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Abstract
There are several discrete distributions have been developed in statistical literature.

Even though, it is inadequate to analyse the real data produced from different fields through
the various discrete distributions available in the existing literature. According to this mo-
tives, we have proposed a new family of discrete models called discrete intervened Poisson
compounded (DIPc) family. A key feature of the proposed family is its hazrad rate function
can take variety of shapes for distinct values of the parameters like decreasing, constant,
bathtub shaped. Furthermore, several distributional characteristics are extensively studied
for the particular distribuiton of DIPc family. Certain characterizations of the new dis-
tribution are obtained. An integer valued autoregressive process with the distribution as
marginal is introduced. The unknown parameters of the distribution are estimated using
different methods of estimation. Finally, we have explained the usefullness of the proposed
family by using a real data set.

Key words: Characterizations; Exponential Intervened Poisson (EIP) distribution; Discrete
Intervened Poisson (DEIP) distribution; INAR(1) process; Stress- strength parameter.
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1. Introduction

The intervened Poisson distribution (IPD) is introduced by Shanmugam (1985) which
provides stochastic models to study the effect of such actions as they are closer to real life sit-
uations. The IPD is a modified version of zero truncated Poisson (ZTP) distribution, which
is applicable in reliability analysis, queueing problems, epidemiological problems where ZTP
fails. Jayakumar and Sankaran (2019) introduce a new family of distributions generated us-
ing IPD and this distributions helps to develop a rich class of families which contain Marshall
and Olkin (1997) extended families of distribution. The intervened Poisson compounded (IP)
family of continuous distributions is one among them. The cumulative distribution function
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(CDF) of IP family of distributions is given by

G(x; λ, ρ; ϕ) = 1 − [e
λ(1+ρ)F̄ (x;ϕ) − eλρF̄ (x;ϕ)

eλρ(eλ − 1) ] ; x ∈ R (1)

where F̄ (x; ϕ) is the CDF of base line continuous distribution and ϕ is the vector of the given
model parameters.

Here we establish the discretization of continuous distribution. Discretization of a
continuous lifetime model is an interesting and intuitively appealing approach to derive a
lifetime model corresponding to the continuous one. Meanwhile, it is difficult or inconve-
nient to get samples from a continuous distribution in real life situations. In modelling, the
observed values are actually discrete because they are measured to only a finite number of
decimal places and cannot really constitute all points in a continuum. For example, in case
of survival analysis, the number of days of survival for lung cancer patients since therapy are
usually recorded in discrete values. In the recent, special role of discrete distributions are
getting recognition in the field of reliability. In this way, one of the active areas of research
is to model discrete data by developing discretized distributions.
Chakraborty (2015) surveyed different methods for generating discrete analogues of contin-
uous probability distributions. One of the methods is described as follows:
Let X be a continuous random variable, then the discerte analogue Y of X can be derived
by using the survival function as follows, S(.) is the survival function of the random variable
X, then

P (Y = y) = P (X ≥ y) − P (X ≥ y + 1) = S(y) − S(y + 1); y = 0, 1, 2, 3, .... (2)

where Y = ⌊X⌋ largest integer less than or equal to X. The first and easiest in this approach
is the geometric distribution with pmf

p(x) = θx − θx+1; x = 0, 1, 2, ...

which is derived by discretizing exponential distribution with survival function S(x) =
e−λx; λ, x > 0 and θ = e−λ, (0 < θ < 1).
Following this approach, discretization of some known continuous distributions for use as life-
time distribution was studied by different researchers. Nakagawa and Osaki (1975) proposed
discrete Weibull distribution with pmf

P (Y = v) = qvβ − q(v+1)β

, v = 0, 1, 2, ...; β > 0, 0 < q < 1. (3)

Stein and Dattero (1984) presented another discretization of Weibull distribution. Roy
(2003) proposed discrete normal distribution and also studied discrete Rayleigh distribution
(Roy (2004)). Krishna and Pundir (2009) studied discrete Burr distribution, and obtained
the discrete Pareto distribution as its particular case.

The discretization of a continuous distribution using this method retains the same
functional form of the survival function. As a result, many reliability characteristics remain
unchanged. As such there is enough motivation to use this technique of generating discretized
version of continuous distribution with this approach to develop new discrete lifetime mod-
els corresponding to the existing continuous one. In this article, we propose a family of
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discrete univariate distributions using survival discretization method. Thus the objective of
proposing Discrete Intervned Poisoon compounded (DIPc) family are to generate models for
modelling probability distribution of count data and produce consistently superior fits than
other developed discrete distributions in the existing literature.

The remaining parts of the article are as follows: Section 2 introduces the DIPc family
and some statistical properties are derived. In Section 3, the special model of the proposed
family is extensively studied. The expression for moments, stress - strength reliability are
derived. Also, using the proposed distribution, an integer valued autoregressive process with
the distribution as marginal is introduced. In Section 4, three characterizations of the new
distribution are obtained and in Section 5, an extensive estimation and simulation study is
conducted to investigate the behaviour of different estimation methods. The flexibility of the
proposed model is illustrated by using a real data set in Section 6. Finally, some important
remarks about the presented study are discussed in Section 7.

2. Genesis of the family

The random variable Y is said to follow Discrete Intervened Poisson compounded
(DIPc) family, its probability mass function (pmf) is given by

PY (y; λ, ρ, ϕ) =
[

eλ(1+ρ)F̄ (y;ϕ) − eλρF̄ (y;ϕ)

eλρ(eλ − 1)

]
−
[

eλ(1+ρ)F̄ (y+1;ϕ) − eλρF̄ (y+1;ϕ)

eλρ(eλ − 1)

]
. (4)

The corresponding CDF of DIPc is obtained as
GY (y; λ, ρ, ϕ) = 1 − GX(y; λ, ρ, ϕ) + PY (y; λ, ρ, ϕ)

= 1 −
[

eλ(1+ρ)F̄ (y;ϕ) − eλρF̄ (y;ϕ)

eλρ(eλ − 1)

]
+
[

eλ(1+ρ)F̄ (y;ϕ) − eλρF̄ (y;ϕ)

eλρ(eλ − 1)

]
−
[

eλ(1+ρ)F̄ (y+1;ϕ) − eλρF̄ (y+1;ϕ)

eλρ(eλ − 1)

]

= 1 −
[

eλ(1+ρ)F̄ (y+1;ϕ) − eλρF̄ (y+1;ϕ)

eλρ(eλ − 1)

]
; y ∈ N

(5)
where N = {0, 1, 2, ...}, (λ, ρ) ∈ (0, ∞) and GX(y; λ, ρ, ϕ) =

[
eλ(1+ρ)F̄ (y;ϕ)−eλρF̄ (y;ϕ)

eλρ(eλ−1)

]
is the CDF

of X.
The survival function of DIPc family is given by

SY (y; λ, ρ, ϕ) = eλ(1+ρ)F̄ (y+1;ϕ) − eλρF̄ (y+1;ϕ)

eλρ(eλ − 1) ; y ∈ N. (6)

The hazard rate and reverse hazard rate are

hY (y; λ, ρ, ϕ) = 1 −
[

eλρ[F̄ (y+1;ϕ)−F̄ (y,ϕ)](eλF̄ (y;ϕ) − 1)
eλF̄ (y+1;ϕ) − 1

]
(7)

and

rY (y; λ, ρ, ϕ) =

[
eλ(1+ρ)F̄ (y;ϕ) − eλρF̄ (y;ϕ)

]
−
[
eλ(1+ρ)F̄ (y+1;ϕ) − eλρF̄ (y+1;ϕ)

]
[eλρ(eλ − 1)] −

[
eλ(1+ρ)F̄ (y+1;ϕ) − eλρF̄ (y+1;ϕ)

] (8)

respectively.



