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Abstract
With significant advances in the treatment and supportive care, the overall 5-year

survival rate for pediatric cancers in high-income countries, such as USA, exceeds 85%, see
Ehrhardt, et al. (2023), SEER (2022) and it is expected that the number of survivors will
exceed 580,000 by year 2040. However, this comes at a high cost of treatment and cancer
related long-term sequalae. To better characterize and to develop interventions/screening
guidelines to mitigate the long-term effects of these adverse events researchers in North
America and Europe established large-cohort retrospective studies with prospective follow-
up assessments, see Robison, et al. (2009), Winther, et al. (2015), Park, et al. (2012).
However, it is logistically impossible to follow the survivors continuously and this information
is usually collected through cross-sectional surveys at various times from cancer diagnosis,
which leads to interval censored data since the exact time of the onset of the adverse event
of interest is unknown. However, if this risk could be characterized in a continuous manner,
then appropriate screening guidelines or interventions could be implemented. Our primary
focus is on estimating the incidence rates (cumulative incidence) of a particular outcome of
interest e.g. cardiovascular events using interval censored data. In this exposition we utilize
SJLIFE cohort and propose the use of multi-state survival framework for modeling incidence
rates and risk factors associated with it. We also highlight the use of multi-state models for
analyzing more complicated relationships and identify some challenges associated with the
analysis of such data.
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1. Introduction

The 5-year survival rate for childhood cancer survivors now exceeds 85% but they
are at an increased risk of developing long-term chronic health conditions as a result of
their cancer or its treatment. As the childhood cancer survivor population increases, under-
standing the long-term impact of cancer on health during adulthood is important to guide
the development of interventions to improve the quality of life and duration of survival.
The Cancer Control and Survivorship Program in the Comprehensive Cancer Center at St.
Jude Children’s Research Hospital is a multidisciplinary research program that strives to im-
prove the quality of life of individuals surviving childhood cancer by translating the research
findings into effective strategies to reduce treatment related complications. The St. Jude
Lifetime Cohort Study (SJLIFE) is a cancer epidemiologic cohort established to facilitate
longitudinal clinical evaluation of health outcomes in childhood cancer survivors across the
lifespan. A detailed description of the study along with schema for longitudinally follow-up
can be obtained by visiting the St. Jude Cloud portal (https://www.stjude.cloud/) and
going through the Cancer Survivorship tab and clicking on St. Jude LIFE study (SJLIFE),
Howell, et al. (2021). SJLIFE was activated in 2007 with initial eligibility for participation
including 10+ year survivor of pediatric cancer, treated, or followed at St. Jude from 1962
to 2012 who were at least 18 years of age. Eligibility criteria were modified in 2015 to include
5-year survivors. Eligible survivors are periodically invited to return to St. Jude for compre-
hensive clinical evaluations that involves completion of questionnaire with patient-reported
outcomes, collection of biological specimens, and systematic evaluation of organ function
including metabolic, cognitive and neuromuscular status.

Howell, et al. (2021) reported an update of the cohort progress. Among 8192 eligible
survivors, 6560 have agreed to participate and 5,223 have completed baseline on-campus eval-
uations. The median [range] age at evaluation was 32 [7.0 – 71.9]. Participants are invited
to return for follow-up visits in 3–5 years intervals. Study findings from these evaluations
have enabled characterization of multimorbidity experiences by survivors many years after
treatment for childhood cancer. This is highlighted in the study by Bhakta, et al. (2017)
that used St. Jude modified National Cancer Institute’s Common Terminology Criteria for
Adverse Events (CTCAE) 4.03, Hudson, et al. (2017), and graded 168 chronic conditions
within 13 organ systems. The CTCAE grades correspond to grade 1 (mild), grade 2 (mod-
erate), grade 3 (severe/disabling), grade 4 (life-threatening) and grade 5 (death). Often, the
focus is on modeling grade 3 or higher chronic conditions. The details of all the chronic
conditions within each organ system can be obtained from Bhakta, et al. (2017), Supple-
mentary Table S1. They grouped the chronic conditions into 13 organ systems as shown in
Table 1.

