposed population become quarantined. Symptomatic infected
compartment (I) is increased due to inflow of infected population coming from the exposed
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class (E) and reduced due to natural death at a rate µd and a fraction α become hospital-
ized. Asymptomatic infected compartment (Ia) increased due to inflow of a fraction ρ2 of
the exposed population after completion of the incubation period 1

σ
. This compartment is

decreased due to natural recovery and death at rates γa and µd, respectively. Quarantined
compartment (Iq) increased due to those exposed individuals who are quarantined and this
compartment is reduced due to hospitalization of symptomatic cases, natural death and re-
covery at rates αq, γq and µd, respectively. Hospitalized compartment (H) is increased by
the patient coming from the symptomatic class and quarantined compartments at rates α,
and αq, respectively. This compartment is decreased due to recovery, disease related death,
and natural death at rates γ, δ, and µd, respectively. Recovered compartment increased due
to inflow of individuals coming from asymptomatic, quarantined, and hospitalized compart-
ments, respectively. This population is reduced by natural death at a rate µd. Based on all
the assumptions our deterministic the epidemic model that represents the rate of change of
different disease classes are provided below:

dS

dt
= Π − (1 − k)βS

N
(I + η1Ia + η2E) − µdS,

dE

dt
= (1 − k)βS

N
(I + η1Ia + η2E) − σE − µdE,

dI

dt
= ρ1σE − αI − µdI,

dIa

dt
= ρ2σE − γaIa − µdIa,

dIq

dt
= (1 − ρ1 − ρ2)σE − (αq + γq)Iq − µdIq,

dH

dt
= αI + αqIq − (γ + δ)H − µdH,

dR

dt
= γaIa + γqIq + γH − µdR,

(1)

The schematic diagram and the description of the parameters used in the model (1)
is presented in Fig. 1 and Table 1 respectively.

Figure 1: A Flow diagram of the model (1).
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Table 1: Description of various parameters used in the model (1).

Parameter Definitions Value Reference
Π Recruitment rate 10 Din et al. (2021)
µd Death rate 0.2 Din et al. (2020)
η1 Modification parameter 0.1002 Senapati et al. (2021)
η2 Modification parameter (0.1,0.4) Assumed
k Strength of intervention (0, 0.6544) Senapati et al. (2021)
β Rate of disease transmission 1.7399 Senapati et al. (2021)
σ Rate of transition from E to I 0.1923 Li et al. (2020)
ρ1 Fraction of the E move to I 0.3362 Senapati et al. (2021)
ρ2 Fraction of the E move to Ia 0.4204 Senapati et al. (2021)
α Rate of transition from I to H 0.2174 Li et al. (2020)
αq Rate of transition from Iq to H 0.1429 Senapati et al. (2021)
γa Recovery rate of Ia 0.13978 Tang et al. (2020)
γq Recovery rate of Iq 0.11624 Tang et al. (2020)
γ Recovery rate of H 0.0701 Senapati et al. (2021)
δ Rate of disease induced death 0.0175 Senapati et al. (2021)

3. Analysis

3.1. Model positivity

Theorem 1: The solution to the system (1) remains positive for all time t (≥ 0) given a
non-negative initial condition.

Proof: From (1) we can write
dS

dt

∣∣∣∣
S=0

= Π ≥ 0, dE

dt

∣∣∣∣
E=0

= (1 − k)
N

βS(I + η1Ia) ≥ 0, dI

dt

∣∣∣∣
I=0

= ρ1σE ≥ 0, dIa

dt

∣∣∣∣
Ia=0

=
ρ2σE ≥ 0,

dIq

dt

∣∣∣∣
Iq=0

= (1 − ρ1 − ρ2)σE ≥ 0, dH

dt

∣∣∣∣
H=0

= αI + αqIq ≥ 0, dR

dt

∣∣∣∣
R=0

= γaIa + γqIq + γH ≥ 0.

Consequently, the system (1) is positive at all times when positive initial conditions are
given.

3.2. Boundness

Theorem 2: The system (1) is bounded in the feasible region {(S, E, I, Ia, Iq, H, R) ∈ R7
+ :

N(t) ≤ Π
µd

; S(t), E(t), I(t), Ia(t), Iq(t), H(t), R(t) ≥ 0, at any time t ≥ 0}.

Proof: We begin by considering the total population density N(t) and utilize the model (1)
in the following manner:

N(t) = S(t) + E(t) + I(t) + Ia(t) + Iq(t) + H(t) + R(t),

dN

dt
= Π − µdN,
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By using Gronwall’s inequality,

N(t) = N(0)e−Πt + Π
µd

, t ≥ 0,

⇒ lim
n→∞

SupN(t) ≤ Π
µd

.
(2)

So we can say that the system (1) is bounded in the region {(S, E, I, Ia, Iq, H, R) ∈ R7
+ :

N(t) ≤ Π
µd

; S(t), E(t), I(t), Ia(t), Iq(t), H(t), R(t) ≥ 0, at any time t ≥ 0}.

3.3. Local stability of disease-free equilibrium (DFE)

The DFE of the model (1) is given by E0( Π
µd

, 0, 0, 0, 0, 0, 0).
The local stability of E0 in the system (1) can be established using the next generation
operator method. Following the notation in Driessche and Watmough (2002), we denote the
matrices F and V for the new infection and transition terms, respectively, as follows:

F =


η2(1 − k)β (1 − k)β (1 − k)βη1 0

0 0 0 0
0 0 0 0
0 0 0 0

,

V =


(σ + µd) 0 0 0

−ρ1σ (α + µd) 0 0
−ρ2σ 0 (γa + µd) 0

−(1 − ρ1 − ρ2)σ 0 0 (αq + γq + µd)


Therefore, the basic reproduction number, denoted by R0 (Hethcote, 2000) and cal-

culated as ρ(FV −1) where ρ represents the spectral radius, can be expressed as R0 =
η2(1−k)β
(σ+µd) + ρ1σ(1−k)β

(σ+µd)(α+µd) + (1−k)βη1ρ2σ
(σ+µd)(γa+µd) .

By utilizing Theorem 2 from Driessche and Watmough (2002), we can establish the
following result.

Lemma 1: The DFE, E0 of the model (1) is locally-asymptotically stable (LAS) if R0 < 1,
and unstable if R0 > 1.

3.4. Global stability of DFE

In order to demonstrate the global stability of E0 in the model (1), we can rewrite
the system as follows:

dX

dt
= T (X, I ′) (3)

dI ′

dt
= G(X, I ′), G(X, 0) = 0,

where X = (S, H, R) ∈ R3
+ represents the components denoting the number of unin-

fected individuals, and I ′ = (E, I, Ia, Iq) ∈ R4
+ represents the components denoting the num-

ber of infected individuals, including latent, infectious, and other categories. E0 = (X∗, 0)



2025] EXTINCTION AND STATIONARY DISTRIBUTION 145

represents the disease-free equilibrium of the system eqrefEQ:eqn 2.3. For the system (1),
the expressions for T (X, I ′) and G(X, I ′) are in the Annexure.

From the expression of G(X, I ′), it is evident that G(X, 0) = 0.

To demonstrate the global stability of ε0 = (X∗, 0), the following two conditions must
be satisfied:

(H1) For dX

dt
= T (X, 0), X∗ is globally asymptotically stable.

(H2) G(X, I ′) = AI − Ĝ(X, I), Ĝ(X, I) ≥ 0 for (X, I ′) ∈ Ω,

Here, A = DI′G(X∗, 0) represents an M-matrix, where the off-diagonal elements are
non-negative. Additionally, Ω denotes the region in which the model (1) holds biological
significance.

Now, we can express the system defined in (H1) as follows:

dS

dt
= Π − µdS, (4)

dR

dt
= −µdR.

By solving this system of equations analytically, we obtain the following solution: S(t) =
Π
µd

+ e−µdt(S(0) − Π
µd

), R(t) = e−µdtR(0). As t → ∞, S(t) = Π
µd

, R(t) → 0. Hence, X∗ is

globally asymptotically stable for dX

dt
= T (X, 0).

Therefore, we can conclude that (H1) holds for the system (1). Now, the matrices A

and Ĝ(X, I) for the system (1) are in the Annexure.

It is evident that A is an M-matrix, and since S(t) ≤ N(t) holds in Ω, we can conclude
that Ĝ(X, I) ≥ 0 for (X, I) ∈ Ω. Based on the findings presented in Castillo-Chavez et al.
(2002), the following result can be stated:

Theorem 3: The DFE of the model (1) is globally asymptotically stable in Ω whenever
R0 < 1.

3.5. Existence of endemic equilibria

In this section, we establish the existence of the endemic equilibrium for the model
(1). Let us denote k1 = σ +µd, k2 = α+µd, k3 = γa +µd, k4 = αq +γq +µd, k5 = γ +δ +µd.
Let E∗(S∗, E∗, I∗, I∗

a , I∗
q , H∗, R∗) represents any arbitrary endemic equilibrium point (EEP)

of the model (1). Further, define λ∗ = (1−k)βI∗

N∗ + (1−k)βη1I∗
a

N∗ + (1−k)βη2E∗

N∗ .
So we have E∗ in terms of λ∗ by solving the equations in (1) at steady-state (see Annexure).

By substituting the E∗ expressions into λ∗, we can observe that the non-zero equilib-
rium of the model (1) satisfies the following linear equation in terms of λ∗: a0λ

∗ + a1 = 0,
where, a0 = k2k3k4k5µd +k3k4k5µdρ1σ+k2k4k5µdρ2σ+k2k3k5µd(1−ρ1 −ρ2)σ+k3k4µdαρ1σ+
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k2k3µdαq(1−ρ1−ρ2)σ+k2k4k5γaρ2σ+k2k3k5γa(1−ρ1−ρ2)σ+k3k4γαρ1σ+k2k3αq(1−ρ1−ρ2)σ
a1 = k1k2k3k4k5µd(1−R0). Since a0 > 0, k1 > 0, k2 > 0, k3 > 0, k4 > 0, k5 > 0 and µd > 0,
it becomes evident that the model (1) possesses a unique endemic equilibrium point (EEP)
when R0 > 1. On the other hand, when R0 < 1, there is no positive endemic equilibrium
point in the model. Based on the analysis, we can conclude that there is no existence of
equilibrium other than the disease-free equilibrium (DFE) when R0 < 1. Additionally, it can
be demonstrated that the DFE E0 of the model (1) is globally asymptotically stable (GAS)
when R0 < 1.

From the above discussion we have concluded that,

Theorem 4: The model (1) possesses a unique endemic (positive) equilibrium, denoted as
E∗, whenever the basic reproduction number R0 > 1. However, for R0 ≤ 1, the model does
not have any endemic equilibrium.

3.6. Local stability of endemic equilibrium point (EEP)

The EEP of the model (1) is given by E∗(S∗, E∗, I∗, I∗
a , I∗

q , H∗, R∗) where the expres-
sions are computed analytically in the Annexure.

3.7. Local stability

Theorem 5: The endemic equilibrium E∗ exhibits local asymptotic stability if all the roots
of the characteristic equation possess negative real parts.

Proof: The Jacobian matrix of the system at E∗ is as follows:

JE∗ =



−P11 −P12 −P13 −P14 P15 P16 P17
P21 P22 P23 P24 −P25 −P26 −P27
0 P32 −P33 0 0 0 0
0 P42 0 −P44 0 0 0
0 P52 0 0 −P55 0 0
0 0 P63 0 P65 −P66 0
0 0 0 P74 P75 P76 −P77


,

where, P11 = β(1−k)(N−S∗)
N2 (I∗ + η1I

∗
a + η2E

∗) + µd, P12 = (1−k)βS∗

N2 (η2N − I∗ − η1I
∗
a −

η2E
∗), P13 = (1−k)βS∗

N2 (N − I∗ − η1Ia − η2E), P14 = (1−k)βS∗

N2 (η1N − I∗ − η1I
∗
a − η2E

∗),
P15 = P16 = P17 = (1−k)βS∗

N2 (I∗ + η1I
∗
a + η2E

∗) P21 = β(1−k)(N−S∗)
N2 (I∗ + η1I

∗
a + η2E

∗),
P22 = (1−k)βS∗

N2 (η2N − I∗ − η1I
∗
a − η2E

∗) − σ − µd, P23 = (1−k)βS∗

N2 (N − I∗ − η1Ia − η2E),
P24 = (1−k)βS∗

N2 (η1N − I∗ − η1I
∗
a − η2E

∗), P25 = P26 = P27 = (1−k)βS∗

N2 (I∗ + η1I
∗
a + η2E

∗),
P32 = ρ1σ, P33 = (α + µd), P42 = ρ2σ, P44 = (γa + µd), P52 = ρ3σ, P55 = (αq + γq + µd),
P63 = α, P65 = αq, P66 = (γ + δ + µd), P74 = γa, P75 = γq, P76 = γ, P77 = µd.

