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Abstract
In this communication it is shown that employing statistical methods which account

for constraints, inherent in some scientific problems, will often lead to a substantial reduction
in the sample size required while simultaneously maintaining the power of the study and its
scientific validity. In fact a 40%, or even higher, reduction in the required sample size is
possible. These savings have the potential to impact individual labs and researchers and
will translate to saving of millions of dollars annually for granting authorities and federal
agencies such as the NIH.

Key words: Maxi-min designs; Order restricted inference; Power; Sample size.

AMS Subject Classifications: 62F30, 62K05

1. Introduction

Scientific research often requires testing of hypotheses comparing two or more exper-
imental groups. The successful conduct of such investigations requires a study design ap-
propriate for the scientific question at hand, a valid testing procedure for the hypothesis of
interest, and an adequate sample size which guarantees suitable power. Sample size deter-
mination, or equivalently power calculations, are usually based on two sample and two–sided
alternative hypotheses designed to test whether the mean response of the treatment group
is different from that of the control group, cf., Ryan (2013). Such calculations are simple
and very widely used and numerous software packages, such as SAS and SPSS, have built–in
routines for such tasks.

In many applications, such as dose–response studies or multi–drug trials, researchers
may have a priori beliefs about the experimental groups. Such prior beliefs are usually
based on earlier studies or an understanding of the underlying scientific phenomenon and
are often formulated as mathematical inequalities or constraints, known as order restrictions.
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For example, in a dose–response studies toxicologists may expect that the mean response
increases (or decreases) with the dose of a chemical. This constraint is known as the simple
order. Observational data are also often of this form. For example, in Spiegelhalter et al.
(1999) the length of the ramus bone of 20 boys was measured at three equally spaced time
points from ages 8 to 9. The question of interest was to know whether there was a significant
growth spurt during the observed time period. In a time–course gene expression study, the
mean expression of a gene may increase up to a certain point, reflecting its biological activity
[Peddada et al. (2003)] and then decrease. This constraint is known as the umbrella order. In
clinical trials, a researcher may be interested in demonstrating that the standard treatment
is inferior to one of the new treatments, or, that a new treatment is at least as efficacious as
the existing ones. This constraint is called the tree order. For example, Igari et al. (2014)
compared the effect of various doses of cytisine on a dysporic–like state in rats. In some
cases, the study design may include multiple control and multiple treatment groups. For
example, the US National Toxicology Program (NTP) evaluates toxicity and carcinogenicity
of chemicals using the concurrent control group as well as historical controls (which are
controls collected from similar studies conducted by the NTP). This set up leads naturally
to a bipartite order restriction [Kanno et al. (2003) and Peddada et al. (2007)].

The above mentioned order relations are represented graphically in Figure 1 by their
corresponding order graphs. In each of the Figures, a circle represents a group mean, or
more generally any other statistical parameter, and a pointed arrows implies an inequality
among the two means or parameters. The roots of the order graph are the nodes with
the largest means, whereas the leaves are the nodes with the smallest means. A variety of
other constraints, or order restrictions, arise in applications. There exists over six decades of
literature on this subject starting with the pioneering papers of Ayer et al. (1955), van Eden
(1956) and Bartholomew (1959). Several books summarizing the work done in this field have
also been published, e.g., Barlow et al. (1972), Robertson et al. (1988) and Silvapulle and
Sen (2005).

In this article we highlight some important consequences of incorporating order restric-
tions in both the design and the analysis of experiments. Doing so addresses the scientific
questions motivating the study in a principled manner. For if, for example, a standard
two–sided test is applied in Figure 1(c), then a significant result tells us that there are dif-
ferences among the treatments, it does not tell us that one of the treatments is superior to
the control. Such inferences, however, are built–in into the procedures of constrained infer-
ence. Thus incorporating constraints in the analysis provides more meaningful inferences
about the existence of an ordering among the experimental groups. In addition, using the
constraints substantially improves efficiency. This means that we can expect considerable
improvement in power and therefore the required sample sizes are reduced. In other words,
failing to properly incorporate the order restrictions may lead to inflated costs of conducting
studies, loss of power and inadequate scientific conclusions.
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Figure 1: Order graphs for some common order restrictions. Circles represent
group means and a pointed arrow indicates an inequality among the means.
Green circles correspond to leaves of the order graph and red circles to their
roots. We refer to the leaves and roots as the extreme groups. The intermediate
groups are designated by a black circle.