104 K. JAYAKUMAR AND JIJI JOSE [Vol. 22, No. 1

2.1. Moments

Let the random variable Y ∼ DIPc(λ, ρ, ϕ), then the rth moment is given by

µ′
r =

∞∑
y=0

((y + 1)r − yr)
[

eλ(1+ρ)F̄ (y+1;ϕ) − eλρF̄ (y+1;ϕ)

eλρ(eλ − 1)

]
; y ∈ N. (9)

Using the Equation 9, the mean and variance of DIPc can be obtained as follows, respectively,

µ′
1 =

∞∑
y=0

[
eλ(1+ρ)F̄ (y+1;ϕ) − eλρF̄ (y+1;ϕ)

eλρ(eλ − 1)

]
(10)

and

variance =
∞∑

y=0
(2y + 1)

[
eλ(1+ρ)F̄ (y+1;ϕ) − eλρF̄ (y+1;ϕ)

eλρ(eλ − 1)

]
− (µ′

1)2. (11)

The index of dispersion (DI), (variance/ mean), determines whether the given distribution
is suited for under, over or equi-dispersed data sets. If DI > 1, then distribution is overdis-
persed whereas DI < 1, then distribution is underdispersed. If DI = 1, then distribution is
equidispersed.
The moment generating function of the distribution is given by

MY (t) =
t∑

y=0

∞∑
r=0

(yt)r

r!

[
eλ(1+ρ)F̄ (y;ϕ) − eλρF̄ (y;ϕ)

eλρ(eλ − 1)

]
−
[

eλ(1+ρ)F̄ (y+1;ϕ) − eλρF̄ (y+1;ϕ)

eλρ(eλ − 1)

]
. (12)

From the Equation (12), it can be obtained first four raw moments about the origin when
t = 0. Also skewness and kurtosis based on moments can be computed by using the moment
generating function.

3. Special model

In this section, we study a particular distribution of DIPc family to establish its
viability. The main objective of establishing new model is to study the properties of the
particular model of the presented family, to illustrate the flexibility of the developed family
through real data sets.

3.1. Discrete Exponential Intervened Poisson (DEIP) distribution

Using the CDF of the exponential distribution, the pmf of DEIP can be formulated
as

P (Y = y) =

[
eλ(1+ρ)e−θy − eλρe−θy

]
−
[
eλ(1+ρ)e−θ(y+1) − eλρe−θ(y+1)

]
eλρ(eλ − 1) (13)

where y = 0, 1, 2, ... , λ > 0, ρ ≥ 0, θ > 0.

Theorem 1: The pmf of DEIP distribution is unimodal.
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Proof : The pmf of DEIP is log concave, where P (y + 1; λ, ρ, θ)/P (y; λ, ρ, θ) is a
decreasing function in y for all model parameters. As a direct consequence of log concavity,
the DEIP is unimodal.

Figures 1 and 2 show the pmf and hazard rate plots of the DEIP model respectively.
The pmf is unimodal and can be used to analyze positively skewed data set. Furthermore,
the hazard rate can be either decreasing, constant, decreasing- constant and bathtubshaped.
Therefore, the parameters of the DEIP model can be fixed to fit most data sets.

3.2. Structural Properties

The CDF of DEIP is given by
F (y; λ, ρ, θ) =P (Y ≤ y)

=1 −

eλ(1+ρ)e−θ(y+1) − eλρe−θ(y+1)

eλρ(eλ − 1)

 .
(14)

The survival function of DEIP is given by

S(y; λ, ρ, θ) =
eλ(1+ρ)e−θ(y+1) − eλρe−θ(y+1)

eλρ(eλ − 1)

 . (15)

The hazard rate of DEIP distribution is

h(y) = P (Y = y|Y ≥ y) =P (Y = y)
P (Y ≥ y)

=

[
eλ(1+ρ)e−θy −eλρe−θy

]
−
[

eλ(1+ρ)e−θ(y+1) −eλρe−θ(y+1)
]

eλρ(eλ−1)[
eλ(1+ρ)e−θ(y+1) −eλρe−θ(y+1)

eλρ(eλ−1)

]

=

[
eλ(1+ρ)e−θy − eλρe−θy

]
−
[
eλ(1+ρ)e−θ(y+1) − eλρe−θ(y+1)

]
eλ(1+ρ)e−θ(y+1) − eλρe−θ(y+1)

=
[

eλ(1+ρ)e−θy − eλρe−θy

eλ(1+ρ)e−θ(y+1) − eλρe−θ(y+1)

]
− 1.

(16)

The reverse hazard rate is
r(y) =P (Y = y)/P (Y ≤ y)

=

[
eλ(1+ρ)e−θy − eλρe−θy

]
−
[
eλ(1+ρ)e−θ(y+1) − eλρe−θ(y+1)

]
[eλρ(eλ − 1)] −

[
eλ(1+ρ)e−θ(y+1) − eλρe−θ(y+1)

] (17)

and the second rate of failure of DEIP distribution is given by,

h∗∗(y) =log

[
S(y)

S(y + 1)

]

=log

eλ(1+ρ)e−θ(y+1) − eλρe−θ(y+1)

eλ(1+ρ)e−θ(y+2) − eλρe−θ(y+2)

 .

(18)
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Figure 1: The pmf plots of DEIP(λ, ρ, θ) for different values of λ, ρ and θ

3.3. Recurrence relation for probabilities

The recurrence relation for generating probabilities of DEIP (λ, ρ, θ) is given by

p(y + 1; λ, ρ, θ)
p(y; λ, ρ, θ) =

[
eλ(1+ρ)e−θ(y+1) − eλρe−θ(y+1)

]
−
[
eλ(1+ρ)e−θ(y+2) − eλρe−θ(y+2)

]
[
eλ(1+ρ)e−θy − eλρe−θy

]
−
[
eλ(1+ρ)e−θ(y+1) − eλρe−θ(y+1)

] (19)

3.4. Moments

The rth moment of DEIP distribution is given by

E(Y r) =
∞∑

y=0
yrP (Y = y)

=
∞∑

y=0
[(y + 1)r − yr] S(y).