In addition to studying different outcomes the identification of the appropriate study
cohort at risk for developing the outcomes of interest is equally important. There are multiple
factors that need to be considered in the selection of eligible subjects (survivors) in the study
cohort. Because this cohort was originally constructed retrospectively, cohort entry and exit
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Table 1: Number of chronic conditions within each grouped category for each
organ system
Organ System Grouped Condition Category
Cardiovascular Myocardial Infarction (1), Arrhythmias (6), Cardiovascular

Dysfunctions (4), Structural Heart Defects (4), Vascular Diseases (4),
Essential Hypertension/Dyslipidemia (3)

Respiratory Asthama (1), Obstructive Respiratory Disorders (2), Functional
Pulmonary Deficits (3), Respiratory Parenchymal Diseases (7)

Gastrointestinal Esophageal Disorders (3), Disorders of the GI Tract (11),
Inflammatory Disorders (8), Hepatic Disorders (6), Disorder of
the Gallbladder (1)

Reproductive Disorders of the Female Reproductive System (8), Disorders of the
Male Reproductive System (5), Condition affecting the Pituitary (1)

Endocrine Growth Hormone Deficiencies (2), Overweight/Underweight (2),
Thyroid Disorders (4), Parathyroid Disorders (2), Abnormal
Glucose Metabolism (1), Conditions affecting the Pituitary (3)

Renal Kidney Injuries (2), Obstructive Urinary Disorders (3),
Hematuria (1)

Musculoskeletal Amputation (1), Osteoporosis (1), Joint Diseases (3), Peripheral
Musculoskeletal Disorders (6), Spine Disorders (4)

Neurology Strokes (3), Central Nervous System Disorders (9), Mixed Nervous
System Disorders (4), Peripheral Nervous System Disorders (6),
Seizure (1), Severe Headache (1)

Immunology and Infections Immunologic Disorders (2), Frequent/Recurrent Infections (8),
Chronic Infections (7)

Hematology Hematologic Disorders (7)
Auditory Hearing Loss (1)
Second Neoplasms Secondary and Recurrent Malignancy (1)
Ocular Ocular Disorders (4)

Note: The numbers in the brackets indicate the number of chronic conditions within each grouped category
within an organ system.

are heterogenous, i.e. their follow-up times are not equally spaced, and subjects may enter
the cohort or leave the cohort at any follow-up times, including baseline (T0), longitudinal
follow-up (TL) and date of death (TD) etc. These are outlined in Table 2.

A thorough understanding of these chronic conditions, their prevalence and associ-
ated risk factors can provide valuable information which could be used to improve future
treatment plans. For our discussions, we will focus on Cardiovascular Dysfunction (CD)
within the Cardiovascular System (22 individual chronic conditions), which has four indi-
vidual chronic conditions (cardiomyopathy (CAD), Right ventricular systolic dysfunction
(RVSD), Cor Pulmonale (CP) and Pulmonary Hypertension (PH). The discussion can be
easily generalized to all chronic conditions within cardiovascular system or across other or-
gan systems as well. CAD refers to problems with heart muscles that make it harder for the
heart to pump blood and, if untreated, can lead to heart failure or cardiac arrest. Similarly,
RVSD if untreated could lead to heart failure or myocardial infarction, CP is an alteration
in the structure and function of the right ventricle of the heart caused by a primary disorder
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Table 2: Issues of heterogeneity in identifying the study cohort
Time points Challenges
T0 1. Should T0 = 5 years since the primary diagnosis (eligibility criterion).

What is the rationale for 5 years, why not 2, 3, 4, 6, 7, 8, 9, 10 years?
2. Should T0 depend on multiple factors, including patient’s age, time
since treatment, disease type etc.?

TL 1. If we need to choose only on long-term follow-up time
to collect information, should TL be largest or shortest or somewhere in
between, when patients have more than one follow-up visits.

TD 1. Eligibility restricted to 5-year survivors potentially introduces survival
bias
2. Not every eligible patient in the the SJLIFE cohort visits clinics. They may
be lost to follow-up (true censoring) or died but this information may not be
accurately recoded. Should TD and patient
characteristics, including comorbidity at the time of death be obtained
from other sources (such as death registry).

of the respiratory system, and PH is a condition that affects blood vessels in the lungs and
makes heart work harder than normal to pump blood into lungs.

