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Abstract

Bounds for the distribution/ survival function and a few other characterisations as-
sociated with renewal processes based on ageing properties of the generating inter-arrival
times are obtained. A few results are also obtained by comparing renewal processes with
respect to some stochastic orderings.
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1. Introduction

Let {N(t),t > 0} be a renewal process with arrival and inter-arrival times denoted by
the sequences {51, 5, ...} and { X1, X5, ...}, respectively, where S,, = X;+---+X,,, and, the
inter-arrival times are continuous, non-negative, independent and identically distributed (iid)
random variables (rvs) with common distribution function (df) F(-) and survival function
(sf) F(-) = 1 — F(-). We assume that F'(0) = 0 and the right extremity r(F) = sup{x :
F(x) < 1} = co. The distribution of N(t) is given by

P(N(t) > n) = P(S, <t) = F,(t),n > 1,t > 0, (1)

where F), is the n-fold convolution of F with itself (see Ross (1995)). Unless otherwise
specified, the preceding notations are used throughout this article. The n-fold convolution
of a df is of great interest in applied probability theory, especially in reliability and renewal
theory. However, to obtain analytical expression for the n-fold convolution is mathematically
challenging and sometimes impossible. F,, can be obtained in analytical form for some dfs
such as uniform, exponential and gamma with integer shape parameter. Some bounds are
proposed for F,,, which, in turn, provide some bounds for the df and sf of N(¢), using ageing
properties of the renewal df F' being concave / log-concave, convex / log-convex (Bergstrom
and Bagnoli (2005)), IFR / DFR, NBU / NWU (Barlow and Proschan (1975)). A few results
are also obtained here by comparing renewal processes having different renewal distributions
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with respect to convex (concave) transform order and super-additive / sub-additive order
(for more details on stochastic orders, see Shaked and Shanthikumar (2007)). The bounds
obtained here appear to be new and more strict compared to the previously obtained bounds
by Barlow and Proschan (1975). This is illustrated with some numerical examples in Section
2.1.

Definitions used in this article are from Barlow and Proschan (1975) and Shaked and
Shanthikumar (2007) and these have been given in Appendix for reference.

The article is organized as follows: Section 2 comprises of a few new bounds with
detailed proofs and associated comments, remarks, corollary, and some numerical illustra-
tions. Section 3 proposes a few results by comparing renewal processes with respect to
some stochastic orderings. Finally Section 4 comprehensively concludes the paper with some
future directions of research.

2. On bounds for renewal processes

Let R(t) = —InF(t) and K(t) = —In F(t),t > 0, denote the hazard function (hf)
and reversed hazard function (rhf) associated with the df F, respectively. We first state and
prove a known lemma which will be used to prove many of the results of this section.

Lemma 1: For \, > 0,n > 1, with lim,,_,, )‘n—” =0, lim, Z?:o e"\"’% =

Proof: For arbitrary & > 0,

A
lim == =0 = lim
n—oo n n—0o0

An + kv,
——=0= M\ +ky\, for all n large. 2
- = Ay + < n for all n large (2)

We have, for arbitrary k£ > 0,

n /\j n
1> nliﬁr&i%e‘“ﬁ = JLIEOE%P(XR = j), where X,, ~ Poisson (\,)
j= j=

= lim P(X, <n)

n—oo
> lim P (Xa < X+ kA ) by (2)
> lim P (1% = Al < Fy/Aa)
. 1 , o .
> nh_}rgo (1 — k2> by Chebyshev’s inequality
1
Therefore lim,,_, Z?:o e*’\")]‘.—? =1. O

The following result provide some bound for the probability distribution of a renewal
process when the underlying renewal distribution F' is NBU/ NWU.
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Theorem 1: If ' is NBU (NWU), then

P(N(t) < n) > (<) e R nf (R(,?)j,n > 1,650, (3)

J

In particular, if F' is exponential df with mean i, p > 0, then equality holds as {N(t),t > 0}
is a Poisson process with rate pu.

