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Abstract
The standard statistical techniques are fit to the linear data, where data are simply

presented on a straight line. However, in many diverse scientific fields, the measurements are
referred to as directions. Since a direction has no magnitude, these directions can be con-
veniently represented as points on the circumference of a unit circle centered at the origin
or as a unit vector in the plane. In this article, the wrapped generalized Lindley distri-
bution, a new class of circular distribution based on the wrapping method was introduced.
Furthermore, the trigonometric moments and fundamental properties of the new circular dis-
tribution were studied. The method of maximum likelihood estimation was used to estimate
the values of the parameter. A simulation study was performed to illustrate the proposed
distribution in modeling directional data. The flexibility of the proposed model was shown
by analyzing real-life data and its performance was compared with other families of circular
Lindley distributions.

Key words: Wrapped distributions; Lindley distribution; Trigonometric moments; Maximum
likelihood estimation; Angular data analysis.

1. Introduction

In many scientific experiments such as geological (Rao and Sengupta, 1972), medical
Jammalamadaka et al. (1986), meteorological (Fisher, 1995), biological sciences (Jammala-
madaka and Sengupta, 2001), etc., the data have been observed exhibiting periodic or cyclic
behaviors. The standard statistical techniques are not appropriate to handle these situations
where the data are circular (directional). Therefore, to deal with such data and to perform
statistical analysis, many circular distributions have been introduced from the existing lin-
ear distributions by adopting a variety of techniques namely wrapping, inverse stereographic
projections, rising sun function, etc.

Perhaps the most popular technique to analyze circular data is the idea of wrapping a
linear distribution around the unit circle which gives rise to a multitude of wrapped circular
distributions. PL (1939) first introduced the wrapped distribution, and since then several
wrapped versions of common probability distributions on the real line have been studied
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in the literature, including wrapped normal (Mardia and Jupp, 2000), wrapped Cauchy
(Jammalamadaka and Sengupta, 2001), and wrapped stable distributions (Gatto and Jam-
malamadaka, 2003).

Further, Jammalamadaka and Kozubowski (2004) discussed the wrapped exponen-
tial and wrapped Laplace distributions and presented the explicit forms for their densities
and distribution functions, as well as their trigonometric moments and related parameters.
Pewsey et al. (2007) considered the three-parameter family of symmetric unimodal distribu-
tions obtained by wrapping the location-scale extension of Student’s t distribution onto the
unit circle. Coelho (2007) obtained an expression for the probability density function of the
wrapped gamma distribution and illustrated both integer and non-integer shape parameters,
as a mixture of truncated gamma distributions. Pewsey (2008) also considered the use of the
wrapped stable family as a model for unimodal circular data. Sarma et al. (2011) presented
certain population characteristics of the wrapped Lognormal and the wrapped Weibull distri-
butions. In another work, Roy and Adnan (2012), Jacob and Jayakumar (2013), and Adnan
and Roy (2014) explored wrapped generalized Gompertz distribution, wrapped geometric
distribution and wrapped variance gamma distribution, respectively, and discussed their ap-
plications to circular data. Joshi and Jose (2018) introduced a new circular distribution
called the wrapped Lindley distribution and derived expressions for characteristic function,
trigonometric moments, coefficients of skewness, and kurtosis with an application to real-life
datasets.

In the recent past, Shanker et al. (2013) introduced the generalized Lindley (GL)
distribution as a special case of the one-parameter Lindley distribution (Lindley, 1958). Over
the years, the GL distribution has emerged as a new lifetime model that is more applicable
than the Lindley distribution. Several researchers have introduced many modified versions
of the GL distribution and shown its applicability in diverse data environments through
parameterization which is linear in nature. However, most works on GL distribution are
limited to random variables with an infinite set of possible values. Therefore, the authors
were motivated to apply the concept of circular statistics to the GL distribution by reducing
its modulo 2π with the help of the wrapping technique. The main objective of this article
was to propose a new generalized Lindley distribution by wrapping the density along a unit
circle, called the wrapped generalized Lindley (WGL) distribution. This article also aimed
to study the properties of the proposed distribution, and explore its utility as a circular
model.

