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Abstract

We develop inferential procedures for logistic regression analysis for a binary response using
complex survey data when an ordinal covariate is subject to misclassification. We propose a survey
weighted estimating equation procedure based on the expectation correction method. Models for
the misclassified ordinal covariate are presented, and issues with estimation of the parameters of
the main analysis model and the measurement error model are discussed. Results from a simulation
study and an application to the data set from the Canadian Community Health Survey are presented.
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1. Introduction

Survey sampling has been a widely used method for collecting data. Auxiliary information is
often collected and used for improving the estimation of descriptive finite population quantities
for particular variables of interest. There exists a rich literature on model-assisted inference for
finite populations; see, for instance, the model-calibration approach for efficient use of auxiliary
information (Wu and Sitter, 2001; Wu, 2003). Another important development in the past three
decades has been the analytic use of survey data to study the relationship between a response vari-
able and auxiliary variables in the target population. Using surveys to answer scientific questions
is common in many fields including social science research and medical studies.

Design-based estimating equations approaches have gained increased popularity among users
of complex survey data. Estimating functions are motivated by the inferential problems for super-
population model parameters, and the finite population parameters are defined as the solution to
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the so-called census estimating equations. The inferential procedures are built based on the survey
weighted estimating equations. The general framework was first proposed by Binder (1983), and
then formally developed by Godambe and Thompson (1986), with subsequent work by Binder and
Patak (1994). Binder and Roberts (2009) contains a detailed discussion on design and model-based
inferences for model parameters.

While many methods are available for handling various types of survey data, research gaps
still exist. Most commonly used methods are developed under the assumption that survey data
are precisely collected. Measurement error, however, arises frequently during the course of the
data collection. Chen, Yi and Wu (2011, 2014) developed marginal methods for correlated binary
data with misclassified responses and for longitudinal ordinal data with misclassification in both
response and covariates. Yi (2017) contains a comprehensive treatment on strategy, method and
application on statistical analysis with measurement error or misclassification. Measurement error
problems have also been addressed by several authors for survey data. For instance, Ybarra and
Lohr (2008) and Gregoire and Salas (2009) considered small area estimation and ratio estimation
with measurement error in auxiliary variables.

Many variables collected from surveys are categorical and ordinal. These variables may be
subject to misclassifications when the survey is based on self-report. In many health surveys the
objective is to investigate the association of binary chronic conditions with categorical exposures
that are collected with error. Motivated by this feature, we consider logistic regression analysis of
data from complex surveys with misclassification in ordinal covariates. We exploit estimation and
inference methods for the regression coefficients associated with the risk factors. An expectation
correction method is proposed for simultaneously accounting for misclassification and complex
survey features. Results from a simulation study are reported to show the good performance of
the proposed method. Finally, we apply the method to a data set from the Canadian Community
Health Survey (CCHS).

2. Model Formulation

The choice of a statistical model is often dictated by the types of the variables. Many models
are available for continuous response variables. Our discussion is focused on a binary response
variable such as the presence of a heart disease and an ordinal covariate which is subject to mis-
classification.

2.1. Response Model

Suppose that the finite population consists of N individuals. For i = 1, . . . , N , let Yi denote
the binary response variable for individual i such that Yi = 1 if the outcome is present and Yi = 0
otherwise. Let Xi be a (K + 1)-level ordinal variable that takes values at 0, 1, . . . , K and is
subject to misclassification. Let Xi0, . . . , XiK be the indicators such that Xik = 1 if Xi = k and
Xik = 0 otherwise. Without loss of generality, we treat the lowest category, i.e., 0, as the reference
category. Therefore, the vector Xi = (Xi1, . . . , XiK)T can be used to equivalently represent the
original categorical Xi. Let Zi be a vector of precisely measured covariates, which may include
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both continuous and discrete variables. For ease of exposition of the following model, we let 1 be
the first component of Zi.

We assume that the finite population is generated from a superpopulation model ζ . Let µi =
Eζ [Yi|Xi,Zi] be the conditional mean of Yi under the superpopulation model. A logistic regression
model is given by

logit µi = XT
i βx + ZT

i βz,

where βx and βz are the vectors of regression coefficients associated with the effects of Xi and Zi,
respectively.

