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Abstract 
 

This paper addresses the problem of estimation of population mean of a sensitive variable 
under investigation using scrambled randomized response mechanism in presence of non-
sensitive auxiliary variable at current move in two occasion successive sampling. The proposed 
estimator is studied under scrambled randomized response models. The detail properties of the 
suggested estimators have been provided. To measure the scrambled model effect the 
envisaged estimators are compared with direct estimators. Optimum replacement policy has 
been elaborated. Numerical study is carried out to demonstrate the applicability of the 
propounded estimators and hence appropriate recommendations are given. 
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1.     Introduction  
 
Surveys covering human population associated with sensitive issues, for instance, drug 

addiction, induced abortion, HIV infection status, excessive gambling, incidence of domestic 
violence, illegitimacy of offspring, drinking and driving, social security frauds, tax evasion, 
substance abuse, alcoholism, illegal income and AIDS etc. need to be addressed in social, 
psychological, socioeconomic and biometric research. In such cases employing the derived 
method of interview, people do not respond truthfully on even refuse to respond owing to social 
stigma and/ or fear. Under such circumstances, to gather valid and reliable data, protect 
respondent confidentiality and avoid unacceptable rate of non-response, randomized response 
procedures pioneered by Warner (1965) may be employed. Later Horvitz et al. (1967), 
Greenberg et al. (1969), Chaudhari and Mukerjee (1988), Kuk (1990), Mangat and Singh 
(1990), Christofides (2003), Mangat (1994), Arnab (2011) and Chaudhari and Christofides 
(2013) introduced various other devices for obtaining information on sensitive questions. 

                                                                            
 Pollock and Bek (1976) and Eichhorn and Hayre (1983) have made initial efforts to take 

sword of scrambled response technique ahead. Later various authors including Singh and 
Joardar (1996), Bar-Lev et al. (2004),  Saha (2007),  Diana and Perri (2012), Gjestvang and 
Singh (2009),  Odumade and Singh (2009), Singh and Mathur (2005), Singh and Kim (2007), 



114                                                         H. P. SINGH AND P. PATIDAR                                        [Vol  20, No. 1 
  

Tarray and Singh (2015),  Arcos et al. (2015), Singh and Gorey (2017), and many more have 
discussed the problem of estimating the population mean of a sensitive variable under 
scrambled randomized response model. 

 
It is to be mentioned that the above work done for single time survey associated with 

sensitive character analysis; instead, these issues need to be tracked constantly over time so 
that reflection of actual scenario in society associated with sensitive issues as well as changed 
level of sensitivity of issues with respect to time may be understood in a better way [see 
Priyanka and Trisandhya (2018)]. Interesting aspect of the scrambled response mechanism is 
that it can be used to protect the anonymity of individuals who have provided sensitive 
information. In such situations, the use of successive sampling scheme can be attractive 
alternative to improve the estimators of level at a point in time or to measure the change 
between two time points. Arnab and Singh (2013, pp. 2499-2500) have given the following 
examples well suited to the above mentioned situations: (i) A police department may be 
interested to know the average number of rapes in a large city during a particular year or a 
change in the number of rapes over a period of couple of years; (ii) A university administration 
may be interested to know the total amount of a particular drug used by students in a particular 
year, and after educating students about the adverse effect of drug use on health and society, if 
there is any significant change in the total drug use on campus or not; (iii) A social organization 
could be interested to know the proportion of those people who truly quit the drug after 
attending a lecture or seminar or after taking a medication.  