The rest of the paper is organized as follows. Section 2 describes the wrapping
technique and introduces a new WGL distribution. Section 3 graphically illustrates the
behavior of the newly developed distribution. The derivations of the characteristic function
and the trigonometric moments as well as the associated parameters are discussed in Section
4 and Section 5, respectively. Section 6 examines the estimation of the parameters using
the maximum likelihood method. A simulation study is discussed in Section 7, to show the
consistency of the estimator. In Section 8, we fit the proposed distribution to five circular
datasets and compare its performance with other competing wrapped distributions. Finally,
conclusions are made in Section 9.
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2. Definition and derivation

2.1. Wrapped distribution

Any linear random variable (r.v.) X on the real line may be transformed to a circular
random variable by reducing its modulo 2π i.e., we define

θ = X(mod 2π)

This operation corresponds to taking the real line and wrapping it around the circle of unit
radius, accumulating probability over all the overlapping points x = θ, θ ± 2π, θ ± 4π,. . . .
This is a many-to-one mapping so that if g(θ) represents the circular density and f(x) the
density of the real-valued r.v., we have

g(θ) =
∞∑

m=−∞
f(θ + 2πm), 0 ≤ θ < 2π (1)

By this technique, both discrete and continuous wrapped distributions may be constructed.

2.2. Wrapped generalized Lindley distribution

The probability density function (pdf ) of the generalized Lindley distribution given
by Shanker et al. (2013) is,

f(x; λ, α) = λ2

α(λ + α2)(1 + αx)e− λ
α

x; x > 0, λ > 0, α > 0 (2)

Using equations (1) and (2), the pdf of the WGL distribution is derived as given below,

g(θ) =
∞∑

m=0
f(θ + 2πm)

=
∞∑

m=0

λ2

α(λ + α2) {1 + α(θ + 2πm)} e− λ
α

(θ+2πm)

= λ2

α(λ + α2)e− λ
α

θ

 (1 + αθ)
1 − e−2π λ

α

+ 2παe−2π λ
α

(1 − e−2π λ
α )2

 (3)

The cummulative distribution function (cdf ) of the wrapped distribution is given by

G(θ) =
∞∑

m=0
F (θ + 2πm) − F (2πm)
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Therefore, the cdf of the WGL distribution is obtained as

G(θ) =
∞∑

m=0

[{
1 − α(λ + α2) + λα2(θ + 2πm)

α(λ + α2) e− λ
α

(θ+2πm)
}

−{
1 − α(λ + α2) + λα22πm

α(λ + α2) e− λ
α

(2πm)
}]

=
∞∑

m=0

1
α(λ + α2)

[
α(λ + α2)e− λ

α
(2πm) + λα22πme− λ

α
(2πm)−{

α(λ + α2) + λα2(θ + 2πm)e− λ
α

(θ+2πm)
}]

= 1
α(λ + α2)

[
α(λ + α2)

∞∑
m=0

e− λ
α

(2πm) + λα22π
∞∑

m=0
me− λ

α
(2πm)−{

α(λ + α2)e− λ
α

θ
∞∑

m=0
e− λ

α
(2πm) + λα2e− λ

α
θ

∞∑
m=0

(θ + 2πm)e− λ
α

(2πm)
}]

=
(

1
1 − e−2π λ

α

)1 − e− λ
α

θ − (λα2θe− λ
α )

α(λ + α2)

+ 2πλα2

α(λ + α2)
(
1 − e− λ

α
θ
) e−2π λ

α

(1 − e−2π λ
α )2

(4)

3. Graphical representations of WGL distribution

The following figures provide a linear representation of WGL distribution for some special
cases.

3.1. Linear representation of WGL distribution

Case 1: When λ < α, Case 2: When λ > α, and Case 3: When λ = α.

Figure 1: Graphical representation of WGL distribution when λ < α
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Figure 2: Graphical representation of WGL distribution when λ > α

Figure 3: Graphical representation of WGL distribution when λ = α

From the three graphs of WGL distribution in Figure 1, Figure 2 and Figure 3 we can make
the following observations:

• Figure 1, Figure 2 and Figure 3 show some of the possible shapes of the pdf of WGL
distribution for different values of the parameters λ and α.

• Figure 1 represents the pdf of WGL distribution when λ < α. As the values of both
the parameter increase, we get a positively high kurtosis with low skewness.

• When λ > α, the curve of WGL distribution shows an exponentially decreasing behav-
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ior with positively low skewness. Figure 2 also justifies that the proposed distribution
inherits the properties of Exponential distribution where GL distribution can be shown
as a mixture of Exponential ( λ

α
) and Gamma distribution (2, λ

α
)(Shanker et al., 2013).