Let β = (βT
x ,β

T
z )T. If data on all N individuals were available, the population parameter βN

is then defined as the maximizer of the finite population log-likelihood

`(β) =
N∑
i=1

`i(β;Yi,Xi,Zi) ,

where
`i(β;Yi,Xi,Zi) = Yi log µi + (1− Yi) log(1− µi) .

The finite population parameter βN can be viewed as an estimator of the model parameter β if one
has information of the entire finite population. The finite population parameter βN can be viewed
as the solution to the so-called census estimating equations

N∑
i=1

Ui(β;Yi,Xi,Zi) = 0 ,

where
Ui(β;Yi,Xi,Zi) =

∂µi
∂β

Yi − µi
Vi

,

and Vi = µi(1− µi) is the conditional variance of Yi, given Xi and Zi, under the model ζ .

Suppose a sample s consisting of n individuals is drawn from the finite population using a
complex survey design p. Let di be the survey weights for individual i, i ∈ s. The finite popu-
lation parameter βN and superpopulation model parameter β can be simultaneously estimated by
maximizing the pseudo-likelihood, defined as∑

i∈s

di`i(β;Yi,Xi,Zi) =
∑
i∈s

di {Yi log µi + (1− Yi) log(1− µi)} .

Since
∑

i∈s di`i(β;Yi,Xi,Zi) is the Horvitz-Thompson estimator of
∑N

i=1 `i(β;Yi,Xi,Zi), the
resulting estimating function, obtained by differentiating di`i(β; Yi,Xi,Zi) with respect to β, is
unbiased for the finite population estimating function under the survey design p, i.e.,

Ep

[∑
i∈s

diUi(β;Yi,Xi,Zi)

]
=

N∑
i=1

Ui(β;Yi,Xi,Zi), (2.1)
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where Ep denotes the expectation with respect to the probability sampling design, p.

2.2. Misclassification Model

Misclassification of a categorical covariate with more than two levels are commonly seen in
survey sampling, especially for measurements based on self-reporting. It is reasonable to assume
that the misclassification of an ordinal covariate only occurs between adjacent categories (e.g., BMI
categories, income levels). Often, the misclassification process may depend on other covariates
such as Zi).

Let Wi be the observed surrogate for Xi. We write Wil = 1 if Wi = l, and Wil = 0 otherwise,
where l = 0, . . . , K. Let πik,l = Pr(Wi = l|Xi = k,Zi) be the probability that the observed
category is l given the true category is k for individual i, where k, l = 0, . . . , K. Based on the
assumption of adjacent misclassifications, we set πik,l = 0 for |k − l| ≥ 2. The probability of
correctly classifying Xi into category k is then given by

πik,k = 1− πik,k−1I(k > 0)− πik,k+1I(k < K),

where I(·) is the indicator function.

We assume that the misclassification process is characterized by the generalized logistic mod-
els (Pfeffermann et al., 1998)

log

(
πik,k−1

πik,k

)
= LT

i ϕk,k−1, k = 1, . . . , K,

log

(
πik,k+1

πik,k

)
= LT

i ϕk,k+1, k = 0, . . . , K − 1,

where Li is a set of covariates (usually part of Zi) associated with the misclassification process,
and ϕk,k−1 and ϕk,k+1 are the vectors of regression parameters. Let ϕ = (ϕT

01, . . . , ϕ
T
K,K−1)T.

Therefore, the probability of misclassifying an observation into the lower category is given by

πik,k−1 =
exp(LT

i ϕk,k−1)

1 + exp(LT
i ϕk,k−1) + exp(LT

i ϕk,k+1)
, k = 1, . . . , K,

and the probability of misclassifying an observation into the higher category is given by

πik.k+1 =
exp(LT

i ϕk,k+1)

1 + exp(LT
i ϕk,k−1) + exp(LT

i ϕk,k+1)
, k = 0, . . . , K − 1.

When bothK and the number of covariates in Li are large, the dimension of nuisance parameter
vector ϕ can be very high. In some cases, the misclassification process may be homogeneous, i.e.,
the probability of misclassifying the observation into the lower or higher category is consistent for
all categories. In such cases, the dimension of ϕ is comparable with

(
K
2

)
.