(20)
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Figure 2: Hazard rate plots of DEIP(λ, ρ, θ) for different values of λ, ρ and θ

E(Y ) =
∞∑

y=0
S(y)

=
∞∑

y=0

eλ(1+ρ)e−θ(y+1) − eλρe−θ(y+1)

eλρ(eλ − 1)

 .

(21)
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Now

E(Y 2) =
∞∑

y=0
(2y + 1)S(y)

=
∞∑

y=0
(2y + 1)

eλ(1+ρ)e−θ(y+1) − eλρe−θ(y+1)

eλρ(eλ − 1)

 .

(22)

V (Y ) =E(Y 2) − E(Y )

=
∞∑

y=0
(2y + 1)S(y) −

∞∑
y=0

S(y)

=
∞∑

y=0
(2y + 1)

eλ(1+ρ)e−θ(y+1) − eλρe−θ(y+1)

eλρ(eλ − 1)

−

 ∞∑
y=0

eλ(1+ρ)e−θ(y+1) − eλρe−θ(y+1)

eλρ(eλ − 1)

2

.

(23)

Table 1 shows mean and variance (given in parenthesis) of DEIP distribution using given
values of λ, ρ and θ. For fixed θ, as ρ increases mean and variance decreases. Also, as λ
increases, mean and variance decreases. From the Table 1, it can also seen that mean is
always less than variance for different set of the parameters λ, ρ and θ. Therefore, DEIP is
suited better for modelling over-dispersed data.

3.5. Stress-Strength analysis

The stress - strength analysis is used in mechanical component analysis and the
stress - strength parameter R measures component reliabilty. Let the random variable Y be
strength of a component which is subjected to a random stress Z. For a detailed review of
stress- strength models, one may refer Choudhary et al. (2021). The stress-strength model
defined in discrete case as,

P (Y > Z) =
∞∑

y=0
pY (y)FZ(y). (24)

Let Y and Z be independent stress and strength random variables from Y ∼ DEIP(λ1, ρ1, θ1)
and Z ∼ DEIP(λ2, ρ2, θ2) respectively. Also pY and FY denote the pmf and CDF of the dis-
tribution respectively.

Then the stress - strength parameter for the model DEIP is given by,

R = P (Y > Z) =
∞∑

y=0

eλ1ρ1e−θ1y
[
eλ1e−θy − 1

]
− eλ1ρ1e−θ1(y+1)

[
eλ1e−θ1(y+1) − 1

]
eλ1ρ1(eλ1 − 1)


×

1 −

eλ2(1+ρ2)e−θ2(y+1) − eλ2ρ2e−θ2(y+1)

eλ2ρ2(eλ2 − 1)


= δ(λ1, ρ1, θ1, λ2, ρ2, θ2).

(25)

Obviously, the solution of the summation in Equation (25) cannot be obtained explicitly.
That is, there is no closed form expression of δ(.), therefore, we resort to numerical method
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Table 1: Mean and Variance of DEIP for different values of λ, ρ and θ

θ = 0.5
λ |ρ 0.25 0.5 1.0 2.0 3.0
0.50 1.2141 1.1259 0.9703 0.7261 0.5487

(3.1536) (2.9273) (2.5116) (1.8282) (1.3212)
0.75 1.0734 0.9604 0.7721 0.5074 0.3403

(2.7956) (2.4901) (1.9633) (1.2059) (0.7405)
1.00 0.9468 0.8182 0.6157 0.3585 0.2156

(2.4604) (2.1002) (1.5200) (0.7918) (0.4192)
2.00 0.5620 0.4276 0.2540 0.0972 0.04007

(1.3905) (1.0006) (0.5234) (0.1564) (0.0535)
θ = 1.0

λ |ρ 0.25 0.5 1.0 2.0 3.0
0.50 0.4388 0.4008 0.3348 0.2342 0.1645

(0.7198) (0.6619) (0.5573) (0.3901) (0.2702)
0.75 0.3787 0.3309 0.25309 0.1489 0.0884

(0.6282) (0.5517) (0.4225) (0.2436) (0.1391)
1.00 0.3255 0.2722 0.1908 0.0948 0.0477

(0.5440) (0.4556) (0.3166) (0.1503) (0.0712)
2.00 0.1714 0.1206 0.0604 0.0156 0.0041

(0.2860) (0.1969) (0.0929) (0.0211) (0.0051)
θ = 3.0

λ |ρ 0.25 0.5 1.0 2.0 3.0
0.50 0.0363 0.0322 0.0253 0.0157 0.0097

(0.0387) (0.0344) (0.0273) (0.0170) (0.0106)
0.75 0.0299 0.0250 0.0175 0.0085 0.0042

(0.0321) (0.0269) (0.0189) (0.0093) (0.0045)
1.00 0.0246 0.0193 0.0120 0.0046 0.0017

(0.0264) (0.0209) (0.0131) (0.0050) (0.0019)
2.00 0.0106 0.0066 0.0025 0.0003 0.0005

(0.0116) (0.0072) (0.0027) (0.0004) (0.0006)

to calculate the system reliability.

To find the maximum likelihood (ML) estimator of the system reliability, we consider
Yi, i = (1, 2, ...n) and Zj, j = (1, 2, ..., m) two independent samples from DEIP(λ1, ρ1, θ1) and
DEIP(λ2, ρ2, θ2) respectively. Then the likelihood function is given by,

L =
n∏

i=1
P (Y = yi)

m∏
j=1

P (Y = zj)

=e−nλ1ρ1(eλ − 1)−n
n∏

i=1
[L1 − L2] × e−mλ2ρ2(eλ2 − 1)−m

m∏
j=1

[L3 − L4]
(26)
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where,
L1 = eλ1(1+ρ1)e−θ1yi − eλ1ρ1e−θyi , L2 = eλ1(1+ρ1)e−θ(yi+1) − eλ1ρ1e−θ1(yi+1)

L3 = eλ2(1+ρ2)e−θ2zj − eλ2ρ2e−θzj and L4 = eλ2(1+ρ2)e−θ2(zj +1)
− eλ2ρ2e−θ2(zj +1) . In order to obtain

the ML estimators of λ1, ρ1, θ1, λ2, ρ2 and θ2, we first derive the log-likelihood (LogL) function
by taking the logarithm of Equation (26). Then, we take the derivatives of the logL function
with respect to the parameters of interest and obtain the likelihood equations. The solutions
of these equations cannot be obtained in closed form, and the estimates of the unknown
parameters are found by using numerical methods with the help of R programming. Then
by using the invariance property of ML estimators, the ML estimate of system reliability is
obtained as

R̂ = δ(λ̂1, ρ̂1, θ̂1, λ̂2, ρ̂2, θ̂2).

