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Abstract

Statistical analysis of point-referenced spatial/geostatistical data generally considers
a multivariate Gaussian distribution as the underlying probability model. That way, the
related statistical inference boils down to estimating the mean vector and the covariance
matrix of some multivariate normal distribution. While a fully general specification of the
covariance matrix yields a flexible model for the data, it introduces too many parameters
for consideration, thereby rendering statistical inference impossible. Alternatively, one can
use a parametric covariance function that aligns with the underlying data. This covariance
function is then used to form the elements of the covariance matrix under consideration.
Parametric covariance functions often rely on the assumption of isotropy, or if not so, at least
assume stationarity. However, stationary covariance functions are inadequate for explaining
the complex dependence structure of spatial data arising out of environmental applications.
In this article, we review prominent approaches for the construction of non-stationary co-
variance functions. Once a suitable covariance function is selected, the next challenge that
one faces is to carry out computation using that covariance function. Non-stationary covari-
ance functions although flexibly capture the spatial dependence structure, model fitting with
them requires O(n3) computation, which is impossible to commence if n is massive. Basis
function-based construction of non-stationary covariance functions can reduce the computa-
tional cost by a large margin. Recently, the Vecchia approximation-based nearest-neighbour
Gaussian process has gained popularity among applied researchers. In this article, we review
these approaches and some more for the construction of scalable spatial covariance functions
for point-referenced spatial data.

Key words: Geostatistical data; Non-stationary covariance function; Vecchia approximation;
Scalable spatial models.
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1. Introduction

Point-referenced spatial/geostatistical data arises when observations are made at n
spatial/geographical locations s1, s2, · · · , sn. They are routinely encountered in a broad range
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of areas like environmental, meteorological, ecological, and economic studies. The observa-
tions y(s1), y(s2), · · · , y(sn) are generally scalar-valued, and can signify temperature, rainfall,
ground-level ozone concentration, house price, etc. Often the observations are recorded from
satellite-based images and as a result, n can be as large as of the order ∼ 100000. In addi-
tion to the dependent nature of the background random variables Y (s1), Y (s2), · · · , Y (sn),
a large value of n renders the statistical modeling to be doubly difficult. In fact, a large n
implies that the number of parameters p required for model specification may also be large.
So, it is a high dimension high sample size (HDHSS) problem that couples high dimension
(large p) with big data (large n).

Statistical inference is often carried out assuming that (Y (s1), Y (s2), · · · , Y (sn)) is
distributed according to a multivariate Gaussian distribution with mean vector µ and co-
variance matrix Σ. An exception to Gaussianity is noted for spatial data associated with
extreme events like daily maximum windspeed, daily maximum temperature (Huser and
Wadsworth (2022)), extreme snow depth (Blanchet and Davison (2011)), etc., which requires
modeling with multivariate extreme value distribution. Apart from that, spatial data that
are positive-valued, skewed (Ayalew et al. (2024)) with a possible heavy tail, are also modeled
by multivariate skewed distributions (Hazra et al. (2020)). Nevertheless, for the majority of
cases, the inference boils down to estimating the mean vector and the covariance matrix of a
multivariate normal distribution. Generally, the mean vector µ = (µ(s1), µ(s2), · · · , µ(sn))
is assumed to be a function of spatial locations; for example, µ(si) = β0 + β1si,1 + β2si,2.
Geostatistical data y(s1), y(s2), · · · , y(sn) is often accompanied by measurements on other
spatially indexed covariates, and those covariates are included in the model by extending the
formula of mean to µ(si) = β0+β1si,1+β2si,2+γ1x1(si)+γ2x2(si). Unlike µ, the specification

of Σ requires additional care. A fully general specification of Σ as


σ11 σ12 · · · σ1n

σ21 σ22 · · · σ2n
...

σn1 σn2 · · · σnn


elicits a flexible covariance structure for the data, although it brings n(n+1)

2 parameters un-
der consideration, thereby making statistical inference impossible. Note that, the number of
data points is n, and hence, any meaningful specification of Σ must not exceed n parameters.
One way of achieving that is to consider a parametric covariance function cY (s, s′) and use

it to specify the spatial covariance matrix as Σ =


cY (s1, s1) cY (s1, s2) · · · cY (s1, sn)
cY (s2, s1) cY (s2, s2) · · · cY (s2, sn)

...
cY (sn, s1) cY (sn, s2) · · · cY (sn, sn)

.