Here the stability of E∗ is determined by the presence of negative real roots in the
characteristic equation of JE∗ .

Now, the corresponding characteristic equation is a polynomial of degree 7, and an-
alytical computation becomes challenging. Therefore, we will validate Theorem 5 by per-
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forming numerical computations.

4. Stochastic model

The role of environmental change in shaping epidemic development has been widely
recognized (Oksendal, 2006). The unpredictable nature of human contact introduces inher-
ent randomness into the growth and spread of epidemics, leading to ongoing disruptions
in population dynamics (Beddington and May, 1977; Chen et al., 2023). In the study of
epidemic dynamics, the utilization of SDE models is often necessary due to their ability to
provide a more suitable framework in various scenarios. These models effectively capture the
stochastic nature of population fluctuations and account for the dynamical changes resulting
from subtle parameter variations. In a recent investigation, Hussain et al. (2023) explored a
stochastic version of the MERS-CoV epidemic model, focusing on the ergodic stationary dis-
tribution and criteria for disease extinction. Concurrently, Shi and Jiang (2023) introduced
a stochastic compartmental model for COVID-19, integrating an Ornstein-Uhlenbeck (OU)
process into the contact rate. Their analysis included the criteria for stationary distribution
and the derivation of the probability density function near quasi-equilibrium. Additionally,
the impact of the OU process on the stochastic model’s dynamic behavior was examined.
Tan et al. (2023) delved into a stochastic SIS epidemic model enriched by media coverage.
Through the consideration of two threshold quantities, they investigated the stochastic dy-
namics, illustrating scenarios where disease eradication is certain or persistent with a distinct
stationary distribution. Their study also inferred insights based on the intensity of random
disturbances. Furthermore, Ullah et al. (2023) explored a stochastic epidemic model in-
corporating vaccination programs. Extinction and persistence conditions were scrutinized,
supported by graphical representations to validate analytical findings.

Many real-world stochastic epidemic models are formulated based on their determinis-
tic counterparts, with the deterministic version serving as a foundation for their development
(Jiang et al., 2010; Mao et al., 2002; Li et al., 2020; Thomas and Shelemyahu, 1989). Under
the assumption that the coefficients of model (1) are influenced by random noise, which can
be accurately represented by Brownian motion, the resulting model (1) can be transformed
into a SDE in the following manner:

dS =
[
Π − µdS − (1 − k)

N
βS(I + η1Ia + η2E)

]
dt + θ1S dB1,

dE =
[(1 − k)

N
βS(I + η1Ia + η2E) − σE − µdE

]
dt + θ2E dB2,

dI =
[
ρ1σE − αI − µdI

]
dt + θ3I dB3,

dIa =
[
ρ2σE − γaIa − µdIa

]
dt + θ4Ia dB4,

dIq =
[
(1 − ρ1 − ρ2)σE − (αq + γq)Iq − µdIq

]
dt + θ5Iq dB5,

(5)
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dH =
[
αI + αqIq − (γ + δ)H − µdH

]
dt + θ6H dB6,

dR =
[
γaIa + γqIq + γH − µdR

]
dt + θ7R dB7,

In the model (5), all parameters and state variables are assumed to be non-negative
real numbers. The influence of noise is taken into account through the functions Bi(t), i =
1(1)7, which represent standard Brownian motions, and θi(> 0), i = 1(1)7, which represent
the corresponding intensities of the white noise. Additionally, the Brownian motion satisfies
the fundamental axiom B1(0) = B2(0) = B3(0) = B4(0) = B5(0) = B6(0) = B7(0).

Let’s define the vector G for the system (5) as G = [S, E, I, Ia, Iq, H, R]T . The transi-
tion probability is specified in Table 2. The expectation Ex[∆G] and variance Ex[∆G∆GT ]
are defined as follows.

So the Expectation is Ex[∆G] = ∑22
i=1 Pi(∆G)i =



Π − µdS − (1 − k)
N

βS(I + η1Ia + η2E)

(1 − k)
N

βS(I + η1Ia + η2E) − σE − µdE

ρ1σE − αI − µdI

ρ2σE − γaIa − µdIa

(1 − ρ1 − ρ2)σE − (αq + γq)Iq − µdIq

αI + αqIq − (γ + δ)H − µdH

γaIa + γqIq + γH − µdR



∆t.

Also the variance is given below:

Ex[∆G∆GT ] = ∑22
i=1 Pi[(∆G)i][(∆G)i]T =



M11 M12 0 0 0 0 0
M21 M22 M23 M24 M25 0 0

0 M32 M33 0 0 M36 0
0 M42 0 M44 0 0 M47
0 M52 0 0 M55 M56 M57
0 0 M63 0 M65 M66 M67
0 0 0 M74 M75 M76 M77

 ∆t,

Here,
M11 = P1 + P2 + P3 + P4 + P5 = Π + µdS + (1−k)

N
βSη2E + (1−k)

N
βSI + (1−k)

N
βSη1Ia;

M12 = M21 = −P3 = −( (1−k)
N

βSη2E);
M22 = P3 + P4 + P5 + P6 + P7 = (1−k)

N
βSη2E + (1−k)

N
βSI + (1−k)

N
βSη1Ia + σE + µdE;

M23 = M32 = P8 = ρ1σE;
M24 = M42 = P11 = ρ2σE;
M25 = M52 = P14 = (1 − ρ1 − ρ2)σE;
M33 = P8 + P9 + P10 = ρ1σE + αI + µdI;
M36 = M63 = −P9 = −αI;
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M44 = P11 + P12 + P13 = ρ2σE + γaIa + µdIa;
M47 = M74 = −P12 = −γaIa;
M55 = P14 + P15 + P16 + P17 = (1 − ρ1 − ρ2)σE + αqIq + γqIq + µdIq;
M56 = M65 = −P15 = −αqIq;
M57 = M75 = −P16 = −γqIq;
M66 = P9 + P15 + P19 + P20 + P21 = αI + αqIq + γH + δH + µdH;
M67 = M76 = −P19 = −γH;
M77 = P12 + P16 + P19 + P22 = γaIa + γqIq + γH + µdR;

Now we define,

Drift = C(G, t) = Ex[∆G]
∆t

=



Π − µdS − (1 − k)
N

βS(I + η1Ia + η2E)

(1 − k)
N

βS(I + η1Ia + η2E) − σE − µdE

ρ1σE − αI − µdI

ρ2σE − γaIa − µdIa

(1 − ρ1 − ρ2)σE − (αq + γq)Iq − µdIq

αI + αqIq − (γ + δ)H − µdH

γaIa + γqIq + γH − µdR



.

Also the diffusion is defined as

Diffusion = D(G, t) =
√

Ex[∆G∆GT ]
∆t

=

√√√√√√√√√√√√√√



M11 M12 0 0 0 0 0
M21 M22 M23 M24 M25 0 0

0 M32 M33 0 0 M36 0
0 M42 0 M44 0 0 M47
0 M52 0 0 M55 M56 M57
0 0 M63 0 M65 M66 M67
0 0 0 M74 M75 M76 M77


.

By incorporating the drift and diffusion equations, the SDE for the system can be expressed
as follows:

dG(t) = C(G, t) dt + D(G, t) dB(t)

i.e.,

d


S
E
I
Ia

Iq

H
R

 =



Π − µdS −
(1 − k)

N
βS(I + η1Ia + η2E)

(1 − k)
N

βS(I + η1Ia + η2E) − σE − µdE

ρ1σE − αI − µdI

ρ2σE − γaIa − µdIa

(1 − ρ1 − ρ2)σE − (αq + γq)Iq − µdIq

αI + αqIq − (γ + δ)H − µdH

γaIa + γqIq + γH − µdR


dt +

√√√√√√√√√


M11 M12 0 0 0 0 0
M21 M22 M23 M24 M25 0 0

0 M32 M33 0 0 M36 0
0 M42 0 M44 0 0 M47
0 M52 0 0 M55 M56 M57
0 0 M63 0 M65 M66 M67
0 0 0 M74 M75 M76 M77

dB(t).
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Table 2: Possible changes in the process of the model

Transition Probability

(∆G)1 = [1 0 0 0 0 0 0]T P1 = Π ∆t

(∆G)2 = [−1 0 0 0 0 0 0]T P2 = µdS ∆t

(∆G)3 = [−1 1 0 0 0 0 0]T P3 = (1 − k)
N

βSη2E ∆t

(∆G)4 = [−1 0 1 0 0 0 0]T P4 = (1 − k)
N

βSI ∆t

(∆G)5 = [−1 0 0 1 0 0 0]T P5 = (1 − k)
N

βSη1Ia ∆t

(∆G)6 = [0 − 1 0 0 0 0 0]T P6 = σE ∆t

(∆G)7 = [0 − 1 0 0 0 0 0]T P7 = µdE ∆t

(∆G)8 = [0 1 1 0 0 0 0]T P8 = ρ1σE ∆t

(∆G)9 = [0 0 − 1 0 0 0 0]T P9 = αI ∆t

(∆G)10 = [0 0 − 1 0 0 0 0]T P10 = µdI ∆t

(∆G)11 = [0 1 0 1 0 0 0]T P11 = ρ2σE ∆t

(∆G)12 = [0 0 0 1 0 0 0]T P12 = γaIa ∆t

(∆G)13 = [0 0 0 − 1 0 0 0]T P13 = µdIa ∆t

(∆G)14 = [0 0 0 − 1 0 0 0]T P14 = (1 − ρ1 − ρ2)σE ∆t

(∆G)15 = [0 0 0 0 − 1 0 0]T P15 = αqIq ∆t

(∆G)16 = [0 0 0 0 − 1 0 0]T P16 = γqIq ∆t

(∆G)17 = [0 0 0 0 − 1 0 0]T P17 = µdIq ∆t

(∆G)18 = [0 0 1 0 0 0 0]T P18 = αI ∆t

(∆G)19 = [0 0 0 0 0 − 1 0]T P19 = γH∆t

(∆G)20 = [0 0 0 0 0 − 1 0]T P20 = δH∆t

(∆G)21 = [0 0 0 0 0 − 1 0]T P21 = µdH∆t

(∆G)22 = [0 0 0 0 0 0 − 1]T P22 = µdR∆t
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4.1. Euler Maruyama scheme

In this section, we employ the Euler-Maruyama scheme to obtain the numerical solu-
tion of the stochastic differential equation. The model parameters used in the computations
are listed in Table 1. The following computational procedure is followed:

dGn(t) = C(Gn, t) dt + D(Gn, t)dB(t)



Sn+1

En+1

In+1

In+1
a

In+1
q

Hn+1

Rn+1


=



Sn

En

In

In
a

In
q

Hn

Rn


+



Π − µdS − (1 − k)
N

βS(I + η1Ia + η2E)

(1 − k)
N

βS(I + η1Ia + η2E) − σE − µdE

ρ1σE − αI − µdI

ρ2σE − γaIa − µdIa

(1 − ρ1 − ρ2)σE − (αq + γq)Iq − µdIq

αI + αqIq − (γ + δ)H − µdH

γaIa + γqIq + γH − µdR



dt

+

√√√√√√√√√√√√√√√



M11 M12 0 0 0 0 0
M21 M22 M23 M24 M25 0 0

0 M32 M33 0 0 M36 0
0 M42 0 M44 0 0 M47
0 M52 0 0 M55 M56 M57
0 0 M63 0 M65 M66 M67
0 0 0 M74 M75 M76 M77


δBn

5. Parametric perturbation of the model

Let (Ω, F , {Ft}t≥0, P) be a complete probability space equipped with the filtration
{Ft}t≥0. The filtration is assumed to be increasing and right-continuous, and F0 contains
all P-null sets. Throughout the paper, we denote a ∧ b as the minimum of a and b, a ∨ b as
the maximum of a and b, and ⟨y(t)⟩ as the time average of y(t) defined as 1

t

� t

0 y(s) ds.