Among childhood cancer survivors, cardiovascular events (CEs) are among the top
nonmalignant causes of death (Armstrong, et al. (2009)). This is due to the damage to car-
diomyocytes caused by chemotherapy and chest radiation therapy received during the cancer
treatment (Hammoud, et al. 2024). Even though certain chemotherapy exposures such as
anthracycline are well known for associations with cardiotoxicity (Ehrhardt, et al. 2023),
they continue to be used to treat cancer because of their curative benefits. Improved char-
acterization of the cumulative incidence of CEs may facilitate opportunities for intervention
to improve/preserve cardiac health. This motivates us to estimate the cumulative incidence
(CI) of the CEs in childhood cancer survivors who completed their baseline evaluation be-
cause such information could be used to help researchers identify the best time to intervene.
More information regarding the causes, treatment, and prevention of cardiotoxicity can be
found in a comprehensive review by Koutsoukis, et al. (2018).

For our discussion we will focus on CAD (a CD), whose exact timing of development
is unknown since SJLIFE participants are not followed continuously in real time. However,
health related information is ascertained when participants came to campus for their baseline
and follow-up visits, either on their scheduled visits or in an ad hoc manner to participate
in ancillary studies. Although the exact time of CAD is unknown, the current status is
available and from there we know that CAD symptoms that motivated medical attention
occurred sometimes in the interval between the two follow-up visits. Such dataset can be
characterized as case I interval-censored data, see Sun (2006), Rai (2008).

Remark: It may be noted that the approaches presented in this article would be
applicable to the phase IV clinical trials in the context of drug development where the focus
would be on monitoring for long term toxicities/side effects of an approved drug, see Zhang,
et al. (2016).

We propose the use of multi-state models for estimating the cumulative incidence
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rate for the event of interest. Multi-state models are extensions of the survival models,
which are usually analyzed under the Cox proportional hazard model assumption. However,
multi-state models have the advantage of providing more insight into disease process and
progression as each transition, from one state to another, can be modeled and the covariates
could be incorporated e.g. using Cox proportional hazards model. It further allows for
simultaneous modeling of competing causes of death or morbidities; see Eulenburg, et al.
(2015). The simplest extension of the survival model is the continuous time progressive three-
state model e.g. see van den Hout (2017, Chapter 3). It is assumed that the survivors are
followed longitudinally and the status of the survivors alive at the pre-specified observation
time is available and that follow-up time for survivors on study can vary. In a progressive
illness/death model as illustrated in Figure 1. For example, in the context of the study
discussed above all survivors who survived for at least 5 years from their date of diagnosis
will be assumed to be in State 1 (all are alive with no CAD) and then after a median follow-
up of about 25 years were enrolled in SJLIFE and systematically evaluated for CAD. At that
point each survivor could take one of the three paths: 1) remain alive with no CAD (State
1); 2) develop CAD but remain alive (moving from State 1 to State 2); 3) progress to death
due to CAD or otherwise (moving from State 1 to State 3). For patients that reached State
2, they could also have two options: 1) remain alive with CAD (State 2); or 2) progress
towards death or cardiac failure (moving from State 2 to State 3).

λ1(u) represents the transition intensity from State 1 to State 2; λ2(t) is the transition
intensity from State 1 to State 3; λ3(t|u) is the transition intensity from State 2 to State 3.
In general, the focus could be on estimating λ1(u), the transition intensity rate for patients

Figure 1: Three-states illness/death model of patients developing CAD

progressing from the initial state (State 1) of being normal to developing CAD (State 2)
but one could be interested in estimating the incidence rates λ2(t) or λ3(t|u). This can be
done using a parametric or a semi-parametric framework. In section 2 and 3 we will outline
the parametric and semi-parametric approaches, respectively. In section 4, we outline the
complexities involved when the interest could be in estimating the incidence rates of two or
more events of interest.
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2. Parametric modeling

Let {X(t)} represent the stochastic process which identifies the state occupied a
survivor at time t if we start with n survivors in the cohort then at time t = 0 all survivors
will be in state 1 and has not experienced CAD (the event of interest). Let T be a random
variable denoting the observation time (death, CAD or no event observed in the study
duration) and U denotes the time to CAD. Thus, X(t) = 1, X(t) = 2 and X(t) = 3
represent the current status of the survivor; alive without CAD, alive with CAD or dead
with or without CAD, respectively. We assume that the occurrence of CAD is irreversible.
With the intensity functions shown in Figure 1 one can easily obtain the pseudo-survival
functions, see Rai, et al. (2013) and van den Hout (2017), as follows:

