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Abstract

In this article we highlight how the combinatorial properties of statistical designs of
experiments have been used by many researchers for constructing various types of crypto-
graphic schemes. In particular, we discuss key predistribution schemes for distributed sensor
networks in some detail and show through examples, how useful schemes can be constructed
from the duals of certain block designs.
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1. Introduction

Combinatorial structures of different kinds have been extensively studied over the
years by mathematicians, for example, Hadamard Matrices, orthogonal arrays, Latin squares,
Steiner’s triple systems, etc. The construction and existence of these structures have been
well-developed and a considerable literature is available on such structures.

Later, statisticians found that many of these structures are useful in the field of Design
of Experiments. Subsequently, optimality properties of the designs based on these structures,
were also proved. For example, it was found that Hadamard matrices were useful in obtain-
ing optimal weighing designs using the chemical balance, Steiner’s triple systems were useful
as incomplete block designs for one-way elimination of heterogeneity, Latin squares and mu-
tually orthogonal Latin squares were useful as optimal designs for eliminating heterogeneity
in two or three directions, orthogonal arrays were useful in obtaining fractional factorial
designs, and the list goes on. For a comprehensive discussion on these designs, their com-
binatorial properties and construction, and their statistical optimality aspects, we refer to
Raghavarao (1971), Street and Street (1987), Shah and Sinha (1989) and Hedayat, Stufken
and Sloane (1999).

Much later, cryptographers found that many of these statistical designs of experiments
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based on combinatorial structures can also be used to generate good cryptographic schemes.
For some details of such use, we refer to Stinson (2004) and Stinson and Patterson (2023).

Cryptography is the practice of scrambling communications so that only the intended
recipient can access them. In modern times, cryptography is used to protect confidentiality
of sensitive information and protect it from hackers and other cyber criminals. It can be used
to obscure various forms of digital communication, including text, images, video, or audio;
protect confidentiality and integrity in communication. e.g., computer passwords, email,
online transactions, transmitting confidential information, etc. For a historical perspective
of the development of the subject since ancient to recent times, we refer to Kahn (1996) and
Bauer (2021). For a technical perspective of some schemes, we refer to Stinson and Patterson
(2023).

In this paper we mention some cryptographic schemes which can be obtained from
combinatorial structures. In Section 1, we give a brief description of two such schemes and
mention the combinatorial structures which lead to these schemes. In Section 2 we focus on
distributed sensor networks and describe how they can be obtained from statistical designs.
References are given for all these results and the reader may obtain the details from these
references.

2. Some cryptographic schemes and related combinatorial structures

In this section we mention two cryptographic schemes, error-correcting codes and
visual cryptographic schemes, and mention the designs that may be used to construct these
schemes. Our objective here is to only give a flavor of the versatility of the application of
designs to cryptography. There are many other schemes which are not mentioned here for
the sake of brevity.

2.1. Error correcting codes and Hadamard matrices

Error-correcting codes are used to detect and correct errors that can occur when
transmitting data over noisy channels. They add extra bits, i.e., redundant information, to
the original data in such a way that the recipient of the data can compare the received data
with the redundancies and identify the errors which arise due to noise or other factors. Each
code is a collection of codewords, or k-tuples, say, with symbols from a set of symbols or an
alphabet.

It is well known that optimal weighing designs are given by Hadamard matrices, e.g.,
to optimally weigh 8 objects using 8 weighings with a chemical balance, the optimal design
matrix will be given by a Hadamard matrix of order 8. In the cryptography context, the
rows of this same Hadamard matrix, after replacing −1 by 1 and 1 by 0, will give an error-
correcting code for transmitting a binary message of 3 bits as a message of 8 bits, and it
can correct one error. More generally, using Hadamard matrices, one can construct the first-
order Reed-Muller code over the binary alphabet which is useful in transmitting messages
over noisy channels. For some applications in this context, we refer to Serberry, Wysocky
and Wysocki (2005) and Yarlagadda and Hershey (1997).
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2.2. Error-correcting codes and orthogonal arrays

Orthogonal arrays are well-known structures which are useful in statistics for obtain-
ing suitable fractions of factorial experiments for experimentation. These orthogonal arrays
also give useful error-correcting codes, namely MDS (Maximum distance separable) codes,
the Reed Solomon Codes, Hamming codes, etc. These codes have optimal properties of
various kinds.