Proof: Since NWU proof is similar, we give proof only when F'is NBU. If X is NBU then
X <. Y, where Y has df G(t) =1 — e ¢t > 0,A > 0, and X <, Y means G*(F(t)) is
super-additive (su). If W (t) = G~'(F(t)) then

In(1 — F(t)) InF(t) R(t)

so that W (-) is super-additive/ sub-additive iff R(t) is super-additive/ sub-additive. If F’
is NBU, R(-) is super-additive. Therefore, R7!(-) is sub-additive (Dsterdal (2006)), that
is, R (z +y) < RYz) + R (y),r,y > 0. Let Y,Ys,... be iid rvs with df H(z) =
1 —e* x > 0. Then, with X; = R (Y}),j > 1, X1, Xy, ... are iid rvs with df F, as
P(X; < 2) = P(RTYY;) < 2) = P(Y; < R(z)) = H(R(z)) = F(x). Also, X1, Xs,...
generate the renewal process {N(t),t > 0} with renewal df F' whereas the iid inter-arrival
times Y7, Ys, ... generate a Poisson process with rate 1. Therefore,

P(N(t) <n)=P i:Xj > t)

PSR > t)

j=1

>P| R (En: Yj) > t)

=P En:Yj > R(t))

=1
:n_l (R(t)) o~ R _ o—R(®) (R
7=0 j' 7=0 ]‘ ’
since >5_, R'(Y;) > R™! ( ) Y]) as R™1(t) is sub-additive completing the proof. O

The following result provides bounds for P(N(t) < n) when F' is IFR/ DFR.

Theorem 2:

(i) If F is IFR, then

J 22l (nR L)y’
(RS” < P(N(t) < n) < e ") ;0 (j(,”))n > 1. (4)

0 ni:l
j=0
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(ii) If F"is DFR, then

N nR AN n—1 j
¢"E(3) > ( (‘")) < P(N(t) <n) < e O (R(t')) ,n > 1. (5)
=0 J: =0 J
Proof: We first prove that when F' is IFR (DFR), then
re 5t (R () (i))]
P(N(t)<n)< (>) e " (%) Z , n>1,t>0. (6)

We give the proof when F' is IFR and the proof is similar in the DFR case.
Let F' be IFR and G(z) = 1 — e *,z > 0, be the df of standard exponential rv Y. With
A =nR(L),n > 1, note that lim,_,. 2= = 0 as R(0) = 0. Hence by Lemma 1, we have

7=0 ]'
& P(N(t)>n) > e EG) i (nRJ('fL))

Using (1), it is enough to show that F,(t) > G, (nR (%)) ,t > 0, where G, is n-fold

convolution of G with itself. For n = 1, equality holds since G1(R(t)) = G(—InF(t)) =
1 — F(t) = Fi(t). Assuming that the inequality holds for n — 1, we have

t—x

Fu(t) = /0 CFoi(t— 2)dF () > /0 e ((n - 1>R( )) dG(R(z)).  (7)

If X is IFR, then X; is IFRA and by 5.4. Results. (e) in page 107 of Barlow and Proschan
(1975), this is equivalent to X <. Y, where X <, Y means G~'(F(t)) is convex, that is, X
is less than Y in convex order (see Appendix). We then have

W(t) =G YF(t)=—-In(l - F(t)) = —InF(t) = R(t),t > 0.