 
Jessen (1942) first introduced the successive sampling procedure on two occasions to 

estimate the mean on the most recent (current) occasion. Later several authors including 
Patterson (1950), Narain (1953), Singh (1968), Ghangurde and Rao (1969), Sen (1973), Okafor 
and Arnab (1987), Biradar and Singh (2001), Singh and Priyanka (2008), Singh et al. (2008), 
Singh and Vishwakarma (2007, 2009), Singh and Pal (2017) etc. have paid their attention 
toward the estimation of mean on current occasion using successive sampling. Arnab and Singh 
(2013), and Yu et al. (2015), have used randomized response technique to deal with sensitive 
issues on successive occasion. Singh et al. (2017) applied scramble response procedure using 
Patterson (1950) method to tackle sensitive issues on successive occasion. Assuming non-
sensitive additional auxiliary information is available at both occasions, Priyanka et al. (2017) 
and Priyanka and Trisandhya (2018, 2019) have employed both randomized and scramble 
response procedure to cope up with the studies related to sensitive issues on successive 
occasions. For example, we consider a situation, where an investigator is interested in 
estimating the average monthly expenditure on drug usage by undergraduate students in the 
current year 2016 (i.e. at second occasion) designated as the study variable y, then the auxiliary 
variable x may be taken as the average monthly expenditure on drug usage by undergraduate 
students in the year 2015 (i.e. at first occasion) and the average monthly pocket money of 
undergraduate students from all sources in the year 2015 may be taken as a non-sensitive 
additional auxiliary variable z. Here non-sensitive auxiliary data are available at both 
occasions. Hence this led authors to propose a class of estimators for estimating sensitive 
population mean of a sensitive variable at current occasion in two occasions successive 
sampling using non-sensitive auxiliary information. To deal with sensitive issues, randomized 
response technique due to Gjestvang and Singh (2009) has been applied. The detail properties 
of the suggested class of estimators have been discussed. Numerical illustration is given in 
support of the present study. 

 
 
 



2022]                    ESTIMATING SENSITIVE POPULATION MEAN IN SUCCESSIVE SAMPLING                 115 
 

2.      Survey Strategies and Analysis 
 
2.1.   Sampling procedure 

 
Let  be a finite population of size N, which has been sampled over 

two occasions to estimate the population mean of sensitive variable at current occasion. It is 
supposed that the units of the population are unchanged over two occasions i.e. the sampling 
frame remain the same there by meaning is that no new units are added or deleted from the 
population. The character under investigation is sensitive variable designated by  on the 
first (second) occasion and z is a non-sensitive auxiliary variable available at both occasions. 
At the first occasion, a sample of n units is drawn from the population   by simple random 
sampling without replacement (SRSWOR). However, at the second occasion considering the 
partial overlap case, two independent samples are selected; one is matched sample of size 

drawn as subsample from the sample of size n  and another is unmatched simple 
random sample of size selected afresh at the second occasion so that the 
sample size at both the occasions is same (i.e. n). The sensitive variable  on the first 
(second) occasion are perturbed to with the aid of scrambling variable W. The scrambling 
variable W so considered as it may follow any distribution. The following notations are 
considered further 

 

: Fraction of sample drawn afresh at current occasion, 

: Fraction of samples matched from previous occasion, 

: Population means of variables x, y, z, g, h and w respectively, 
: Sample means of the variate based on sample sizes shown in suffices, 

: Sample means of non-sensitive auxiliary variate z based on sample sizes shown in        
                  suffices, 

: Correlation coefficient between the variables depicted in suffices, 
: Coefficient of variation of variables depicted in suffices, 

 : Population mean square of variability x, y, z respectively, 

: Population variance of x, y, z and w respectively, 
 
Note that the scrambling variable W such that and . 
 
2.2.    Randomized response technique on successive occasions  

 
 For estimating the population mean (or) total of a sensitive variable Gjestvang and Singh 

(2009) suggested a randomized response model (say ). In this paper Gjestvang and Singh 
(2009) randomized response model has been modified to be applied on successive occasions. 