• Figure 3 represents the shape of WGL distribution when λ = α which shows a positively
high kurtosis and positively low skewness with more peakedness and lesser tail as
compared to Figure 1.

The above observations (Figure 1, Figure 2 and Figure 3) justify the graphical representation
of the proposed distribution. Moreover, we can conclude that the proposed distribution can
be used to model the datasets with decreasing and increasing-decreasing behaviors.

3.2. Circular representation of WGL distribution

Figure 4 and Figure 5 display the circular representation of WGL distribution with
different values of the parameter α, keeping λ = 1.5 in Figure 4 and with the changing values
of the parameter λ, keeping α constant in Figure 5.

Figure 4: Circular representation of WGL distribution when λ is constant

Figure 5: Circular representation of WGL distribution when α is constant
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4. Characteristic function

According to Jammalamadaka and Sengupta (2001), the trigonometric moments of
order p for a wrapped circular distribution corresponds to the value of the characteristic
function of the unwrapped r.v. X, say φx(t) at the integer value, i.e.,

φ(p) = φx(t)

The characteristic function of GL distribution is given by,

φx(t) = E(eitx)

= λ2

α(λ + α2)

� ∞

0
(1 + αx)e− λ

α
xeitxdx

= λ2

α(λ + α2)

{
1

λ
α

− it
− α

( λ
α

− it)2

}

= λ2

α(λ + α2)

[
λ
α

− α − it

( λ
α

− it)2

]

Therefore, the characteristic function of WGL distribution is given by,

φ(p) = λ2

α(λ + α2)

[
λ
α

− α − ip

( λ
α

− ip)2

]
(5)

where i = (−1) 1
2 and p = ±1, ±2, ....

From Roy and Adnan (2012), ∀ a, b, r ∈ R+,

(a − ib)−r = (a2 + b2)− r
2 exp

{
ir arctan

(
b

a

)}

The following expressions are obtained
(

λ

α
− ip

)−2

=

(

λ

α

)2

+ p2


−1

exp
{

2i arctan p
(

α

λ

)}
(

λ

α
− α − ip

)1

=

(

λ

α
− α

)2

+ p2


− 1

2

exp

{
i arctan

(
p

λ
α

− α

)}

About the above expressions, equation (5) may be finally written as,

φ(p) =
λ2
{(

λ
α

− α
)2

+ p2
}− 1

2

α(λ + α2)
{(

λ
α

)2
+ p2

}−1 exp

{
2i arctan p

(
α

λ

)
− i arctan

(
p

λ
α

− α

)}
(6)

and so,
φ(p) = ρpeiµp (7)
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Comparing equation (7) to (6), we get

ρp =
λ2
{(

λ
α

− α
)2

+ p2
}− 1

2

α(λ + α2)
{(

λ
α

)2
+ p2

}−1

µp = 2 arctan p
(

α

λ

)
− arctan

(
p

λ
α

− α

)

= arctan p
{

2
(

α

λ

)
−
(

α

λ − α2

)}

5. Trigonometric moments and related parameters

According to the definition of the trigonometric moment,

Φp = αp + iβp; p = ±1, ±2, ...

Therefore, the non-central trigonometric moments of the respective distribution are defined
as,

αp = ρp cos µp and βp = ρp sin µp

So, we have

αp =
λ2
{(

λ
α

− α
)2

+ p2
}− 1

2

α(λ + α2)
{(

λ
α

)2
+ p2

}−1 cos

{
2 arctan p

(
α

λ

)
− arctan

(
p

λ
α

− α

)}

βp =
λ2
{(

λ
α

− α
)2

+ p2
}− 1

2

α(λ + α2)
{(

λ
α

)2
+ p2

}−1 sin

{
2 arctan p

(
α

λ

)
− arctan

(
p

λ
α

− α

)}

Now, the central trigonometric moments are

ᾱp = ρp cos(µp − pµ1) and β̄p = ρp sin(µp − pµ1)

Thus, the central trigonometric moments of WGL distribution will be

ᾱp =
λ2
{(

λ
α

− α
)2

+ p2
}− 1

2

α(λ + α2)
{(

λ
α

)2
+ p2

}−1 cos

[
2 arctan p

(
α

λ

)
− arctan

(
p

λ
α

− α

)
−

{
2 arctan

(
α

λ

)
− arctan

(
1

λ
α

− α

)}]
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β̄p =
λ2
{(

λ
α

− α
)2

+ p2
}− 1

2

α(λ + α2)
{(

λ
α

)2
+ p2

}−1 sin

[
2 arctan p

(
α

λ

)
− arctan

(
p

λ
α

− α

)
−

{
2 arctan

(
α

λ

)
− arctan

(
1

λ
α

− α

)}]