Some numerical results of R are reported in Table 2 using DEIP distribution for the param-
eters λ1 = λ2 = ρ1 = ρ2 = 0.5. It is clear that R decreases(increases) when θ1 increases (θ2
increases).

Table 2: Some numerical results of R for different values of θ1 and θ2

.

θ1—θ2 0.1 0.5 0.9 1.0
0.1 0.5475 0.6027 0.6093 0.6100
0.5 0.3105 0.5995 0.7066 0.7229
0.9 0.2705 0.5482 0.6707 0.6906
1.0 0.2653 0.5404 0.6651 0.6854

3.6. Infinite divisibility

The famous structural property of infinite divisibility of the distribution is an in-
teresting area to the researchers. Such a characteristic has a close relation to the Central
Limit Theorem and waiting time distributions. According to Steutel and van Harn (2003),
if px, x ∈ N0 is infinitely divisible, then px ≤ e−1 for all x ∈ N. Also from Theoreom 3.2
of Steutel and van Harn (2003), if for atleast one case for which px is greater than 1/e,
then pmf cannot be compound Poisson and hence it cannot be infinitely divisible. In DEIP
distribution, λ = 3, ρ = 0.6 and θ = 0.1, then p0 = 0.3776 > e−1 = 0.367. Therefore we can
conclude that DEIP distribution is not infinitely divisible. The classes of self-decomposable
and stable distributions are subclasses of infinitely divisible distributions, in their discrete
concepts. So in this case, DEIP distribution can be neither self-decomposable nor stable in
general.

3.7. Application in first order integer valued autoregressive (INAR(1)) process

There has been a growing interest in discrete-valued time series models and several
models for stationary processes with discrete marginal distributions have been proposed in
the literature. A simple model for a stationary sequence of integer-valued random variables
with lag-one dependence is given and is referred to as the integer-valued autoregressive
of order one (INAR(1)) process. It is widely used to model the time series of counts in
different applied sciences such as actuarial, finance and medical sciences. The INAR(1)
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process differs from the first-order autoregressive, shortly AR(1), process by applying the
binomial thinning operator. The first INAR(1) process was introduced by McKenzie (1985)
based on the Poisson innovations and is called as INAR(1)P.

Yt = α o Yt−1 + ϵt, t ∈ Z (27)
where α ∈ (0, 1) and ϵt is an innovation process with mean E(ϵt) = µϵ and variance V ar(ϵt) =
σ2

ϵt
.

According to Steutel and van Harn (1979), the binomial thinning operator ”o” is defined as

α o Yt =
Yt∑

j=i

Zj (28)

where Zj is the Bernoulli random variable with P (Zj = 1) = p = 1 − P (Zj = 0). The
one-step transition probability of INAR(1) process is

P (Yt = k|Yt−1 = l) =
min(k,l)∑

i=1
k,l≥0

P (Bp
l = i)P (ϵt = k − i) (29)

where Bp
n ∼ Binomial(n, p) and p ∈ (0, 1).

Following the results of McKenzie (1985) and Al-Osh and Alzaid (1987), we propose an
INAR(1) process with DEIP innovations by assuming that the {ϵt}t∈Z innovations follow
DEIP distribution, given in Equation(13). Thus, one-step transition probability of INAR(1)
DEIP process is given by

P (Yt = k|Yt−1 = l) =
min(k,l)∑

i=1

(
l

i

)
αi(1 − α)l−i×[

eλ(1+ρ)e−θ(k−i) − eλρe−θ(k−i)
]

−
[
eλ(1+ρ)e−θ(k−i+1) − eλρe−θ(k−i+1)

]
eλρ(eλ − 1) .

(30)

The mean and variance of the Yt process are respectively given by,

E(Yt) = µϵ

1 − α
(31)

V (Yt) = αµϵ + σ2
ϵ

1 − α2 . (32)

The mean and variance of the INAR(1)DEIP process can be computed by replacing µϵ and
σϵ in Equation(31) and Equation(32) with Equation (21) and Equation(23) respectively. The
conditional expectation and variance of INAR(1) DEIP process are given, respectively, as
(see Weiß (2018) and Al-Osh and Alzaid (1988))

E(Yt|Yt−1) = pYt−1 + µϵ (33)

and
V (Yt|Yt−1) = p(1 − p)Yt−1 + σ2

ϵ (34)
where µϵ and σ2

ϵ are given in Equation(21) and Equation(23).



112 K. JAYAKUMAR AND JIJI JOSE [Vol. 22, No. 1

4. Characterizations

Characterizations of distributions is an important research area which has attracted
the attention of many researchers. The problem of characterizing a distribution is an impor-
tant problem, where an investigator is vitally interested to know if their model follows the
right distribution. Thus, various characterization results have been reported in the litera-
ture. These characterizations have been established in different directions. In this section,
we obtain three characterizations of DEIP distribution based on: (i) the hazard rate function
and (ii) the reverse hazard rate function and (iii) conditional expectation of certain function
of the random variable.

4.1. Characterization based on hazard rate function

Proposition 2: Let Y : Ω → N be a random variable. The pmf of Y is in Equation(13) if
and only if its hazard rate function satisfies the difference equation

h(k + 1) − h(k) =
eλ(1+ρ)e−θ(k+1) − eλρe−θ(k+1)

eλ(1+ρ)e−θ(k+2) − eλρe−θ(k+2)

−
[

eλ(1+ρ)e−θk − eλρe−θk

eλ(1+ρ)e−θ(k+1) − eλρe−θ(k+1)

]
, (35)

k ϵ N, with the boundary condition h(0) = eλρ(e−θ−1)(eλ−1)
eλe−θ −1

− 1.

Proof : If Y has pmf in Equation(13), then clearly Equation(35) holds. Now, if
Equation(35) holds, then for every y ϵ N we have

y−1∑
k=1

h(k + 1) − h(k) =

y−1∑
k=1

[
eλ(1+ρ)e−θ(k+1)

− eλρe−θ(k+1)

eλ(1+ρ)e−θ(k+2) − eλρe−θ(k+2)

]
−

[
eλ(1+ρ)e−θk

− eλρe−θk

eλ(1+ρ)e−θ(k+1) − eλρe−θ(k+1)

]
.

h(y) − h(0) =
[

eλ(1+ρ)e−θy −eλρe−θy

eλ(1+ρ)e−θ(y+1) −eλρe−θ(y+1)

]
−
[

eλρ(e−θ−1)(eλ−1)
eλe−θ −1

]
.