Hence, W (t) is convex/ concave iff R(t) is convex/ concave. Since R(.) is convex, we have

() ()
() -

IA

()
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;»(n—nR(t_‘i)an(;)—R(x)

= Fy() > /0 e (nR (;) - R(x)) dG(R(z)) using (7)
S () > /0 e (nR (;) - u) dG(u)

t

> /DHR() Gy (nR (;) _ u) dG ()
).

as R(%) < % since R(0) = 0 and R(.) is convex. Therefore, (6) holds for n and by

induction, the proof is complete. Since [FFR = IFRA = NBU, from (6) and (3), we get
(4), and since DFFR = DFRA = NWU, from (6) and (3), we get (5). O

3

Remark 1: Note that if F'is IFR, then it is IFRA and hence R(-) is star-shaped which means

that ® increases as ¢ increases. Hence, for n > 1, nR(L) < R(t) and e "RG) > R0 ¢ > 0.
But, the left hand side in (4) is less than or equal to the right hand side. A similar remark
holds for (5).

An interesting property for the bound of P(N(t) < n) when F is IFR/ DFR is
obtained as follows.

Theorem 3: If F'is IFR (DFR), then
P(N(t)<n) < (2) P(Ya<n—1),n>1t>0, (8)

where Y,, ~ Poisson (— In F™ (3)), with equality if F(t) =e M t>0,u>0. Also,

Y, &y (9)

where -% denotes convergence in distribution and Y ~ Poisson (¢f(0)), provided F' is abso-
lutely continuous with probability density function (pdf) f.

n

Proof: Let Y, ~ Poisson (— In F" (LD ,n > 1, so that

SANY
P(Y, =j) = ( lni! <”>) I (;) ,j > 0. (10)
If Fis IFR (DFR), then from Theorem 2, P(N(t) < n) < (>) P(Y, < n—1),n >
1. Since nR (%) = —nlnF(%) = —InF" (%) and e A5 = fr (%), we obtain (8).
If F has pdf f, for fixed t > 0, F(%) + 1 as n — oo so that limnﬁmnlnﬁ’(i) =
lim,, o0 lni(%) = limxﬁomﬁ% = limxﬁo%%) = —tf(0), using L'Hospital’s rule. Thus
lim,, oo F”?%) = e 7 Since In F (%) 10asn — oo, nlog F (%) 1 —tf(0) as n — oo and

hence —In " (%) 1 ¢£(0) as n — oo, proving (9). O
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Example 1: If F(t) = et >0,A >0, then P(N(t) <n)=P(Y, <n—1),n>1,t >0,

where V,, £ Y ~ Poisson(At), 4 denoting equality in distribution. This follows trivially as
{N(t),t > 0} is a Poisson process.

Now assume that F' is concave (convex). We give an upper (lower) bound for
P(N(t) > n) as the following theorem.

Theorem 4: If F' is concave (convex) and nF ! (%) t<nkF~ ( ) 0<k<n—-1,n>
1, then

P(N(t) >n) < (> ifj () <nF (72)—3')”, (11)
<1

with F~1(t) = inf {x : F(z) > t},0 <t

Proof: If F' is concave, then F( ") > FXO)+FXa) 4 F(Xn) o

n

P(N(t) >n) = P(S, <t)
r(r(3)=r(3)
SP(F(X1)+ -+ F(X,) F(t))

=P (F(Xl) + -+ F(X,) <nF (t»

(o (2) ”

where F{J* is the n-fold convolution of Fy with itself, U being uniform rv on (0,1) with
df Fy. The last equality follows from the fact that, F/(X;),7i =1,...,n are iid U(0,1) rvs as
F' is assumed to be continuous. Therefore, from the well known analytical expression of the
n-fold convolution of Fy; with itself,

Fie(t) = 0, t <0,
U AL () (=) k<t<k+1, 0<k<(n—1),

we get (11). The reverse inequality in (11) can be proved using similar arguments. O

Example 2: Let F' be truncated Weibull df with shape parameter = % and scale parameter
= 1. Therefore,

0, t <0,
_e—VE
Ft)=31==%, 0<t<9,
1, t>9.
Since ‘7575 = m (1 + \/) < 0 for t > 0, F is concave. However [ is neither IFR nor

