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Abstract
In this article, we proposed a new estimator, termed the Modified Logistic Two-

Parameter Estimator (MLTPE), and enhanced it by modifying its coefficients, yielding
three variants: Modified Logistic Two-Parameter Estimator1 (MLTPE1), Modified Logistic
Two-Parameter Estimator2 (MLTPE2), and Modified Logistic Two-Parameter Estimator3
(MLTPE3). These estimators are designed for logistic regression models in the presence of
multicollinearity. Theoretically, we demonstrated the superiority of the MLTPE over existing
estimators, including the Maximum Likelihood Estimator (MLE), Modified Almost Unbi-
ased Ridge Logistic Estimator (MAURLE), and Logistic Two-Parameter Estimator (LTPE),
in terms of mean square error (MSE). The superiority of the estimators is examined using a
simulation study and a real-world example. In the simulation study, we varied the degree of
correlation and sample size. The findings revealed that the efficacy of the estimators is sig-
nificantly influenced by these factors. Furthermore, we evaluated the prediction performance
of these estimators using balanced accuracy. The results suggested that the new estimators,
MLTPE1, MLTPE2, and MLTPE3, outperformed the others slightly in terms of balanced
accuracy, with MLTPE2 exhibiting superior performance regarding both scalar mean square
error (SMSE) and balanced accuracy. Finally, we validated the simulation study using the
myopia dataset, which produced satisfactory results.

Key words: Balanced accuracy; Prediction performance; Simulation and Scalar mean square
error.

AMS Subject Classifications: 62J07, 62J12

1. Introduction

The logistic regression model is specified as a Bernoulli distribution since yi is a binary
response variable: yi ∼ Ber(πi)

P (yi) = πyi
i .(1 − πi)1−yi
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The general form of the logistic regression model is given by

yi = πi + ϵi, i = 1, 2, ...n (1)

where,
πi = exp(x′

iβ)
1 + exp(x′

iβ) , (2)

xi is the ith row of X, which is an n × (p + 1) data matrix with p predictor variables and β is
a (p + 1) × 1 vector of coefficients, ϵi are independent with mean zero and variance πi(1 − πi)
of the response yi.

The maximum likelihood estimation technique is a commonly used method to esti-
mate the parameter vector (β), and the Maximum Likelihood Estimator (MLE) of β is given
by:

β̂MLE = C−1X ′ŴZ. (3)

where, C = X ′ŴX ; Z is the column vector with ith element equals logit (π̂i) + yi − π̂i

π̂i(1 − π̂i)
,

and, Ŵ = diag [π̂i(1 − π̂i)].

Since
E(β̂MLE) = β, (4)

β̂MLE is an unbiased estimate of β. The covariance matrix of β̂MLE is

Cov(β̂MLE) = (X ′ŴX)−1 = C−1. (5)

Hence, the mean square error (MSE) of β̂MLE is

MSE[β̂MLE] = Cov[β̂MLE] + B[β̂MLE]B′[β̂MLE]
= C−1. (6)

Therefore, the scalar mean square error (SMSE) of β̂MLE is,

SMSE[β̂MLE] = tr[MSE(β̂MLE)]
= tr[C−1]. (7)

Since C is a positive definite matrix, there exists an orthogonal matrix P such that P ′CP =
Λ = diag(λ1, λ2, ...λp), where λ1 ≥ λ2 ≥ ...λp > 0 are the ordered eigen values of C. Then,

SMSE[β̂MLE] =
p∑

j=1

1
λj

. (8)

The Maximum Likelihood Estimator (MLE) is susceptible to the effects of multi-
collinearity among explanatory variables. This susceptibility results in an inflated variance
of the MLE, thereby rendering the estimates inefficient. To address this issue, numerous
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alternative estimators have been proposed in the literature. In this study, we considered
two such estimators based on the sample information given below to mitigate the impact of
multicollinearity.