5.1. Existence and uniqueness of the global solutions

In order to investigate the dynamic characteristics of the system described by equation
(5), the initial step involves verifying the presence of a unique positive solution for this
system. This section aims to provide a comprehensive explanation regarding the existence
of a unique positive solution to the SDE model represented by equation (5).

Theorem 6: For any initial value (S(0), E(0), I(0), Ia(0), Iq(0), H(0), R(0)) ∈ R7
+, there is a
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positive solution (S(t), E(t), I(t), Ia(t), Iq(t), H(t), R(t)) of the stochastic model (5) for t ≥ 0
and the solution will maintain in R7

+ with probability one.

Proof: The constants involved in the equations are locally Lipschitz continuous for the given
initial population sizes (S(0), E(0), I(0), Ia(0), Iq(0), H(0), R(0)) ∈ R7+ when t ∈ [0, τe],
where τe is the explosion time (Yanan and Daqing, 2014; Ji and Jiang, 2014). To establish
the global nature of the solution, it is necessary to prove that τe = ∞ almost surely (a.s.). We
select k0 ≥ 0 to be sufficiently large such that S(0), E(0), I(0), Ia(0), Iq(0), H(0), and R(0)
all fall within the interval [ 1

k0
, k0]. For each integer k ≥ k0, we define the stopping time τk =

inf{t ∈ [0, τe] : min(S(t), E(t), I(t), Ia(t), Iq(t), H(t), R(t)) ≤ 1
k

or, max(S(t), E(t), I(t), Ia(t),
Iq(t), H(t), R(t)) ≥ k}.

We define inf(ϕ) = ∞ for the empty set ϕ according to the given notation. By
definition, as k approaches infinity, τk increases. We set τ∞ as the limit of τk as k tends to
infinity, with 0 ≤ τ∞ ≤ τe almost surely (a.s.). By proving that τ∞ = ∞ almost surely, we can
demonstrate that τe = ∞, and it follows that (S(t), E(t), I(t), Ia(t), Iq(t), H(t), R(t)) ∈ R7

+
a.s. for all t ≥ 0.

Now, we define a C2 function V : R7
+ → R+ such that

V = V (S(t), E(t), I(t), Ia(t), Iq(t), H(t), R(t)) = S(t) − 1 − log S(t) + E(t) − 1 − log E(t)
+I(t) − 1 − log I(t) + Ia(t) − 1 − log Ia(t) + Iq(t) − 1 − log Iq(t) + H(t) − 1 − log H(t) + R(t) −
1 − log R(t).

Here the function V is non negative as y −1− log y ≥ 0, ∀ y ≥ 0. For arbitrary values
of k ≥ k0 and T ≥ 0, applying the Itô formula to equation (5) yields the following result.

dV (S, E, I, Ia, Iq, H, R) = (1− 1
S

)dS +θ1(S −1)dB1(t)+(1− 1
E

)dE +θ2(E −1)dB2(t)+
(1 − 1

I
)dI + θ3(I − 1)dB3(t) + (1 − 1

Ia
)dIa + θ4(Ia − 1)dB4(t) + (1 − 1

Iq
)dIq + θ5(Iq − 1)dB5(t) +

(1 − 1
H

)dH + θ6(H − 1)dB6(t) + (1 − 1
R

)dR + θ7(R − 1)dB7(t)

= LV (S, E, I, Ia, Iq, H, R)dt + θ1(S − 1)dB1(t) + θ2(E − 1)dB2(t) + θ3(I − 1)dB3(t) +
θ4(Ia − 1)dB4(t) + θ5(Iq − 1)dB5(t) + θ6(H − 1)dB6(t) + θ7(R − 1)dB7(t).

In equation (5), LH : R7
+ → R+ is defined by the following equation

LV (S, E, I, Ia, Iq, H, R) = (1− 1
S

)[Π − µdS − (1 − k)
N

βS(I + η1Ia + η2E)]+ θ2
1
2 +(1−

1
E

)
[(1 − k)

N
βS(I+ η1Ia + η2E) − σE − µdE

]
+ θ2

2
2 + (1 − 1

I
)(ρ1σE − αI − µdI) + θ2

3
2 + (1 −

1
Ia

)(ρ2σE − γaIa − µdIa) + θ2
4
2 + (1 − 1

Iq

)((1 − ρ1 − ρ2)σE − (αq + γq)Iq − µdIq) + θ2
5
2 + (1 −

1
H

)(αI + αqIq − (γ + δ)H − µdH) + θ2
6
2 + (1 − 1

R
)(γaIa + γqIq + γH − µdR) + θ2

7
2

≤ Π(1 − 1
S

) + 7µd + βI
N

+ η1β
Ia

N
+ η2β

E
N

− kβ I
N

− kη1β
Ia

N
− kη2β

E
N

+ σ + α + γa +

ρ1σ
E
Iq

+ ρ2σ
E
Iq

− αq − γq − α I
H

− αq
Iq

H
+ γ + δ − γa

Ia

R
− γq

Iq

R
− γ H

R
+

7∑
i=1

θ2
i

2

≤ Π + 7µd + σ + α + γa + γ + δ − αq − γq +
7∑

i=1

θ2
i

2 = K (say)
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Here, K is a positive constant that is independent of the variables S, E, I, Ia, Iq, H,
R, and the time t. Therefore, dV (S, E, I, Ia, Iq, H, R) ≤ Kdt + θ1(S − 1)dB1(t) + θ2(E −
1)dB2(t) + θ3(I − 1)dB3(t) + θ4(Ia − 1)dB4(t) + θ5(Iq − 1)dB5(t) + θ7(R − 1)dB7(t)

Integration both sides of above equation from 0 to τk ∧ T

E[V (S(τk ∧ T ), E(τk ∧ T ), I(τk ∧ T ), Ia(τk ∧ T ), Iq(τk ∧ T ), H(τk ∧ T ), R(τk ∧ T ))] ≤
V (S(0), E(0), I(0), Ia(0),

Iq(0), H(0), R(0))+K(τk ∧T )+E[
τk∧T�

0
θ1(S −1)dB1(t)+θ2(E −1)dB2(t)+θ3(I −1)dB3(t)+

θ4(Ia −1)dB4(t)+θ5(Iq −1)dB5(t)+θ7(R−1)dB7(t)] ≤ V (S(0), E(0), I(0), Ia(0), Iq(0), H(0),
R(0)) + KT

Setting Ωk = τk ≤ T for k ≥ k1 and by P (τ∞ ≤ T ) > ϵ, P (Ωk) ≥ ϵ.
It is worth noting that for every w ∈ Ωk, there exists at least one combination of S(τk, w),
E(τk, w), I(τk, w), Ia(τk, w), Iq(τk, w), H(τk, w),R(τk, w) that is equal to either k or 1

k
and

hence V (S(τk), E(τk), I(τk), Ia(τk), Iq(τk), H(τk),
R(τk)) is not less than (k − 1 − log k) or ( 1

k
− 1 + log k).

Consequently, V (S(τk), E(τk), I(τk), Ia(τk), Iq(τk), H(τk), R(τk)) ≥ E[(k − 1 − log k) ∧ ( 1
k

−
1 + log k)].
Thus, it follows from P (τ∞ ≤ T ) > ϵ and equation (5) that
V (S(0), E(0), I(0), Ia(0), Iq(0), H(0), R(0)) + KT ≥ E[1Ω(w)V (S(τk), E(τk), I(τk), Ia(τk),
Iq(τk), H(τk), R(τk))] ≥ ϵ[(k − 1 − log k) ∧ ( 1

k
− 1 + log k)]

Here, 1Ω(w) denotes the indicator function of Ω. By letting k → ∞, we arrive at the con-
tradiction ∞ > V (S(0), E(0), I(0), Ia(0), Iq(0), H(0), R(0)) + KT = ∞. This implies that
τ∞ = ∞ a.s., thereby completing the proof.

5.2. Extinction of the disease

Next, we will investigate the dynamic behavior of the epidemic model to determine
the conditions for long-term disease elimination. We aim to derive the conditions under
which the disease will become extinct within the community. This leads us to the following
lemma.

Lemma 2 (Strong Law of Large Number, (Lahrouz and Omari, 2013; Din et al., 2020)):
Let M = {M}t≥0 be continuous and real-valued local martingale, which vanish as t → 0,
then lim

t→∞
⟨M, M⟩t = ∞, a.s., ⇒ lim

t→∞
Mt

⟨M,M⟩t
= 0, a.s. and also, lim

t→∞
sup ⟨M,M⟩t

t
< 0 a.s.,

⇒ lim
t→∞

Mt

t
= 0, a.s.

Theorem 7: Let (S(t), E(t), I(t), Ia(t), Iq(t), H(t), R(t)) represent the solution of system
(5) for any initial value (S(0), E(0), I(0), Ia(0), Iq(0), H(0), R(0)) ∈ R7

+. If R0
E < 1, then

the solution (S(t), E(t), I(t), Ia(t), Iq(t), H(t), R(t)) of system (5) satisfies lim
t→∞

sup ln E(t)
t

≤

(σ + µd + θ2
2
2 )(R0

E − 1) < 0 a.s., where R0
E = (1−k)β(1+η1+η2)

(σ+µd+
θ2

2
2 )

. So for R0
E < 1 the disease will

be eradicated in the long term.
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Proof: Applying the Itô formula to the second equation of model (5), we obtain
d ln E(t) = dE(t)

E(t) = [ (1−k)
N

β S
E

(I + η1Ia + η2E) − σ − µd − θ2
2
2 ]dt + θ2dB2(t)

≤ [(1 − k)β + (1 − k)βη1 + (1 − k)βη2 − σ − µd − θ2
2
2 ]dt + θ2dB2(t)

≤ [(1 − k)β(1 + η1 + η2) − (σ + µd) − θ2
2
2 ]dt + θ2dB2(t)

Integrating the above formula from 0 to t on both sides, we obtain
ln E(t) − ln E(0) ≤

� t

0 [(1 − k)β(1 + η1 + η2) − (σ + µd) − θ2
2
2 ]ds +

� t

0 θ2dB2(t).

According to the strong law of large numbers (Lahrouz and Omari, 2013; Khasminskii,
2011), we have, lim sup

t→∞
θ2
t

� t

0 dB2(t) = 0, a.s.

So, lim
t→∞

sup ln E(t)
t

≤ 1
t

� t

0 [(1 − k)β(1 + η1 + η2) − (σ + µd) − θ2
2
2 ]ds

≤

(1 − k)β(1 + η1 + η2) − (σ + µd) − θ2
2
2



≤ (σ + µd + θ2
2
2 )

 (1−k)β(1+η1+η2)

(σ+µd+
θ2

2
2 )

− 1


If we choose R0
E = (1−k)β(1+η1+η2)

(σ+µd+
θ2

2
2 )

, it implies lim
t→∞

sup ln E(t)
t

≤ (σ + µd + θ2
2
2 )[R0

E − 1] < 0

if R0
E < 1.

Therefore, the above result indicates that

lim
t→∞

E(t) = 0 a.s.,

which implies that the disease will be eradicated. This completes the proof.

5.3. Ergodic stationary distribution

When a disease spreads rapidly within a population, understanding its long-term dy-
namics becomes a significant concern for health officials. In order to study and address this
issue mathematically, stability analysis tools are commonly utilized. Deterministic models,
under certain conditions, can show the existence of an endemic equilibrium and its global
asymptotic stability. However, in the context of stochastic systems, the presence of an en-
demic equilibrium is not guaranteed, posing challenges in predicting the persistence of the
disease within the population (Din et al., 2020). In our study, inspired by the work of
Khasminskii (2011), we aim to investigate the existence of an ergodic stationary distribu-
tion for system (5). This analysis provides insights into the long-term persistence of the
disease. The deterministic version of the system (5) can be easily obtained by setting θi = 0
for i = 1 to 7, resulting in a straightforward conversion. However, it is important to note
that the original stochastic model and its deterministic counterpart exhibit significant dif-
ferences. Moreover, empirical evidence suggests the absence of an endemic disease state in
the stochastic system, challenging the applicability of traditional linear stability analysis to
assess the disease’s sustained presence. Consequently, our research focuses on investigating
the stationary distribution of the proposed system (5), specifically exploring the existence
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of ergodic stationary components.