In view of the fact that h(0) = eλρ(e−θ−1)(eλ−1)
eλe−θ −1

− 1, from the last equation we have

h(y) =
[

eλ(1+ρ)e−θy −eλρe−θy

eλ(1+ρ)e−θ(y+1) −eλρe−θ(y+1) − 1
]

which in view of Equation(16), implies Y has pmf in Equation(13).

4.2. Characterization based on reverse hazard rate function

Proposition 3: Let Y : Ω → N be a random variable. The pmf of Y is in Equation(13) if
and only if its reverse hazard rate function satisfies the difference equation

r(k + 1) − r(k) =

[
eλ(1+ρ)e−θ(k+1) − eλρe−θ(k+1)

]
−
[
eλ(1+ρ)e−θ(k+2) − eλρe−θ(k+2)

]
[eλρ(eλ − 1)] −

[
eλ(1+ρ)e−θ(k+2) − eλρe−θ(k+2)

]
−

[
eλ(1+ρ)e−θk − eλρe−θk

]
−
[
eλ(1+ρ)e−θ(k+1) − eλρe−θ(k+1)

]
[eλρ(eλ − 1)] −

[
eλ(1+ρ)e−θ(k+1) − eλρe−θ(k+1)

]
(36)
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with the boundary condition r(0) = 1.

Proof : If Y has pmf in Equation(13), then clearly Equation(36) holds. Now, if
Equation(36) holds, then for every y ϵ N we have

y−1∑
k=1

r(k + 1) − r(k) =

y−1∑
k=1

[
eλ(1+ρ)e−θ(k+1)

− eλρe−θ(k+1)
]

−
[

eλ(1+ρ)e−θ(k+2)
− eλρe−θ(k+2)

]
[

eλρ(eλ − 1)
]

−
[

eλ(1+ρ)e−θ(k+2) − eλρe−θ(k+2)
]

−

[
eλ(1+ρ)e−θk

− eλρe−θk
]

−
[

eλ(1+ρ)e−θ(k+1)
− eλρe−θ(k+1)

]
[

eλρ(eλ − 1)
]

−
[

eλ(1+ρ)e−θ(k+1) − eλρe−θ(k+1)
] .

(37)

Or,

r(y) − r(0) =

[
eλ(1+ρ)e−θy −eλρe−θy

]
−
[

eλ(1+ρ)e−θ(y+1) −eλρe−θ(y+1)
]

[eλρ(eλ−1)]−
[

eλ(1+ρ)e−θ(y+1) −eλρe−θ(y+1)
] − 1.

In view of the fact that r(0) = 1, from the last equation we have

r(y) =

[
eλ(1+ρ)e−θy −eλρe−θy

]
−
[

eλ(1+ρ)e−θ(y+1) −eλρe−θ(y+1)
]

[eλρ(eλ−1)]−
[

eλ(1+ρ)e−θ(y+1) −eλρe−θ(y+1)
]

which in view of Equation(17), implies Y has pmf in Equation(13).

4.3. Characterization in terms of the conditional expectation of certain function
of the random variable

Proposition 4: Let Y : Ω → N be a random variable. The pmf of Y is in Equation(13) if
and only if

E


[
eλ(1+ρ)e−θY − eλρe−θY

]
+
[
eλ(1+ρ)e−θ(Y +1) − eλρe−θ(Y +1)

]
[eλρ(eλ − 1)] |Y > k

 =

eλ(1+ρ)e−θ(k+1) − eλρe−θ(k+1)

eλρ(eλ − 1) .

(38)

Proof : If Y has pmf Equation(13), then LHS of Eqution(38) will be
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(1 − F (k))−1
∞∑

y=k+1

[
eλ(1+ρ)e−θY − eλρe−θY

]
+
[
eλ(1+ρ)e−θ(Y +1) − eλρe−θ(Y +1)

]
[eλρ(eλ − 1)] ×

[
eλ(1+ρ)e−θY − eλρe−θY

]
−
[
eλ(1+ρ)e−θ(Y +1) − eλρe−θ(Y +1)

]
[eλρ(eλ − 1)]

= (1 − F (k))−1
∞∑

y=k+1

(
eλ(1+ρ)e−θy − eλρe−θy

eλρ(eλ − 1)

)2

−

eλ(1+ρ)e−θ(y+1) − eλρe−θ(y+1)

eλρ(eλ − 1)

2

=
(

eλρ(eλ − 1)
eλ(1+ρ)e−θ(k+1) − eλρe−θ(k+1)

)eλ(1+ρ)e−θ(k+1) − eλρe−θ(k+1)

eλρ(eλ − 1)

2

= eλ(1+ρ)e−θ(k+1) − eλρe−θ(k+1)

eλρ(eλ − 1) .

(39)

Conversely, if Equation (38) holds, then

∞∑
y=k+1

[
eλ(1+ρ)e−θy − eλρe−θy

]
+
[
eλ(1+ρ)e−θ(y+1) − eλρe−θ(y+1)

]
[eλρ(eλ − 1)] f(y)

=
∞∑

y=k+1

[
eλ(1+ρ)e−θy − eλρe−θy

]
+
[
eλ(1+ρ)e−θ(y+1) − eλρe−θ(y+1)

]
[eλρ(eλ − 1)] ×

[
eλ(1+ρ)e−θY − eλρe−θY

]
−
[
eλ(1+ρ)e−θ(Y +1) − eλρe−θ(Y +1)

]
[eλρ(eλ − 1)]

=
∞∑

y=k+1

(
eλ(1+ρ)e−θy − eλρe−θy

eλρ(eλ − 1)

)2

−

eλ(1+ρ)e−θ(y+1) − eλρe−θ(y+1)

eλρ(eλ − 1)

2

=
eλ(1+ρ)e−θ(k+1) − eλρe−θ(k+1)

eλρ(eλ − 1)

2

= (1 − F (k))
eλ(1+ρ)e−θ(k+1) − eλρe−θ(k+1)

eλρ(eλ − 1)


= (1 − F (k + 1) + f(k + 1))

eλ(1+ρ)e−θ(k+1) − eλρe−θ(k+1)

eλρ(eλ − 1)

 .

(40)

From Equation (39), we also have,

∞∑
y=k+2

[
eλ(1+ρ)e−θy − eλρe−θy

]
+
[
eλ(1+ρ)e−θ(y+1) − eλρe−θ(y+1)

]
[eλρ(eλ − 1)] f(y)

= (1 − F (k + 1))
eλ(1+ρ)e−θ(k+2) − eλρe−θ(k+2)

eλρ(eλ − 1)

 .