Qi(t) = exp{−
� 0

t

λi(ν)dν}, for i = 1, 2 (1)

and
Q3(t|u) = exp{−

� u

t

λ3(ν|u)dν} (2)

It may be noted that probability of surviving without experiencing CAD or death beyond
time t can be represented as,

Q(t) = exp{−
� t

0
(λ1(ν) + λ2(ν))dν} = Q1(t)Q2(t), (3)

and the survival function can be obtained as,

S(t) = P (X(t) = 1) + P (X(t) = 2)

= Q(t) +
� t

0
λ1(u)Q(u)Q3(t|u)du

(4)

2.1. Construction of the likelihood

The likelihood for the three-state model can be constructed in the following manner.
Let θ denote the vector of parameters including transition intensities. Let t be the realization
of the r.v. T and let ∆i denote the contribution to the likelihood for the ith survivor for
i = 1, 2, . . . , n. Then the likelihood function L(θ) = ∏n

i=1 ∆i Within this framework the
survivor will be in one of the four distinct types of observations and their contribution to
the likelihood will be as follows:

(i) Death without CAD, T = t, X(t−) = 1, and L1(t) = λ2(t)Q(t),

(ii) Alive without CAD, T > t, X(t) = 1, and L2(t) = Q(t),

(iii) Death with CAD, T = t, X(t−) = 2, and L3(t) =
� t

0 λ1(u)Q(u)λ3(t|u)Q3(t|u)du,

(iv) Alive with CAD, T > t, X(t) = 2, and L4(t) =
� t

0 λ1(u)Q(u)Q3(t|u)du

The likelihood function depends on in addition to the observation time and status, but is
suppressed for convenience.
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Parametric modeling is appealing as one can easily obtain the estimates and perform
the inference using likelihood approaches. Among the class of parametric distributions,
e.g. see Srivastava, et al. (2018), ven den Hout (2017), commonly used distributions are
exponential, piecewise exponential and Weibull but other distributions such as log-normal,
Gamma, log-logistic or Gompertz distributions could also be used. The data observed for
each survivor i, i = 1, 2, . . . , n, at a particular time, consists of triplet (ti, δi, γi) where ti is
the observation time and,

δi =
{

1, if ith survivor died at time ti

0, if ith survivor was alive without CAD at time ti

and
γi =

{
1, if ith survivor had CAD at time ti

0, if ith survivor did not have CAD at time ti

Then, the log-likelihood function can be written as,

l(θ) =
n∑

i=1
[ailogL1(ti) + bilogL2(ti) + cilogL3(ti) + dilogL4(ti)], (5)

where, ai = δi(1 − γi), bi = (1 − δi)(1 − γi), ci = δiγi, and di = (1 − δi)γi.

The contributions that a survivor makes to the likelihood depends on the status and
the underlying distribution. It may be worth noting that often the interest would be in
estimating the cumulative incidence of the event of interest (CAD) at particular time points,
e.g. 5-year of 10-year. Exponential distribution is the simplest model because it assumes the
intensity function to be constant across time. However, this is not a plausible assumption
when the follow-up time is long and there is the possibility of the intensity function changing
over time. To provide more flexibility in modeling such data Rai, et al. (2013) proposed to
use piecewise exponential distribution in estimating λ1(u). However, this poses the problem
of knowing exactly when the incidence rate changes, how many change points are needed
and that the incidence rates are constant within each piece. Srivastava, et al. (2018) used
Weibull distribution to circumvent these limitations. Pradhan and Kundu (2014) also used
Weibull distribution as the underlying lifetime distribution for the interval-censored data
but suggested using the EM algorithm approach.

For exponential distribution the intensity rates are constant, i.e. λi(t) = λi for i = 1, 2
and λ3(t|u) = λ3. Then, the contributions to the likelihood will be as follows:

L1(t) = λ2 exp(−(λ1 + λ2)t) (6)
L2(t) = exp(−(λ1 + λ2)t) (7)

L3(t) = λ1λ3

λ1 + λ2 − λ3
(exp(−λ3t) − exp(−(λ1 + λ2)t)) (8)

L4(t) = λ1

λ1 + λ2 − λ3
(exp(−λ3t) − exp(−(λ1 + λ2)t)) (9)