 
  Let  be two known positive real numbers. Consider a deck of cards in which p 

is the proportion of cards bearing the statement: Multiply scrambling variable W with  and 
add to the real value of the sensitive variable  at first (second) move and  be the 
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proportion of cards bearing the statement: Multiply scrambling variable W with  and subtract 
it from the real value of the sensitive variable  at first (second) move. Let  
be known. In this procedure each respondent is asked to draw one each secretly (confidentially) 
and report the scrambled response according at first (second) move accordingly. Using above 
randomization device, response given by  respondent on the first and second moves, 
respectively are described as  

     and         

 

Therefore applying  on two successive occasions, the sensitive variable  are 
switched to  and are given by  

 
and   

 
such that  .                                                           (1)             

, , . 

 
Remark 1: Strategy is to obtain suitable estimator of population mean of coded response 
variable on current occasion and substituting the same in (1) to obtain the relevant estimator 
for sensitive population mean  at current occasion. 

 
2.3.    Design of the Class of Suggested Estimators 

 
 For estimating the population mean of perturbed variable H on the second (current) 

occasion, we have suggested two classes of estimators where one class of estimators  based 
on unmatched sample (or afresh sample) of size u on the current (second) occasion and others 
class of estimators based on the matched sample of size m (which is common to both the 
occasions). 
 
2.3.1. Class of estimators based on unmatched sample on the second occasion using   

information on  of non-sensitive auxiliary variable z 
 
The usual ratio and product-type estimators can be ramified to estimate the population 

mean of coded response variable. The following estimators based on sample of size u drawn 
afresh at current occasion for estimating the population mean of switched variable H on current 
(second) move can be considered 
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etc., where  are suitably chosen constants to be determined such 
that mean squared errors (MSEs) of are (maybe) 
minimized,  and b are real numbers or the values of the parameters coefficient 
of skewness , coefficient of kurtosis  and  etc. associated 
with additional non-sensitive auxiliary variable z, for instance, see Upadhyaya and Singh 
(1999). 

 
We propose a class of estimators of population mean of sensitive characteristic based on 

unmatched sample of size u, by following Srivastava (1980). When the population mean   
of the auxiliary variable z is known, we define a class of estimators for population mean of 
sensitive characteristic as 

                                                       (2) 
 
where  is a function of  and  such that ; 

 being the first order partial derivative of the function  at the point and the 
function  also satisfies the following conditions 
(i)  The point  assume values in a bounded, closed convex subset, T, of the two 

dimensional real space containing the point . 
(ii)     The function  is continuous and bounded in T. 
(iii)   The first and second order partial derivatives of  exist and are continuous and 

bounded in T. 
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Assuming that the population size is sufficiently large so that finite population correction 
(fpc) term can be ignored, the bias and MSE of  to the first degree of approximation (fda) 
are respectively given by  

,                                  (3)

                     
 (4) 

where ,  and  are the first and second order partial derivatives 
of the function  at the point . 
 

Any parametric function  satisfying conditions (i)-(iii) can be an acceptable 
estimator of population mean of a sensitive variable at current move. The class of such 
estimators is very large. 

 
 It can be easily identified that the estimators are members of the suggested 

class of estimators given by (2). Thus the biases and mean squared errors of the estimators 
 to  can be easily obtained from (3) and (4) just by putting the values of ( ,

) and  in (3) and (4) respectively.  
The  at (4) is minimized for  

 

                                               (5) 
 
where  is the population regression coefficient of h on z, and  

 

 
Thus, the resulting minimum MSE of  is given by 

 
.                                                (6) 

Thus, we established the following theorem. 
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on   we define a class of estimators for population mean  of coded response 
variable at current (second) occasion (move) in two occasion successive sampling as 

 

                                                      (7) 
 

where ,  and F(.) is a function of such that   
,  being the first order partial derivative of the function  at the 

point . 
 
The function  at (7) also satisfies certain regularity conditions like those given in 

Srivastava and Jhajji (1980, 1981). 
 
The Bias and MSE of  to the fda, ignoring fpc term, are respectively given by  
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second order partial derivatives of the function F  at the point . 
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we have  
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Theorem 2: Up to the fda, 

 

with equality holding if , . 
 