(41)

Now, subtracting Equation (41) from Equation (40), we arrive at
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(
eλ(1+ρ)e−θ(k+2) −eλρe−θ(k+2)

eλρ(eλ−1)

)
f(k + 1) =

(1 − F (k + 1))
(eλ(1+ρ)e−θ(k+1) −eλρe−θ(k+1)

)
−
(

eλ(1+ρ)e−θ(k+2) −eλρe−θ(k+2)
)

eλρ(eλ−1)

 .

h(y) = f(k+1)
1−F (k+1) =

(eλ(1+ρ)e−θ(k+1) −eλρe−θ(k+1)
)

−
(

eλ(1+ρ)e−θ(k+2) −eλρe−θ(k+2)
)

eλ(1+ρ)e−θ(k+2) −eλρe−θ(k+2)


which, in view of Equation (16), implies that Y has pmf in Equation (13).

5. Estimation and simulation

In this section, some estimation methods are discussed. In particular, we considered
the following estimation methods: Maximum likelihood (ML) estimation, ordinary least
square (OLS) estimation, weighted least square (WLS) estimation and Cramer-von Mises
(CVM) estimation.

5.1. Maximum likelihood estimation

We apply method of ML estimation for estimating the parameter vector β = (λ, ρ, θ)T

of DEIP distribution. Let (y1, y2, ..., yn) be a random sample of size n, drawn from DEIP
(λ, ρ, θ) distribution.
The log likelihood function is given below

logL = − n(λρ + log(eλ − 1))+
n∑

j=1
log

{
eλρe−θyj

[
eλe−θyj − 1

]
− eλρe−θ(yj +1)

[
eλe−θ(yj +1)

− 1
]}

.
(42)

By differentiating Equation 42 with respect to the parameters λ, ρ and θ, we get non linear
likelihood equations as follows.

∂logL

∂λ
= − nρ − neλ

eλ − 1+
n∑

j=1

(ρ + 1)e−θyj A1 − ρe−θyj A2 − (ρ + 1)e−θ(yj+1)A3 + ρe−θ(yj+1)A4

A1 − A2 − A3 + A4
.

(43)

∂logL

∂ρ
= −nλ +

n∑
j=1

λe−θyj (A1 + A2) − λe−θ(yj+1)(A3 − A3)
A1 − A2 − A3 + A4

. (44)

∂logL

∂θ
=

n∑
j=1

λyje
−θyj (A2ρ − A1(ρ + 1)) + λ(yj + 1)e−θ(yj+1)(A3(ρ + 1) − A4ρ)

A1 − A2 − A3 + A4
(45)

where A1 = eλ(ρ+1)e−θyj , A2 = eλρe−θyj , A3 = eλ(ρ+1)e−θ(yj +1) and A4 = eλρe−θ(yj +1) .
These Equations(43–45) cannot be solved analytically, therefore an iterative procedure like
Newton Raphson is required to solve them numerically. The solutions of likelihood Equa-
tions (43–45) provide ML estimators of β = (λ, ρ, θ)T , say β̂ = (λ̂, ρ̂, θ̂)T .
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The conditions for maximum are obtained as:

Let g1(λ; ρ, θ, y) denote the function on the right hand side (RHS) of Equation (43)
where ρ and θ are the true values of the parameters. Then there exist atleast one root for
g1(λ; ρ, θ, y) = 0 for λ ∈ (0, ∞) and the solution is unique when∑n

j=1
e−2θyj [(1+ρ)2A1−ρ2A2]−e−2θ(yj +1)[(1+ρ)2A3−ρ2A4]

A1−A2−A3+A4
<

neλ

(eλ−1)2 +

∑n
j=1

(ρ[e−θ(yj +1)A4−e−θyj A2]−(1+ρ)[e−θ(j y+1)A3−e−θyj A1])(e−θyj ((1+ρ)A1−ρA2)−e−θ(yj +1)((1+ρ)A3−ρA4))
(A1−A2−A3+A4)2 .

Let g2(ρ; λ, θ, y) denote the function on the right hand side (RHS) of Equation (44)
where λ and θ are the true values of the parameters. Then there exist atleast one root for
g2(ρ; λ, θ, y) = 0 for ρ ∈ (0, ∞) when

−n +
n∑

j=1

e−θy(1 + eλe−θy) − e−θ(y+1)(eλe−θ(y+1) − 1)
eλe−θy − eλe−θ(y+1) > 0

and the solution is unique when

∑n
j=1

λ2e−2θyj (A2+A4)−λ2e−2θ(yj +1)(A3−A1)
A1−A2−A3+A4

<
∑n

j=0
(λe−θyj (A2+A1)−λe−θ(yj +1)(A3−A4))2

(A1−A2−A3+A4)2 .

Let g3(θ; λ, ρ, y) denote the function on the right hand side (RHS) of Equation (45)
where ρ and θ are the true values of the parameters. Then there exist atleast one root for
g3(θ; λ, ρ, y) = 0 for θ ∈ (0, ∞) and the solution is unique when

∑n
j=1

y2
j λ2(1+ρ)ρe−2θyj (A1−A2)−(1+yj)2λ2e−2θ(yj +1)((1+ρ)2A3−ρ2A4)−λy2

j e−θyj ((1+ρ)A2−ρA1)−λ(1+yj)2e−θ(yj +1)((1+ρ)A3−ρA4)

A1−A2−A3+A4
<

∑n
j=1

((yj+1)λe−θ(yj +1)[(1+ρ)A3−ρA4]−yjλe−θyj [(1+ρ)A1−ρA2])(λyje−θyj [(1+ρ)A2−ρA1]+λ(yj+1)e−θ(yj +1)[(1+ρ)A3−ρA4])
(A1−A2−A3+A4)2

where A1 = eλ(ρ+1)e−θyj , A2 = eλρe−θyj , A3 = eλ(ρ+1)e−θ(yj +1) and A4 = eλρe−θ(yj +1)
.

5.2. Ordinary least square estimation

This method is based on the observed sample y1, y2, ..., yn from n ordered random
sample of any distribution with CDF, where F (.) denotes the CDF, we get

E(F (yj)) = j

(n + 1) .

The OLS estimators are obtained by minimizing

OLS(λ, ρ, θ) =
n∑

j=1
(F (yj) − j

n + 1)2. (46)
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Putting the CDF of DEIP in Equation (46) we get

OLS(λ, ρ, θ) =
n∑

j=1

1 −

eλ(1+ρ)e−θ(yj +1)
− eλρe−θ(yj +1)

eλρ(eλ − 1)

− j

n + 1

2

. (47)

After differentiating Equation (47) with respect to the parameters λ, ρ and θ and equating
to zero, the normal equations are as follows:

∂OLS

∂λ
=2

n∑
j=1

1 −

eλ(1+ρ)e−θ(yj +1)
− eλρe−θ(yj +1)

eλρ(eλ − 1)

− j

n + 1

 1
(eλ − 1)2

A4e−θ(yj+1)−λρ
(

ρeθ(yj+1) + (1 − eλ)((1 + ρ)eλe−θ(yj +1)
− ρ)

)
+

eθ(yj+1)(eλ(1 + ρ)(eλe−θ(yj +1)
− 1) − ρeλe−θ(yj +1)

).