The Modified Almost Unbiased Ridge Logistic Estimator (MAURLE) is one of the
alternative estimators introduced by Varathan (2022), and it is defined as

β̂MAURLE = Fkβ̂MLE, (9)

where Fk = [I − k2(C + kI)−2][(C + kI)−1C], k > 0.

Another alternative estimator is the Logistic Two-Parameter Estimator (LTPE) pro-
posed by Huang (2012),which is defined as

β̂LT P E = Lk,dβ̂MLE, (10)

where Lk,d = (C + kI)−1(C + kdI), 0 < d < 1, k > 0.

Note that the two alternative estimators that we discussed above are a function of
β̂MLE, and we can present them in general form as,

β̂GLE = J(i)β̂MLE, (11)

where J(i) is a positive definite matrix.

β̂GLE =


β̂MLE if J(i) = I;
β̂MAURLE if J(i) = Fk;
β̂LT P E if J(i) = Lk,d.

(12)

The asymptotic properties of the general form of estimators are

E[β̂GLE] = E[J(i)β̂MLE] = J(i)β. (13)

and the dispersion matrix;

D[β̂GLE] = Cov[J(i)β̂MLE] = J(i)C
−1J ′

(i). (14)

The bias vector and the Mean square error matrix (MSE) are

B[β̂GLE] = E[J(i)β̂MLE] − β = (J(i) − I)β. (15)

and

MSE[β̂GLE] = D[β̂GLE] + B[β̂GLE]B′[β̂GLE]
= J(i)C

−1J ′
(i) + (J(i) − I)ββ′(J(i) − I)′, (16)

respectively. The scalar mean square error (SMSE) of the estimators can be obtained as,

SMSE[β̂GLE] = tr[MSE(β̂GLE)]. (17)
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The superiority of the above estimators was compared in terms of mean squared error
(MSE) and scalar mean square error (SMSE) in literature (Varathan, 2022; Huang, 2012).
While MSE is a common metric in regression analysis, it is unsuitable for comparing logistic
regression estimators. Logistic regression deals with binary classification problems, where
outcomes are categorical rather than continuous. Predicted values in logistic regression
represent probabilities rather than actual outcomes. Therefore, using MSE for comparison
would be inappropriate as it does not consider the probabilistic nature of the predictions.
Instead, evaluation metrics like balanced accuracy, the area under the receiver operating
characteristic curve (ROC AUC), or log loss (cross-entropy loss) are more appropriate for
assessing logistic regression model performance.

This study aimed to develop new estimators that enhance predictive performance for
logistic regression models in the presence of multicollinearity. Balanced accuracy is employed
as the primary metric for comparing the estimators. Balanced accuracy is an effective metric
for classification problems with imbalanced datasets, where one class may predominate. It
computes the average accuracy across each class, integrating sensitivity and specificity, thus
providing a more comprehensive evaluation of model performance.

The paper is organized as follows: In Section 2, we propose new estimators, their prop-
erties, and the conditions for their superiority over existing estimators. Section 3 presents
the simulation study for the proposed estimators, while Section 4 provides validation of
the simulation study. Section 5 presents concluding remarks. Finally, the references and
appendices are provided at the end of the paper.

2. Proposed estimators and their superiority

2.1. The proposed estimators

Ahmad (2020) developed the Modified New Two Parameter Estimator (MNTPE),
which has shown better performance than the ordinary least squares in the linear regression
model. The MNTPE is defined as:

β̂MNT P E = Mk,dβ̂OLSE, (18)

where Mk,d = (X ′X + I)−1(X ′X + dI)(X ′X + kdI)−1X ′X, 0 < d < 1, k > 0.