Now if one assumes that the incidence rate for CAD may change say at tc years (say,
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tc = 5) then one could use piecewise exponential distribution that would imply that λ1 = λ11
if t < tc and λ12 if t ≥ tc. The piecewise exponential assumption could be extend to other
pieces of multi-state model if there is evidence of shift in incidence rates over time. The
contributions to the likelihood will be as follows:

L1(t) = λ2 exp(−(λ11 − λ12)tc − λ12t) exp(−λ2t)
L2(t) = exp(−(λ11 − λ12)tc − λ12t) exp(−λ2t)
L3(t)

= λ11λ3

λ11 + λ2 − λ3
(exp(−λ3t) − exp(−(λ11 + λ2 + λ3)t)) if t < tc

= λ11λ3

λ11 + λ2 − λ3
exp(−λ3t)(1 − exp(−(λ11 + λ2 + λ3)tc) + λ12λ3

λ12 + λ2 − λ3
exp(−(λ11 − λ12)tc − λ3t)(exp(−(λ12+λ2−λ3)tc)) − exp(−(λ12 + λ2 − λ3)t) if t ≥ tc

L4(t) = L3(t)/λ3

For Weibull distribution the intensity function can be defines by λi(t) = ηiωit
ωi−1,

for i = 1, 2 and λ3(t|u) = λSM
3 (t|u) = η3ω3(t)ω3−1 under the assumption of a semi-Markov

process or λ3(t|u) = λM
3 (t|u) = η3ω3(t − u)ω3−1 under the assumption of a Markov pro-

cess. This leads to QSM
3 (t|u) = exp(−η3(tω3 − uω3)) under semi-Markov assumption and

QM
3 (t|u) = exp(−η3(t − u)ω3) under Markov assumption, see Kalbfleisch and Lawless (1985)

and Hazerlak, et al. (2003). The contribution to the likelihood is provided below:

L1(t) = η2ω2t
ω2−1 exp(−η1t

ω1 − η2t
ω2)

L2(t) = exp(−η1t
ω1 − η2t

ω2)

L3(t) =
� t

0
Q(u)λ1(u)QSM

3 (t|u)λSM
3 (t|u)du under semi-Markov assumption

=
� t

0
Q(u)λ1(u)QM

3 (t|u)λM
3 (t|u)du under Markov assumption

L4(t) =
� t

0
Q(u)λ1(u)QSM

3 (t|u)du under semi-Markov assumption

=
� t

0
Q(u)λ1(u)QM

3 (t|u)du under Markov assumption

Now, using the above contributions to the likelihood one can perform the likelihood estima-
tion and obtain confidence intervals.

2.2. Incorporating covariates

As we have noted before, one of the long-term consequences of cancer patients treated
with cardiotoxic therapy (treated with anthracycline and/or chest radiation) is that they are
at a very high risk of developing CAD. Let us denote this group as AR (At Risk group),
and let NR represent the groups of survivors who were not treated with cardiotoxic therapy.
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Within this context, it would be important not only to know the onset time of these CADs
but it would be important to know, from a clinician’s perspective, the risk associated with
therapeutic exposure and other risk factors such as age at diagnosis or sex etc. Thus,
incorporation of covariates is an important issue. van den Hout (2017) proposes to use
proportional hazard type to regression framework represented as

h(t|X) = h0(t) exp(β′X) (10)

where β = (β1, β2, . . . , βp) is a vector of parameters and x = (x1, x2, . . . , xp) is the vector
of fixed covariates without an intercept term and h0(t) denotes the baseline hazard which
could be modeled using any of the above mentioned parametric distributions. Alternatively,
one can assess the impact of the covariates on the incidence rates by modeling the scale
parameter as function of the parameters. For exponential distribution it would be equivalent
to modeling λ = exp(β′X) and for Weibull distribution it would amount to modeling η =
exp(β′X).

3. Semi-parametric modeling

Both Rai, et al. (2013) and Srivastava, et al. (2018) used a parametric approach with
the assumption that the transition intensity rates from different risk groups are independent.
Subjects in different groups are indeed independent, but the rates can be modeled assuming
a dependence structure. In other words, the parametric approach may not be suitable
if the underlying parametric assumptions do not hold. To overcome this limitation, we
propose a semi-parametric approach with EM algorithm to model CI within the illness-
death framework. Rai and Matthews (1997) introduced discrete scale models for estimating
the transition intensity rate in a survival-sacrifice experiment using EM algorithm. Later,
Rai, et al. (2000) extended a similar methodology to a mixed-scale model with an EM
algorithm approach as well. EM algorithm is a powerful procedure to use when no closed-
form solution can be obtained from the likelihood function. Besides the traditional EM
algorithm, Rai and Matthews (1993) introduced a modified approach that could potentially
save time (fewer iterations). A detailed application demonstration of EM algorithm can be
found in Gunaratnam and Rai (2019). Additionally, when dealing with high dimensional
parameters, the regular simple case likelihood function will not work. Rather, the use of
profile likelihood should be considered, see Murphy and Van Der Vaart (2000).