The class of estimators  is very large. The following estimators are given below 

,     , 

     ,                      , 

etc. are members of the proposed class of estimators , where are suitably 
chosen constants. The bias and MSE of the estimators can be easily obtained 
from (8) and (9) just by putting the suitable values of , , , , ,

and . 
 
It is to be mentioned that the estimator like has been suggested by Priyanka and 

Trisandhya (2019). The bias and MSE of can be easily obtained by putting  

, , , , 

 and ,  in (8) and (9) respectively. 

From (6) and (13) we have  
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where are suitably chosen 
constants. It is to be noted that the estimators  are not utilizing the information on 
matched sample for additional non-sensitive auxiliary variable z (i.e. information on (
)) while information on ( ) associated with additional non-sensitive auxiliary variable z 
can be made available easily. This led authors to propose classes of estimators utilizing 
information on ( ) along with  of non-sensitive auxiliary variable 
z.  
 

We propose a class of estimators of population mean  at current (second) occasion, 
by following Srivastava (1971, 1980) as 

 
                                                                                                                         (15) 
 
where J(.) is a function of with such that  
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 being the first order partial derivative of the function  at the point  
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large number of estimators may be identified as member of the class  at (15). The following 
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(18)

 
where and  are first and second order partial derivatives of the function 

 at the point . 
 
The   at (18) is minimized for  
 

 

(19) 
 
Thus, the resulting minimum MSE of  is given by  

,                                (20) 

where                                   

Now, we state the following theorem: 
 
Theorem 3: Up to the fda, 

        

 

with equality holding if . 
 

2.3.3.1. Class of estimators based on matched sample of size m at current occasion using 
information on   

 
If the information on  is used to estimate the population mean  at current 

move, then following the procedure adopted by Srivastava (1971), we define a class of 
estimators as  

 

                                                                        (21) 
 

where J(.) is a function of  such that  
being the first and second order partial derivatives of the function about the point ; 
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respectively given by  
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,
 

(22) 

                                                  (23)                                         

where and are first and second order partial 
derivatives of the function  at the point . 
 
The   at (23) is minimized when    

                                                
 (24) 

                                                     (25) 

Thus, the resulting minimum MSE of  is given by  

.                                  (26) 

Now, we state the following theorem. 
 
Theorem 4: To the fda,   

 

with equality holding if  and . 
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                           (27) 

where   is the partial correlation coefficient between h and g. 

 
It follows from (27) that the proposed class of estimator  is more efficient than the 

estimator . 
 

2.3.4. Class of estimators based on matched sample at current move using information on 

 
 
It is to be noted that the estimator  due to Priyanka and Trisandhya (2019) utilizing 

information on  based on matched sample of size m can be further generalized as  

(28)   
 
where  

   
are suitably chosen constants. 

 
 Keeping the class of estimators (28) in view and adopting the same procedure as adopted 

by Srivastava and Jhajji (1981) we define a class of estimators of sensitive population mean 
 of coded response variable h based on the matched sample of size m at current move as  
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(31) 
where and are the first and second order partial 

derivatives of the function  at the point . 
 

The   at (31) is minimized for    

,                                                           (32) 

,                                                             (33)

,                        (34) 

,                                                             (35) 

,                                   (36) 

 
where             

            
                        

 

                         . 
 
Substitution of (32) to (36) in (31) yields the minimum MSE of  as  
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Now, we state the following theorem. 
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with equality holding if . 
 
The class of estimators  at (29) is very large. The following estimators:  

 
, 

 

, 
 
etc. are the members of the suggested class of estimators , where  are 
suitably chosen constants. The bias and MSE of the estimators,  and   at (28) 
can be obtained easily from (30) and (31) just by putting the values of derivatives. 