DFR as the failure rate function r(t) = m, 0 <t <9 is not monotone. Also F' can

not be NWU as there exist a t > 9 such that F(t) = 1. Furthermore, it is observed that F
is not NBU as
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L 0=F(9) = P(T >7+2) < P(T > )P(T > 2) = F(T)F(2) = (=02

2. F2)=P(T>1+1)>P(T>1)P(T>1) = (F(l))2

Therefore, F' is none of IFR, DFR, NBU and NWU distributions, although F' is concave
and hence bounds given in Theorem 1 and Theorem 2 can not be used for this distribution.
However we get an upper bound of P(N(t) > n) for t > 0 and n = 1,2,... by Theorem 4.
For example, taking n = 2 in (11), we obtain

_ t _ i
242¢ 2\/;746 2

(1—e3)2 R 0<t< 0.8309,
PN 22) = 46_\/;_3‘2&__2;@?1‘263‘66, 0.8309 < t < 18,

1 t > 18.

?

We now assume that F' is log-concave/ log-convex. Bounds for P(N(t) < n) in this
case are given below.

Theorem 5:

(i) If F is log-concave, for t > 0 and n > 1,

eI (%) i (K l)) PV() < n) < () S (R () (12)

= ]! - = !

<

(ii) If F' is log-convex, for ¢t > 0 and n > 1,

e"R(%) ni:l M < P(N(t) <n) <e ™ G) i M (13)

1 1
J: iz 7!

P(N@) >n) < (>) enK(fL)g@K(i)). (14)

IN

Let F' is log-concave, or equivalently, In F' is concave so that

In F (Sn> > In F(Xy) +--+InF(X,)
n n
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and
P(N(t) >
- ( ( )<lnF( ))
“p ( +lnF(Xn) SlnF(t))
(lnF X))+ +InF(X,) < nlnF(i))
=P (—lnF(Xl) —-—InF(X,)>-nhF (;;))
o o (1)
where K(t) = —InF(t), and Y = —In F(X;) —--- — In F(X,,) is the sum of iid standard

exponential rvs as F' is assumed to be continuous and hence has Gamma distribution with
shape parameter n and scale parameter 1. Therefore, we get (14). When F' is log-convex,
the reverse inequality can be proved using similar arguments.

Since log-concave = IFR, from (4) and (14), we get (12), and since log-convex = DFR, from
(5) and (14), we get (13), completing the proof. ]

The following corollaries provide stricter bounds for P(N(t) > n) when F is log-
concave or log-convex.

Corollary 1: If F' is log-concave, for t > 0 and n > 1,

P(N(t) > n) < min {e"K(ﬁ) 5 (nK(’i)) NS (R;f))j } . (15)

Proof: Since F' log-concave implies that F'is IFR (Lemma 5.9, page 77, Barlow and Proschan
(1975)), by Theorem 5, we get

P(N(t) >n) < e K (%) ”z:l W, (16)

and by Theorem 2(i), we get
j
B®) Z P(N(t) <n) < P(N(t) >n) <1 —e R0 Z 7. (17)
Jj=0 7=0

Combining (16) and (17), we get (15). O

Corollary 2: If F' is log-convex, for t > 0 and n > 1,
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Proof: Since F'log-convex implies that F'is DFR (Lemma 5.9, page 77, Barlow and Proschan
(1975)), by Theorem 5, we get

P(N(t) > n) > e (%) nf (HK(;)) (19)

Jj=0 j‘
and by Theorem 2(ii), we get
n—1 J
- (R(1))
P(N(t) <n) < P(N(t) 2n) 21— e "0 37 i (20)
Combining (19) and (20), we get (18). O

Example 3: When F is Fréchet df with F(t) = e " "t > 0,a > 0, dldntF = at~* ! and
deI;F = —ala+ 1)t7*2 < 0, so that F' is log-concave and by Theorem 5(i), we get the
bounds for the renewal process generated by F' as

k() i <"K]("i>)j < P(N(t) <n) () ’i (R () (L))j

n

where R (%) =—1In <1 — e_(ﬁ)_a) and K (%) = (i)_a.