In that case, the estimation of Σ translates to the estimation of only a few unknown param-
eters associated with cY (s, s′).

A well-known and much-used parametric covariance function is the exponential co-
variance function defined as cY (s, s′) := σ2e−ϕ∥s−s′∥2 . The two parameters σ2 and ϕ > 0
are used to specify the shape of the covariance function. σ2 specifies the variance of
the underlying spatial process {Y (s)} and ϕ, which is the decay parameter, decides how
strong the spatial correlation is between Y (s) and Y (s′). Sometimes, an additional τ 2 pa-
rameter is brought in to define a squared exponential covariance function with nugget as
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cY (s, s′) :=
{

σ2 + τ 2 if 0 =∥s − s′∥2

σ2e−ϕ∥s−s′∥2 if 0 <∥s − s′∥2.

τ 2 is referred to as the nugget variance and it quantifies the variability of the microscale
spatial components. The microscale spatial components are those parts of {Y (s)} which are
uncorrelated at even the minutest spatial resolution, and hence practically behave like an
iid process. Besides the exponential covariance function, there are many other parametric
covariance functions that are used to model geostatistical data. Some of them are presented
in the following table.

Table 1: Useful parametric covariance functions for geostatistical modeling

Covariance function Formula

Spherical cY (s, s′) :=

σ2 + τ 2if 0 =∥s − s′∥2

σ2
[
1 − 3

2ϕ∥s − s′∥2 + 1
2ϕ3∥s − s′∥3

2

]
if 0 <∥s − s′∥2

Exponential cY (s, s′) :=
{

σ2 + τ 2if 0 =∥s − s′∥2

σ2e−ϕ∥s−s′∥2 if 0 <∥s − s′∥2

Squared exponential cY (s, s′) :=
{

σ2 + τ 2if 0 =∥s − s′∥2

σ2e−ϕ∥s−s′∥2
2 if 0 <∥s − s′∥2

Powered exponential cY (s, s′) :=
{

σ2 + τ 2if 0 =∥s − s′∥2

σ2e−ϕ∥s−s′∥α
2 if 0 <∥s − s′∥2; 0 < α ≤ 2

Rational quadratic cY (s, s′) :=

σ2 + τ 2if 0 =∥s − s′∥2

σ2
(
1 − ∥s−s′∥2

2
ϕ+∥s−s′∥2

2

)
if 0 <∥s − s′∥2

Matérn (ν > 0) cY (s, s′) :=

σ2 + τ 2if 0 =∥s − s′∥2
σ2

2ν−1Γ(ν)

(√
2νϕ∥s − s′∥2

)ν
Kν

(√
2νϕ∥s − s′∥2

)
if 0 <∥s − s′∥2

The squared exponential covariance function resembles the exponential covariance
function but suffers from the limitation that the associated spatial process {Y (s)} is in-
finitely many times differentiable. The spherical covariance function on the other hand has
compact support and hence is useful in creating a sparse Σ. The Matérn covariance func-
tion is attractive in the sense that the associated spatial process {Y (s)} has controllable
smoothness with ⌈ν⌉ − 1 times differentiability. However, all these parametric covariance
functions depend only on the distance ∥s − s′∥2 disregarding the direction along which s′

is separated from s. This property is known as isotropy. Isotropic covariance functions are
not suitable for modeling environmental datasets that are under the influence of wind flow.
For such datasets, the observations separated along the direction of wind flow typically dis-
play stronger dependence compared to the ones separated along other directions. Banerjee
et al. (2003) analyzed a scallop catch dataset where the dependence structure along differ-
ent directions varied substantially thereby necessitating the use of anisotropic covariance
functions.