  
Keeping the form of Priyanka and Trisandhya (2019) the estimator   and motivated 

by Srivastava and Jhajji (1981) we define a subclass of estimators  of the class of estimators 

 for the population mean   of the coded response at current move as  
 

                                                                         (38) 
 
where is a function of   such that , being 
the first order partial derivative of the function  at the point  and also 
satisfies 
certain regularity conditions similar to these given in Srivastava and Jhajji (1981). 

 
To the fda, ignoring fpc term, the bias and MSE of the class of estimators  are 

respectively given by  
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.                            (41) 

 
Thus, the resulting minimum MSE of  is given by  

.       (42)   

Thus, we arrived at the following theorem. 
 
Theorem 6: To the fda, 

 

with equality holding if where  is given by (41), 
. 

 
The class of estimators  is very large. The following estimators  
 

, 

                                          

       , 

                                    , 
 
etc. are the members of the suggested class of estimators , where  are suitably 
chosen constants. The bias and MSE of the estimators can easily be obtained from (29) and 
(40) just by putting the values of derivatives. 
 
From (37) and (42) we have  

.   (43) 

 
It follows from (43) that the proposed class of estimator  is more efficient than the 

estimator , and hence better than the Priyanka and Trisandhya (2019) -type estimator . 
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mean of coded response at current occasion in two occasion successive sampling is defined 
by  

 
                                                             (44) 

 
where , , , , ,and are respectively defined in (2), (7), (15), (21), (29) and 

(38) and is a scalar quantity to be chosen suitably. 
 

Theorem 7: Bias of the combined class of estimators  to the fda, ignoring fpc term, is 
obtained as  
 

                                                 (45) 
where  and  .   
 
Proof is simple so omitted.             

 
Putting the values of , , , , ,and  as 

respectively defined in (3), (8), (17), (22), (30) and (39) in the above equation, we get the 
expression for the bias of the class of estimators  in (45). 

 
Theorem 8: The mean squared error of the class of estimators  is given by  
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in (46). 
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3.1.    Minimum MSE of the suggested combined class of estimators   
  
Differentiating (46) with respect to and equating them to zero, we get the optimum 

value of as    

                        (48) 

 
Inserting the value of  from equation (48) in (46), we get the minimum MSE of 

classes of estimators  as  

,               (49) 

 
Putting the value of   and  from (6), (13), (20), (26), (37) and 

(42) respectively in (49), the simplified values of  are obtained as  

                                                    (50)

                            
  (51)

 

 
                                     (52) 

                                                 (53) 

                                         (54)   

                         (55) 

                                              (56) 

          (57) 
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         ,

. 

3.2.    Optimum rotation rate  
 
 It is observed from (50) to (57) that  is the function of  

which is rotation rate or the fraction of sample to be drawn afresh at current occasion. As 
less the sample need to be selected afresh, less is the total cost of the survey so to estimate 
population mean with maximum precision and minimum cost  at (50)-(57) have 
been minimized with respect to . The optimum values   have been derived as 
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Inserting  admissible value of from (58)-(65) 

respectively in (50) - (57) we get the optimum values of  as 
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  (67) 

                            
  (68) 

                                          
 (69) 

                                
  (70)   

                            
 (71) 

                                       (72)

                 
  (73) 

 
 

4.     Performances of the Suggested Classes of Estimators 
 
For examining the relevance and utility of the information used on non-sensitive auxiliary 

variable with the proposed classes of estimators, we have considered a class of estimators 
where no additional non-sensitive auxiliary information is used, known as modified general 
class of successive sampling estimators. 

 
4.1.    Modified general class of estimators based on matched sample of size m  

 
 Following the procedure adopted by Srivastava (1971,1980) we consider the following 

class of estimators of the population mean of coded response variable on the current 
(second) occasion as  

                                                                                     (74) 
 
where G(.) is a function of  such that  

 

                                                              (75) 
 

 being the first order partial derivative of the function  at the point and 
satisfies certain regularity conditions similar to these given in Srivastava (1971,1980). 