e

e e 450, and pdf f(t) =

Example 4: When F' is truncated Gumbel df with F(t) = “

—(t4e~t
e — < 1(76_1 ),t >0, BE — ¢~ — 1 and i E — —e7' < 0. So f is log-concave and since
f is continuously differentiable, by Bergstrom and Bagnoli (2005), F is also log-concave. By
Theorem 5(i), we get the bounds for the renewal process generated by F' as

£\ 2 nkK (L ’ 1) = nR
e—nK(n>j§( j(,”» < P(N(t) <n) <e_”R<")jz:%( j(, ) :
e (1) m(;;_zfg i (1) =i (2572)

<”22> (1) e (1m0
> 2

Ny

if n; < 2, f is log-convex (ibid). Since f is continuously differentiable and log-convex on
(0,00), and f(0) = 0, F is also log-convex on (0,00) (ibid). By Theorem 5(ii), we get the
bounds for the renewal process generated by F' as



98 S. RAVI AND SUMAN KALYAN GHOSH [Vol. 23, No. 2

where R(t) = —In F(t), K(t) = —In F(t) and

2.1. Some numerical illustrations

Example 6: Consider the df

0, t <0,
F(t)y=<¢2t—t* 0<t<l,
1, t>1.
Since 6575 = —2 <0, F is concave and since the failure rate function r(¢) = 12,0 <t < 1is

increasing, F'is also IFR. For n = 2, we obtain

0, t <0,
2 413 t4
F2(t>: 2t5_1?6t+€’2 4t3 tt v=tel
_§+?—4t+7—€, 1§t<2,
1, t>2,

Therefore P (N (t) < 2) = P (S > t) = 1—Fy(t). Since F is IFR, the upper and lower bound
for P(N(t) < 2) is obtained as

u(t):<1—;>4(1—1n(1—;>),0§t<2 (21)

Lt)=(1-t)*1-2mn(1—-1),0<t <1 (22)

and

respectively, using (4). Since F' is concave, the lower bound for P (N(t) < 2) is obtained as

1— (22 =3 +t1/8), 0<t<0.5858,
L(t) ={2(1—t+t2/4)°, 0.5858 < t < 2, (23)
0, t>2,

using (11).

The graphs of exact value P (N(t) < 2), upper bound u(t) in (21), lower bound I, (¥)
in (22) and another lower bound l5(t) in (23) are given in Figure 3. It is observed from Figure
3 that lower bound in (23) is more strict than the lower bound in (22) given by Barlow and
Proschan (1975). The upper and lower bounds for P (N(t) < 3) is shown in Figures 1 and 2
for the df in Example 3 and 4, respectively. It is to be noted that in both cases, the exact
value for P (N(t) < n),n > 2 cannot be obtained explicitly and hence the bounds provide
estimates, specially so for Example 4 where the bounds are close enough. The graphs are
plotted using R.
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1.0

— upper bound N —— upper bound
== lower bound i ---= lower bound

08

Probability
06

Probability

04

Figure 1: P (N(t) < 3) in Example 3 for Figure 2: P (N(t) < 3) in Example 4

a=1
Example 7: Let F' be Weibull df with F(t) = 1—e*,t > 0. Since L' = 2(1-2t2)e=" < 0
for t > % and % > ( for t < %, F' is not concave. However, diﬁ%f =—-2— t% <0,s0 fis

log-concave and since f is continuously differentiable, by Bergstrom and Bagnoli (2005), F
is log-concave. Therefore applying Corollary 1, we obtain the upper bound for P(N(t) > 3)

t >
1— <1+t2+)e—t,
2
2\ 3 2 9 2 2
(1 — e_9> (1 —3n (1 — 6_9)> + 3 <ln <1 — 6_9>>

Figure 4 displays the upper bounds from which it is observed that the upper bound in (16)
is more strict than the upper bound in (17) given by Barlow and Proschan (1975).