2.3. Model for the Ordinal Covariate
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For covariate measurement error problems, the literature distinguishes structural modeling,
which hypothesizes a distribution for the error-prone covariate, and functional modeling, which
leaves the distribution of the covariates unspecified (Carroll et al., 2006; Yi, 2017).

For ordinal variables, the cumulative probabilities are often used as alternatives to marginals.
Let λik = Pr(Xi ≥ k|Zi), for k = 1, , . . . , K. The proportional odds models can be employed
to characterize the conditional distribution of Xi given Zi (e.g., Agresti, 2002). The kth model is
given by

logit λik = ZT
i αk, k = 1, . . . , K,

whereαk = (α0k,ψ
T)T, α0k is the intercept and ψ is a vector of regression coefficients associated

with the sub-vector of Zi with the first element 1 excluded. Here α0k may depend on the index k
butψ is common for all k. Letα = (α01, . . . , α0K ,ψ

T)T be the vector of all regression parameters
associated with the distribution of Xi.

In general, the dimension of α mainly depends on K and the dimension of Zi. However, when
Xi and Zi are independent, we need only to specify the marginal distribution of Xi, which is given
by

Pr(Xi = k) = αk, k = 0, . . . , K,

where
∑K

k=0 αk = 1. In this case, we set α = (α0, . . . , αK)T whose dimension is K + 1.

3. Estimation Procedures

We present the procedures for estimating the parameter β in the main model as well as the
parameters ϕ and α of the measurement error models. Variance estimation is also discussed.

3.1. Expected Score for Estimation of β

If data were free of measurement error, the estimating function
∑

i∈s diUi(β;Yi,Xi,Zi) is
unbiased under the sampling scheme and the superpopulation model. In the presence of misclassi-
fication, however, Xi is not available. Let Wi = (Wi1, . . . ,WiK)T. Ignoring misclassification and
naively solving the set of equations∑

i∈s

diUi(β;Yi,Wi,Zi) = 0

for β no longer yields a valid estimate of β. If there exists a set of estimating functions, say,
U∗i (β;Yi,Wi,Zi), that is “close” to Ui(β;Yi,Xi,Zi), then solving∑

i∈s

diU
∗
i (β;Yi,Wi,Zi) = 0

may lead to a consistent estimator for β under certain regularity conditions.
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We here construct an approximate version of
∑

i∈s diUi(β;Yi,Xi,Zi) by taking conditional
expectation with respect to the underlying unobserved variables Xi given the observed data (Yi,Wi,Zi).
The evaluation of the conditional expectation pertains to the response model, the measurement er-
ror model, as well as the covariate distributions. Without additional information, ϕ and α cannot
be estimated from the available data {(Yi,Wi,Zi), i ∈ s}. We require additional data sources to
feature the misspecification probabilities (Carroll et al. 2006; Yi 2017). Here we consider cases
where validation data are available.

Suppose internal validation data is available where the true error-prone covariate is partially
observed. The original sample s can be divided into three subsets as follows:

s1 = {i : (Yi, Xi,Zi)} ;
s2 = {i : (Yi,Wi, Xi,Zi)} ;
s3 = {i : (Yi,Wi,Zi)}.

For i ∈ s3, let U∗i (β,ϕ,α;Yi,Wi,Zi) = Eζ [Ui(β;Yi,Xi,Zi)|Yi,Wi,Zi]. Given ϕ and α, the
response parameter β can be estimated by solving∑

i∈s1∪s2

diUi(β;Yi,Xi,Zi) +
∑
i∈s3

diU
∗
i (β,ϕ,α;Yi,Wi,Zi) = 0. (3.1)

For k = 1, . . . , K, let ek denote a K-dimensional vector whose kth element is 1 and 0 other-
wise; let e0 = 0. Let Ωi(Wi) = {k : max(0,Wi − 1) ≤ k ≤ min(Wi + 1, K)} be a set of possible
values for the underlying true covariate, given Wi. The function U∗i (β,ϕ,α;Yi,Wi,Zi) can be
shown as a weighted sum of the Ui

U∗i (β,ϕ,α;Yi,Wi,Zi) =
∑

k∈Ωi(Wi)