Now, we propose a new estimator, named the Modified Logistic Two-Parameter Es-
timator (MLTPE), based on the MNTPE by replacing β̂OLSE with β̂GLE and X ′X with
X ′ŴX in equation (18) as below:

β̂MLT P E = Fk,dβ̂GLE

= Fk,dJ(i)β̂MLE

= L(i)β̂MLE, (19)

where Fk,d = (X ′ŴX + I)−1(X ′ŴX + dI)(X ′ŴX + kdI)−1X ′ŴX and L(i) = Fk,dJ(i).
Since C = X ′ŴX, we have Fk,d = (C + I)−1(C + dI)(C + kdI)−1C, 0 < d < 1, k > 0.
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The expectation, bias, covariance, MSE, and SMSE of MLTPE can be defined as:

E(β̂MLT P E) = L(i)β, (20)

B(β̂MLT P E) = (L(i) − I)β, (21)

Cov(β̂MLT P E) = L(i)C
−1L′

(i), (22)

MSE(β̂MLT P E) = Cov(β̂MLT P E) + B(β̂MLT P E)B(β̂MLT P E)′

= L(i)C
−1L(i)

′ + (L(i) − I)ββ′(L(i) − I)′. (23)

and

SMSE(β̂MLT P E) = tr(MSE(β̂MLT P E))
= tr(Cov(β̂MLT P E)) + B(β̂MLT P E)′B(β̂MLT P E)
= tr(L(i)C

−1L(i)
′) + (L(i) − I)′β′β(L(i) − I). (24)

By adopting β̂MLE, β̂MAURLE and β̂LT P E in place of β̂GLE in equation (19), we propose
three new estimators namely, Modified logistic two parameter estimator 1 (MLTPE 1), Mod-
ified logistic two parameter estimator 2 (MLTPE 2), and Modified logistic two parameter
estimator 3 (MLTPE3), respectively, and defined as,

β̂MLT P E =


β̂MLT P E1 if L(i) = Fk,dI;
β̂MLT P E2 if L(i) = Fk,dFk;
β̂MLT P E3 if L(i) = Fk,dLk,d.

(25)

2.2. Comparison among the estimators

In this section, we compared the performance of the proposed estimator MLTPE with
the existing estimator GLE in terms of the mean square error matrix criterion.

Theorem 2.2.1: When λmax[L(i)C
−1L′

(i)(J(i)C
−1J ′

(i))−1] < 1, the MLTPE is superior to
GLE if and only if δ′

new(D1 + δ′
GδG)−1δnew ≤ 1.

Proof
Consider

MSE(β̂GLE) − MSE(β̂MLT P E)
= J(i)C

−1J ′
(i) + (J(i) − I)ββ′(J(i) − I)′ − (L(i)C

−1L′
(i) + (L(i) − I)ββ′(L(i) − I)′)

= [J(i)C
−1J ′

(i) − L(i)C
−1L′

(i)] + [(J(i) − I)ββ′(J(i) − I)′ − (L(i) − I)ββ′(L(i) − I)′]. (26)

Now consider,

D(β̂GLE) − D(β̂MLT P E) = [J(i)C
−1J ′

(i) − L(i)C
−1L′

(i)]
= D1. (27)
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Note that, Since C−1 is a positive definite matrix, J(i)C
−1J ′

(i) and L(i)C
−1L′

(i) are
positive definite matrices (by Lemma 1 in Appendices A.2). Consequently, by Lemma 2 (in
Appendices A.2), if λmax[L(i)C

−1L′
(i)(J(i)C

−1J ′
(i))−1] < 1 then D1 is a positive definite matrix,

where λmax[L(i)C
−1L′

(i)(J(i)C
−1J ′

(i))−1] is the largest eigenvalue of [L(i)C
−1L′

(i)(J(i)C
−1J ′

(i))−1].
Further by Lemma 3 (in Appendices A.2), MSE(β̂GLE) − MSE(β̂MLT P E) is non negative
definite if δ′

new(D1 + δ′
GδG)−1δnew ≤ 1, where δnew = (L(i) − I)β and δG = (J(i) − I)β.

Hence, the estimator MLTPE is superior to GLE if and only if δ′
new(D1 + δ′

GδG)−1δnew ≤ 1.