2.3. Visual cryptographic schemes and BIBD, PBIBD

In a (k, n) visual cryptography scheme, a secret image (or text) is encoded to form n
‘shares’ and each share is printed on a transparency sheet. There are n participants, each
of whom gets one share. The encryption is such that only when k(≥ 2) participants get
together and stack their sheets one above another, the secret image is revealed, no set of
k − 1 or fewer participants can decode the secret image. This scheme is useful as decoding
can be done simply by the human eye without the need of any computers or equipment.
More details can be obtained from Naor and Shamir (1994) and Kang, Arce and Lee (2011),
Ibrahim, Teh and Abdullah (2021) and Climato, Prisco and Santis (2005).

It has been shown in Blundo, Santis and Stinson (1999) that balanced incomplete
block designs (BIBDs) are useful in encoding the secret image and forming the shares. Ad-
hikari and Bose (2004) and Adhikari, Bose, Kumar and Roy (2007) showed that partially
balanced incomplete block Designs (PBIBDs) lead to schemes where the sharpness of the
recovered image is better for certain set of participants. Bose and Mukerjee (2006, 2010)
showed that various other incomplete block designs like regular graph designs, symmetrical
unequal block designs may also be used to obtain schemes with many desirable properties.

There are several other schemes in the literature which have been developed from
designs of experiments and which have not been mentioned here, e.g., general threshold
access structures, anti-collusion digital fingerprinting, etc. Some references on these are
Kang, Sinha and Lee (2006), Yagi, Matsushima and Hirasawa (2007), Bose and Mukerkee
(2013, 2014). Moreover, there could be many other possibilities of using designs to construct
useful cryptographic schemes of various types in future.

3. Distributed sensor networks

Distributed sensor networks (DSNs) are used in a wide range of applications. Some ex-
amples of their use are in air quality monitoring, water quality monitoring, wildlife tracking,
seismic activity detection etc. These are also used in military applications such as battlefield
surveillance, target tracking, perimeter security, reconnaissance missions, etc. Another in-
teresting use of this system is in smart cities where they prove useful in traffic management,
congestion monitoring, parking availability detection, street lighting control, etc.

This wide applicability of these network schemes is due to the ability of DSNs to collect
real-time data from geographically dispersed sensors, enabling comprehensive monitoring and
analysis of various physical phenomenon across large areas.

We now discuss key-predistribution schemes for DSNs in some detail, based on results
from Bose, Dey and Mukerjee (2013); more references may be found therein.
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3.1. Key predistribution schemes(KPS) for DSNs

We begin with an example of a situation where sensor nodes are pre-distributed in
several locations. Suppose in a military operation, several sensor nodes, each with some
secret keys installed in them, are randomly scattered over a sensitive area. The keys in each
node are taken from a large set of keys. Each node can send or receive signals only over a
certain wireless communication range or neighbourhood. Once deployed, these nodes have to
communicate with each other through secure keys in order to gather and relay information.

In this context, some metrics of the KPS are important:

1. Network size, i.e., the number of nodes deployed, say, n.

2. Key storage, i.e., the number of keys stored per node, say, k.

3. Intersection Threshold i.e., the number of keys common between 2 nodes, say, q.

4. Communication rule i.e., if two nodes are within each other’s neighbourhood, they can
communicate with each other
(a) directly, if they have q ≥ 1 common keys, or
(b) via one hop if there is a third node within the intersection of their neighbourhoods
which shares q common keys with each of them. If needed, multiple secure links can
also be used if there is a sequence of nodes connecting them such that every pair of
successive nodes in this sequence share q(≥ 1) common keys.

Now, after deployment, some nodes may be captured in an attack. In that case, all the
keys in these captured nodes are considered to be lost and cannot be used for communication
by the other nodes. However, if the remaining nodes can still communicate using their
remaining keys as per 4 (a) or 4 (b) above, then the KPS is said to be ‘resilient’. Resilience
is a desirable property of a KPS.

3.2. Correspondence with block designs

Now we introduce a correspondence between some terms used in the context of block
designs with the terms used in the context of the KPS as introduced in section 3.1.

The set of all keys of the KPS corresponds to the set of all treatments in a block
design.

The sensor nodes of the KPS correspond to the blocks in a block design. Here, since
we would like a large number of nodes in the system, we need a large number of blocks in
the designs, as opposed to fewer blocks preferred in designs of experiments.

The key storage of a KPS corresponds to the block size of a design.