Let’s consider the assumption that X(t) is a regular time-homogeneous Markov pro-
cess in Rn

+. Mathematically, it can be represented as dX(t) = b(X)dt+∑k
r=1 σrdBr(t), where

b(X) represents the drift term.
The diffusion matrix is defined as A(X) = [aij(x)], aij(x) = ∑k

r=1 σi
r(x)σr

j (x) a.s.

Lemma 3: (Din et al., 2020) The Markov process X(t) has a unique stationary distribution
m(·) if there exists a bounded domain U ⊆ Rd with a regular boundary such that the closure
U ∈ Rd satisfies the following properties:

1. In the open domain U and some of its neighbors, the smallest eigenvalue of the diffusion
matrix A(t) is set far from zero.

2. If x ∈ RdU, the mean time τ at which a path issuing from x reaches the set U is finite,
and supx∈kEτx < ∞ for every compact subset. Moreover, if f(.) is a function integrable
with respect to the measure π, then P

[
lim

T →∞
1
T

� T

0 f(Xx(t))dt =
�

Rd f(x)πdx
]

= 1.

For future reference, let us define another threshold value R∗
0 =

[
µd(1−k)βρ1σ(

µd+
θ2

1
2

)(
σ+µd+

θ2
2
2

)(
α+µd+

θ2
3
2

)]
.

Theorem 8: If R∗
0 > 1, then a solution (S(t), E(t), I(t), Ia(t), Iq(t), H(t), R(t)), of system

(5) is ergodic. Moreover, ∃ a unique stationary distribution π(.).

Proof: First, we will demonstrate that the second condition of Lemma 3 is satisfied. To
accomplish this, we will construct a non-negative C2 function V : R7

+ → R+ such that it
satisfies the following properties:
V = N(t) − c1 ln S(t) − c2 ln E(t) − c3 ln I(t), with ci ≥ 0, i = 1(1)3. Applying Itô′s formula
(Mao, 1997), we obtain

LV = (Π−µdN−δH)−c1

[Π
S

− µd − (1 − k)
N

β(I + η1Ia + η2E) − θ2
1
2

]
−c2

[(1 − k)
N

β
S

E
(I + η1Ia

+η2E) − σ − µd − θ2
2
2

]
− c3

[
ρ1σ

E

I
− α − µd − θ2

3
2

]
= Π−µdN −δH −c1

Π
S

+c1µd +c1(1−k)β I
N

+c1(1−k)βη1
Ia

N
+c1(1−k)βη2

E
N

+c1
θ2

1
2 −

c2(1−k)β SI
NE

−c2(1−k)βη1
SIa

NE
−c2(1−k)βη2

SE
NE

+c2(σ+µd)+c2
θ2

2
2 −c3ρ1σ

E
I

+c3(α+µd)+c3
θ2

3
2

≤ −
[
µdN + c1

Π
S

+ c2(1 − k)β SI
NE

+ c3ρ1σ
E
I

]
+ Π + c1(µd + θ2

1
2 ) + c2(σ + µd + θ2

2
2 ) +

c3(α + µd + θ2
3
2 ) + c1

[
(1 − k)β I

N
+ (1 − k)βη1

Ia

N
+ (1 − k)βη2

E
N

]
= −4

[
µdNc1

Π
S

c2(1−k)β SI
NE

c3ρ1σ
E
I

] 1
4
+Π+c1(µd+ θ2

1
2 )+c2(σ+µd+ θ2

2
2 )+c3(α+µd+ θ2

3
2 )+

c1

[
(1 − k)β I

N
+ (1 − k)βη1

Ia

N
+ (1 − k)βη2

E
N

]
= −4

[
µd(1−k)βρ1σΠc1c2c3

] 1
4

+Π+ c1(µd + θ2
1
2 )+ c2(σ +µd + θ2

2
2 )+ c3(α +µd + θ2

3
2 )+

c1

[
(1 − k)β I

N
+ (1 − k)βη1

Ia

N
+ (1 − k)βη2

E
N

]
.
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Now we assume that, Π = c1(µd + θ2
1
2 ) = c2(σ + µd + θ2

2
2 ) = c3(α + µd + θ2

3
2 ) where,

c1 = Π(
µd+

θ2
1
2

) , c2 = Π(
σ+µd+

θ2
2
2

) and c3 = Π(
α+µd+

θ2
3
2

) .

So, LV ≤ −4
[

µd(1−k)βρ1σΠ4(
µd+

θ2
1
2

)(
σ+µd+

θ2
2
2

)(
α+µd+

θ2
3
2

)] 1
4

+ 4Π + c1

[
(1 − k)β I

N
+ (1 − k)βη1

Ia

N
+

(1 − k)βη2
E
N

]
≤ −4Π

[
(R∗

0) 1
4 − 1

]
+ c1

[
(1 − k)β I

N
+ (1 − k)βη1

Ia

N
+ (1 − k)βη2

E
N

]
where, R∗

0 =
[

µd(1−k)βρ1σ(
µd+

θ2
1
2

)(
σ+µd+

θ2
2
2

)(
α+µd+

θ2
3
2

)]
.

We define another function of the form:

V = c4
[
N(t)−c1 ln S(t)−c2 ln E(t)−c3 ln I(t)

]
− ln S(t)− ln E(t)− ln I(t)− ln Ia(t)−

ln Iq(t)− ln H(t)− ln R(t)+N(t), where, c4 > 0 represents a constant that will be determined
later.
Therefore, V = c4V − ln S(t) − ln E(t) − ln I(t) − ln Ia(t) − ln Iq(t) − ln H(t) − ln R(t) + N(t).

According to Lemma 3 and the continuity of V (S, E, I, Ia, Iq, H, R), we can conclude
that V (S, E, I, Ia, Iq, H, R) has a unique minimum value around (S0, E0, I0, Ia0 , Iq0 , H0, R0)
in the interior of R7

+. Now we define a non-negative C2 function V : R7
+ → R+ as V =

V (S, E, I, Ia, Iq, H, R) − V (S0, E0, I0, Ia0 , Iq0 , H0, R0).

Applying Itô′s formula to V , we obtain
LV = c4LV −L ln S(t)−L ln E(t)−L ln I(t)−L ln Ia(t)−L ln H(t)−L ln R(t)+LN(t)

≤ c4

{
− 4Π

[
(R∗

0) 1
4 − 1

]
+ c1

[
(1 − k)β I

N
+ (1 − k)βη1

Ia

N
+ (1 − k)βη2

E
N

]}
−

[Π
S

− µd

−(1 − k)
N

β(I + η1Ia + η2E) − θ2
1
2

]
−

[(1 − k)
N

β
S

E
(I + η1Ia + η2E) − σ − µd − θ2

2
2

]
−[

ρ1σ
E

I
− α − µd − θ2

3
2

]
−

[
ρ2σ

E

Ia

− γa − µd − θ2
4
2

]
−

[
α

I

H
+ αq

Iq

H
− γ − δ − µd − θ2

6
2

]
−[

γa
Ia

R
+ γq

Iq

R
+ γ

H

R
− µd − θ2

7
2

]
+ Π − µdN − δH

≤ −c4c5+c1c4(1−k)β I
N

+c1c4(1−k)βη1
Ia

N
+c1c4(1−k)βη2

E
N

− Π
S

+µd+(1−k)β I
N

+(1−
k)βη1

Ia

N
+(1−k)βη2

E
N

+ θ2
1
2 −(1−k)β SI

NE
−(1−k)βη1

SIa

NE
−(1−k)βη2

S
N

+σ+µd+ θ2
2
2 −ρ1σ

E
I

+α+
µd+ θ2

3
2 −ρ2σ

E
Ia

+γa+µd+ θ2
4
2 −α I

H
−αq

Iq

H
+γ+δ+µd+ θ2

6
2 −γa

Ia

R
−γq

Iq

R
−γ H

R
+µd+ θ2

7
2 +Π−µdN−δH

where, c5 = Π
[(

R∗
0

) 1
4 − 1

]
> 0.

So, LV ≤ −c4c5+(c1c4+1)(1−k)β(1+η1+η2)− Π
S

−(1−k)β SI
NE

−(1−k)βη1
SIa

NE
+6µd+

σ+α+γa+γ+δ−ρ1σ
E
I

−ρ2σ
E
Ia

−α I
H

−αq
Iq

H
−γa

Ia

R
−γq

Iq

R
−γ H

R
+Π−µdN−δH+ θ2

1+θ2
2+θ2

3+θ2
4+θ2

6+θ2
7

2 .

We define a set as follow:

D =
{
ϵ1 ≤ S ≤ 1

ϵ2
, ϵ1 ≤ E ≤ 1

ϵ2
, ϵ1 ≤ I ≤ 1

ϵ2
, ϵ1 ≤ Ia ≤ 1

ϵ2
, ϵ1 ≤ Iq ≤ 1

ϵ2
, ϵ1 ≤ H ≤ 1

ϵ2
,

ϵ1 ≤ R ≤ 1
ϵ2

}
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where ϵi > 0, i = 1, 2 are constants, which are very small and will be determined later. We
can divide R7

+ \ D into the following sixteen domains:

D1 = {(S, E, I, Ia, Iq, H, R) ∈ R7
+, 0 < S < ϵ1},

D2 = {(S, E, I, Ia, Iq, H, R) ∈ R7
+, 0 < E < ϵ2, S > ϵ1};

D3 = {(S, E, I, Ia, Iq, H, R) ∈ R7
+, E > ϵ1, I < ϵ2},

D4 = {(S, E, I, Ia, Iq, H, R) ∈ R7
+, E > ϵ1, Ia < ϵ2},

D5 = {(S, E, I, Ia, Iq, H, R) ∈ R7
+, I > ϵ1, 0 < H < ϵ2},

D6 = {(S, E, I, Ia, Iq, H, R) ∈ R7
+, Iq > ϵ1, 0 < H < ϵ2},

D7 = {(S, E, I, Ia, Iq, H, R) ∈ R7
+, Ia > ϵ1, 0 < R < ϵ2},

D8 = {(S, E, I, Ia, Iq, H, R) ∈ R7
+, Iq > ϵ1, 0 < R < ϵ2},

D9 = {(S, E, I, Ia, Iq, H, R) ∈ R7
+, H > ϵ1, 0 < R < ϵ2},

D10 = {(S, E, I, Ia, Iq, H, R) ∈ R7
+, S > 1

ϵ2
},

D11 = {(S, E, I, Ia, Iq, H, R) ∈ R7
+, E > 1

ϵ2
},

D12 = {(S, E, I, Ia, Iq, H, R) ∈ R7
+, I > 1

ϵ2
},

D13 = {(S, E, I, Ia, Iq, H, R) ∈ R7
+, Ia > 1

ϵ2
},

D14 = {(S, E, I, Ia, Iq, H, R) ∈ R7
+, Iq > 1

ϵ2
},

D15 = {(S, E, I, Ia, Iq, H, R) ∈ R7
+, H > 1

ϵ2
},

D16 = {(S, E, I, Ia, Iq, H, R) ∈ R7
+, R > 1

ϵ2
}.

For all the above cases, it can be observed that there exists a positive constant c > 0
such that

LV (S, E, I, Ia, Iq, H, R) < −c, ∀ (S, E, I, Ia, Iq, H, R) ∈ R7
+ \ D. (see Annexure for

detail)
Let (S, E, I, Ia, Iq, H, R) = x ∈ R7

+ \ D, the time τx at which a trajectory starting
from x reaches to the set D, τn = inf{t : |(X(t)| = n} and τn(t) = min{τx, t, τn}.

By integrating LV from 0 to τn(t) and using expectations, as well as applying
Dynkin’s formula, we have reached the conclusion that

EV (S(τn(t)), E(τn(t)), I(τn(t)), Ia(τn(t)), Iq(τn(t)), H(τn(t)), R(τn(t))) − V (x)
= E

� τn(t)
0 LV (S(u), E(u), I(u), Ia(u), Iq(u), H(u), R(u))du

≤ E
� τn(t)

0 −cdu = −cEτn(t). By utilizing the fact that the function V (x) is non-
negative, we can deduce that Eτn(t) ≤ V (x)

c
.

Thus, P (τe = ∞) = 1, which implies that the model (5) is regular. Applying the
well-known Fatou’s lemma, we obtain Eτn(t) ≤ V (x)

c
< ∞.