(48)

∂OLS

∂ρ
=2

n∑
j=1

1 −

eλ(1+ρ)e−θ(yj +1)
− eλρe−θ(yj +1)

eλρ(eλ − 1)

− j

n + 1


(

(A4 − A3)(λeλρ(e−θ(yj+1) − 1))
eλ − 1

)
.

(49)

∂OLS

∂θ
=2

n∑
j=1

1 −

eλ(1+ρ)e−θ(yj +1)
− eλρe−θ(yj +1)

eλρ(eλ − 1)

− j

n + 1


e−λρλ(1 + yj)e−θ(yj+1)((1 + ρ)A3 − ρA4)

eλ − 1

(50)

where A3 = eλ(ρ+1)e−θ(yj +1) and A4 = eλρe−θ(yj +1) . The above non-linear equations cannot be
solved analytically. So the OLS estimators of λ, ρ and θ can be obtained by using some
iterative techniques likes Newton-Raphson method.

5.3. Weighted least square estimation

The WLS estimators can be obtained by minimizing

WLS(λ, ρ, θ) =
n∑

j=1
wj(F (yi) − j

n + 1)2 (51)

with respect to the unknown parameters, where wj = 1
V ar(F (Yj)) = (n+1)2(n+2)

j(n−j+1) .

Putting the CDF of DEIP distribution in Equation (51), we get

WLS(λ, ρ, θ) =
n∑

j=1
wj

1 −

eλ(1+ρ)e−θ(yj +1)
− eλρe−θ(yj +1)

eλρ(eλ − 1)

− j

n + 1

2

. (52)
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The Equation(52) is differentiated with respect to the parameters λ, ρ and θ and then equat-
ing to zero, the normal equations are as follows:

∂WLS

∂λ
=2

n∑
j=1

1 −

eλ(1+ρ)e−θ(yj +1)
− eλρe−θ(yj +1)

eλρ(eλ − 1)

− j

n + 1

 1
(eλ − 1)2

A4e
−θ(yj+1)−λρwj(ρeθ(yj+1) + (1 − eλ)((1 + ρ)eλe−θ(yj +1)

− ρ)+

eθ(yj+1)(eλ(1 + ρ)(eλe−θ(yj +1)
− 1) − ρeλe−θ(yj +1)

)).

(53)

∂WLS

∂ρ
=2

n∑
j=1

1 −

eλ(1+ρ)e−θ(yj +1)
− eλρe−θ(yj +1)

eλρ(eλ − 1)

− j

n + 1


wj

(
(A4 − A3)(λeλρ(e−θ(yj+1) − 1))

eλ − 1

)
.

(54)

∂WLS

∂θ
=2

n∑
j=1

1 −

eλ(1+ρ)e−θ(yj +1)
− eλρe−θ(yj +1)

eλρ(eλ − 1)

− j

n + 1


wj

e−λρλ(1 + yj)e−θ(yj+1)((1 + ρ)A3 − ρA4)
eλ − 1 .

(55)

where A3 = eλ(ρ+1)e−θ(yj +1) and A4 = eλρe−θ(yj +1) . These above nonlinear equations cannot
be solved analytically. Therefore the WLS estimates can be obtained by using any iterative
procedure techniques such as Newton-Raphson type algorithms.

5.4. Cramer-von Mises estimation

The CVM estimates of the parameter λ, ρ and θ are obtained by minimizing the
following expression with respect to the parameters λ, ρ and θ respectively.

CV Mλ,ρ,θ = 1
12n

+
n∑

j=1
(F (yj) − −1 + 2j

2n
)2. (56)

For in the case of DEIP distribution, put CDF of DEIP in Equation(56).

CV Mλ,ρ,θ = 1
12n

+
n∑

j=1

1 −

eλ(1+ρ)e−θ(yj +1)
− eλρe−θ(yj +1)

eλρ(eλ − 1)

− −1 + 2j

2n

2

. (57)

By differentiating Equation(57) with respect to the parameters λ, ρ and θ and equating to
zero, we get the normal equations as follows:

∂CV M

∂λ
=2

n∑
j=1

(
1 −

eλ(1+ρ)e−θ(yj +1)
− eλρe−θ(yj +1)

eλρ(eλ − 1)

− −1 + 2j

2n


1

(eλ − 1)2 A4e
−θ(yj+1)−λρ)(ρeθ(yj+1) + (1 − eλ)((1 + ρ)eλe−θ(yj +1)

− ρ)+

eθ(yj+1)(eλ(1 + ρ)(eλe−θ(yj +1)
− 1) − ρeλe−θ(yj +1)

)).

(58)
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∂CV M

∂ρ
=2

n∑
j=1

1 −

eλ(1+ρ)e−θ(yj +1)
− eλρe−θ(yj +1)

eλρ(eλ − 1)

− −1 + 2j

2n


(

(A4 − A3)(λeλρ(e−θ(yj+1) − 1))
eλ − 1

)
.

(59)

∂CV M

∂θ
=2

n∑
j=1

1 −

eλ(1+ρ)e−θ(yj +1)
− eλρe−θ(yj +1)

eλρ(eλ − 1)

− −1 + 2j

2n


e−λρλ(1 + yj)e−θ(yj+1)((1 + ρ)A3 − ρA4)

eλ − 1

(60)

where A3 = eλ(ρ+1)e−θ(yj +1) and A4 = eλρe−θ(yj +1) .
These Equations (58–60) cannot be solved analytically. The estimates of λ, ρ and θ can be
obtained by setting the normal equations equations equal to zero and solving simultaneously
with the help of statistical packages like optim or nlm in R programming.

5.5. Simulation

Here we examine the performance of the estimates of DEIP parameters using simula-
tion study with 1000 replications. We calculate the estimates and mean square errors(MSE)
using the R package. We used ”nlm” function in R program for ML estimation and ”optim”
function is used for the estimation of OLS, WLS and CVM. The simulation procedure is
given below.

1. Generate N = 1000 samples of sizes n = 50, 100, 300 from DEIP(0.1, 0.1, 0.1) and
DEIP(0.5, 0.9, 0.1).

Here, the random variable X possesses a continuous Exponential Intervened Poisson
(EIP) distribution with parameters λ, ρ and θ. Then Y = ⌊X⌋ follows the DEIP
distribution with parameters λ, ρ and θ. To generate data from the DEIP distribution,
first we have to generate data from EIP. Then take the integer values of each generated
observation to get the simulated data set. The procedure of generating random samples
from EIP distribution is explained in Jayakumar and Sankaran (2019). Initial values
are chosen to compute the estimates in such way that the optimization function having
minimum bias.