Unlike the isotropic covariance functions, whose covariance contours are circles, the
covariance contours of the anisotropic covariance functions can take the shape of arbitrary
closed curves. Different notions of anisotropy have been introduced by different researchers.
Zimmerman (1993) systematically studied them and classified them roughly into three dif-
ferent broad categories. In order to understand them we first need to define the variogram
function γY (s, s′) associated with a spatial process {Y (s)}. It is defined by the formula
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γ(s, s′) := 1
2var(Y (s) − Y (s′)). In an alternative approach to geostatistical modeling, the

whole theory that can be developed using the covariance function cY (s, s′), has been devel-
oped parallel using the variogram function γ(s, s′). Zimmerman (1993) defined three classes
of anisotropy as follows. The differential dependence along the different directions is referred
to as sill anisotropy if lima→∞ γ( ah

∥h∥) depends not on ∥h∥ but on h. Here h = (s − s′) is
the lag between two spatial locations s and s′. When lima→0 γ( ah

∥h∥) depends on h, one says
the process shows nugget anisotropy. The third and last type of anisotropy occurs when the
decay parameter ϕ depends on h. It is referred to as range anisotropy. A particularly inter-
esting subclass of the range anisotropy is the geometric anisotropy. Geometrically anisotropic
spatial process {Y (s)} has a covariance function with elliptical covariance contours. A sim-
ple recipe for creating a geometrically anisotropic covariance function is to replace ∥s − s′∥2

by
√

(s − s′)′A(s − s′) in the formula of a parametric isotropic covariance function cY (s, s′).
The 2 × 2 matrix A is a pd matrix with 3 unknown parameters, that control the shape and
the alignment of the elliptical covariance contours.

Although useful, the anisotropic covariance functions are not the best choice for mod-
eling the complex dependence structure associated with geostatistical data arising out of
environmental applications. The reason is that such a covariance function cY (s, s′), although
invokes differential dependence structure along different directions, is still a function of the
lag h between two spatial locations s and s′. This property is known as stationarity. Sta-
tionarity implies that the covariance between Y (s) and Y (s′) remains unchanged if both the
spatial locations are shifted by the same lag h, i.e., CY (s, s′) = CY (s+h, s′ +h). Efforts have
been made to create non-stationary covariance functions CY (s, s′) which depend on both s
and s′.

2. Towards non-stationary covariance functions

Over the years different strategies to create non-stationary covariance functions have
been proposed. Here we discuss a few prominent ones.

Approach 1 : Direct construction The simplest approach is to propose a formula
of CY (s, s′) that involves both s and s′ and then subsequently show that CY (s, s′) is a valid
covariance function. However, guessing such functions and then showing them to be valid
covariance functions can be difficult.

Approach 2 : Transformation of the original process Alternatively, one can
start with a spatial process {Y (s)} that has an isotropic covariance function and then take
a transformation of {Y (s)} to define a new process {Y ∗(s)} which has an anisotropic co-
variance function. The transformations used are generally elementary in nature. One such
transformation Y ∗(s) = σ(s)Y (s) gives rise to the non-stationary covariance function of the
form CY ∗(s, s′) = σ(s)σ(s′)CY (s, s′) = σ(s)σ(s′)f(∥s− s′∥2). σ(s) is a geographically varying
positive function that enforces the departure from stationarity in a multiplicative manner.
In another transformation, one can propose Y ∗(s) = Y (s) + δ(s)Z, where Z is a random
variable with mean 0 and variance σ2

Z and δ(s) is a positive function of s. The transformed
process has the covariance function CY (s, s′) + δ(s)δ(s′)σ2

Z = f(∥s − s′∥2) + δ(s)δ(s′)σ2
Z . In

this case, the departure from stationarity takes place in an additive manner. To combine
both, one can define Y ∗(s) = σ(s)Y (s) + δ(s)Z leading to a non-stationary covariance func-
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tion of the form σ(s)σ(s′)f(∥s − s′∥2) + δ(s)δ(s′)σ2
Z . However, the class of non-stationary

covariance functions that can be generated by the transformation approach are very limited.