With the above correspondence, it is clear that the ‘intersection threshold’ of a KPS
corresponds to the number of treatments that are common to two blocks. This means that
the block intersection number of a block design becomes important. We will consider the
duals of block designs where the roles of treatment and block in the original block design are
reversed, and so, the incidence between the treatments and blocks is also reversed.
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We give examples of two designs, one PBIBD(d1) wih 2 associate classes, and one
BIBD(d2), and their corresponding dual designs d∗

1 and d∗
2, as shown below. These duals

will be used subsequently to construct KPS. For the design di, let vi, bi, ri and ki denote the
number of treatments, number of blocks, replication number, and block size, respectively,
i = 1, 2. Then, from the properties of BIBD and PBIBD it may be noted that these duals
d∗

i , i = 1, 2, are such that:

1. every symbol occurs at most once in any block

2. every symbol occurs in ki blocks, 2 ≤ ki < bi

3. every block contains ri symbols, vi > ri ≥ 2, and

4. there is an association scheme with 2 associate classes on the sets of blocks of d∗
i ,

i = 1, 2. Any 2 distinct blocks will either have no symbol in common (then we call
these blocks 1st associates of each other) or they will have exactly one symbol in
common (then we call these blocks 2nd associates of each other). Each block is called
the 0th associate of itself. Clearly, any 2 distinct blocks of d∗

2 will be 2nd associates,
while any two distinct blocks of d∗

1 may be either 1st or 2nd associates.

Example 1: PBIB design with GD scheme d1(v1 = 6, b1 = 9, r1 = 3, k1 = 2, λ1 = 0, λ2 = 1),
blocks shown as columns labeled 1, . . . , 9.

d1 :
1 2 3 4 5 6 7 8 9
1 1 1 2 2 2 3 3 3
4 5 6 4 5 6 4 5 6

Dual of d1: d∗
1(v∗

1 = 9, b∗
1 = 6, r∗

1 = 2, k∗
1 = 3), blocks shown as columns labeled B1, . . . , B6.

d∗
i :

B1 B2 B3 B4 B5 B6
1 4 7 1 2 3
2 5 8 4 5 6
3 6 9 7 8 9

Example 2: BIB design d2 (v2 = 9, b2 = 12, r2 = 4, k2 = 3, λ = 1), blocks shown as columns
labeled 1, . . . , 12.

d2 :

1 2 3 4 5 6 7 8 9 10 11 12
4 7 1 5 8 2 6 9 3 1 4 7
7 1 4 8 2 5 9 3 6 2 5 8
2 5 8 3 6 9 1 4 7 3 6 9

Dual of d2: d∗
2(v∗

2 = 12, b∗
2 = 9, r∗

2 = 3, k∗
2 = 4), blocks shown as columns labeled C1, . . . , C9.

d∗
2 :

C1 C2 C3 C4 C5 C6 C7 C8 C9
2 1 4 1 2 5 1 3 6
3 5 8 3 4 7 2 4 7
7 6 9 8 6 9 9 5 8
10 10 10 11 11 11 12 12 12
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3.3. Use of block designs

We can build useful key predistribution schemes based on block designs because using
the combinatorial structures of the designs we can

1. study the connectivity property of the scheme

2. study the resilience property of the scheme, and

3. carry out shared-key discovery and path-key establishment in a structured manner.

Schemes are evaluated on the basis of their connectivity and resilience using the
measures Pr1, P r2 and fail(s) as proposed by Lee and Stinson (2004) and defined below:

For any 2 randomly chosen nodes in each other’s neighbourhood, let Pr1 be the
probability that the 2 nodes can securely communicate directly with each other, i.e., they
have q keys in common.

Again, for any 2 randomly chosen nodes in each other’s neighbourhood, let Pr2 be
the probability that these 2 nodes do not share q common keys but there is a third key in
the neighbourhood of both of them which shares q common keys with both these nodes. So
these 2 nodes can communicate securely via this third node.

Finally, Pr1 +Pr2 is used to study the connectivity of a KPS, either through a secure
direct path, or through a secure path via a third node. The larger the value of Pr1 + Pr2,
the better is the connectivity of the KPS.

In the event of an attack a number of nodes are compromised and the keys in the
compromised nodes are rendered unusable for communication. Let A and B be 2 uncompro-
mised nodes which share q common keys. Then, the resilience of the KPS is measured by
fail(s) which is equal to the conditional probability that the link between A and B will fail,
when out of the other n − 2 nodes, s randomly chosen nodes are compromised. A smaller
fail(s) means a larger resilience property for the KPS.

Several researchers have studied this problem. Lee and Stinson (2004) considered
KPS with q = 1 and q = 2 and used transversal designs for their construction. Bose, Dey
and Mukerjee (2013) studied KPS for general q and used various types of designs for their
construction, e.g., BIBD, PBIBD based on GD, LS and triangular association schemes, and
suitable duals of these designs, for general q.