Given that the data on CAD is collected intermittently the occurrence of the events
falls in the category of interval-censored data as discussed above. To better understand the
problem at hand, let us define Year 1 as 5 years after treatment completion and Year 2 as 6
years after treatment completion, a patient can choose to participate in the study either at
Year 1 or Year 2, or even later. The challenge comes when we build the likelihood functions
that will be discussed in the next section.

The following table reflects the data characteristics in a complete data setting. Table
3 corresponds to survivors who have come for SJLIFE evaluations for the first time and
assume the maximum follow-up time is 5 years after cohort entry.

It is assumed that we are interested in looking at intensity rates up to five years. Let
λi, i = 1, 2, . . . , 5 be the intensity rates at Year i (Year 1, Year 2, etc.). Let n+i i = 1, 2, . . . , 5
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Table 3: Data characteristics in a complete data setting

Year n+1 n+2 n+3 n+4 n+5 Rate
1 r11 r12 r13 r14 r15 λ1
2 r22 r23 r24 r25 λ2
3 r33 r34 r35 λ3
4 r44 r45 λ4
5 r55 λ5

r+1 r+2 r+3 r+4 r+5

be the number of subjects that came to the clinic in year i. For example, n+1 represents the
patients who came to the clinic with 1 year of follow-up, and n+2 represents the patients who
came to the clinic with 2 years of follow-up. Within any year i let there be r+i, i = 1, 2, . . . , 5
events (survivors with CAD, abnormal). For example, when an abnormal survivor visited
in Year 2, the survivor may have become abnormal either in Year 1 or in Year 2, but that
information is unknown. Therefore, we define r+2 = r12 + r22 as the total number of events
in Year 2 in which r11 represents the events that occurred during Year 1 and r22 represents
the events that occurred during Year 2.

In summary, estimating transition intensity rates in a three-states illness-death model,
such as the SJLIFE study, is not a simple task. The existing approach such as construct-
ing the likelihood function is very complicated since the function is not in a closed form.
Furthermore, sometimes the exponential model and the Weibull model might not be appro-
priate as the underlying assumptions might not always hold. This motivates us to construct
a non-parametric model. In combination with EM algorithm, the transition intensity rate
can be easily obtained.

Likelihood based approach

Including all the characteristics of the data in the likelihood is somewhat challenging
in our situation. However, here we present an approach that would be appropriate for the
data that we have in hand. For simplicity purposes, we will only show time points up to
three years (M = 3).

We define the table above as complete data since we specifically know which survivors
are abnormal. For incomplete data, we define (n+k, r+k), k = 1, 2, . . . , M and r+k = ∑k

j=1 rjk,
k = 1, 2, . . . , M represents the total number of survivors with abnormality with k years of
follow-up and n+k represents the survivors who come to the clinic with k years of follow-up.
In our case, we can write it as r+1 = r11, r+2 = r12 + r22, r+3 = r13 + r23 + r33. In the
incomplete data setting, we only know r+k but not the actual number of abnormal cases
within each year of follow-up. Since we have two independent groups, AR (At Risk) and NR
(Not at Risk), the likelihood function can be defined for each group independently, which
have a similar form. Let

z+j = n+j − r+j, j = 1, 2, 3
p+1 = λ1

p+2 = λ1 + (1 − λ1)λ2

p+3 = λ1 + (1 − λ1)λ2 + (1 − λ1)(1 − λ2)λ3
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Thus, in general,
p+j = λ1 +

j−1∑
k=1

[ k∏
i=1

(1 − λi)
]
λk+1 (11)

z+j represents the number of subjects at risk, p+j is the prevalence of events occurring in
the jth year. For incomplete data, the likelihood functions corresponding to the first three
time points will be:

LIC
1 = p

r+1
+1 (1 − p+1)z+1 = λ

r+1
1 (1 − λ1)n+1−r+1

LIC
2 = p

r+2
+2 (1 − p+2)z+2 = [λ1 + (1 − λ1)λ2]r+2 [(1 − λ1)(1 − λ2)]n+2−r+2

LIC
3 = p

r+3
+3 (1 − p+3)z+3 = [λ1 + (1 − λ1)λ2 + (1 − λ1)(1 − λ2)λ3]r+3 [(1 − λ1)(1 − λ2)(1 − λ3)]n+3−r+3

The generalized form of the likelihood function at each time point can be written as:

LIC
j =

[
λ1 +

j−1∑
k=1

k∏
i=1

(1 − λi)λk+1
]r+j

[ j∏
k=1

(1 − λj)
]z+j

, j = 1, 2, . . . , M (12)

For complete data, assuming the number of events to follow a multinomial distribution, the
likelihood functions of the first three time points can be presented as:

LC
1 = λr11

1 (1 − λ1)z+1

LC
2 = λr12

1 [(1 − λ1)λ2]r22 [(1 − λ1)(1 − λ2)]z+2

LC
3 = λr13

1 [(1 − λ1)λ2]r23 [(1 − λ1)(1 − λ2)λ3]r33 [(1 − λ1)(1 − λ2)(1 − λ3)]z+3

The generalized form of the likelihood function at each time point can be written as:

LC
j = λ

r1j

1 [(1 − λ1)λ2]r2j . . . [
j−1∏
k=1

(1 − λk)λj]rjj [
j∏

k=1
(1 − λk)]z+j (13)

Now assuming the intensity rates to be λi and λ∗
i , i = 1, 2, . . . , M , for the AR and NR

groups respectively, one can obtain the complete likelihood functions, for details see Qian, et
al. (2023). Qian, et al. (2023) used logit link, see Agresti (2013), Rai and Matthews (1997),
to establish a relationship between and to provide for a parsimonious modeling of the data.
Specifically, they assumed,

λ∗
k = eβλk

1 + (eβ − 1)λk

, and (1 − λ∗
k) = 1 − λk

1 + (eβ − 1)λk

(14)

It may be noted that within this framework other covariates of interest could be modeled by
replacing β with β′X in the above equation. Now it is easy to see that r+j is known in the
incomplete data and follows a binomial distribution,

r+j ∼ B(n+j, 1 −
j∏

k=1
(1 − λk)), j = 1, 2, . . . , M (15)

and the conditional distribution of rkj given r+j will also follow a binomial distribution given
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by,

rkj|r+j ∼ B(r+j,

∏k−1
i=1 (1 − λi)λk

1 − ∏j
i=1(1 − λi)

), k = 1, 2, . . . , j; j = 1, 2, . . . , M (16)

Qian, et al. (2023) use the fact the sufficient statistics corresponding to the complete
log-likelihood lC(λ, β) are:

M∑
j=k

(rkj + r∗
kj), and

M∑
j=k

r∗
kj (17)

and propose to estimate the parameters using EM algorithm. The basic steps are outlined
below:

E-step: Start with the initial estimates of λ = λ(0) and β = β(0) then one can obtain
the values of r

(1)
kj for k = 1, 2, . . . , j and for all j = 1, 2, . . . , M .

M-step: Then, using the r
(1)
kj ’s and the initial value λ(0) and one can obtain the

estimate of β, β(1), using profile likelihood. Then, using r
(1)
kj ’s and β(1) obtain updated

estimate λ(1) using the complete likelihood. This iterative process continues until the distance
between (λ(q)

1 , λ
(q)
2 , λ

(q)
3 , β(q)) and (λ(q−1)

1 , λ
(q−1)
2 , λ

(q−1)
3 , β(q−1)) at the qth iteration is smaller

than a pre-specified constant C0. Qian, et al. (2023) also performed simulation studies to
show that the performance of the EM approach is reasonable.

4. Extension of multi-state model for competing events

So far, our focus has been on estimating the CI for CAD. However, there are multiple
events of interest such as RVSD and PH making the modeling becomes even more com-
plicated. In this section we outline some of the issues in modeling such data and discuss
some analytical approaches. For simplicity let us first assume that all three types of CEs are
mutually exclusive and if the interest is in estimating CI for all three types of events, then
we can proceed to model it according to the illness-death model proposed below.