Approach 3 : Deformation approach Richer class of non-stationary covariance
functions can be created by the deformation approach. In a seminal paper, Sampson and
Guttorp (1992) first came up with the idea of deformation g(·) of the original geographi-
cal space so that the observed spatial process {Y (s)} is stationary with respect to to the
deformed geographical locations g(s1), g(s2), · · · , g(sn). Hence, the covariance of Y (s) and
Y (s′) is of the form f(∥g(s) − g(s′)∥2). When considered in terms of the original geographi-
cal space, the covariance function is not a function of ∥s − s′∥2, hence non-stationary. This
brilliant idea however suffers from the serious shortcoming that estimating the deformation
function g(·) from the data is a highly non-linear optimization problem that can be numer-
ically very challenging. Moreover, the estimated g(·) can sometimes fold over its domain
leading to a meaningless covariance function, and also, the estimation process as proposed
by Sampson and Guttorp (1992) requires replicated samples at the original geographical
locations s1, s2, · · · , sn.

Approach 4 : Process convolution approach In time series analysis, starting
with a white noise process {Zt} that has the simplest covariance function, one can create a
moving average process {Xt} by taking a linear combination of Zt as Xt := Zt + θ1Zt−1 +
· · · + θqZt−q. The process {Xt} has a substantially improved covariance function compared
to the original process {Zt}. Much to the same spirit, starting with a spatial white noise
process {Z(s)} with a simple spatial covariance function one can create a new process {Y (s)}
by the following process convolution

Y (s) :=
∫
R2

K(s − s′)Z(s′)ds′. (1)

Strictly speaking, the above integral is not defined and should be interpreted as Y (s) :=∫
R2 K(s − s′)dB(s′) where B(s) denotes a two-dimensional Brownian motion on R2. When

interpreted as above, the process {Y (s)} has a stationary covariance function given by the
formula cY (s, s′) = σ2 ∫

R2 K(s − t)K(s′ − t)dt. Higdon (1998) used spatially varying kernel
functions in the above formula to generate a non-stationary covariance function. In that
case, Y (s) :=

∫
R2 Ks(s − s′)dB(s′), where Ks(s − t) is a non-negative real-valued integrable

function (bivariate kernel function); the associated covariance function is non-stationary, and
is given by the formula

cY (s, s′) = σ2
∫
R2

Ks(s − t)Ks′(s′ − t)dt. (2)

The convolution approach was later extended by Paciorek and Schervish (2006) to produce
a flexible non-stationary Matérn covariance function with nugget as

cY,NS(s, s′) :=


τ 2 + σ2 if s = s′

σ2

2ν−1Γ(ν) |Σ(s)|
1
4 |Σ(s′)|

1
4
∣∣∣Σ(s)+Σ(s′)

2

∣∣∣− 1
2

×
(
2
√

νϕ
√

Q(s, s′)
)ν

Kν

(
2
√

νϕ
√

Q(s, s′)
)

if s ̸= s′.

(3)

Here Σ(s) =
(

cos(θ(s)) − sin(θ(s))
sin(θ(s)) cos(θ(s))

)(
λ1(s) 0

0 λ2(s)

)(
cos(θ(s)) sin(θ(s))

− sin(θ(s)) cos(θ(s))

)
and Q(s, s′) =

(s − s′)′
(

Σ(s)+Σ(s′)
2

)−1
(s − s′). Paciorek and Schervish (2003) also used the cY,NS(s, s′) as
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the covariance function of a Gaussian process prior for a Bayesian non-parametric regression
problem. While λ1(s) and λ2(s) determine the length of the major and minor axis of the el-
liptical covariance contours at location s, the θ(s) determines the alignment of the contours.
cY,NS(s, s′) is non-stationary since the shape of the covariance contours vary with respect to
s.

3. Scalable covariance functions for massive geostatistical data

Once an appropriate non-stationary covariance function is selected, the next step is
to estimate the unknown parameters associated with the mean and the covariance func-
tion. Assume that the vector of those unknown parameters is denoted by θ. Hence, µ
and Σ are functions of θ and are better represented as µ(θ) and Σ(θ). Under the classi-
cal paradigm, the estimation is mostly carried out by maximizing the Gaussian likelihood
function L(θ|y) :=

(
1√
2π

)n 1
|Σ(θ)|

1
2
e− 1

2 (y−µ(θ))′Σ(θ)−1(y−µ(θ)). The likelihood function is highly
non-linear in θ and hence requires numerical algorithms for finding the global maximum.
On the other hand, if the Bayesian path is chosen, one needs to find the posterior distribu-
tion π(θ|y) ∝