Ui(β;Yi, ek,Zi)Pr(Xi = k|Yi,Wi,Zi;β,ϕ,α),

where Pr(Xi = k|Yi,Wi,Zi;β,ϕ,α) is the posterior weight of (Xi = k), given the observed data
(Yi,Wi,Zi). This posterior weight can be expressed as

Pr(Xi = k|Yi,Wi,Zi;β,ϕ,α)

=
Pr(Yi,Wi, Xi = k|Zi;β,ϕ,α)∑

k′∈Ωi(Wi)
Pr(Yi,Wi, Xi = k′|Zi;β,ϕ,α)

=
Pr(Yi|Wi, Xi = k,Zi;β)Pr(Wi, Xi = k|Zi;ϕ,α)∑

k′∈Ωi(Wi)
Pr(Yi|Wi, Xi = k′,Zi;β)Pr(Wi, Xi = k′|Zi;ϕ,α)

=
Pr(Yi|Xi = k,Zi;β)Pr(Wi|Xi = k,Zi;ϕ)Pr(Xi = k|Zi;α)∑

k′∈Ωi(Wi)
Pr(Yi|Xi = k′,Zi;β)Pr(Wi|Xi = k′,Zi;ϕ)Pr(Xi = k′|Zi;α)

,

which involves the response model, the misclassification model and the covariate distribution. If
Xi and Zi are independent, then

Pr(Xi = k|Yi,Wi,Zi;β,ϕ,α)

=
Pr(Yi|Xi = k,Zi;β)Pr(Wi|Xi = k,Zi;ϕ)Pr(Xi = k;α)∑

k′∈Ωi(Wi)
Pr(Yi|Xi = k′,Zi;β)Pr(Wi|Xi = k′,Zi;ϕ)Pr(Xi = k′;α)

.
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For fixedϕ andα, estimation of β can be performed through an iterative procedure for solving
(3.1). We now describe the estimation algorithm as follows:

1. For i ∈ s3, obtain the set of all possible values of Xi, given Wi.

2. Given a current estimate β̂(t) and fixedϕ andα, calculate the pseudo-survey weight for each
enumerated possibility in the set Ωi(Wi)

d
(t)
ik = di Pr(Xi = k|Yi,Wi,Zi; β̂

(t),ϕ,α)

3. Obtain a new estimate β̂(t+1) by solving∑
i∈s1∪s2

diUi(β;Yi,Xi,Zi) +
∑
i∈s3

∑
k∈Ωi(Wi)

d
(t)
ikUi(β;Yi, ek,Zi) = 0

for β.

4. The algorithm iterates between steps 2 and 3 until the resulting estimates of β converge.

Let β̂ denote the final estimate at convergence.

3.2. Estimation of ϕ and α

The estimation procedure for β requires knowledge of ϕ and α, which can be estimated from
the validation data. An estimate of ϕ can be obtained by fitting the misclassification model to
subsample s2, while an estimate of α can be obtained from the combined information from s1 and
s2.

When the dimensions of ϕ and α are very high, the validation data may not be able to provide
sufficient information for the estimation. In this situation, we may impose certain assumptions to
constrain the dimension of the parameters. For example, assuming the independence between Xi

and Zi gives that α = (α1, . . . , αK)T, whose entries can be estimated by

α̂k =

∑
i∈s1∪s2 diI(Xi = k)∑

i∈s1∪s2 di
, k = 1, . . . , K.

3.3. Variance Estimation

Variance estimation for model parameters using complex survey data is a challenge task. It
is known that model-based variance estimators for the survey weighted estimator β̂ do not work
(Binder and Roberts, 2009). When the sampling fraction n/N is small, the design-based variance
estimator provides valid inference on the model parameter under mild conditions on the model and
the finite population (Binder and Roberts, 2009). With misclassification in the ordinal covariate,
additional modeling of the misclassification process makes the variance estimation even harder.



112 ZHIJIAN CHEN ET AL. [Vol. 16, No. 1

We suggest to use a resampling method such as the bootstrap approach for variance estimation.
Bootstrap variance estimators such as those of Rao and Wu (1988) and of Sitter (1992) are popular
in survey practice due to their straightforward implementation.