Note that the Theorem 2.2.1 outlines the necessary and sufficient conditions for the
superiority of the proposed estimator (MLTPE) over the general existing estimator (GLE).
By substituting J(i) with an appropriate matrix, we can derive the following conditions for
the superiority of MLTPE over the existing estimators MLE, MAURLE, and LTPE with
respect to mean square error (MSE).

• If J(i) = I; MLTPE is superior than MLE if λmax[L(i)C
−1L′

(i)C
−1] <1 and δ′

new[C−1 −
L(i)C

−1L′
(i)]δnew ≤ 1.

• If J(i) = Fk; MLTPE is superior than MAURLE if λmax[L(i)C
−1L′

(i)(FkC−1F ′
k)−1] <1

and δ′
new[(FkC−1F ′

k − L(i)C
−1L′

(i) + β′(Fk − I)′(Fk − I)β]−1δnew ≤ 1.

• If J(i) = Lk,d; MLTPE is superior than LTPE if λmax[L(i)C
−1L′

(i)(Lk,dC−1L′
k,d)−1] <1

and δ′
new[(Lk,dC−1L′

k,d − L(i)C
−1L′

(i) + β′(Lk,d − I)′(Lk,d − I)β]−1δnew ≤ 1.

3. Simulation study

Following McDonald and Galarneau (1975),and Alheety et al. (2021), we generate
the explanatory variables using the following equation.

xi,j =
√

(1 − ρ2)zi,j + ρzi,p+1 ; i = 1, 2, ..., n. j = 1, 2, ..., p. (28)

where zij are pseudo-random numbers from a standard normal distribution, and ρ repre-
sents the correlation between any two explanatory variables. Four explanatory variables are
generated using equation (28), and we choose ρ = (0.80, 0.85, 0.90). Further, we considered
three different sample sizes: 80, 100, and 200. The dependent variable yi is obtained from
the Bernoulli distribution with πi = exp(x′

iβ)
1 + exp(x′

iβ) . The parameter values of β1, β2, ...βp are
chosen so that β′β = 1. In the simulation study, we implemented a 5-fold cross-validation
approach. However, due to the difficulty of achieving balanced accuracy with small sample
sizes, we initiated our study with a sample size of 80. The simulation was repeated 1000
times by generating new pseudo-random numbers, and we calculated the SMSE values of
the estimators using equation (29).

ˆ
SMSE( ˆ )β∗ = 1

1000

1000∑
r=1

(β̂r − β)′(β̂r − β), (29)

where β̂r denotes any estimator considered in the rth simulation.
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The confusion matrix is utilized to determine the balanced accuracy, a widely used
measure for solving classification problems. Table 1 details the components of this matrix.

Table 1: Confusion Matrix

Predicted Outcome

P N

A
ct

ua
l

P True Positive (TP) False Negative (FN)

N False Positive (FP) True Negative (TN)

The evaluation metrics are,

Sensitivity = TP

(TP + FN)

Specificity = TN

(TN + FP )

Balanced accuracy = (Sensitivity + Specificity)
2

The steps for K-fold cross-validation are:

Step 1: Split the data set into K groups.

Step 2: For each individual group i=1,2..., K; take the one group as a test data set and the
remaining (K-1) groups as a training data set.

Step 3: Estimate the respective estimator (β̂k,d) with shrinkage parameter (k, d) using
training data sets and compute its cross-validated balanced accuracy in predicting the
test data set. Use initial values of k and d as 0.01, then increase the values of k and d
by a small increment of 0.1. For k > 0, 0 < d < 1.

Step 4: Calculate the average cross-validated balanced accuracy.

Step 5: Choose the maximum value of the average cross-validated balanced accuracy of the
estimators and corresponding shrinkage parameters.