 
To the fda, ignoring fpc term, the bias and MSE of  are respectively given by  
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where  and . 

 
The MSE of  at (77) is minimum when  

.                                                                         (78) 
 
Substitution (78) in (77) yields the minimum MSE of the class of estimators  as 

                                                        (79) 

 
which is equal to the minimum MSE of the difference estimator  

 ,                                                                  (80) 

where  is the population regression coefficient of  h on g. 

We note that the class of estimators  at (74) is very vast. The following estimators 
(including ) 

                ,    ,     , 

etc. are the members of the class of estimators  at (74). The bias and MSE of the estimators
and  can be easily obtained from (76) and (77) just by putting the suitable 

values of derivatives ,  and . 
 
Now we state the following theorem. 
 

Theorem 9: Up to the first order of approximation, 
 

 

 
with equality holding if . 

 
4.2.   Combined class of estimators 

 
We consider the following combined classes of estimators for population mean response 

 of coded response variable at current (second) move at  
 

                                                                         (81) 
where  is unknown constant.  
 
We note that the class of estimators 
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due to Priyanka and Trisandhya (2019) is a member of the class of estimators  at (81), 
 is unknown constant and  is a suitably chosen scalar. 

 
The MSE of   is given by 

,                              (83) 
as the term . 

Replacing by its in (83) we have  
 

,  (84) 
 
which is minimum when 

                                                              (85) 

and thus the resulting minimum MSE of class of estimators  is given by   

   .                                                            (86) 

Expression (86) is optimized for  

 .                                                                        (87) 

Thus the optimum value of  is   

  .                                                (88) 

 
4.3. Theoretical comparison of the estimators  and 

 with the estimators  [or with the 
estimators  

 
 From (66), (67) and (68) we have  
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 .                                 (92) 

 
It follows from (92) that the proposed estimator  is more efficient than the estimators 

and . Theoretical Comparison among the estimators , , , , and are 
tedious, therefore we have not made the comparison among these estimators. 

 
5.      Estimators of Sensitive Population Mean at Current (Second) Move under Model 

  

The population mean  of the coded response variable h at current occasion in (1) is 
replaced by its estimators given in (44) and (81) respectively, to 

derive the estimators and  for sensitive population mean which are given below 

                                  

                                 

                                 

                                

. 
 
5.1.    Numerical illustration  
  

 To have tangible idea about the performance of the suggested estimators and  (for 

the sake of convenience we have considered only two estimators and  for purpose of 
comparison), we have considered artificial parametric values 

 
 

 
Here we suppose that  for which , . 

 
The optimum values of fraction of sample to be drawn afresh at current (second) occasion 

(move) and percent relative efficiencies (PREs) have been computed by using the following 
formulae 
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                 (96) 

 
Findings are given in Table 5.1 and 5.2. 

Table 5.1:   Optimum Values of  (in bracket) and PRE of  with respect to . 
   

 
0.01 0.05 0.1 0.3 0.5 0.7 0.9 1.0 1.50 2.00 

0.01 207.13 
(0.5201) 

206.63 
(0.52) 

206.02 
(0.5199) 

203.64 
(0.5194) 

201.36 
(0.5189) 

199.18 
(0.5185) 

197.1 
(0.518) 

196.09 
(0.5178) 

191.35 
(0.5169) 

187.06 
(0.516) 

0.05 206.63 
(0.52) 

204.22 
(0.5195) 

201.36 
(0.5189) 

191.35 
(0.5169) 

183.16 
(0.5152) 

176.33 
(0.5139) 

170.56 
(0.5127) 

167.99 
(0.5122) 

157.56 
(0.5101) 

149.94 
(0.5086) 

0.1 206.02 
(0.5199) 

201.36 
(0.5189) 

196.09 
(0.5178) 

179.6 
(0.5145) 

167.99 
(0.5122) 

159.37 
(0.5105) 

152.72 
(0.5092) 