Suppose that β̂(b) is the estimate of β from an estimation procedure using the bth bootstrap
sample, where b = 1, 2, . . . , B, and B is a user-specified positive integer. Given fixed ϕ and α,
the bootstrap variance estimate of β̂ is given by

BV (β̂) =
1

B − 1

B∑
b=1

(β̂(b) − β̂)(β̂(b) − β̂)T. (3.2)

When ϕ and α are estimated from internal validation data, the uncertainty in (ϕ̂, α̂) needs to be
accounted for when calculating the variance of β̂. This can be done by re-estimating ϕ and α
within each bootstrap sample.

4. Simulation Study

We conducted a simulation study to investigate the performance of the proposed method and
compared our method to the naive approach which ignores measurement error and the complete-
case approach using the validation subsample. The configuration of the simulation, especially the
choice of a very large sample size n, is based on the data set from the Canadian Community Health
Survey (CCHS) Cycle 3.1. Details of the survey are described in the next section.

4.1. Design of the Simulation Study

We only considered simple random sampling from a superpopulation. When the finite popula-
tion is extremely large and follows the superpopulation model, the differences between the finite
population parameters and the superpopulation parameters can be ignored. We set the sample size
to be n = 100, 000. The covariates included a three-level ordinal Xi (valued at 1, 2 and 3) that was
subject to misclassification, and a continuous Zi free of measurement error. We first generated Xi

with probabilities 0.2, 0.5, and 0.3 for levels 1, 2, and 3, respectively. We then generated Zi, in-
dependent of Xi, using the standard normal distribution Normal(0, 1) for all subjects. The binary
response variable Yi was generated under the logistic regression model

logit (µi) = β0 + β1I(Xi = 1) + β2I(Xi = 3) + βzZi , (4.1)

where logit(µi) = log{µi/(1 − µi)} and µi = E(Yi | Xi, Zi) = Pr(Yi = 1 | Xi, Zi). The
parameters were specified as β0 = −3, β1 = 0.3, β2 = 0.5, and βz = 0.5. The Xi can be
viewed as the ordinal variable for the Body Mass Index (BMI), for which the three levels represent
underweight, normal weight, and overweight or obese categories. The coefficients β1 and β2 were
specified in such a way that both level 1 and level 3 have positive effect on the risk of developing
the outcome event (i.e., Yi = 1) compared to the normal level 2.

The true values of Xi were not observed in the sample data. We instead observed a surrogate
Wi for Xi, which was generated using the multinomial logit models given by

log (πik,l/πik,k) = ϕkl(0) + ϕkl(z)Zi for |k − l| = 1 ,
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where πik,l = Pr(Wi = l|Xi = k, Zi). The parameters ϕ associated with the misclassification
process were specified by Table 1. The misclassification of Xi depends on Zi in such a way that
Zi has a positive effect on increasing the probability of misclassifying a higher level into a lower
one. The dependence is stronger for misclassification of Xi = 3 into Wi = 2 than for other cases.

Table 1: Values of ϕ
X W ϕkl(0) ϕkl(z)

1 2 -1.5 -0.05

2
1 -3.0 0.05
3 -3.0 -0.05

3 2 -1.5 0.50

We obtained the final observed sample s = {(Yi,Wi, Zi), i = 1, . . . , n}. Also, we obtained a
validation subsample s2 = {(Yi,Wi, Xi, Zi)} by randomly selecting subjects from swith probabil-
ity 0.04 to be included in s2. Therefore, the size of the validation subsample s2 was around 4,000.
The data were then analyzed using following approaches: (i) the naive approach which ignors
measurement error; (ii) the complete-cases analysis which uses only the validation subsample; and
(iii) the expectation correction method that accounts for misclassification and uses the full sample.
The simulation was repeated 500 times. It turned out that obtaining bootstrap variance estimates
for β̂ under the current setting with the chosen sample size n = 100, 000 was extremely time con-
suming for repeated simulations. We only included the empirical variance of the estimators based
on the 500 repeated simulation samples. Our simulations are conducted using the R software and
the codes are available from the authors upon requests.