Since we have

µp = arctan p
{

2
(

α

λ

)
−
(

α

λ − α2

)}
For p = 1

µ1 = arctan
{

2
(

α

λ

)
−
(

α

λ − α2

)}
Moreover, the resultant length is ρ = ρ1

ρ =
λ2
{(

λ
α

− α
)2

+ 1
}− 1

2

α(λ + α2)
{(

λ
α

)2
+ 1

}−1

The mean direction is,
µ = µ1

µ1 = arctan
{

2
(

α

λ

)
−
(

α

λ − α2

)}
The mean direction gives information about the mean of the distribution as an analogy
of the mean in the linear distributions and the resultant length is a measure of dispersion
around the mean which corresponds to the usual standard deviation or variance in linear
distributions. The circular variance is,

V0 = 1 − ρ

V0 = 1 −
λ2
{(

λ
α

− α
)2

+ 1
}− 1

2

α(λ + α2)
{(

λ
α

)2
+ 1

}−1

The circular standard deviation is,

σ0 =
√

−2 log(1 − V0)

=

√√√√√√√√−2 log

1 − 1 +
λ2
{(

λ
α

− α
)2

+ 1
}− 1

2

α(λ + α2)
{(

λ
α

)2
+ 1

}−1



=

√√√√√√√√−2 log


λ2
{(

λ
α

− α
)2

+ 1
}− 1

2

α(λ + α2)
{(

λ
α

)2
+ 1

}−1


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The skewness ξ0
1 = β̄2

V
3
2

0

is given by,

ξ0
1 =

λ2
{
( λ

α
−α)2

+4
}− 1

2

α(λ+α2)
{
( λ

α)2
+4
}−1 sin

[
arctan 2

{(
α
λ

)
−
(

α
λ−α2

)}
− 2 arctan

{(
α
λ

)
−
(

α
λ−α2

)}]
1 −

λ2
{
( λ

α
−α)2

+1
}− 1

2

α(λ+α2)
{
( λ

α)2
+1
}−1


3
2

And the kurtosis is given by

ξ0
2 = ᾱ2 − (1 − V0)4

V 2
0

where

ᾱ2 =
λ2
{(

λ
α

− α
)2

+ 4
}− 1

2

α(λ + α2)
{(

λ
α

)2
+ 4

}−1 cos

[
2 arctan 2

(
α

λ

)
− arctan

(
2

λ
α

− α

)
−

{
2 arctan

(
α

λ

)
− arctan

(
1

λ
α

− α

)}]

V0 = 1 −
λ2
{(

λ
α

− α
)2

+ 1
}− 1

2

α(λ + α2)
{(

λ
α

)2
+ 1

}−1

The values of the various descriptive measures for some particular values of α and λ are
summarized in Table 1.

From Table 1, we can make the following remarks:

• The mean direction increases with the change in λ keeping α constant as well as with
different values of α keeping λ as constant. However, the resultant length decreases
with the change in α and λ.

• The mean direction approaches 1 as α increases.

• The circular variance increases with the increase in α and λ.

6. Maximum likelihood estimation

The method of maximum likelihood estimation is one of the most important tech-
niques in statistics and econometrics for estimating the parameters. Let θ1, θ2, . . . , θn be a
random sample of size n from WGL distribution. Then, the likelihood function is given by,

L =
{

λ2

α(λ + α2)

}n

e− λ
α

∑n

i=1 θi

n∑
i=1

 1 + αθi

1 − e− λ
α

2π
+ 2απe− λ

α
2π

(1 − e− λ
α

2π)2


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Table 1: Values of different characteristics of the WGL distribution for various
values of α and λ

α 0.5 0.5 0.5 1 1.5 2.5
λ 0.5 3.5 4.5 0.5 0.5 0.5
Mean direction µ 0.288349 2.975447 1.799375 0.506719 0.523067 0.718435
Resultant length ρ 0.989381 0.466179 0.182925 0.982512 0.968803 0.966841