In the above setting we assume that the three CDs of interest are mutually exclusive,
and each survivor can have only one event during the follow-up time. In such situations,
one can extend the parametric models proposed in Section 2 using either exponential or
Weibull distribution. Although, in principle, the approach could be easily implemented but
the likelihood representation may be somewhat complicated, and the estimations process
could be computationally more involved. The pseudo survival functions can be obtained as,

Q1a(t) = exp{−
� t

0
λ1a(ν)dν}, Q1b(t) = exp{−

� t

0
λ1b(ν)dν}, and

Q1c(t) = exp{−
� t

0
λ1c(ν)dν}, Q2(t) = exp{−

� t

0
λ2(ν)dν}
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Figure 2: Three-states illness/death model of patients developing cardiovascular
dysfunction

and

Q3a(t|u) = exp{−
� t

u

λ3a(ν|u)dν}, Q3b(t|u) = exp{−
� t

u

λ3b(ν|u)dν},

Q3c(t|u) = exp{−
� t

u

λ3c(ν|u)dν}

It may be noted that probability of surviving without experiencing and any CD or death
beyond time t can be represented as,

Q(t) = exp{−
� t

0
(λ1z(ν) + λ1b(ν) + λ1c(ν) + λ2(ν))dν} = Q1a(t)Q1b(t)Q1c(t)Q2(t) (18)

and the survival function can be obtained as,

S(t) = P (X(t) = 1) + P (X(t) = 2)

= Q(t) +
� t

0
λ1a(u)Q(u)Q3a(t|u)du +

� t

0
λ1b(u)Q(u)Q3b(t|u)du+

� t

0
λ1c(u)Q(u)Q3c(t|u)du

(19)

Then, using the above pseudo survival functions one can obtain the contributions to the
likelihood made by each survivor depending on their outcome which can be described as
follows:
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(i) Death without any CD, T = t, X(t−) = 1, and L1(t) = λ2(t)Q(t),
(ii) Alive without any CD, T > t, X(t) = 1, and L2(t) = Q(t),
(iii) Death with CAD, T = t, X(t−) = 2, and L3a =

� t

0 λ1a(u)Q(u)λ3a(t|u)Q3a(t|u)du

(iv) Alive with CAD, T > t, X(t) = 2, and L4a =
� t

0 λ1a(u)Q(u)λ3a(t|u)du

(v) Death with RSVD, T = t, X(t−) = 2, and L3b =
� t

0 λ1b(u)Q(u)λ3b(t|u)Q3b(t|u)du

(vi) Alive with RSVD, T = t, X(t) = 2, and L4b(t) =
� t

0 λ1b(u)Q(u)Q3b(t|u)du

(vii) Death with PH, T > t, X(t−) = 2, and L3c(t) =
� t

0 λ1c(u)Q(u)λ3c(t|u)Q3c(t|u)du

(viii) Alive with PH, T = t, X(t) = 2, and L4c(t) =
� t

0 λ1c(u)Q(u)Q3c(t|u)du

Based on the above quantities one can write down the likelihood function and obtain
the estimates of the parameters of interest using the theory of maximum likelihood or EM
algorithms as discussed in Sections 2 and 3. Extension of semi-parametric approach for
simultaneous modeling of the three types of CDs requires more theoretical development and
is proposed as future work.

5. Conclusions and discussions

In this manuscript, we have provided an overview of the parametric and semi-parametric
approaches that could be adopted for modeling CI of one or more competing events of interest
with death being an absorbing state.

When the survivors are followed longitudinally then, under the assumption of con-
tinuous time Markov process, one can easily adopt the likelihood approach to model the
transition probabilities as discussed in van den Hout (2017, Chapter 4). The development
of semi-parametric approach needs to be developed and is left as future work.

The SJLIFE cohort study is a unique study to evaluate the association of childhood
cancer treatment with the long-term adverse effect. The discussed approach can be extended
to any interval-censored data or any multi-state models and could be extremely useful in the
prediction of adverse outcomes.

There are multiple challenges to drawing statistical inference from such studies. Ro-
bustness of results may depend on the selection of the cohort and time of data collection
as discussed in Table 2. Estimation can be based on parametric, non-parametric or semi-
parametric models. The number of parameters not only depends on estimation procedure
but also number of stages as included in Figures 1 and 2. Incorporating covariate effects on
different parameters in Figures 1 and 2 makes inference much more cumbersome.
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