The SMSE values and cross-validated balanced accuracy values of the estimators
MLE, MAURLE, LTPE, MLTPE1, MLTPE2, and MLTPE3 are obtained for different shrink-
age parameters (k, d). We summarize the results of the simulation study in Table 2 - 4,
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Table 2: The results of the simulation study when n =80

Estimators SMSE Balanced Accuracy
ρ = 0.80 MLE 45.036111 0.517190

MAURLE 0.574975 (k =0.61) 0.528781 (k =0.01)
LTPE 0.704999 (k =1.71, d =0.01) 0.527550 (k =1.41, d =0.01)
MLTPE1 0.629874 (k =2.91, d =0.11) 0.529005(k =4.21, d =0.11)
MLTPE2 0.566116 (k =0.31, d =0.21) 0.529138 (k =0.61, d =0.11)
MLTPE3 0.610834 (k =0.11, d =0.01) 0.528975 (k =1.51, d =0.11)

ρ = 0.85 MLE 58.195287 0.520008
MAURLE 0.542518 (k =0.61) 0.530163 (k =0.01)
LTPE 0.671765 (k =1.61, d =0.01) 0.529779 (k =2.11, d =0.01)
MLTPE1 0.594680 (k =4.91, d =0.11) 0.530442 (k =4.31, d =0.01)
MLTPE2 0.536631 (k =0.31, d =0.21) 0.530542 (k =0.41, d =0.99)
MLTPE3 0.573781(k =0.11, d =0.01) 0.530594 (k =2.11, d =0.21)

ρ = 0.90 MLE 84.328874 0.520109
MAURLE 0.522461 (k =0.61) 0.530471 (k =0.01)
LTPE 0.643522 (k =1.51, d =0.01) 0.530473 (k =2.01, d =0.01)
MLTPE1 0.557923 (k =4.91, d =0.11) 0.530814 (k =1.81, d =0.21)
MLTPE2 0.520367 (k =0.31, d =0.21) 0.530821 (k =1.21, d =0.01)
MLTPE3 0.547428 (k =0.11, d =0.01) 0.530921 (k =1.71, d =0.11)

presenting the minimum SMSE with the corresponding shrinkage value and the maximum
balanced accuracy with their respective shrinkage values for each estimator. These results
are also depicted in Figure 1 - 3 in Appendices A.3.

According to Table 2 - 4, it is observed that the proposed estimators MLTPE1,
MLTPE2, and MLTPE3 demonstrate slightly better prediction performance (with the high-
est balanced accuracy) than the existing estimators MLE, MAURLE, and LTPE. Moreover,
we noticed that the new estimator MLTPE2 exhibits better performance (with the low-
est SMSE and highest balanced accuracy) than MLE, MAURLE, LTPE, MLTPE1, and
MLTPE3 in almost all situations. An increase in the sample size positively impacts the
proposed estimators in terms of SMSE but has a negative effect on balanced accuracy. Fur-
thermore, increasing the degrees of correlation positively affects the proposed estimators in
terms of both SMSE and balanced accuracy.

Figures 1 - 3 show the results of the simulation study regarding SMSE and balanced
accuracy. When comparing the estimators MLE, MAURLE, LTPE, and MLTPE1, we ob-
serve that MAURLE has the smallest SMSE; however, the proposed estimator MLTPE1
exhibits slightly higher balanced accuracy. The second new estimator, MLTPE2, demon-
strates the best performance in terms of both SMSE and balanced accuracy. Considering all
the estimators, their performance in terms of SMSE can be ordered as follows: MLTPE2,
MAURLE, MLTPE3, MLTPE1, and LTPE. In terms of balanced accuracy, MLTPE2 shows
the best performance in most cases, while MLTPE3 and MLTPE1 also demonstrate com-
paratively good performance compared to MAURLE and LTPE.
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Table 3: The results of the simulation study when n =100

Estimators SMSE Balanced Accuracy
ρ = 0.80 MLE 42.868378 0.513073

MAURLE 0.617397 (k =0.61) 0.519054 (k =0.01)
LTPE 0.741937 (k =1.91, d =0.01) 0.518463 (k =2.21, d =0.01)
MLTPE1 0.666742 (k =3.21, d =0.11) 0.519411 (k =2.41, d =0.01)
MLTPE2 0.607717 (k =0.31, d =0.11) 0.519457 (k =2.61, d =0.21)
MLTPE3 0.646961(k =0.21, d =0.01) 0.519447 (k =0.51, d =0.01)