(
1√
2π

)n 1
|Σ(θ)|

1
2
e− 1

2 (y−µ(θ))′Σ(θ)−1(y−µ(θ))π(θ). The posterior generally does not
appear in the form of nice well-known distributions, and hence its exploration requires an
MCMC method. Regardless of the classical or Bayesian approach being adopted, one needs
to evaluate the terms |Σ(θ)| and (y − µ(θ))′Σ(θ)−1(y − µ(θ)) repeatedly. Each evaluation
of |Σ(θ)| and Σ(θ)−1 requires O(n3) operations and n being a large number of the order
∼ 100000, the computational cost jumps to a staggering O(1015) operations making it im-
possible to implement. Suitable strategies have been developed to bring the computational
cost down to a manageable level. Below we discuss some such strategies. Most of these ap-
proaches are based on replacing the terms |Σ(θ)| and (y − µ(θ))′Σ(θ)−1(y − µ(θ)) by some
approximation and then carrying out the computation. Their success depends on whether
the approximation to the original term is good and itself is easily computable.

3.1. Fixed rank Kriging

In one of the earliest works in this direction Cressie and Johannesson (2008), while
fitting a centered Gaussian process Y (s) ∼ GP (0, cY (s, s′)) to the observed geostatistical
data, approximated {Y (s)} by a new process defined as Ỹ (s) = ∑R

r=1
∑Kr

k=1 θr,kφr,k(s) +
ϵ(s)v(s). φr,k(s) are basis functions of resolution r and θr,k are dependent Gaussian random
variables with covariance matrix K(ϕ). So, Ỹ (s) ∼ GP (0, cỸ (s, s′)) and its covariance
function cỸ (s, s′) approximates cY (s, s′). Consequently, the covariance matrix Σ is also being
approximated by the covariance matrix φK(ϕ)φ′ + τ 2V. For the approximating covariance
matrix φK(ϕ)φ′ + τ 2V calculating the determinant and inverse it takes O(n) operations
only. Thus they approximated the original likelihood L(θ|y) by a new likelihood L(ϕ, τ 2|y)
where (ϕ, τ 2) is the vector comprising the new parameters.

3.2. Gaussian predictive process models

In another approach more geared towards the Bayesian paradigm, Banerjee et al.
(2008) considered a centered Gaussian process Y (s) ∼ GP (0, cY (s, s′)) and approximated
it by a predictive process [Y (s)|Y (s∗

1), Y (s∗
2), · · · , Y (s∗

k)] + ϵ(s). So, the predictive process
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can be expressed as Ỹ (s) = [cY (s1, s∗), cY (s2, s∗), · · · , cY (sn, s∗)]Σ∗
Y

−1


Y (s∗

1)
Y (s∗

2)...Y (s∗
k)

 + ϵ(s) =

S(θ)


Y (s∗

1)
Y (s∗

2)...Y (s∗
k)

+ ϵ(s). s∗
1, s∗

2, · · · , s∗
k are some knot points on the geographical plane. So, the

approximating covariance matrix ΣỸ is of the form S(θ)K(θ)S′(θ) + τ 2I. Calculating the
determinant and inverting S(θ)K(θ)S′(θ) + τ 2I takes only O(n) operations. For fixed rank
Kriging, the number of basis functions n = K1 + K2 + · · · + KR determines the the quality
of approximation, and it should be chosen judiciously to trade quality of approximation for
computational cost. In the case of the Gaussian predictive process model, the number of the
knot points n plays the same role.

3.3. Covariance tapering

While the last two approaches were based on approximating the original Gaussian
process {Y (s)} by a new Gaussian process {Ỹ (s)} with which the computational cost reduces
significantly to O(n), other approaches directly approximate Σ by a new covariance matrix
Σ̃. In the covariance tapering approach, instead of approximating Σ by a new covariance
matrix Σ̃, one transforms Σ to convert it to a sparse matrix. With that, the likelihood can
be rewritten as