Obviously, supx∈KEτx < ∞ where K ⊂ R7
+. So the second condition of Lemma 3 is
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satisfied. Moreover, the diffusion matrix for system (5) takes the form

B =



θ2
1S2 0 0 0 0 0 0
0 θ2

2E2 0 0 0 0 0
0 0 θ2

3I2 0 0 0 0
0 0 0 θ2

4I2
a 0 0 0

0 0 0 0 θ2
5I2

q 0 0
0 0 0 0 0 θ2

6H2 0
0 0 0 0 0 0 θ2

7R2


M = min(S,E,I,Ia,Iq ,H,R)∈D{θ2

1S2, θ2
2E2, θ2

3I2, θ2
4I2

a , θ2
5I2

q , θ2
6H2, θ2

7R2}, we can obtain∑7
i,j=1 aij(S, E, I, Ia, Iq, H, R)ξiξj = θ2

1S2ξ2
1 + θ2

2E2ξ2
2 + θ2

3I2ξ2
3 + θ2

4I2
aξ2

4 + θ2
5I2

q ξ2
5 +

θ2
6H2ξ2

6 + θ2
7R2ξ2

7 > M |ξ2|
where ξ = (ξ1, ξ2, ξ3, ξ4, ξ5, ξ6, ξ7) ∈ R7

+. Thus, the first condition of Lemma 3 is satisfied. It
follows from Lemma 3 that the proposed stochastic model is ergodic with a unique stationary
distribution.

6. Numerical simulations

In this section, we perform numerical simulations using R programming to support
our analytical findings. We have taken most of the parameter values from Table 1 and
demonstrated the system dynamics for both R0 greater and less than 1. For the parameter
k = 0 i.e. under no intervention, it is observed that R0 = 1.68(> 1) which implies the
disease persist in the deterministic system (1). Similarly, for the parameter k = 0.6544 i.e.
with intervention effect, it is observed that R0 = 0.5805(< 1) which implies the disease will
die out from the deterministic system (1).

First, we have plotted the relationship F = βS(I+η1Ia+η2E)
N

with respect to a) S, I,
b) S, H and c) I, H respectively in Figure 2(a),(b) and (c). It is observed that curve (a)
exhibits a quadratic shape, curve (b) follows a sigmoidal pattern, and curve (c) shows a
linear relationship. Figure 2(a) illustrates the significant dependence of F on the infection I.
The three-dimensional representation reveals that for a fixed I, the shape remains relatively
stable concerning S. However, altering I while keeping S constant leads to a rapid increase
or decrease in the shape of F , consequently resulting in a swift change in disease propagation
within the system. Moving to Figure 2(b), an initial rapid increase in F is observed due to
sudden changes in S, albeit with less intensity compared to the previous scenario. However,
gradual increments in S result in a slower evolution of F , leading to an initial rapid dis-
ease propagation that gradually diminishes as the susceptible population increases. Finally,
Figure 2(c) depicts a gradual yet consistent rise in disease propagation as the infection rate
increases within the system. This indicates that the different compartments have varying and
complex impacts on the spread of new infections. For the above-mentioned parameter values
together with η2 = 0.2, we have drawn a time series diagram to visualize these two scenarios
in Figure 3(a), and (b) for two different values of control parameters k = 0 and k = 0.6544
respectively. Here it is clear that all the compartments go towards a stable equilibrium.
So in Figure 3(a), the susceptible population S (green) goes to stable equilibrium density
approximately 29.67, the exposed E (purple), infected I (red), asymptomatic Ia (black),
quarantine Iq (pink), hospitalised H (yellow) and recovery population R (light blue) goes
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to stable equilibrium density approximately (10.36, 1.6, 2.47, 1.06, 1.74, 2.95) respectively. It
also supports Theorem 5, as R0 > 1. Similarly, in Figure 3(b), the susceptible population S
(green) goes to stable equilibrium density at 50, rest of the compartment dies out as time
goes. It also supports Theorem 3, as R0 < 1 and the DFE is E0(50, 0, 0, 0, 0, 0, 0).

Next, we have simulated the stochastic version of the model (5) through the Euler
Maruyama method. To simulate the path of S(t), E(t), I(t), Ia(t), Iq(t), H(t) and R(t)
for the model (5), we fixed the initial values (S(0), E(0), I(0), Ia(0), Iq(0), H(0), R(0)) =
(40, 30, 10, 30, 12, 15, 8) throughout the stochastic simulation unless it stated in the figure
caption. The parameter values are taken from Table 1 with k = 0 and intensity parameters
θ1 = 0.3, θ5 = 0.2, θ7 = 0.1. In Figure 4(a), we consider the other intensity parameters
θ2 = 0.2, θ3 = 0.1, θ4 = 0.3, θ6 = 0.2 and generated the stochastic densities for S(t) (green),
E(t) (purple), I(t) (red), Ia(t) (blue), Iq(t) (black), H(t) (cyan) and R(t) (violet). We further
generated the stochastic densities corresponding to θ2 = 0.4, θ3 = 0.4, θ4 = 0.3, θ6 = 0.4 in
Figure 4(b) and θ2 = 0.4, θ3 = 0.4, θ4 = 0.6, θ6 = 0.4 in Figure 4(c). In a similar way, we have
also simulated the scenario in the presence of and high (k = 0.6544) and moderate interven-
tions (k = 0.4). For high intervention we have generated the stochastic densities correspond-
ing to θ2 = 0.2, θ3 = 0.1, θ4 = 0.3, θ6 = 0.2 in Figure 5(a); θ2 = 0.4, θ3 = 0.4, θ4 = 0.3, θ6 = 0.4
in Figure 5(b) and θ2 = 0.4, θ3 = 0.4, θ4 = 0.6, θ6 = 0.4 in Figure 5(c). Similarly, for low
intervention we have generated the stochastic densities in Figure 6(a)-(c). We observed that
all the Figures 4(a)-(c), Figures 5(a)-(c) and Figures 6(a)-(c) are stochastically bounded and
have positive, unique solution converges in probability (Theorem 6). Figures 7(a)-(f) repre-
sents four different sample path and their average path of S(t), E(t), I(t), Ia(t), Iq(t), H(t)
and R(t) respectively for the stochastic model (5). The parameters are taken from Figure
4 with σ1 = 0.3, σ2 = 0.2, σ3 = 0.1, σ4 = 0.3, σ5 = 0.2, σ6 = 0.2, σ7 = 0.1 i.e. without the
presence of intervention. In Figure 7(a) (i.e. stochastic densities with respect to S), we
observed that the one sample path have decreasing flow, others and the average density path
(black) shows stable trend. Similarly, in Figure 7(b) (i.e., stochastic densities with respect to
E) and Figure 7(c) (i.e., stochastic densities with respect to I), we observed that almost all
the sample path shows a stable type of path, as does the average path (black). Figure 7(d)
(i.e., stochastic densities with respect to Ia) and Figure 7(e) (i.e., stochastic densities with
respect to Iq) shows mixed types of sample path with a larger variation and the average path
(black) also reveals a stable type scenario. Various stochastic densities with respect to H
and its average path also shows a stable scenario (not shown here). Although, in Figure 7(f)
(i.e. stochastic densities with respect to R), we observed that the one sample path goes to
extinction, others and the average density path (black) shows stochastic oscillating, implies
the complex dynamical behavior of the system. Here it reveals there is no extinction scenario
on the average run (see Figure 7(a) -(f)), although some downward trend in sample paths is
observed in S(t), I(t), Iq(t) and R(t). Next, we generate the figures of average sample path
in the presence of intervention (i.e. k = 0.6544). Following the ideas of Figure 7, we have
generated Figure 8 when R0 < 1. In Figure 8(a)-(b), we observed stable scenario in the
sample paths as well as average path. However, a downward trend is observed in the average
path (see Figure 8(c)-(f)) and in certain extent the result shows a similar behavior like the
deterministic system in long run.

To get more detail on the distribution of the densities of various compartments, we
have drawn histograms (see Figure 9(a-f)) of the densities at the time point 150 for 5000
runs of the system (5). The parameters are taken from Fig. 4. Here, we have observed that
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some sample path shows extinction due to stochastic fluctuation in the Ia, Iq, R population.
The average densities lies in the approximate range (30, 100), (20, 60), (15, 26), (20, 60),
(10, 32) and (10, 28) for S, E, I, Ia, Iq and R respectively. Similarly, various histograms of
the densities (see Figure 10(a)-(f)) at the time point 150 shows Ia, I1, R compartments have
the chance to extinct in the present scenario, although it is possible to have more probability
of extinction for a large time point instead of 150 as we have already observed a sharp
downtrend in the various compartments in the average run. Histograms were also calculated
at time point 100 to provide enhanced understanding of the temporal dynamics (not shown
here). An extinction scenario may occur for Ia at a frequency lower than that of Iq, H,
and R. The S compartment exhibits a distribution with a long right tail. Furthermore, the
distributions of E, I, and Ia are leptokurtic, while that of Iq is positively skewed. Moreover,
we have studied the stochastic extinction of the exposed compartment (see Theorem 7) and
plot R0

E with respect to the parameters k and θ2. Other parameters are taken from Table 1
with η2 = 0.1. We have drawn two heat map diagrams by varying disease transmission rate
(β). In Fig. 11(a), we consider a low value of β = 0.74 and observed that moderate value
of control (k) leads to R0

E < 1. Consequently its easy to control the disease in a long time.
Similarly, Fig. 11(b), we consider a moderate value of β = 1.74 and observed that large value
of control (k) needed to make R0

E < 1. Consequently its no so easy to control the disease
in a long time as more area has R0

E value greater than one. Two different sample path are
drawn (see Fig. 12(a),(b)) for the parameter set same as Fig. 11(a) with k = 0.6544 and
θ1 = 0.3, θ2 = 0.7, θ3 = 0.4, θ4 = 0.6, θ5 = 0.2, θ6 = 0.4, θ7 = 0.1. We have computed the
value of R0

E (< 1) and observed that both sample path leads to extinction.

6.1. Role of quarantine proportion to the trend of infection

Here we have numerically studied the impact of the fraction of quarantine population
ρ3 = 1−ρ1 −ρ2 to the model (5) in terms of disease propagation. We defined a new infection
term Idis = I + Ia + Iq and studied its long term behaviour with respect to the parameter ρ3.
We simulate the model (5) for two different values at ρ3 = 0.25, ρ3 = 0.5 and find the time
series of I, Ia, Iq. We repeat the process for 5000 times and compute the average values i.e.
Iav, Iav

a , Iav
q . After that we compute Idis = Iav + Iav

a + Iav
q to observe the flow of infection

in the system. The quantity Idis is simulated for ρ3 = 0.25, 0.25 and plotted in Fig. 13(a).
The time series plot Idis(t) for a lower value of ρ = 0.25 is presented in green colour and
for a relatively higher value of ρ = 0.5 is presented in red colour. Now following Noguchi
et al. (2011) we have performed robust sieve bootstrap approaches for linear trend detection
for the generated Idis(t) data. As we found the p-value is very small (< 0.01) in both the
case, we tried to fit linear regression models to check the slope of the trend line. The slope
of green line is 0.002578 whereas for the red line its 0.003069. So comparing the slope we
can say that in long term on average the disease for stochastic system with high value of ρ3
leads to rapid fall of disease compare to the low one. In this context, it is to be noted that
the first difference of Idis(t) i.e. D(Idis(t)) is stationary (see Fig. 13(b)) in both the case due
to Augmented Dickey-Fuller (ADF) test with p-value less than 0.01. Although Idis(t) is not
stationary for both the case due to ADF test with p-values 0.8812 and 0.3716 respectively.
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7. Discussion and conclusion

The World Health Organization (W.H.O., 2020) states that infectious diseases are the
main reason for death in nations with low incomes. Furthermore, according to a recent report,
36% of all deaths worldwide in 2019 were attributable to communicable diseases (W.H.O.,
2020). COVID-19 is a rapidly spreading infectious disease that could pose a worldwide
threat. Mathematical and statistical models are useful tools for forecasting the pattern, du-
ration, effects of different interventions, and other aspects of disease outbreaks. The present
study aimed to develop an intervention-based, deterministic SEIIaIqHR epidemic model to
study the dynamics of the most recent COVID-19 outbreak. Moreover, the model includes
the intervention parameter k, which takes into consideration factors like vaccinations, social
distancing policies, lockdowns, and other intervention tactics. Symptomatic, asymptomatic,
and exposed compartments contribute to the spread of new infections. The disease circu-
lates among the symptomatic, asymptomatic, and quarantine populations in proportions
represented by the variables ρ1, ρ2, and (1 − ρ1 − ρ2), respectively. We explored the positive
invariance and boundedness of every forward solution of the model. Furthermore, using
the basic reproduction number (R0), we explore the local and global stability of the unique
disease-free equilibrium of the model. In addition, we also studied the existence and local
stability of the endemic equilibrium of the model. The deterministic model offers a general
understanding of the spread of disease, but it ignores uncertain variables like immigration,
human behavior, the effects of the climate, and other random factors. Therefore, we de-
veloped a stochastic version of the SEIIaIqHR model with a frequency-dependent force of
infection and intervention to study the dynamics of the disease transmission in the context
of changing environmental and population factors. Moreover, we calculated the transition
probabilities to investigate the drift and diffusion components of the SDE while developing
the stochastic SEIIaIqHR model. We then discussed some fundamental properties of the
model, including the existence of a unique positive global solution with probability one,
which shows that the problem is well-behaved. We also analytically found that the criteria
R0