ρ = 0.85 MLE 54.337142 0.513864
MAURLE 0.589061 (k =0.61) 0.520987 (k =0.01)
LTPE 0.712068 (k =1.71, d =0.01) 0.521142 (k =2.31, d =0.01)
MLTPE1 0.635751 (k =2.91, d =0.11) 0.521016(k =0.51, d =0.99)
MLTPE2 0.582717 (k =0.31, d =0.21) 0.521657 (k =0.41, d =0.11)
MLTPE3 0.617451 (k =0.11, d =0.01) 0.521297 (k =2.71, d =0.11)

ρ = 0.90 MLE 79.150907 0.515745
MAURLE 0.556903 (k =0.61) 0.523131 (k =0.01)
LTPE 0.676103 (k =1.61, d =0.01) 0.522414 (k =1.41, d =0.01)
MLTPE1 0.594124 (k =4.91, d =0.01) 0.523567(k =4.81, d =0.11)
MLTPE2 0.554349 (k =0.31, d =0.21) 0.523503 (k =1.51, d =0.01)
MLTPE3 0.579814(k =0.11, d =0.01) 0.523573 (k =0.51, d =0.11)

4. Real data application

Myopia data was used to check the performance of the proposed estimators MLTPE1,
MLTPE2, and MLTPE3 with existing estimators, such as MLE, MAURLE, and LTPE. This
dataset is about a study of myopia taken from Hosmer Jr et al. (2013) and also studied by
Asar et al. (2017). In this data, 618 subjects who were not myopic when they entered the
study were followed up for at least five years, and observations were made on 17 parameters.
However, following Asar et al. (2017),we focused our analysis on four explanatory variables:
spherical equivalent refraction (SPHEQ), axial length (AL), anterior chamber depth (ACD),
and vitreous chamber depth (VCD). These variables are continuous and measured on the
same scale (mm). We limited our analysis to the first 100 observations. The dependent
variable indicates whether a subject has myopia (coded as 1) or not (coded as 0).

The condition number, a measure of multicollinearity, is obtained as 10.4647. This
result provides evidence of moderate multicollinearity among the explanatory variables in
the dataset. We examined the explanatory variables with positive and negative correlations
to one another and discovered that the correlation between the variables AL and VCD is
very strong (0.9322). The correlation matrix of the explanatory variables, SPHEQ, AL,
ACD, and VCD, is presented in Table 6 in Appendices A.1. The corresponding Variance
Inflation Factor (VIF) values for these variables are 1.1322, 24.9815, 3.0186, and 22.0122.
The VIF measures the extent to which the variance of the coefficient estimates is inflated
due to multicollinearity among the predictor variables. As a result, variables SPHEQ and
ACD have 1 < VIF < 5, indicating moderate collinearity, while variables AL and VCD have
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Table 4: The results of the simulation study when n =200

Estimators SMSE Balanced Accuracy
ρ = 0.80 MLE 38.785726 0.507707

MAURLE 0.600115 (k =0.71) 0.512734 (k =0.01)
LTPE 0.727127(k =1.91, d =0.01) 0.511634 (k =3.91, d =0.01)
MLTPE1 0.648386 (k =3.41, d =0.11) 0.512373 (k =3.51, d =0.11)
MLTPE2 0.580982 (k =0.21, d =0.11) 0.513346 (k =0.41, d =0.11)
MLTPE3 0.626576 (k =0.21, d =0.01) 0.512861 (k =1.01, d =0.01)