3.4. An illustration of the construction of KPS for q = 2

We now illustrate how duals of some suitable block designs can be used in the con-
struction of the schemes. For our illustration, we use the designs shown in Section 3.2. For
more examples, details and theoretical justifications, we refer to Bose, Dey and Mukerjee
(2013). We only consider the case where q = 2; the case with q = 1 is easier and omitted
here.

We can onstruct a KPS with q = 2 as follows:
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(1) We start with 2 designs, each being either a PBIB design with λ1 = 0, λ2 = 1,
or a BIB design with λ = 1, and then we consider their dual designs. e.g., we start with d1
and d2 shown in Section 3.2 and take their duals d∗

1 and d∗
2.

(2) We identify the symbols of d∗
1 and d∗

2 as the keys. So, the number of possible
keys is v∗

1 + v∗
2 = b1 + b2, which equals to 9 + 12 = 21 keys in our example.

(3) We take all possible selections of a block from each of d∗
1 and d∗

2, and consider
their union as a node. So, any node in our example is of the form: Bi ∪ Cj, i = 1, . . . , 6, j =
1, . . . , 9. Thus we get the number of nodes as n = b∗

1 × b∗
2 = v1 × v2, which equals 6 × 9 = 54

nodes in our example. Each of these nodes have k∗
1 +k∗

2 = r1 +r2 keys, which equals 3+4 = 7
keys in our example.

We can check the properties of the KPS from the properties of the constituent designs.

For example, by taking the union of block B1 from d∗
1 and block C1 from d∗

2, and
writing the symbols of d∗

2 in italics to differentiate them from the symbols of d∗
1, we get the

node as

B1 ∪ C1 = 1 2, 3, 2, 3, 7, 10

Similarly, taking union of block B3 from d∗
1 and block C4 from d∗

2, and writing the
symbols of d∗

2 in italics, we get the node as

B3 ∪ C4 = 7, 8, 9, 1, 3, 8, 11

Note that B1 and B3 have no symbol in common and hence these blocks are 1st
associates of each other. Again, blocks C1 and C4 have 1 symbol in common and hence these
blocks are 2nd associates of each other. So we will say that the 2 nodes given by B1 ∪ C1
and B3 ∪ B4 are 12 th associates of each other.

Now, since d1 is a PBIB design with 2 associate classes, blocks of d∗
1 can be either 0,

1, or 2 associates. Again, as d2 is a BIB design, blocks of d∗
2 can be either 0, or 2 associates.

So the association relationship between any 2 distinct nodes Bi1 ∪ Cj1 and Bi2 ∪ Cj2 in this
KPS will be given by the set

{02, 10, 12, 20, 22}

Using this association structure between two nodes, we can deduce which two nodes
can directly communicate with each other and which two nodes need a path via a third node
to communicate.

It can be shown that with q = 2, all pairs of nodes except those which are 12 associates
of each other can communicate directly with one another.

In this example, it can be checked that the number of 12 associates of any node in
the KPS is 16. So the remaining 54 − 16 = 38 nodes can directly communicate with each
other.
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Algebraic expressions for Pr1, P r2 and fail(s) can also be obtained using the combi-
natorial properties of the component designs. We omit the details here.

3.5. Evaluating Local connectivity and resilience for the above KPS

For the KPS obtained from the designs d∗
1 and d∗

2, it may be shown that:

Pr1 = 0.6981, P r2 = 16
53[1 − (1 − 29

52)η]

where the intersection of the neighbourhoods of nodes A and B contain η nodes, excluding
A and B themselves. So for q = 2 and for some choices of η, the probability that any 2
randomly chosen nodes in the KPS can communicate with each other is equal to

η 1 2 3 4 5 10 15 20
Pr1 + Pr2 0.867 0.941 0.974 0.988 0.995 0.9999 1.000 1.000

The above table shows that this KPS has quite high local connectivity. Different choices of
the constituent designs will lead to different KPS and their metrics can be computed.

This idea of construction for q = 2 can be extended to general q(≥ 2) where we start
with q suitable initial designs, take their duals, and then form KPS as in steps (1), (2) and
(3) in Section 3.3. Each time, n is multiplicative in the b∗

i while k is additive in k∗
i . Thus,

this method gives schemes with many nodes but small key storage. The properties of such
KPS can be similarly ascertained from the properties of the designs.
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