2. Compute the estimates for the 1000 samples, say β̂ for j = 1, 2, ..., 1000.

3. Compute MSE by using the below quantity.

MSE(β̂) = 1
1000

1000∑
j=1

(β̂ − β)2. (61)

4. Compute the coverage probabilities [CP] of the estimates.

The empirical result from the Table 3 is when the sample size increases the MSEs of the
parameter decreases. This shows the consistency of the estimators. Also, CVM estimates
perform better when compared to other estimates.
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Table 3: Estimates of of λ, ρ and θ

True values→ λ = 0.1, ρ = 0.1, θ = 0.1 λ = 0.5, ρ = 0.9, θ = 0.1
Sample size(n) Parameter↓ ML OLS WLS CVM ML OLS WLS CVM

50 λ̂ 0.1383 0.1761 0.1596 0.0961 0.5670 0.6458 0.6351 0.5293
(MSE) (0.2121) (0.3562) (0.4970) (0.1831) (0.4031) (0.6234) (0.6037) (0.3960)
[CP] [0.841] [0.617] [0.700] [0.863] [0.796] [0.635] [0.641] [0.801]

ρ̂ 0.1312 0.1796 0.1623 0.1071 0.9606 0.8764 0.8823 0.9724
(MSE) (0.3210) (0.4013) (0.4433) (0.0961) (0.2683) (0.4801) (0.4573) (0.2541)
[CP] [0.800] [0.672] [0.727] [0.854] [0.801] [0.765] [0.768] [0.834]

θ̂ 0.1402 0.1634 0.1706 0.1324 0.1451 0.1937 0.1969 0.1433
(MSE) (0.2150) (0.4146) (0.5231) (0.1612) (0.1732) (0.4176) (0.5154) (0.1365)
[CP] [0.829] [0.631] [0.786] [0.847] [0.896] [0.719] [0.703] [0.902]

100 λ̂ 0.1238 0.1571 0.1431 0.0989 0.5312 0.6032 0.5993 0.5240
(MSE) (0.1972) (0.3237) (0.4130) (0.1645) (0.3632) (0.5710) (0.5651) (0.3649)
[CP] [0.850] [0.651] [0.711] [0.867] [0.804] [0.691] [0.699] [0.820]

ρ̂ 0.1300 0.1586 0.1604 0.1009 0.9510 0.8923 0.8967 0.9813
(MSE) (0.2291) (0.3913) (0.4312) (0.0801) (0.2402) (0.4154) (0.4403) (0.2130)
[CP] [0.838] [0.699] [0.732] [0.861] [0.864] [0.791] [0.793] [0.856]

θ̂ 0.1352 0.1546 0.1695 0.1308 0.1363 0.1891 0.1893 0.1382
(MSE) (0.1676) (0.3001) (0.4961) (0.1532) (0.1565) (0.4073) (0.5035) (0.1325)
[CP] [0.851] [0.657] [0.789] [0.857] [0.916] [0.763] [0.746] [0.917]

300 λ̂ 0.1211 0.1503 0.1364 0.1061 0.5021 0.5638 0.5712 0.5009
(MSE) (0.1681) (0.3146) (0.3291) (0.0261) (0.1641) (0.3173) (0.3630) (0.1512)
[CP] [0.891] [0.672] [0.780] [0.893] [0.899] [0.747] [0.731] [0.902]

ρ̂ 0.1281 0.1492 0.1470 0.1006 0.9371 0.8974 0.8982 0.9503
(MSE) (0.1441) (0.3530) (0.3021) (0.0541) (0.2121) (0.3903) (0.4102) (0.2053)
[CP] [0.886] [0.724] [0.786] [0.899] [0.881] [0.803] [0.800] [0.874]

θ̂ 0.1206 0.1488 0.1501 0.1201 0.1235 0.1709 0.1742 0.1292
(MSE) (0.1121) (0.2943) (0.3213) (0.1036) (0.2751) (0.4156) (0.5019) (0.2601)
[CP] [0.894] [0.786] [0.779] [0.864] [0.930] [0.796] [0.758] [0.929]

6. Application

In this section, we illustrate the flexibility of the proposed distribution using a real
data set.

The fit of the proposed distribution is compared with the following distributions:

• Poisson (P) distribution having pmf

P(Y = y) = e−λλy

y! ; λ ≥ 0, y = 0, 1, 2, ...

• Discrete Burr (Krishna and Pundir (2009)) (DB) distribution having pmf

P (Y = y) = θlog(1+yα) − θlog(1+(1+yα)); 0 < θ < 1, α > 0 , y = 0, 1, 2, ...

• Discrete Gumbel (Chakraborty and Chakravarty (2014)) (DG) distribution having pmf

P (Y = y) = exp(−αpy+1) − exp(−αpy); α > 0, 0 < p < 1, y = 0, 1, 2, ...
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• A new three-parameter Poisson-Lindley (NTPPL) distribution (Das et al. (2018)) hav-
ing pmf

P (Y = y) = θ2

(θ+1)x+2

(
1 + α+βx

θα+β

)
; θ > 0, β > 0, θα + β > 0, y = 0, 1, 2, ...

The data set is taken from Efron (1988), a study of 51 patients with head and neck
cancer conducted by the Northern California Oncology Group. We compare the fits of the
DEIP distribution with the competitive models DG, DB, NTPPL and Poisson. The data is
given below:

{0, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 6, 7, 7, 7, 8,8, 9, 9, 9, 10,
13, 13, 13, 14, 17, 17, 19, 19, 36, 36, 37, 40, 44, 46, 46}

Table 4: Goodness of fit for various models fitted for the dataset.

Model P DG DB NTPPL DEIP

Estimates λ̂ = 11.314 α̂ = 3.207 α̂ = 2.551 α̂ = 1.506 λ̂ = 2.212
p̂ = 0.668 θ̂ = 0.730 β̂ = 1.282 × 106 ρ̂ = 4.404

θ̂ = 0.088 θ̂ = 0.007

K-S 0.4787 0.9821 0.2955 6.665 0.1656

p-value <0.000 <0.000 <0.000 0.000 0.1217

The K-S statistic given in Table 4 is smallest for the DEIP distribution with the value
of 0.1656 and p- value is 0.1217, which is higher when compared to other models. That is,
Table 4 gives that the DEIP distribution leads to a better fit for the data set compared to
the other four models.

7. Conclusion

In the present article, we have introduced a new family of discrete distributions called
DIPc family. One special model of the proposed family are studied in detail. Further we
have noticed DIPc family can be used for modelling variety of failure data because its hazard
rate can take different shapes. The methods of ML, OLS, WLS and CVM estimations have
been utilized to estimate the unknown parametres of the models. Some characterizations
of the proposed distribution have been also studied. An extensive simulation is carried out
to evaluate the behaviour of the above stated estimation methods. The flexibility of the
family has also been elucidated using a real data set. The new distribution can serve as a
better alternative for modelling count data in various fields including reliability, insurance,
medicine, engineering etc.
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