ρ = 0.85 MLE 50.044391 0.508435
MAURLE 0.565265 (k =0.61) 0.513212 (k =0.01)
LTPE 0.693498 (k =1.81, d =0.01) 0.513712 (k =1.51, d =0.01)
MLTPE1 0.612667 (k =3.01, d =0.11) 0.513775 (k =1.91, d =0.01)
MLTPE2 0.557344 (k =0.31, d =0.21) 0.514450 (k =0.61, d =0.01)
MLTPE3 0.593446 (k =0.21, d =0.01) 0.513737 (k =1.11, d =0.91)

ρ = 0.90 MLE 72.871783 0.510181
MAURLE 0.539267 (k =0.61) 0.514214 (k =0.01)
LTPE 0.661072 (k =1.61, d =0.01) 0.514231 (k =0.41, d =0.01)
MLTPE1 0.579958 (k =4.91, d =0.01) 0.514413 (k =3.71, d =0.11)
MLTPE2 0.535675 (k =0.31, d =0.21) 0.515615 (k =0.41, d =0.01)
MLTPE3 0.561105 (k =0.11, d =0.01) 0.514474 (k =1.11, d =0.11)

VIF values greater than 5, suggesting severe collinearity exists. The results of the real data
application are presented in Table (5).

Table 5: The results of the real data application

Estimators SMSE Balanced Accuracy
MLE 195.6843 0.746096
MAURLE 28.3958 (k =0.11) 0.757534 (k =0.01)
LTPE 25.2972 (k =0.11, d =0.01) 0.757534 (k =0.01, d =0.01)
MLTPE1 25.4710 (k =0.11, d =0.99) 0.751978 (k =0.01, d =0.01)
MLTPE2 25.1819 (k =0.01, d =0.61) 0.763382 (k =0.01, d =0.01)
MLTPE3 25.5134 (k =0.11, d =0.99) 0.751978 (k =0.01, d =0.01)

From Table 5, it is evident that the proposed estimator MLTPE2 outperforms other
estimators in terms of both SMSE and balanced accuracy. Note that similar results were
also observed in the simulation study.

5. Concluding remarks

Based on the findings of this study, the Modified Logistic Two-Parameter Estima-
tors: MLTPE1, MLTPE2, and MLTPE3 demonstrated slightly better performance in terms
of balanced accuracy compared to MLE, MAURLE, and LTPE. Meanwhile, the MLTPE2
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significantly outperformed others in terms of SMSE and prediction accuracy. Additionally,
estimators performing better in terms of SMSE do not necessarily provide superior predic-
tion results. Therefore, when comparing the performance of logistic regression, metrics that
focus on classification accuracy are more appropriate.
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A. Appendices

A.1. Correlation matrix
Table 6: The correlation matrix of the explanatory variables of real data

Variables SPHEQ AL ACD VCD
SPHEQ 1.0000 -0.2865 -0.2143 -0.2643
AL -0.2865 1.0000 0.4766 0.9322
ACD -0.2143 0.4766 1.0000 0.2007
VCD -0.2643 0.9322 0.2007 1.0000

A.2. Lemmas

Lemma 1: (Rao and Toutenburg, 1995) Let A be positive definite and B be a regular
matrix, then B′AB > 0.

Lemma 2: (Rao et al., 2008) Let the two n × n matrices M > 0, N ≥ 0, then M > N if
and only if λmax(NM−1) < 1.

Lemma 3: (Trenkler and Toutenburg, 1990) Let β̂j = Ajy, j = 1, 2 be two competing
homogenous linear estimators of β. Suppose that D = Cov(β̂1) − Cov(β̂2) > 0; where
Cov(β̂j), j = 1, 2 denotes the covaraince matrix of β̂j. Then ∆(β̂1, β̂2) = MSEM(β̂1) −
MSEM(β̂2) ≥ 0 if and only if d′

2(D + d′
1d1)d2 ≤ 1, where MSEM(β̂j), dj; j = 1, 2 denote

the Mean Square Error Matrix and bias vector of β̂j, respectively.

A.3. Figures
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Figure 1: The result of the simulation study when n = 80
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Figure 2: The result of the simulation study when n =100
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Figure 3: The result of the simulation study when n =200
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