2. Power, Order and Scientific Discovery

It is well known that tests tailored to accommodate order restrictions, called restricted
or constrained tests [Silvapulle and Sen (2005)], are typically more powerful than their un-
constrained counterparts. For example, consider the one–way analysis of variance (ANOVA)
model

Yij = µi + εij,

where Yij is the response of jth observation in ith treatment group, i = 1, . . . , K and j =
1, . . . , ni and the errors εij are independent N (0, σ2) random variables (RVs). For simplicity,
and without any loss of generality, see Remark 2.2 in Singh and Davidov (2020), one may
assume that σ2 = 1 in which case the unconstrained likelihood ratio test (LRT) is of the
form

Tn =
K∑

i=1
ni(Ȳi − µ̂i)2

where Ȳi = n−1
i

∑ni
j=1 Yij for i = 1, . . . , K and µ̂i = Ȳ = N−1 ∑K

i=1 niȲi are the unrestricted
estimators. Similarly the constrained LRT is given by

Tn =
K∑

i=1
ni(µ̃i − µ̂i)2

where µ̃i is the ith component of µ̃ = argmax{∑K
i=1 ni(Ȳi − µi)2 : Rµ ≥ 0}, the restricted

maximum likelihood estimator of µ which is assumed to satisfy a collection of linear in-
equalities Rµ ≥ 0. It is well known that under the null the unconstrained LRT follows a
chi–square distribution whereas the restricted LRT follows, what is known as, a chi–bar–
square distribution [Silvapulle and Sen (2005)].
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Figure 2 plots the power function of the standard (unconstrained) ANOVA test versus
its constrained counterpart as a function of the per–group sample size under a balanced
design. Clearly, the constrained test has higher power. Consequently the sample size required
to guarantee a prespecified power is smaller when using a constrained test. At the 5%
significance level and 80% power the unconstrained test requires 136 observations whereas
the constrained test requires only 88 observations. It is evident that the reduction in sample
sizes is a substantial 35%.

Figure 2: The power of the constrained and unconstrained tests in the ANOVA
setting. Data were simulated from normal populations with means 0, 0.25, 0.5
and 0.75, and unit standard deviation

Even more dramatic examples are reported in the literature both in the context of
ANOVA [Farnan et al. (2014)] as well as a variety of other settings [e.g., Davidov and
Herman (2012) and Rosen and Davidov (2017)]. A theoretical proof of the superiority of
the restricted LRT is provided by Praestgaard (2012) and Davidov and Iliopoulos (2020). In
the following we provide two examples from our own research which demonstrate that using
methods which incorporate constraints helps to uncover clinically important features in the
data which were missed by standard methods.

Example 1: Uterine fibroids, also known as uterine leiomyomata, are benign smooth muscle
hormonally mediated tumors commonly found in pre–menopausal women. Nearly 70% of all
women have these tumors. They cause pain, bleeding, urinary incontinence and pregnancy
complications. The total annual cost of treating these tumors in US is estimated to be
between 4 to 9 billion US dollars. The NIH, [cf. Peddada et al. (2008)], conducted a large
prospective study of 72 pre–menopausal women (38 black and 34 white). Fibroid volumes
were measured by MRI taken at baseline and at 3, 6, and 12 months, with at least two
measurements per woman. African American women are known to have greater tumor
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burden so a standard ANOVA–based analysis with an interaction between race and was
performed. The interaction was found to be barely significant at p = 0.05. Since these
tumors are known to be estrogen dependent, it is reasonable to hypothesize that tumor
growth rates would decrease with age. This hypothesis was investigated in a recent re–
analysis of these data [Peddada and Jelsema (2016)] using methods which account for order
restrictions. A statistically significant decreasing trend in mean growth rates among whites
(p = 0.015) but not among blacks (p = 0.1880) (Figure 3) was formally discovered. Thus,
testing for order restrictions allows us to make a clinically important discovery that was not
discovered by the standard ANOVA based methodology.

Figure 3: Mammary gland fibroadenoma incidence in female rats

Example 2: The Fish industry uses Malachite Green Chloride as an antifungal agent. The
US National Toxicology Program (NTP) conducted a two year cancer bioassay with 48 female
rats assigned to each of four dose groups of Malachite Green Chloride, namely, 0, 100, 300
or 600 parts per million. The incidence of mammary gland adenomas and pituitary gland
adenoma–carcinomas are reported in Table 1. It is well–known that pituitary gland tumors
may be associated with mammary gland tumors via the prolactin pathway [cf. McComb
et al. (1984) and TR-527 (2005)]. Although these tumors are biologically dependent, the
NTP analyzed them separately. The p–values for the corresponding trend tests were not
significant, 0.113 for mammary gland adenoma and 0.162 for the pituitary gland adenoma–
carcinomas. Davidov and Peddada (2011) developed a nonparametric multivariate ordered
test that exploited the underlying dependence among the binary variables to test for trends in
multivariate data. Using this constrained trend test Davidov and Peddada (2011) reanalyzed
the NTP’s Malachite Green Chloride data and discovered a significant increasing trend in
both mammary gland adenomas as well as pituitary gland adeno–carcinomas, with a joint p–
value of 0.025, suggesting a carcinogenic effect of Malachite Green Chloride on both tumors
in a dose–related fashion. This finding reinforce the fact that the methods of constrained
inference may discover finding not detected by standard methods.