E < 1 leads to disease extinction in the long term. Additionally, we found the ergodic
stationary distribution and the extinction conditions of the disease by constructing an ap-
propriate Lyapunov function and using the It̂o formula. Finally, we validated the theoretical
findings by generating several numerical solutions to the models. Furthermore, we numeri-
cally determined the relationship between the disease transfer function F and various disease
compartments of the model (5). Our findings suggest the possibility of three different types
of scenarios, e.g., linear, sigmoidal, and quadratic. Furthermore, for two different scenarios,
R0 < 1 (stability of the DFE) and R0 > 1 (stability of the EE), we generated time-series
diagrams of densities by varying the control parameter k. In addition, to visualize differ-
ent sample paths, we simulated the SDE model by varying the intervention strength and
intensity parameters. The results of our study indicate that the disease does not extinct in
the majority of cases. However, the average density of the sample path in the presence of
intervention shows a decline in average for the disease compartments compare to without
intervention scenario. We have drawn multiple histograms and compared those in two dis-
tinct scenarios to see how the densities of various compartments are distributed at a given
time. In order to observe the extension scenario, we additionally display the R0

E heat map
in the (k, θ2) plane. To calculate R0

E, two distinct values of disease transmission—low and
high—are used. It is noted that the values roughly fall between (0, 2.5) and (0, 5.5), respec-
tively. Lastly, our numerical analysis has demonstrated the positive impact of quarantine
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proportions on the infection trend.

In conclusion, The study has mainly two aspects: (1) To study the deterministic
aspects of the model and observe the disease propagation and impact of intervention. (2) To
formulate the stochastic version of the model and observe the impact of noise, intervention
and quarantine proportion in the disease propagation, extinction and ergodic stationary
distribution. Here we found that as the intensity of intervention increases, the number
of infected patients decreases. This means that intervention plays important roles in the
outbreak of sudden infectious diseases. For example, media reports can be used to provide
the public with information about the current situation of the epidemic and the effective
prevention and control measures proposed by experts. Outbreaks of infectious diseases have
led to a dramatic increase in interventions like media, self protection, containment zone, etc.,
which in turn can help raise awareness and change their behaviors for better implementation
of mitigation measures. People will adopt relatively conservative behaviors to reduce the
possibility of infection, and individual behavior can effectively delay the peak period of
infectious disease outbreaks and reduce the severity of infectious disease outbreaks. However,
a part of this study only focuses on the qualitative analysis of the stochastic models. The
estimation of some key parameters and studying the distribution of intervention scenario
will be an interesting study for the future work.
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ANNEXURE

Expression of T (X, I ′), G(X, I ′), A and Ĝ(X, I) used in section 3.4.

T (X, I ′) =

Π − (1 − k)βS
N

(I + η1Ia + η2E) − µdS

γaIa + γqIq + γH − µdR

 ,

G(X, I ′) =



(1 − k)βS
N

(I + η1Ia + η2E) − σE − µdE

ρ1σE − αI − µdI

ρ2σE − γaIa − µdIa

(1 − ρ1 − ρ2)σE − (αq + γq)Iq − µdIq

αI + αqIq − (γ + δ)H − µdH


.

A =



−(µd + σ) + (1 − k)βη2 (1 − k)β (1 − k)βη1 0 0

ρ1σ −(α + µd) 0 0 0

ρ2σ 0 −(γa + µd) 0 0

(1 − ρ1 − ρ2)σ 0 0 −(αq + γq + µd) 0

0 α 0 αq −(γ + δ + µd)


,

Ĝ(X, I) =



(1 − k)βη2E(1 − S
N ) + (1 − k)βI(1 − S

N ) + (1 − k)βη1Ia(1 − S
N )

0

0

0

0


.
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Calculations used in section 3.5.

S∗ = Π
λ∗ + µd

, E∗ = λ∗S∗

k1
, I∗ = ρ1σλ∗S∗

k1k2
, I∗

a = ρ2σλ∗S∗

k1k3
, I∗

q = (1 − ρ1 − ρ2)σλ∗S∗

k1k4
, H∗ =

αρ1σλ∗S∗

k1k2k5
+ αq(1 − ρ1 − ρ2)σλ∗S∗

k1k4k5
, R∗ = γaρ2σλ∗S∗

µdk1k3
+ γq(1 − ρ1 − ρ2)σλ∗S∗

µdk1k4
+ γαρ1σλ∗S∗

µdk1k2k5
+

γαq(1 − ρ1 − ρ2)σλ∗S∗

µdk1k4k5
.

Calculations used in section 3.6. From the model (1), we have

I∗ = ρ1σE∗

α + µd
, I∗

a = ρ2σE∗

γa + µd
, I∗

q = (1 − ρ1 − ρ2)σE∗

(αq + γq + µd) , H∗ = 1
γ + δ + µd

( αρ1σ

α + µd
+ αqρ2σ

γa + µd

)
E∗,

R∗ =
[ γaρ2σ

µd(γa + µd) + γqσ(1 − ρ1 − ρ2)
µd(αq + γq + µd) + γ

µd(γ + δ + µd)
( αρ1σ

α + µd
+ αqρ2σ

γa + µd

)]
E∗.

I∗ = ρ1σE∗

α+µd
, I∗

a = ρ2σE∗

γa+µd
, I∗

q = (1−ρ1−ρ2)σE∗

(αq+γq+µd) , H∗ = (
αρ1σ

α+µd
+ αqρ2σ

γa+µd
γ+δ+µd

)E∗,

R∗ =
γaρ2σ

γa+µd
+ γqσ(1−ρ1−ρ2)

(αq+γq+µd) +γ(
αρ1σ
α+µd

+
αqρ2σ
γa+µd

γ+δ+µd
)

µd
E∗

N = S + E + I + Ia + Iq + H + R

N = S + E(1 + ρ1σ
α+µd

+ ρ2σ
γa+µd

+ (1−ρ1−ρ2)σ
(αq+γq+µd) +

αρ1σ

α+µd
+ αqρ2σ

γa+µd
γ+δ+µd

+
γaρ2σ

γa+µd
+ γqσ(1−ρ1−ρ2)

(αq+γq+µd) +γ(
αρ1σ
α+µd

+
αqρ2σ
γa+µd

γ+δ+µd
)

µd
)

N = S + m1E,

where, m1 = (1 + ρ1σ
α+µd

+ ρ2σ
γa+µd

+ (1−ρ1−ρ2)σ
(αq+γq+µd) +

αρ1σ

α+µd
+ αqρ2σ

γa+µd
γ+δ+µd

+
γaρ2σ

γa+µd
+ γqσ(1−ρ1−ρ2)

(αq+γq+µd) +γ(
αρ1σ
α+µd

+
αqρ2σ
γa+µd

γ+δ+µd
)

µd
)

⇒ (1−k)βS
S+m1E (I + η1Ia + η2E) = E(σ + µd)

⇒ (1−k)βS
S+m1E ( ρ1σ

α+µd
+ η1

ρ2σ
γa+µd

+ η2) = (σ + µd)
⇒ (1 − k)βS( ρ1σ

α+µd
+ η1

ρ2σ
γa+µd

+ η2) = (S + m1E)(σ + µd)
⇒ S[(1 − k)β( ρ1σ

α+µd
+ η1

ρ2σ
γa+µd

+ η2) − (σ + µd)] = m1(σ + µd)E
⇒ S∗ = m1(σ+µd)

[(1−k)β( ρ1σ

α+µd
+η1

ρ2σ

γa+µd
+η2)−(σ+µd)]E

∗

Now, N = ( m1(σ+µd)
[(1−k)β( ρ1σ

α+µd
+η1

ρ2σ

γa+µd
+η2)−(σ+µd)] + m1)E

⇒ N = m2E; where, m2 = ( m1(σ+µd)
[(1−k)β( ρ1σ

α+µd
+η1

ρ2σ

γa+µd
+η2)−(σ+µd)] + m1)

Again, Π = S[µd + (1−k)β
m2

( ρ1σ
α+µd

+ η1
ρ2σ

γa+µd
+ η2)]

⇒ E∗ = Π
[µd+ (1−k)β

m2
( ρ1σ

α+µd
+η1

ρ2σ

γa+µd
+η2)]

[(1−k)β( ρ1σ

α+µd
+η1

ρ2σ

γa+µd
+η2)−(σ+µd)]

m1(σ+µd)

Proof of LV < 0 for (S, E, I, Ia, Iq, H, R) ∈ Di, i = 1(1)16 used in Theorem 8.

Case I: (S, E, I, Ia, Iq, H, R) ∈ D1

LV ≤ −c4c5 + (c1c4 + 1)(1 − k)β(1 + η1 + η2) − Π
S − (1 − k)β SI

NE − (1 − k)βη1
SIa
NE + 6µd + σ +

α+γa +γ +δ −ρ1σ E
I −ρ2σ E

Ia
−α I

H −αq
Iq

H −γa
Ia
R −γq

Iq

R −γ H
R +Π−µdN −δH + θ2

1+θ2
2+θ2

3+θ2
4+θ2

6+θ2
7

2

≤ (c1c4 + 1)(1 − k)β(1 + η1 + η2) + 6µd + σ + α + γa + γ + δ + Π + θ2
1+θ2

2+θ2
3+θ2

4+θ2
6+θ2

7
2 − Π

S
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≤ (c1c4 + 1)(1 − k)β(1 + η1 + η2) + 6µd + σ + α + γa + γ + δ + Π + θ2
1+θ2

2+θ2
3+θ2

4+θ2
6+θ2

7
2 − Π

ϵ1

Let ϵ1 > 0 be as sufficiently small so that, (c1c4 + 1)(1 − k)β(1 + η1 + η2) + 6µd + σ + α +
γa + γ + δ + Π + θ2

1+θ2
2+θ2

3+θ2
4+θ2

6+θ2
7

2 − Π
ϵ1

< 0.
In such case, we have LV < 0.

Case II: (S, E, I, Ia, Iq, H, R) ∈ D2

LV ≤ −c4c5 + (c1c4 + 1)(1 − k)β(1 + η1 + η2) − Π
S − (1 − k)β SI

NE − (1 − k)βη1
SIa
NE + 6µd + σ +

α+γa +γ +δ −ρ1σ E
I −ρ2σ E

Ia
−α I

H −αq
Iq

H −γa
Ia
R −γq

Iq

R −γ H
R +Π−µdN −δH + θ2

1+θ2
2+θ2

3+θ2
4+θ2

6+θ2
7

2

≤ (c1c4 + 1)(1 − k)β(1 + η1 + η2) + 6µd + σ + α + γa + γ + δ + Π + θ2
1+θ2

2+θ2
3+θ2

4+θ2
6+θ2

7
2 −

(1 − k)β S
E − (1 − k)βη1

S
E

≤ (c1c4 + 1)(1 − k)β(1 + η1 + η2) + 6µd + σ + α + γa + γ + δ + Π + θ2
1+θ2

2+θ2
3+θ2

4+θ2
6+θ2

7
2 −

(1 − k)β ϵ1
ϵ2

− (1 − k)βη1
ϵ1
ϵ2

Let ϵ1 > ϵ2
2, very small, such that (c1c4 + 1)(1 − k)β(1 + η1 + η2) + 6µd + σ + α + γa + γ +

δ + Π + θ2
1+θ2

2+θ2
3+θ2

4+θ2
6+θ2

7
2 − (1 − k)β ϵ1

ϵ2
− (1 − k)βη1

ϵ1
ϵ2

< 0.
In such case, we have LV < 0.