Trigonometric
α1 0.948534 -0.459759 -0.041449 0.859051 0.839266 0.727874

moments
α2 0.802768 0.028768 0.031769 0.489695 0.437383 0.100793
β1 0.281351 0.077097 0.178167 0.476824 0.483955 0.636382
β2 0.522730 0.096061 -0.022027 0.792252 0.761552 0.867437

Central trigonometric
ᾱ1 0.989381 0.466179 0.182925 0.982512 0.968803 0.966841

moments
ᾱ2 0.957958 -0.004141 -0.018784 0.931371 0.878212 0.873128
β̄1 0 0 0 0 0 0
β̄2 0.000469 0.100191 0.033788 0.003477 0.002926 0.015935

Circular variance V0 0.010618 0.533820 0.817074 0.035918 0.064185 0.068678
Skewness ξ0

1 0.029535 0.146971 0.036656 1.503285 0.063031 0.323080
Kurtosis ξ0

2 -0.000245 -0.236381 -0.594824 -0.000510 -0.00290 -0.000740

And the log-likelihood function is

LogL = 2n log log λ − n log log
{
α(λ + α2)

}
− λ

α

n∑
i=1

θi +

n∑
i=1

log

 1 + αθi

1 − e− λ
α

2π
+ 2απe− λ

α
2π

(1 − e− λ
α

2π)2

 (8)

The MLE of the parameters is computed by solving the maximum likelihood equations

∂

∂λ
logL = 0, and ∂

∂α
logL = 0 (9)

Since the maximum likelihood equations cannot be solved analytically, therefore, a
numerical technique is to be employed to get a solution for λ and α. We use statistical
packages in R to get the maximum likelihood estimator (MLE) of the unknown parameters
which is explained through simulation study.

7. Simulation study

A simulation study was performed to obtain the estimates of unknown parameters
i.e., λ and α. Further, a random sample of different sizes (n = 25, 50, 100, 200, 400, 500,
600) was generated for different values of λ and α, and replicated the program N=1000 times
to get the MLE of λ and α. Given below is the algorithm for generating data from WGL
distribution.

Step 1: Generate a random variable, say u, from U(0, 1).

Step 2: Equating the cdf given in equation (4) to u and solving it w.r.t θ, we get the
WGL circular random variable.
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Step 3: Substituting the WGL circular random variable, generated in step 2, in
equation (9) and maximizing this w.r.t θ by using the maxLik package in R, we get the
MLE of λ and α.

Step 4: To calculate the average bias and mean square error (MSE) of λ̂ and α̂, we use
the following formulae. Let λ∗ and α∗ be the true values of parameters λ and α, respectively.
Then, the bias and MSE of λ̂ and α̂ from true values of parameter λ∗ and α∗ are defined as:

bias(λ̂) = 1
N

N∑
i=1

(λ̂ − λ∗), MSE(λ̂) = 1
N

N∑
i=1

(λ̂ − λ∗)2

bias(α̂) = 1
N

N∑
i=1

(α̂ − α∗), MSE(α̂) = 1
N

N∑
i=1

(α̂ − α∗)2

Where N is the number of replications.

For λ = 4 and α = 1.6, the estimated values of λ and α, and average values of bias and MSE
for λ̂ and α̂, are obtained in Table 2.

Table 2: Estimated values of λ and α, and average values of bias and MSE for λ̂
and α̂

n λ̂ α̂
λ̂ α̂

Bias MSE Bias MSE
25 4.9460 2.1640 0.037840 0.035797 0.022560 0.012724
50 4.8430 1.9960 0.016860 0.014213 0.007920 0.079680
100 4.7491 1.9829 0.007491 0.005612 0.003829 0.039319
200 4.6653 1.9340 0.003327 0.002213 0.001670 0.018702
400 4.5750 1.8663 0.001438 0.000827 0.000666 0.008708
500 4.3006 1.8241 0.000601 0.000181 0.000448 0.006655
600 4.0895 1.6868 0.000149 0.000013 0.000145 0.004742

From Table 2, it is observed that, as the sample size increases, the estimated values of
the parameters approach very close to the true values of parameters used in the simulation.
Moreover, we can also see that the bias and MSE values for the estimated parameters decrease
and tend to zero as the sample size increases. This shows the adequacy of the estimation
technique.