Another advantage of using the methods of order restricted inference is that it relaxes
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Table 1: Tumor incidence rates of control and Malachite Green Chloride treated
animals in the NTP study

Tumor type Estimator Control 100 ppm 300 ppm 600 ppm

Mammary Gland Unconstrained 0.050 0.052 0.023 0.130
Constrained 0.042 0.042 0.042 0.130

Pituitary Gland Unconstrained 0.607 0.822 0.696 0.756
Constrained 0.609 0.758 0.758 0.758

parametric assumptions. For example, suppose one is interested in the effect of an allele
on a phenotype Y . It is very common to test for ”trend” over the alleles aa,Aa,AA by
assigning scores X = 0, 1 and 2, respectively and performing a linear regression of Y on
X. The basic assumption, when using such a modelling framework, is that the change in
the mean response from aa to aA is same as from Aa to AA. Such assumptions may not
be supported by the data and preclude the possibility of some non–linear but monotonic
response such as in Figure 1(a). Such non–parametric curves are easily accommodated by
constrained methods. In toxicology, it is also very common to perform linear regression–
based tests such as the Cochran–Armitage trend test [Cochran (1954) and Armitage (1955)].
Some investigators use the exact dose as the explanatory variable and others use scores such
as 1, 2, 3 and 4. When linearity is not justifiable considerable loss of power is to be expected
[Peddada et al. (2005a)].

To summarize, incorporating the constraints in the analysis does not only lead to
a beautiful and less restrictive statistical theory with improved operating characteristics,
it may, much more importantly, help uncover biologically and clinically important results
which standard methods fail to detect.

3. Optimal Design: Sample Size and Cost Efficiency

Smucker et al. (2018) emphasized that one should customize the experiment for the
setting instead of adjusting the setting to fit a classical design, a comment that underscores
the importance of carefully planned experiments. Recently, Singh and Davidov (2019) devel-
oped a rigorous framework for constructing optimal experimental designs which incorporate
order restrictions. Their designs, known as Max–Min (MM) designs, maximize power un-
der the worst possible (allowable) configuration in the alternative. They showed that the
MM–design is of the form

ξMM = |V|−1 ∑
(i,j)∈V

ξij, (1)

where ξij = (ei + ej)/2, el is the lth standard basis of RK and V is the set of all maximal
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pairs. A pair (i, j) where i ∈ R, the set of roots, and j ∈ L, the set of leaves, is called a
maximal pair if there is a path from i to j. For more details see Singh and Davidov (2019).

The formula (1) is simple and easy to use. MM–designs for some common order re-
strictions such as the simple, tree, umbrella, and bipartite order (cf., Figure 1) are given
in Table 2 along with some other commonly used designs. It turns out that MM–designs
allocate observations only to the leaves and roots of the order graph. In fact, if there are
N observations, then N/2 will be distributed among the leaves and N/2 among the roots.
When there is more than one root the allocation among the roots is proportional to the
degree of the root, i.e., the number of paths to distinct leaves; and similarly for the leaves.
Thus, the MM–design for the simple order will allocate N/2 observations to the two extreme
groups. No observations are allocated to any of the intermediate groups. In the case of
the umbrella order, the MM–design assigns N/2 observations to the peak of the umbrella
and the remaining N/2 observations are equally divided among the extreme groups (first
and last). Similar logic applies to the tree and bipartite order. We note that MM–designs
do not allocate any observations to intermediate treatment groups, and thus do not allow
any comparisons among them. This potential practical deficiency can be be addressed and
rectified by using Singh and Davidov (2019)’s so called IUT–designs, which, for lack of space,
we will not further discuss here.