Case III: (S, E, I, Ia, Iq, H, R) ∈ D3

LV ≤ −c4c5 + (c1c4 + 1)(1 − k)β(1 + η1 + η2) − Π
S − (1 − k)β SI

NE − (1 − k)βη1
SIa
NE + 6µd + σ +

α+γa +γ +δ −ρ1σ E
I −ρ2σ E

Ia
−α I

H −αq
Iq

H −γa
Ia
R −γq

Iq

R −γ H
R +Π−µdN −δH + θ2

1+θ2
2+θ2

3+θ2
4+θ2

6+θ2
7

2

≤ (c1c4 +1)(1−k)β(1+η1 +η2)+6µd +σ+α+γa +γ +δ +Π+ θ2
1+θ2

2+θ2
3+θ2

4+θ2
6+θ2

7
2 −ρ1σ E

I

≤ (c1c4 +1)(1−k)β(1+η1 +η2)+6µd +σ+α+γa +γ +δ+Π+ θ2
1+θ2

2+θ2
3+θ2

4+θ2
6+θ2

7
2 −ρ1σ ϵ1

ϵ2

Let ϵ1 > ϵ2
2, very small, such that (c1c4 + 1)(1 − k)β(1 + η1 + η2) + 6µd + σ + α + γa + γ +

δ + Π + θ2
1+θ2

2+θ2
3+θ2

4+θ2
6+θ2

7
2 − ρ1σ ϵ1

ϵ2
< 0.

In such case, we have LV < 0.

Case IV: (S, E, I, Ia, Iq, H, R) ∈ D4

LV ≤ −c4c5 + (c1c4 + 1)(1 − k)β(1 + η1 + η2) − Π
S − (1 − k)β SI

NE − (1 − k)βη1
SIa
NE + 6µd + σ +

α+γa +γ +δ −ρ1σ E
I −ρ2σ E

Ia
−α I

H −αq
Iq

H −γa
Ia
R −γq

Iq

R −γ H
R +Π−µdN −δH + θ2

1+θ2
2+θ2

3+θ2
4+θ2

6+θ2
7

2

≤ (c1c4 +1)(1−k)β(1+η1 +η2)+6µd +σ+α+γa +γ +δ+Π+ θ2
1+θ2

2+θ2
3+θ2

4+θ2
6+θ2

7
2 −ρ2σ E

Ia

≤ (c1c4 +1)(1−k)β(1+η1 +η2)+6µd +σ+α+γa +γ +δ+Π+ θ2
1+θ2

2+θ2
3+θ2

4+θ2
6+θ2

7
2 −ρ2σ ϵ1

ϵ2

Let ϵ1 = ϵ2
2, chooseϵ1 > 0 small enough such that, (c1c4 + 1)(1 − k)β(1 + η1 + η2) + 6µd +

σ + α + γa + γ + δ + Π + θ2
1+θ2

2+θ2
3+θ2

4+θ2
6+θ2

7
2 − ρ2σ ϵ1

ϵ2
< 0.

For this case, we get LV < 0.

Case V: (S, E, I, Ia, Iq, H, R) ∈ D5

LV ≤ −c4c5 + (c1c4 + 1)(1 − k)β(1 + η1 + η2) − Π
S − (1 − k)β SI

NE − (1 − k)βη1
SIa
NE + 6µd + σ +

α+γa +γ +δ −ρ1σ E
I −ρ2σ E

Ia
−α I

H −αq
Iq

H −γa
Ia
R −γq

Iq

R −γ H
R +Π−µdN −δH + θ2

1+θ2
2+θ2

3+θ2
4+θ2

6+θ2
7

2

≤ (c1c4 +1)(1−k)β(1+η1 +η2)+6µd +σ +α+γa +γ +δ +Π+ θ2
1+θ2

2+θ2
3+θ2

4+θ2
6+θ2

7
2 −α I

H

≤ (c1c4 +1)(1−k)β(1+η1 +η2)+6µd +σ +α+γa +γ +δ +Π+ θ2
1+θ2

2+θ2
3+θ2

4+θ2
6+θ2

7
2 −α ϵ1

ϵ2
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Let ϵ1 = ϵ2
2 be as sufficiently small so that, (c1c4 + 1)(1 − k)β(1 + η1 + η2) + 6µd + σ + α +

γa + γ + δ + Π + θ2
1+θ2

2+θ2
3+θ2

4+θ2
6+θ2

7
2 − α ϵ1

ϵ2
< 0. Here we get LV < 0.

Case VI: (S, E, I, Ia, Iq, H, R) ∈ D6

LV ≤ −c4c5 + (c1c4 + 1)(1 − k)β(1 + η1 + η2) − Π
S − (1 − k)β SI

NE − (1 − k)βη1
SIa
NE + 6µd + σ +

α+γa +γ +δ −ρ1σ E
I −ρ2σ E

Ia
−α I

H −αq
Iq

H −γa
Ia
R −γq

Iq

R −γ H
R +Π−µdN −δH + θ2

1+θ2
2+θ2

3+θ2
4+θ2

6+θ2
7

2

≤ (c1c4 +1)(1−k)β(1+η1 +η2)+6µd +σ +α+γa +γ +δ +Π+ θ2
1+θ2

2+θ2
3+θ2

4+θ2
6+θ2

7
2 −αq

Iq

H

≤ (c1c4 +1)(1−k)β(1+η1 +η2)+6µd +σ +α+γa +γ +δ +Π+ θ2
1+θ2

2+θ2
3+θ2

4+θ2
6+θ2

7
2 −αq

ϵ1
ϵ2

Let ϵ1 = ϵ2
2 be as sufficiently small so that, (c1c4 + 1)(1 − k)β(1 + η1 + η2) + 6µd + σ + α +

γa + γ + δ + Π + θ2
1+θ2

2+θ2
3+θ2

4+θ2
6+θ2

7
2 − αq

ϵ1
ϵ2

< 0.
Therefore, we have LV < 0.

Case VII: (S, E, I, Ia, Iq, H, R) ∈ D7

LV ≤ −c4c5 + (c1c4 + 1)(1 − k)β(1 + η1 + η2) − Π
S − (1 − k)β SI

NE − (1 − k)βη1
SIa
NE + 6µd + σ +

α+γa +γ +δ −ρ1σ E
I −ρ2σ E

Ia
−α I

H −αq
Iq

H −γa
Ia
R −γq

Iq

R −γ H
R +Π−µdN −δH + θ2

1+θ2
2+θ2

3+θ2
4+θ2

6+θ2
7

2

≤ (c1c4 +1)(1−k)β(1+η1 +η2)+6µd +σ +α+γa +γ +δ +Π+ θ2
1+θ2

2+θ2
3+θ2

4+θ2
6+θ2

7
2 −γa

Ia
R

≤ (c1c4 +1)(1−k)β(1+η1 +η2)+6µd +σ +α+γa +γ +δ +Π+ θ2
1+θ2

2+θ2
3+θ2

4+θ2
6+θ2

7
2 −γa

ϵ1
ϵ2

Let ϵ1 = ϵ2
2, chooseϵ1 > 0 small enough such that, (c1c4 + 1)(1 − k)β(1 + η1 + η2) + 6µd +

σ + α + γa + γ + δ + Π + θ2
1+θ2

2+θ2
3+θ2

4+θ2
6+θ2

7
2 − γa

ϵ1
ϵ2

< 0.
In such case, we have LV < 0.

Case VIII: (S, E, I, Ia, Iq, H, R) ∈ D8

LV ≤ −c4c5 + (c1c4 + 1)(1 − k)β(1 + η1 + η2) − Π
S − (1 − k)β SI

NE − (1 − k)βη1
SIa
NE + 6µd + σ +

α+γa +γ +δ −ρ1σ E
I −ρ2σ E

Ia
−α I

H −αq
Iq

H −γa
Ia
R −γq

Iq

R −γ H
R +Π−µdN −δH + θ2

1+θ2
2+θ2

3+θ2
4+θ2

6+θ2
7

2

≤ (c1c4 +1)(1−k)β(1+η1 +η2)+6µd +σ +α+γa +γ +δ +Π+ θ2
1+θ2

2+θ2
3+θ2

4+θ2
6+θ2

7
2 −γq

Iq

R

≤ (c1c4 +1)(1−k)β(1+η1 +η2)+6µd +σ +α+γa +γ +δ +Π+ θ2
1+θ2

2+θ2
3+θ2

4+θ2
6+θ2

7
2 −γq

ϵ1
ϵ2

Let ϵ1 > ϵ2
2, very small, such that (c1c4 + 1)(1 − k)β(1 + η1 + η2) + 6µd + σ + α + γa + γ +

δ + Π + θ2
1+θ2

2+θ2
3+θ2

4+θ2
6+θ2

7
2 − γq

ϵ1
ϵ2

< 0.
In such case, we have LV < 0.

Case IX: (S, E, I, Ia, Iq, H, R) ∈ D9

LV ≤ −c4c5 + (c1c4 + 1)(1 − k)β(1 + η1 + η2) − Π
S − (1 − k)β SI

NE − (1 − k)βη1
SIa
NE + 6µd + σ +

α+γa +γ +δ −ρ1σ E
I −ρ2σ E

Ia
−α I

H −αq
Iq

H −γa
Ia
R −γq

Iq

R −γ H
R +Π−µdN −δH + θ2

1+θ2
2+θ2

3+θ2
4+θ2

6+θ2
7

2

≤ (c1c4 +1)(1−k)β(1+η1 +η2)+6µd +σ +α+γa +γ + δ +Π+ θ2
1+θ2

2+θ2
3+θ2

4+θ2
6+θ2

7
2 −γ H

R

≤ (c1c4 +1)(1−k)β(1+η1 +η2)+6µd +σ +α+γa +γ + δ +Π+ θ2
1+θ2

2+θ2
3+θ2

4+θ2
6+θ2

7
2 −γ ϵ1

ϵ2

Let ϵ1 = ϵ2
2, choose ϵ1 > 0 small enough such that, (c1c4 + 1)(1 − k)β(1 + η1 + η2) + 6µd +

σ + α + γa + γ + δ + Π + θ2
1+θ2

2+θ2
3+θ2

4+θ2
6+θ2

7
2 − γ ϵ1

ϵ2
< 0.

For this case, we have LV < 0.
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Case X: (S, E, I, Ia, Iq, H, R) ∈ D10

LV ≤ −c4c5 + (c1c4 + 1)(1 − k)β(1 + η1 + η2) − Π
S − (1 − k)β SI

NE − (1 − k)βη1
SIa
NE + 6µd + σ +

α+γa +γ +δ −ρ1σ E
I −ρ2σ E

Ia
−α I

H −αq
Iq

H −γa
Ia
R −γq

Iq

R −γ H
R +Π−µdN −δH + θ2

1+θ2
2+θ2

3+θ2
4+θ2

6+θ2
7

2

≤ (c1c4 +1)(1−k)β(1+η1 +η2)+6µd +σ +α+γa +γ +δ +Π+ θ2
1+θ2

2+θ2
3+θ2

4+θ2
6+θ2

7
2 −µdN

≤ (c1c4 + 1)(1 − k)β(1 + η1 + η2) + 6µd + σ + α + γa + γ + δ + Π + θ2
1+θ2

2+θ2
3+θ2

4+θ2
6+θ2

7
2 − µd

ϵ2

Let ϵ2 > 0 be as sufficiently small so that, (c1c4 + 1)(1 − k)β(1 + η1 + η2) + 6µd + σ + α +
γa + γ + δ + Π + θ2

1+θ2
2+θ2

3+θ2
4+θ2

6+θ2
7

2 − µd
ϵ2

< 0.
In such case, we have LV < 0.

Case XI: (S, E, I, Ia, Iq, H, R) ∈ D11

LV ≤ −c4c5 + (c1c4 + 1)(1 − k)β(1 + η1 + η2) − Π
S − (1 − k)β SI

NE − (1 − k)βη1
SIa
NE + 6µd + σ +

α+γa +γ +δ −ρ1σ E
I −ρ2σ E

Ia
−α I

H −αq
Iq

H −γa
Ia
R −γq

Iq

R −γ H
R +Π−µdN −δH + θ2

1+θ2
2+θ2

3+θ2
4+θ2

6+θ2
7

2

≤ (c1c4 +1)(1−k)β(1+η1 +η2)+6µd +σ +α+γa +γ +δ +Π+ θ2
1+θ2

2+θ2
3+θ2

4+θ2
6+θ2

7
2 −µdN

≤ (c1c4 + 1)(1 − k)β(1 + η1 + η2) + 6µd + σ + α + γa + γ + δ + Π + θ2
1+θ2

2+θ2
3+θ2

4+θ2
6+θ2

7
2 − µd

ϵ2

Again choosing ϵ2 > 0 be as sufficiently small so that, (c1c4 + 1)(1 − k)β(1 + η1 + η2) +
6µd + σ + α + γa + γ + δ + Π + θ2

1+θ2
2+θ2

3+θ2
4+θ2

6+θ2
7

2 − µd
ϵ2

< 0.
In such case, we have LV < 0.