8. Applications to circular datasets

One of the most important ways to justify the newly proposed distribution is the
applicability of the distribution in real life. Therefore, to show the flexibility of the WGL
distribution, the wrapped Lindley (WL), wrapped two-parameter Lindley (WTPL), wrapped
exponential (WE), and the wrapped generalized Lindley (WGL) distributions were fitted to
five circular datasets given below. Various statistics like Log-likelihood, AIC, AICC, and
BIC were calculated and the results are shown in Table 3, Table 4, Table 5, Table 6, and
Table 7.
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First dataset: The application of the proposed distribution is illustrated by fitting
it to a real-life dataset. The dataset consists of orientations of 76 turtles after laying eggs
(PL, 1939) which are given in direction (in degrees) clockwise from North.

8, 9, 13, 13, 14, 18, 22, 27, 30, 34, 38, 38, 40, 44, 45, 47, 48, 48, 48, 48, 50, 53, 56,
57, 58, 58, 61, 63, 64, 64, 64, 65, 65, 68, 70, 73, 78, 78, 78, 83, 83, 88, 88, 88, 90, 92, 92, 93,
95, 96, 98, 100, 103, 106, 113, 118, 138, 153, 153, 155, 204, 215, 223, 226, 237, 238, 243, 244,
250, 251, 257, 268, 285, 319, 343, 350.

The dataset is fitted to the proposed distribution and the plot is given in Figure 6.
Comparing Figure 6 with that of the graph of WGL distribution in Figure 2, we can say
that WGL distribution is appropriate to model the given dataset.

Figure 6: Graph of orientations of 76 turtles after laying eggs

Table 3: Summary of statistics for WL, WTPL, WE, and WGL distributions for
the first dataset

Distribution MLE Log-likelihood AIC BIC AICC
WL λ = 0.2163 -62.223 -120.446 -115.759 -120.284
WTPL θ = 1.151 × 10−6

-79.86 -155.72 -151.01 -155.56
α = 0.6685

WE λ = 1.213 × 10−6 -83.044 -162.09 -157.4 -161.93
WGL λ = 0.0525 -87.355 -170.709 -165.996 -170.549

α = 0.0464

Second dataset: The second dataset includes pigeon homing experimental data
(Pewsey, 2008). The experiment consists of 13 birds that were released singly in the Toggen-
burg valley and their vanishing angles (in degrees) were recorded. The dataset is given
below:
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Figure 7: Graph of vanishing angles of 13 birds

20, 135, 145, l65, 170, 200, 300, 325, 335, 350, 350, 350, 355.

Figure 7 displays the graphical representation of pigeon homing experimental data
which includes the vanishing angles of 13 birds. From the graph of vanishing angles of 13
birds, we get some similar shape behaviors with that of WGL distribution, given in Figure
1, Figure 2 and Figure 3. Therefore, the given dataset i.e., vanishing angles of 13 birds, can
be fitted with the proposed WGL distribution.

Table 4: Summary of statistics for WL, WTPL, WE, and WGL distributions for
second dataset

Distribution MLE Log-likelihood AIC BIC AICC
WL λ = 0.5178 -0.953 2.094 3.372 3.185
WTPL θ = 0.3112 -4.251 -4.502 -3.086 -3.502

α = 1.429 × 10−10

WE λ = 2.5750 -2.546 -1.092 0.186 -0.001
WGL λ = 0.0890 -9.576 -15.152 -13.735 -14.152

α = 0.0288

Third dataset: The third dataset was taken from Fisher (1995). The dataset in-
cludes the orientations of the nest of 50b noisy scrub birds along the bank of a creek bed
and the data (in degree) are as given below:

160, 145, 225, 230, 295, 295, 140, 140, 140, 205, 215, 135, 110, 240, 230, 250, 30, 215,
215, 135, 110, 240, 105, 125, 125, 130, 160, 105, 90, 130, 200, 240, 105, 125, 125, 125, 130,
160, 160, 250, 200, 200, 240, 240, 240, 250, 250, 250, 140, 140.

Figure 8 shows the graph of orientations of the nest of 50b noisy scrub birds. The
following are some of the reasons for modeling and analyzing the datasets of the orientations
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Figure 8: Graph of orientations of the nest of 50b noisy scrub birds

of the nest of 50b noisy scrub birds, directions of 22 sea stars 11 days after being displaced
from their natural habitat, and the time series of 72 wind directions, with the WGL dis-
tribution. Firstly, Figure 8, Figure 9, and Figure 10 follow some of the characteristics and
behaviors of the WGL distribution which can be compared with that of Figure 2. Secondly,
all three datasets were measured in degrees that were circular in nature.