149.94 
(0.5086) 

139.56 
(0.5065) 

132.82 
(0.5052) 

0.3 203.64 
(0.5194) 

191.35 
(0.5169) 

179.6 
(0.5145) 

152.72 
(0.5092) 

139.56 
(0.5065) 

131.75 
(0.505) 

126.58 
(0.5039) 

124.6 
(0.5035) 

118.05 
(0.5021) 

114.37 
(0.5014) 

0.5 201.36 
(0.5189) 

183.16 
(0.5152) 

167.99 
(0.5122) 

139.56 
(0.5065) 

128.09 
(0.5042) 

121.91 
(0.5029) 

118.05 
(0.5021) 

116.61 
(0.5019) 

112.01 
(0.501) 

109.48 
(0.5005) 

0.7 199.18 
(0.5185) 

176.33 
(0.5139) 

159.37 
(0.5105) 

131.75 
(0.505) 

121.91 
(0.5029) 

116.88 
(0.5019) 

113.82 
(0.5013) 

112.7 
(0.5011) 

109.11 
(0.5005) 

107.14 
(0.5003) 

0.9 197.1 
(0.518) 

170.56 
(0.5127) 

152.72 
(0.5092) 

126.58 
(0.5039) 

118.05 
(0.5021) 

113.82 
(0.5013) 

111.28 
(0.5008) 

110.35 
(0.5007) 

107.37 
(0.5003) 

105.74   
(0.5001) 

1 196.09 
(0.5178) 

167.99 
(0.5122) 

149.94 
(0.5086) 

124.6 
(0.5035) 

116.61 
(0.5019) 

112.7 
(0.5011) 

110.35 
(0.5007) 

109.48 
(0.5005) 

106.73 
(0.5002) 

105.23 
(0.5001) 

1.5 191.35 
(0.5169) 

157.56 
(0.5101) 

139.56 
(0.5065) 

118.05 
(0.5021) 

112.01 
(0.501) 

109.11 
(0.5005) 

107.37 
(0.5003) 

106.73 
(0.5002) 

104.7 
(0.5001) 

103.6 
(0.5) 

2 187.06 
(0.516) 

149.94 
(0.5086) 

132.82 
(0.5052) 

114.37 
(0.5014) 

109.48 
(0.5005) 

107.14 
(0.5003) 

105.74 
(0.5001) 

105.23 
(0.5001) 

103.6 
(0.5) 

102.75 
(0.5) 

 
 

Table 5.2:   Optimum Values of  (in bracket) and PRE of  with respect to . 

  
 

0.01 0.05 0.1 0.3 0.5 0.7 0.9 1.0 1.50 2.00 

0.01 188.8 
(0.4741) 

188.42 
(0.4742) 

187.96 
(0.4743) 

186.15 
(0.4748) 

184.41 
(0.4752) 

182.74 
(0.4757) 

181.14 
(0.4761) 

180.36 
(0.4763) 

176.68 
(0.4773) 

173.33 
(0.4781) 

0.05 188.42 
(0.4742) 

186.59 
(0.4747) 

184.41 
(0.4752) 

176.68 
(0.4773) 

170.26 
(0.479) 

164.84 
(0.4804) 

160.2 
(0.4816) 

158.12 
(0.4821) 

149.58 
(0.4843) 

143.23 
(0.4859) 

0.1 187.96 
(0.4743) 

184.41 
(0.4752) 

180.36 
(0.4763) 

167.44 
(0.4797) 

158.12 
(0.4821) 

151.08 
(0.4839) 

145.57 
(0.4853) 

143.23 
(0.4859) 

134.43 
(0.4879) 

128.61 
(0.4892) 

0.3 186.15 
(0.4748) 

176.68 
(0.4773) 

167.44 
(0.4797) 

145.57 
(0.4853) 

134.43 
(0.4879) 

127.68 
(0.4894) 

123.14 
(0.4902) 

121.39 
(0.4905) 