Table 2: The proportion of the observations allocated by the MM, Balanced,
and Dunnetts’ design are reported for the order relations depicted in Figure 1.
The notation “-” indicates that there is no design to consider

Order

Design Simple Umbrella Tree Bipartite

MM (1/2, 0, 0, 1/2) (1/4, 0, 1/2, 0, 1/4) (1/2, 1/8, 1/8, 1/8, 1/8) (3/10, 2/10, 1/10, 2/10, 2/10)

Balanced (1/4, 1/4, 1/4, 1/4) (1/5, 1/5, 1/5, 1/5, 1/5) (1/5, 1/5, 1/5, 1/5, 1/5) (1/5, 1/5, 1/5, 1/5, 1/5)

Dunnett - - (1/3, 1/6, 1/6, 1/6, 1/6) -

4. Results

The benefits associated with MM–designs were assessed by simulations using data from
the published scientific literature. Simulations under the simple order were based on the data
of Spiegelhalter et al. (1999), whereas the simulations for the tree and bipartite orders were
based on data from Igari et al. (2014) and Kanno et al. (2003), respectively. The substantive
scientific problems investigated in these papers were already briefly described. For simplicity,
the simulated data is normally distributed with mean values and standard deviations as
reported in Table 3. For each ordered alternative, we performed an unconstrained and
restricted likelihood ratio test. The results of the simulation study, based on 105 simulation
runs, are summarized in Figures 4 and 5 which display powers and sample sizes, respectively.
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Table 3: A brief summary of the results of Spiegelhalter et al. (1999), Igari et al.
(2014) and Kanno et al. (2003). We report on the group size, sample mean and
standard deviation as well as the pooled standard deviation (PSD). For the
tree order, treatment 1, serves as the control and is compared to the remaining
treatments. In the bipartite case, treatments 1 and 2 are the controls. Treatment
1 is compared to treatments 3, 4, and 5, whereas treatment 2 is compared to the
4 and 5

Treatment Group

Order 1 2 3 4 5 PSD

Simple 48.66± 2.52 49.62± 2.54 50.57± 2.63 2.56
20 20 20

Tree 97.6± 10.39 101.6± 8.66 102.2± 4.50 103.4± 10.04 105.9± 14.90 10.26
12 12 12 12 12

Bipartite 29.5± 2.95 30.0± 2.30 32.2± 3.13 34.8± 3.48 31.8± 4.34 3.31
6 6 6 6 6
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Figure 4: Power comparisons between the Maxi-Min (MM), Balanced (B) and
Dunnett’s (D) designs when applied with both the unrestricted and restricted
test. For example MM+R is the power of the MM design with a restricted test
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Figure 5: Sample sizes required for 80% power under the Maxi-Min (MM),
Balanced (B) and Dunnett’s (D) designs when applied with both the unrestricted
and restricted test. For example MM+R is the sample size required by the MM
design with a restricted test

Our simulation study shows, as previously noted, that using the restricted test is always
better than using the unrestricted test. It is clear that the MM–design results in improved
power relative to the balanced and other designs irrespective of the test being used. For
example, Figure 5(b) shows that the MM design analyzed by a restricted test requires a
sample of approximately 100 subjects whereas the balanced design with and standard test
requires 170 subjects.

5. Summary

This communication shows that accounting for constraints, which occur naturally in a
wide variety of scientific investigations, has a huge dividend. In particular it is shown, using
examples from the literature, that a substantial reduction in the sample size is achieved
when both designing and analyzing data using methods that account for constraints. It
is emphasized that the largest benefits are achieved when an experiment is both designed
and analyzed using order based methods. The reduction in the required sample sizes, or
equivalently the increase in power [Singh and Davidov (2019)], is nothing but phenomenal
suggesting that the routine use of order based methods, when appropriate, will result in
much more economical and efficient designs. In fact, since in many experimental sciences
a substantial portion of the budget is devoted to acquiring a large as possible sample, re-
searchers, pharmaceuticals, granting agencies and others may save millions of dollars on data
collection and do much more with a fixed budget. In addition, if the study involves biological
samples from animal or human subjects, then these methods would require the participation
of fewer animals or human subjects.

It is surprising that although the methodology we describe here traces its roots to the
late 1950’s it has not had a major impact on data collection and analysis in the sciences.
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There are several reasons for that. The first is that the focus of statisticians working in
this area had been largely theoretical with little concern for practical issues such as cost
reductions. Secondly, appropriate software for analyzing data using these constrained infer-
ence based methods were not available until recently. Software such as ORIOGEN [Peddada
et al. (2005b)] and CLME [Peddada and Jelsema (2016)] have taken the important first
steps in this direction and are gaining popularity among users. Finally, the development of
experimental designs [Singh and Davidov (2019)] which capitalize on scientific constraints is
a recent development with potential far reaching consequences.
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