Table 5: Summary of statistics for WL, WTPL, WE, and WGL distributions for
third dataset

Distribution MLE Log-likelihood AIC BIC AICC
WL λ = 0.1034 -59.128 -114.255 -110.392 -114.005
WTPL θ = 0.05178 -58.216 -112.431 -108.529 -112.186

α = 2.102 × 10−10

WE λ = 2.305 -50.891 -97.782 -93.918 -97.532
WGL λ = 0.0456 -65.973 -127.947 -124.044 -127.702

α = 0.0419

Fourth dataset: Further, to demonstrate the modeling potential of the WGL dis-
tribution, sea star movements were considered as reported by Upton (1985) and discussed
later by Fisher (1995). The dataset represents the resultant directions of 22 sea stars 11
days after being displaced from their natural habitat, and the data are as below:

0, 1, 3, 3, 8, 13, 16, 18, 30, 31, 43, 45, 147, 298, 329, 332, 335, 340, 350, 354, 356, 357.

Figure 9 represents the graph of directions of 22 sea stars 11 days after being displaced
from their natural habitat fitted to the proposed distribution.

Fifth dataset: The fifth dataset is taken from Fisher (1995) which presents the time
series of 72 wind directions, comprising hourly measurements for three days at a site on
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Figure 9: Graph of directions of 22 sea stars

Black Mountain, ACT, Australia. The data is provided below:

285, 285, 280, 300, 240, 255, 250, 250, 235, 240, 240, 180, 220, 265, 180, 150, 150,
150, 335, 355, 335, 305, 345, 340, 315, 0, 330, 300, 330, 330, 50, 270, 270, 270, 245, 285, 280,
270, 15, 285, 310, 330, 300, 340, 280, 300, 270, 270, 255, 90, 285, 285, 285, 270, 270, 270,
270, 270, 300, 300, 270, 300, 330, 15, 330, 300, 345, 330, 330, 300, 315, 285.

Table 6: Summary of statistics for WL, WTPL, WE, and WGL distributions for
fourth dataset

Distribution MLE Log-likelihood AIC BIC AICC
WL λ = 0.2592 4.44 12.88 15.151 13.48
WTPL θ = 0.0000371 -1.691 0.617 2.973 1.189

α = 0.0002602
WE λ = 1.81 -0.465 3.069 5.34 3.669
WGL λ = 0.0865 -2.701 -1.401 0.955 -0.830

α = 0.0299

Figure 10 represents the graph of the fifth dataset fitted to the proposed distribution.

Firstly, it may be noted that all the five datasets taken into consideration are circular
in nature which makes it appropriate for the proposed distribution to model these datasets.
Secondly, all the distributions taken for comparison, are circular distributions that may be
a particular case of Lindley distribution. It is to mention that the smaller values of Log-
likelihood, AIC, BIC, and AICC indicate a better fit of distributions. As demonstrated in
Table 3, Table 4, Table 5, Table 6, and Table 7, the Log-likelihood, AIC, BIC, and AICC
have the lowest values for the WGL distribution. Hence, it can be said that the proposed
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Figure 10: Graph of the time series of 72 wind directions

Table 7: Summary of statistics for WL, WTPL, WE, and WGL distributions for
the fifth dataset

Distribution MLE Log-likelihood AIC BIC AICC
WL λ = 0.0975 -15.136 -26.271 -26.1 -21.691
WTPL θ = 4.94 × 10−02

-13.326 -22.651 -22.482 -18.043
α = 2.97 × 10−11

WE λ = 5.16 -36.192 -68.383 -68.212 -63.803
WGL λ = 0.0133 -39.869 -75.738 -71.130 -75.569

α = 0.0268

distribution fits well for all the datasets in comparison to other considered distributions.

9. Conclusion

To summarize, we have considered a new circular distribution by wrapping the gen-
eralized Lindley distribution, called the WGL distribution. The density and the distribution
function of the proposed distribution were derived and expressions for characteristic func-
tions, trigonometric moments, and other parameters have been discussed. The method of
maximum likelihood estimation was used to estimate the model parameters. Further, a sim-
ulation study was conducted to show the consistency of the MLE. To show the applicability
of the proposed distribution, we fit the WGL distribution to five circular datasets and com-
pare the results with that of WL, WTPL, and WE distributions using Log-likelihood, AIC,
BIC, and AICC test-statistics. Based on the above findings, it can be concluded that the
WGL distribution provides the best fit for the given datasets than the other distributions
taken into consideration.
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