4.2. Simulation Results

Table 2: Simulation Results for the Estimation of β
Naive Method Complete-case Proposed Method

Parameter %RB † EV‡ %RB EV %RB EV

β0 -2.90 0.00036 -0.12 0.01148 -0.02 0.00068
β1 -42.31 0.00110 -4.42 0.02926 -1.42 0.00200
β2 -25.24 0.00085 -0.39 0.02244 -0.24 0.00157
βz 1.71 0.00017 -0.03 0.00444 -0.01 0.00017

† %RB = (β̂ − β)/β × 100
‡ Empirical variance based on 500 simulation samples

The simulated relative biases (%RB, in percentage) and the empirical variances of the estimator
β̂ for the parameters in the main logistic regression model (4.1) are reported in Table 2. Major
observations form the simulation results can be summarized as follows: (i) For the estimation of
βz and β0, all three estimators have small biases, although the naive estimator is slightly larger



114 ZHIJIAN CHEN ET AL. [Vol. 16, No. 1

than the other two. (ii) The naive estimators of β1 and β2, which ignore the measurement error, are
seriously biased with the values of RB at 42.3% and 25.2%, respectively. (iii) The complete-cases
analysis based on the validation subsample produces acceptable results but is less efficient than the
proposed method. (iv) The magnitude of the empirical variance of the estimators reinforces the
statement from (iii) and the proposed expectation correction method should be preferred in dealing
with the measurement error in the ordinal covariate.

5. Application to the CCHS Data Set

In this section, we presents results from the application of the proposed inferential procedures
to the data set from the Cycle 3.1 of the Canadian Community Health Survey (CCHS), an ongoing
large scale survey conducted by Statistics Canada.

5.1. The Canadian Community Health Survey

The Canadian Community Health Survey (CCHS) initiative began in 2000 with its main goals
being the provision of population-level information on health determinants, health status and health
system utilization across Canada and gathering data at the sub-provincial levels of geography
(Statistics Canada, 2005). The Cycle 3.1 of CCHS was conducted in 2005 and targeted persons
aged 12 years or older who live in private dwellings in the ten provinces and the three territories.
Persons living on Indian Reserves or Crown lands, clientele of institutions, full-time members of
the Canadian Armed Forces and residents of certain remote regions are excluded from the survey.

For administrative purposes, each province is divided into health regions (HR) according to the
types of regions: major urban centres, cities, and rural regions. Each territory is designated as a
single HR. During Cycle 3.1 of the CCHS, data were collected in 122 HRs in the ten provinces,
in addition to one HR per territory, totalling 125 HRs. Three sampling frames are used to select
the sample of households: 49% of the sample of households came from an area frame, 50% came
from a list frame of telephone numbers and the remaining 1% came from a Random Digit Dialling
(RDD) sampling frame. The CCHS uses the area frame designed for the Canadian Labour Force
Survey (LFS). The sampling plan of the LFS is a multistage stratified cluster design in which
the dwelling is the final sampling unit. Geographic or socio- economic strata are created within
each HR. Within the strata, between 150 and 250 dwellings are regrouped to create clusters. Some
urban centres have separate strata for apartments or for census Enumeration Areas (EA) to pinpoint
households with high income, immigrants and the native people.

In each stratum, six clusters or residential buildings (sometimes 12 or 18 apartments) are chosen
with probability proportional to size (PPS), with the number of households as the size variable.
The list frame of telephone numbers was used in all but five HRs (the two RDD only HRs and
the three territories) to complement the area frame. One list frame stratum was then created for
each HR based on postal codes that were obtained from names, addresses and telephone numbers.
Within each stratum the required number of telephone numbers was selected using simple random
sampling from the list. As for the RDD frame, additional telephone numbers were selected to
account for the numbers not in service or out-of-scope. The hit rate observed under the list frame
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approach varied from 75% to 88% depending on the province, which was much higher than that
for the RDD frame. In four HRs, a Random Digit Dialling (RDD) sampling frame of telephone
numbers was used to select the sample of households.