(
1√
2π

)n 1
|Σ|

1
2
e− 1

2 tr((y−µ)′Σ−1(y−µ)) =
(

1√
2π

)n 1
|Σ|

1
2
e− 1

2 tr((y−µ)(y−µ)′Σ−1), and can

be approximated by
(

1√
2π

)n 1
|Σ|

1
2
e− 1

2 tr((y−µ)(y−µ)′Σ−1). Here Σ is approximated by Σ⊙T. The
transformation T is referred to as the one-taper transform and it transforms Σ to Σ ⊙ T.
T is a covariance matrix formed by a compactly supported covariance function (Kaufman
et al. (2008)). The tapered matrix Σ ⊙ T is also a covariance matrix and it is sparse,
thereby making the approximating likelihood scalable to massive n. A variation of the one-
taper transform is called a two-taper transform that transforms Σ to Σ ⊙ T as well as the
empirical covariance matrix (y − µ)(y − µ)′ to (y − µ)(y − µ)′ ⊙ T. That way, both the
model covariance matrix and the empirical covariance matrix become sparse.

3.4. Vecchia approximation and nearest neighbour Gaussian process (NNGP)

Any likelihood function can be expressed as products of conditional distributions as
follows

[Y (s1), Y (s2), · · · , Y (sn)] = [Y (sn) | Y (sn−1), · · · , Y (s1)] × [Y (sn−1) | Y (sn−2), · · · , Y (s1)]
× · · · × [Y (s2) | Y (s1)] × [Y (s1)].

Based on this representation Vecchia (1988) in an early work figured out how to reduce the
computational cost of evaluating a likelihood. He demonstrated that the above expression is

≈ [Y (sn) | Y (s)s∈Nn ] × [Y (sn−1) | Y (s)s∈Nn−1 ] × · · · × [Y (s2) | Y (s)s∈N2 ] × [Y (s1)].

where Ni denotes of neighbourhood set of si that contains atmost k spatial locations. So
under the traditional Gaussian setup evaluating [Y (si) | Y (s)s∈Ni

] requires calculating the
determinant and inverse of at most a k × k covariance matrix. The computational cost
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is atmost O(k3). As there are n − 1 such products, the overall computational cost for
calculating the approximating likelihood [Y (sn) | Y (s)s∈Nn ] × [Y (sn−1) | Y (s)s∈Nn−1 ] × · · · ×
[Y (s2) | Y (s)s∈N2 ] × [Y (s1)] sum up to O(nk3). Although the idea was first presented by
Vecchia (1988), it became familiar when Datta et al. (2016) applied it successfully to model
a massive forest inventory dataset. Moreover, it is to the credit of Datta et al. (2016) who
showed that the approximating likelihood can be associated with another Gaussian process,
which they referred to as the nearest neighbour Gaussian process (NNGP). Although, the
NNGP produced promising result, the method’s dependence on the number of neighbours,
and the set of neighbouring locations requires further investigation. Another issue is that
the decomposition of the likelihood function as products of conditional distributions is not
unique, and hence the success of the Vecchia approximation and the NNGP depend on the
particular version one uses.

4. Concluding remarks

In this article, we have briefly touched upon different approaches for the creation
of non-stationary covariance functions. The list is ever growing and many of them are
not discussed here. For example, Fuentes (2002) considered the convolution of stationary
processes and created locally stationary covariance functions. Then we have seen that the
problem does not just end with the selection of an appropriate non-stationary covariance
function. The advent of GIS-based data collection system coupled with advancement in
data storage capacity, allows us to gather data at millions. Directly working with a non-
stationary covariance function for such massive dataset leads to O(n3) computations making
the task impossible to commence. In this regard, we have discussed different methods of
scalable modeling of massive geostatistical data. Among them, the Vecchia approximation
has recently gained popularity with the work of Datta et al. (2016). In a recent work, Zheng
et al. (2023) extended the idea to a non-Gaussian spatial process. Besides the approaches
discussed here, the multiresolution analysis proposed by Katzfuss (2017) is also useful in
modeling massive geostatistical data. There are many more methods for scalable modeling
of geostatistical data and a comparative analysis of them have been carried out in Heaton
et al. (2019). The field is growing rapidly. For a more comprehensive review of the Bayesian
methods for massive geostatistical data, one can consider the recent articles by Banerjee and
Fuentes (2012) and Banerjee (2017).
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