115.51 
(0.4914) 

112.17 
(0.4918) 

0.5 184.41 
(0.4752) 

170.26 
(0.479) 

158.12 
(0.4821) 

134.43 
(0.4879) 

124.48 
(0.49) 

118.99 
(0.4909) 

115.51 
(0.4914) 

114.21 
(0.4915) 

110.02 
(0.4921) 

107.73 
(0.4925) 

0.7 182.74 
(0.4757) 

164.84 
(0.4804) 

151.08 
(0.4839) 

127.68 
(0.4894) 

118.99 
(0.4909) 

114.46 
(0.4915) 

111.67 
(0.4918) 

110.64 
(0.492) 

107.4 
(0.4926) 

105.67 
(0.4934) 

0.9 181.14 
(0.4761) 

160.2 
(0.4816) 

145.57 
(0.4853) 

123.14 
(0.4902) 

115.51 
(0.4914) 

111.67 
(0.4918) 

109.35 
(0.4922) 

108.51 
(0.4923) 

105.87 
(0.4933) 

104.48 
(0.4942) 

1 180.36 
(0.4763) 

158.12 
(0.4821) 

143.23 
(0.4859) 

121.39 
(0.4905) 

114.21 
(0.4915) 

110.64 
(0.492) 

108.51 
(0.4923) 

107.73 
(0.4925) 

105.32 
(0.4936) 

104.05 
(0.4945) 

1.5 176.68 
(0.4773) 

149.58 
(0.4843) 

134.43 
(0.4879) 

115.51 
(0.4914) 

110.02 
(0.4921) 

107.4 
(0.4926) 

105.87 
(0.4933) 

105.32 
(0.4936) 

103.62 
(0.4949) 

102.74 
(0.4959) 

2 173.33 
(0.4781) 

143.23 
(0.4859) 

128.61 
(0.4892) 

112.17 
(0.4918) 

107.73 
(0.4925) 

105.67 
(0.4934) 

104.48 
(0.4942) 

104.05 
(0.4945) 

102.74 
(0.4959) 

102.08 
(0.4968) 
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It is observed from Tables 5.1 and 5.2 that  
 

(i)    the suggested class of estimators  and  perform better than the class of estimators 

 which  does not utilize information on additional auxiliary variable ‘z’ in terms   
of optimum fraction of sample to be drawn afresh and also in terms of percent relative 
efficiency. 

(ii)   the PRE’s of the proposed estimators  and  decreases with increasing values of 
. 

(iii)    the larger gain in efficiency is observed by using the proposed classes of estimators  

and  over the class of estimators  when the value of  are small.  

(iv)    the gain in efficiency by using the proposed class of estimators   over   is 

larger as compared to the class of estimators  over . 
 
It is to be mentioned that a practical choice of  and , fixed by the experience of the 

experimenter from repeated surveys can always provide better results than the class of 
estimators . 

 
Remark 2: The procedure outlined in this paper can be also applied to the randomized response 
models mentioned in Priyanka and Trisandhya (2019) {see Arcos et al. (2015) and Odumade 
and Singh (2008) etc} to get the efficient estimators of the population mean at current (second) 
move using information on additional non-sensitive auxiliary variable at both the occasion in 
two occasion successive sampling. 
 
6.      Conclusion 

 
This article presents some classes of estimators for estimating the population mean at 

current (second) occasion in two occasions successive sampling using information on an 
additional non-sensitive auxiliary variable in presence of randomized response model. The 
properties of the suggested classes are studied under randomized response models. Optimum 
replacement policies have been elaborated. It has been demonstrated that the proposed classes 
of estimators are better than the class of estimators which does not utilize non-sensitive 
auxiliary information. Numerical illustration is given in support of the present study. It has 
been shown that there is appreciable gain in efficiency by using the proposed classes of 
estimators over the class of estimators . Thus the proposed study is recommended for 
its use in practice. 
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