For all selected households, a single person aged 12 and older was randomly chosen from mem-
bers of the household. After removing the out-of-scope units, 168,464 households were selected
to participate in the CCHS Cycle 3.1. Data were obtained from 132,947 respondents, yielding a
response rate of 79%. Data were collected on general health, chronic health conditions, drinking
or smoking status, including self-reported weight and height. A subsample of 7,376 respondents
aged 12 or older were also selected, who were asked later in the interview to directly measure
weight and height. Among the 7,376 individuals selected in the subsample, 4,735 individuals re-
sponded. The main reason for non-response was refusal (Statistics Canada, 2005). Such validation
subsample is useful in studies of risk factors for obesity as well as the effect of obesity on health
conditions. It provides information on the relationship between a precise measurement and an
error-contaminated measurement of weight or height that makes it possible to correct estimation
bias induced by the self-reported survey data.

5.2. Application of the Proposed Method

We applied the method developed in this paper to the survey data set from the Cycle 3.1 of
CCHS in 2005. Our interest was in studying the association of health conditions with risk fac-
tors including age, sex, physical activity, and body mass index (BMI). Based on the Canadian
guidelines, which are in line with those of the World Health Organization, the BMI for adults was
divided into six categories: underweight, normal weight, overweight, and three obese classes; see
Table 3 for the range of each category.

As BMI was derived from self-reported weight and height, the recorded category might be
different from the true category for some subjects. The subsample contains both self-reported
and the measured weight and height and hence can be used as validation data. Five age groups
were formed with 18-24 being the reference group. Physical activity index is an ordinal variable
with three levels: active, moderate, and inactive. Here the error-contaminated variable is the self-
reported BMI category, and the true underlying variable is the measured BMI category. For this
study, we excluded subjects who were less than 18 years old, as children are in a stage of de-
velopment where weight and height may change over a short period of time. Women who were
pregnant or breastfeeding were also excluded. Observations in the subsample with self-reported
and measured BMI two categories apart were considered as outliers, and the frequency for such
instances is less than 0.1%. Subjects with missing any of the error-free covariates or missing both
the self-reported and the measured BMI were also excluded from the analysis. This led to a sample
of 114,547 respondents with 4,125 in the validation subsample.

We first present results from an exploratory analysis using the validation subsample. Figures
1 and 2 show the weighted estimates of population proportions for high blood pressure and heart
disease in each of BMI categories. There is a clear trend of increasing proportion of subjects with
high blood pressure as the BMI category level increases, indicating that obesity is a strong risk
factor in developing high blood pressure. We observe a similar pattern on heart disease, except
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Table 3: Body Mass Index Categories
Category BMI (kg/m2)

Underweight (UW) Less than 18.5
Normal weight (NW) 18.5 to 24.9
Overweight (OW) 25.0 to 29.9
Obese class I (OB I) 30.0 to 34.9
Obese class II (OB II) 35.0 to 39.9
Obese class III (OB III) 40.0 or more

that the proportion is higher in the underweight category than in the normal-weight category.

Table 4 summarizes the sample percentages of the classification rates of the self-reported BMI
in the validation subsample which contains accurately measured BMI. It can be seen that subjects
with normal weight tend to report the BMI more accurately while subjects in the overweight or
obese group are more likely to self-report the value to a lower category. In general, the misclassi-
fication rates increase as the level of the BMI category moves up and subjects with high level of
BMI tend to under-report the value of the BMI.

Figure 1: Population Proportions for High Blood Pressure in BMI Categories

Our formal analysis applied the proposed expectation correction method to the Cycle 3.1 of
the CCHS data set. It also included the naive approach, which treats the self-reported BMIs as
if they are the true values, and the complete-case approach, which uses only the validation sub-
sample, for the purpose of comparisons. The normal-weight category of the BMI was treated as
the reference group, and the relative risk of the five other BMI categories on the probabilities of
having chronic conditions are of scientific interest. The variance estimates were based on the 500
bootstrap samples with adjusted survey weights which were included as part of the data set.
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Figure 2: Population Proportions for Heart Disease in BMI Categories

Table 4: BMI Classification Rates in the CCHS Subsample
Measured Self-reported BMI