Case XII: (S, E, I, Ia, Iq, H, R) ∈ D12

LV ≤ −c4c5 + (c1c4 + 1)(1 − k)β(1 + η1 + η2) − Π
S − (1 − k)β SI

NE − (1 − k)βη1
SIa
NE + 6µd + σ +

α+γa +γ +δ −ρ1σ E
I −ρ2σ E

Ia
−α I

H −αq
Iq

H −γa
Ia
R −γq

Iq

R −γ H
R +Π−µdN −δH + θ2

1+θ2
2+θ2

3+θ2
4+θ2

6+θ2
7

2

≤ (c1c4 +1)(1−k)β(1+η1 +η2)+6µd +σ +α+γa +γ +δ +Π+ θ2
1+θ2

2+θ2
3+θ2

4+θ2
6+θ2

7
2 −µdN

≤ (c1c4 + 1)(1 − k)β(1 + η1 + η2) + 6µd + σ + α + γa + γ + δ + Π + θ2
1+θ2

2+θ2
3+θ2

4+θ2
6+θ2

7
2 − µd

ϵ2

Again choosing ϵ2 > 0 be as sufficiently small so that, (c1c4 + 1)(1 − k)β(1 + η1 + η2) +
6µd + σ + α + γa + γ + δ + Π + θ2

1+θ2
2+θ2

3+θ2
4+θ2

6+θ2
7

2 − µd
ϵ2

< 0.
In such case, we have LV < 0.

Case XIII: (S, E, I, Ia, Iq, H, R) ∈ D13

LV ≤ −c4c5 + (c1c4 + 1)(1 − k)β(1 + η1 + η2) − Π
S − (1 − k)β SI

NE − (1 − k)βη1
SIa
NE + 6µd + σ +

α+γa +γ +δ −ρ1σ E
I −ρ2σ E

Ia
−α I

H −αq
Iq

H −γa
Ia
R −γq

Iq

R −γ H
R +Π−µdN −δH + θ2

1+θ2
2+θ2

3+θ2
4+θ2

6+θ2
7

2

≤ (c1c4 +1)(1−k)β(1+η1 +η2)+6µd +σ +α+γa +γ +δ +Π+ θ2
1+θ2

2+θ2
3+θ2

4+θ2
6+θ2

7
2 −µdN

≤ (c1c4 + 1)(1 − k)β(1 + η1 + η2) + 6µd + σ + α + γa + γ + δ + Π + θ2
1+θ2

2+θ2
3+θ2

4+θ2
6+θ2

7
2 − µd

ϵ2

Again choosing ϵ2 > 0 be as sufficiently small so that, (c1c4 + 1)(1 − k)β(1 + η1 + η2) +
6µd + σ + α + γa + γ + δ + Π + θ2

1+θ2
2+θ2

3+θ2
4+θ2

6+θ2
7

2 − µd
ϵ2

< 0.
In such case, we have LV < 0.

Case XIV: (S, E, I, Ia, Iq, H, R) ∈ D14

LV ≤ −c4c5 + (c1c4 + 1)(1 − k)β(1 + η1 + η2) − Π
S − (1 − k)β SI

NE − (1 − k)βη1
SIa
NE + 6µd + σ +

α+γa +γ +δ −ρ1σ E
I −ρ2σ E

Ia
−α I

H −αq
Iq

H −γa
Ia
R −γq

Iq

R −γ H
R +Π−µdN −δH + θ2

1+θ2
2+θ2

3+θ2
4+θ2

6+θ2
7

2
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≤ (c1c4 +1)(1−k)β(1+η1 +η2)+6µd +σ +α+γa +γ +δ +Π+ θ2
1+θ2

2+θ2
3+θ2

4+θ2
6+θ2

7
2 −µdN

≤ (c1c4 + 1)(1 − k)β(1 + η1 + η2) + 6µd + σ + α + γa + γ + δ + Π + θ2
1+θ2

2+θ2
3+θ2

4+θ2
6+θ2

7
2 − µd

ϵ2

Again choosing ϵ2 > 0 be as sufficiently small so that, (c1c4 + 1)(1 − k)β(1 + η1 + η2) +
6µd + σ + α + γa + γ + δ + Π + θ2

1+θ2
2+θ2

3+θ2
4+θ2

6+θ2
7

2 − µd
ϵ2

< 0.
Here we get LV < 0.

Case XV: (S, E, I, Ia, Iq, H, R) ∈ D15

LV ≤ −c4c5 + (c1c4 + 1)(1 − k)β(1 + η1 + η2) − Π
S − (1 − k)β SI

NE − (1 − k)βη1
SIa
NE + 6µd + σ +

α+γa +γ +δ −ρ1σ E
I −ρ2σ E

Ia
−α I

H −αq
Iq

H −γa
Ia
R −γq

Iq

R −γ H
R +Π−µdN −δH + θ2

1+θ2
2+θ2

3+θ2
4+θ2

6+θ2
7

2

≤ (c1c4+1)(1−k)β(1+η1+η2)+6µd+σ+α+γa+γ+δ+Π+ θ2
1+θ2

2+θ2
3+θ2

4+θ2
6+θ2

7
2 −µdN −δH

≤ (c1c4 +1)(1−k)β(1+η1 +η2)+6µd +σ+α+γa +γ+δ+Π+ θ2
1+θ2

2+θ2
3+θ2

4+θ2
6+θ2

7
2 − µd

ϵ2
− δ

ϵ2

Again choosing ϵ2 > 0 be as sufficiently small so that, (c1c4 + 1)(1 − k)β(1 + η1 + η2) +
6µd + σ + α + γa + γ + δ + Π + θ2

1+θ2
2+θ2

3+θ2
4+θ2

6+θ2
7

2 − µd
ϵ2

− δ
ϵ2

< 0.
In such case, we have LV < 0.

Case XVI: (S, E, I, Ia, Iq, H, R) ∈ D16

LV ≤ −c4c5 + (c1c4 + 1)(1 − k)β(1 + η1 + η2) − Π
S − (1 − k)β SI

NE − (1 − k)βη1
SIa
NE + 6µd + σ +

α+γa +γ +δ −ρ1σ E
I −ρ2σ E

Ia
−α I

H −αq
Iq

H −γa
Ia
R −γq

Iq

R −γ H
R +Π−µdN −δH + θ2

1+θ2
2+θ2

3+θ2
4+θ2

6+θ2
7

2

≤ (c1c4 +1)(1−k)β(1+η1 +η2)+6µd +σ +α+γa +γ +δ +Π+ θ2
1+θ2

2+θ2
3+θ2

4+θ2
6+θ2

7
2 −µdN

≤ (c1c4 + 1)(1 − k)β(1 + η1 + η2) + 6µd + σ + α + γa + γ + δ + Π + θ2
1+θ2

2+θ2
3+θ2

4+θ2
6+θ2

7
2 − µd

ϵ2

Again choosing ϵ2 > 0 be as sufficiently small so that, (c1c4 + 1)(1 − k)β(1 + η1 + η2) +
6µd + σ + α + γa + γ + δ + Π + θ2

1+θ2
2+θ2

3+θ2
4+θ2

6+θ2
7

2 − µd
ϵ2

< 0.
In such case, we have LV < 0.
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Figure 2: The relationship between F = βS(I+η1Ia+η2E)
N

and (a) S, I [upper left
panel] (b) S, H [upper right panel] and (c) I, H [lower panel]. Figure (a) depicts
a quadratic shape, while Figure (b) illustrates a sigmoidal form, and Figure (c)
exhibits a linear shape. The other parameters are η2 = 0.4 and the same from
Table 1.

Figure 3: The time series plot of the model (1) for (a) k = 0 and (b) k = 0.6544.
The other parameters are same as in Table 1 with η2 = 0.2.

Figure 4: The path S(t), E(t), I(t), Ia(t), Iq(t), H(t) and R(t) for the
stochastic model (5) with initial values (S(0), E(0), I(0), Ia(0), Iq(0), H(0), R(0)) =
(40, 30, 10, 30, 12, 15, 8). The parameters are taken from Table 1, θ1 = 0.3, θ5 =
0.2, θ7 = 0.1, k = 0 with a) θ2 = 0.2, θ3 = 0.1, θ4 = 0.3, θ6 = 0.2; b) θ2 = 0.4, θ3 = 0.4, θ4 =
0.3, θ6 = 0.4 and c) θ2 = 0.4, θ3 = 0.4, θ4 = 0.6, θ6 = 0.4.
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Figure 5: The path S(t), E(t), I(t), Ia(t), Iq(t), H(t) and R(t) for the
stochastic model (5) with initial values (S(0), E(0), I(0), Ia(0), Iq(0), H(0), R(0)) =
(40, 30, 10, 15, 12, 18, 8). The parameters are taken from Table 1, θ1 = 0.3, θ5 =
0.2, θ7 = 0.1 and k = 0.6544 with a)θ2 = 0.2, θ3 = 0.1, θ4 = 0.3, θ6 = 0.2; b)
θ2 = 0.4, θ3 = 0.4, θ4 = 0.3, θ6 = 0.4 and c) θ2 = 0.4, θ3 = 0.4, θ4 = 0.6, θ6 = 0.4.

Figure 6: The path S(t), E(t), I(t), Ia(t), Iq(t), H(t) and R(t) for the
stochastic model (5) with initial values (S(0), E(0), I(0), Ia(0), Iq(0), H(0), R(0)) =
(40, 30, 10, 15, 12, 18, 8). The parameters are taken from Table 1, θ1 = 0.3, θ5 =
0.2, θ7 = 0.1 and k = 0.4 with a)θ2 = 0.2, θ3 = 0.1, θ4 = 0.3, θ6 = 0.2; b) θ2 = 0.4, θ3 =
0.4, θ4 = 0.3, θ6 = 0.4 and c) θ2 = 0.4, θ3 = 0.4, θ4 = 0.6, θ6 = 0.4.

Figure 7: The four different sample paths and their average path of
S(t), E(t), I(t), Ia(t), Iq(t), H(t) and R(t) for the stochastic model (5). The pa-
rameters are taken from Fig. 4 with θ1 = 0.3, θ2 = 0.2, θ3 = 0.1, θ4 = 0.3, θ5 = 0.2, θ6 =
0.2, θ7 = 0.1 and k = 0.
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Figure 8: The four different sample paths and their average path of
S(t), E(t), I(t), Ia(t), Iq(t), H(t) and R(t) for the stochastic model (5). The pa-
rameters are taken from Fig. 5 with θ1 = 0.3, θ2 = 0.2, θ3 = 0.1, θ4 = 0.3, θ5 = 0.2, θ6 =
0.2, θ7 = 0.1 and k = 0.6544.

Figure 9: Histogram of the densities at the time point 150 of the system (5).
The parameters are taken from Fig. 4 with θ1 = 0.3, θ2 = 0.2, θ3 = 0.1, θ4 = 0.3, θ5 =
0.2, θ6 = 0.2, θ7 = 0.1.
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Figure 10: Histogram of the densities at the time point 150 of the system (5).
The parameters are taken from Fig. 5 with θ1 = 0.3, θ2 = 0.2, θ3 = 0.1, θ4 = 0.3, θ5 =
0.2, θ6 = 0.2, θ7 = 0.1.
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Figure 11: Heat map diagram of R0
E with respect to k and θ2 for the system

(5). The parameters are taken from Table 1 with η2 = 0.1. The left figure
corresponding to β = 0.74 and right figure corresponding to β = 1.74 respectively.

Figure 12: Two different sample paths are drawn for the parameter set same as
Fig. 11(a) with k = 0.6544.

Figure 13: a) Average paths for Idis are drawn for two different values of pa-
rameter ρ3, the other parameters are same as Fig. 8. b) The difference plot
corresponding to a).
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