BMI UW NW OW OB I OB II OB III Missing

UW 70.00% 27.50% 2.5%
NW 4.21% 90.06% 4.34% 1.38%
OW 29.33% 66.93% 2.00% 1.74%
OB I 46.42% 51.24% 0.58% 1.46%
OB II 57.79% 37.19% 3.02% 2.01%
OB III 32.43% 60.81% 6.76%
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The results on the estimation of model parameters for the response variable “high blood pres-
sure” are shown in Table 5. It can be seen that the expectation correction approach does not differ
much from the naive approach in terms of estimating βz, the regression coefficients associated
with the error-free covariates: age, sex and physical activity index. The estimates of βz from the
complete-cases analysis, however, are noticeably different in terms of the magnitude or the direc-
tion. The three approaches do not quite agree in the risk estimates of BMI categories, although the
trend of increasing risk across BMI categories is consistent. The direction of the risk estimates of
the underweight category is positive for the expectation correction approach but is negative for the
naive approach and the complete-case approach. Variance estimates, or equivalently the standard
error (SE), using the three methods are all very large for the underweight category compared to
those of other BMI categories. We conclude that the risk of having high blood pressure is not
significantly higher among underweight people than people with normal-weight.

The analysis results for the response variable “heart disease” are presented in Table 6. We
observe similar patterns in the estimates of model parameters. The results from the expectation
correction approach indicate that the risk of having heart disease increases as the level of the BMI
category increases. However, subjects in the underweight BMI category have relatively higher risk
than those in normal-weight category. In contrast, the risk for subjects in overweight category is
not significantly different from those in normal-weight category. The variance estimates from the
complete-case approach are significantly larger that those of the other two methods, which leads
to the statistical conclusion of non-significant BMI effect on heart disease. This is partially due to
the much smaller size of the validation subsample and the result might not be very reliable.

6. Concluding Remarks

We consider logistic regression analysis of survey data with a binary response and an ordinal
covariate which is subject to misclassification. We propose to use the expectation correction es-
timation method (Yi, 2017, Section 2.5) for analysis of this type of error-contaminated data with
survey weights incorporated. The implementation of the algorithm is relatively easy.

The proposed method requires calculations of the posterior weights for all possible values of the
unobserved true covariate, hence it relies on full parametric assumptions for the misclassification
mechanism as well as the covariate distribution. Robustness to model misspecification needs to be
investigated. Also, the parametersϕ andα are estimated from the validation data and are treated as
fixed “plus-in” estimators in the estimation of β. When calculating the bootstrap variance of β̂, one
can account for the extra uncertainty by obtaining estimates of ϕ and α in each bootstrap sample.
Otherwise, the standard error of β̂ would be generally underestimated. The main problem is that
some bootstrap samples do not contain enough validation data to obtain stable estimators forϕ and
α, especially for the cases where the ordinal covariate has many levels, and the misclassification
process involves large number of precisely measured covariates.

To validate the our proposed correction model, we first need to validate the appropriateness of
the misclassification model. This can be done by using cross-validation method by training the
model and parameters in 70% of the subsample and testing in the remaining 30%, or by collecting
more measured samples. Since the number of parameters was large in the application presented in
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Section 5, we trained the misclassification model using the entire subsample and did not perform
cross-validations.

In some practical situations the marginal distribution of Xi may be of interest, e.g., estimation
of population frequency of each BMI category can be an objective of health surveys. When the
dimensions of ϕ and α are small, we can simultaneously estimate β, ϕ, and α. Specifically, one
can use the extended data with pseudo-survey weights d(t)

ik to update the estimates of ϕ and α.
When Xi is independent of Zi, for instance, the estimate of α = (α1, . . . , αK)T can be updated
during each iteration by

α
(t+1)
k =

∑
i∈s1∪s2 diI(Xi = k) +

∑
i∈s3 d

(t)
ik∑

i∈s di
, k = 1, . . . , K.

In the data analysis example on the CCHS survey data set, the BMI variable is used as a
risk factor for health conditions. However, BMI itself can be viewed as a response variable, and
studying the association of obesity with covariates such as age, sex and physical activity index
may be of interest. Misclassifications in both categorical response and categorical covariate are
commonly seen in large scale surveys. It would be interesting to extend our current work to account
for this type of survey data.

Another future research problem is to deal with scenarios where both measurement error and
missing values are present in survey data, the features which are common for large scale surveys
such as CCHS. Developing valid inferential procedures for survey data with measurement error
and missing values is an interesting yet very challenging research topic.
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