P(N(t) > 3) < min

3. Comparing renewal processes with respect to stochastic ordering

Comparison of two renewal processes generated by different renewal distributions is
developed in this section on the basis of super-additive/ sub-additive order and convex/
concave transform order. Theorem 6 and Theorem 7 provide bound for the probability
distribution of a renewal process {Np(t),t > 0} in the form of probability distribution of
another renewal process {Ng(t),t > 0} when the underlying renewal dfs F' and G have
super-additive/ sub-additive order and convex/ concave transform order respectively.

Theorem 6: Let {Np(t),t > 0} and {Ng(t),t > 0} be two renewal processes generated
respectively by dfs F' and G which are continuous on [0,00) with F'(0) = G(0) = 0 and
F <, (<44) G, that is, GTY(F(+)) is superadditive (subadditive). If W(t) = G (F(t)),t >
0, then, for n > 1,

P(Ne(t) = n) < (2) P(NG(W(8)) 2 n).
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10

— exactvalue
o)
12(t)
—————— M)

08
1

0.8
|

Probability
06
1
upper bound
04 06
1

04

02
1

Graph type

— boundin (17)
bound in (16)

02

0.0

0 1 2 3 4 5

Figure 4: P (N(t) > 3) in Example 7
Figure 3: P(N(t) < 2) in Example 6

Proof: Since F' <,, G, WI(-) is sub-additive (@Dsterdal (2006)), that is, W~ (z + y) <
Wz) + W i(y), z,y > 0. Let {X,,,n > 1} and {Y,,n > 1} be sequences of iid rvs
denoting the inter-arrival times associated with the renewal processes {Np(t),t > 0} and
{Ng(t),t > 0} respectively. Then P(Ng(t) > n) = P(S, <t) = F,(t), the n-fold convolu-
tion of F' with itself, where S, = Xj + --- + X, is distributed as F,. Similarly, P(Ng(t) >
n) = G,(t). It is enough to show that F,(t) < G, (W(t)). We have P(X; < t) = F(t) =
GW(t)) = P(Y; <W(t)) = P(WYY;) <t) so that

—p(yy < W(t))
— G (W)

since W~1(t) is sub-additive. Using similar arguments, it can be proved that, if F' <,, G,
that is, G7}(F(.)) is sub-additive, then for ¢ > 0 and n > 1,

P(Np(t) = n) = P(Ne(W(t)) = n),

completing the proof. O
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Theorem 7: Let {Np(t),t > 0} and {Ng(t),t > 0} be two renewal processes generated
respectively by two dfs F' and G which are continuous on [0, 00) with F/(0) = G(0) = 0 and
F<.G IfW(t)=G F(t)),t > 0, then, for n > 1,

t
P(Na(W (1) < n) < P(Nw(t) <n) < P (NG (nW (n)> < n) . (24)
The inequalities will reverse when G <. F.

Proof: Let F <. G and W(t) = G7'(F(t)),t > 0. We first prove that

t
P(Np(t) <n) <P (NG <nW <n>> < n) . (25)
Note that W (-) is a convex function by definition and P(Ng(t) > n) = P(S, < t) = F,(t),
the n-fold convolution of F' with itself, P(Ng(t) > n) = G,(t) and it is sufficient to show
that F,(t) > G, (nW (%)) as in the proof of Theorem 2. Equality holds for n = 1 by the

definition of W (-). Assuming that the inequality holds for n — 1, we have

t—x

Fu(t) = /0 Eo Lt — 2)dF(x) > /O e ((n —nw ( )) dGW (). (26)

n—1

Since W (.) is a convex function,

using (26) and since W (%) < WT(t) as W(0) = 0 and W(.) is convex. Therefore, the inequality
also holds for n, and by induction, the proof is complete. Using similar arguments, it can be
proved that if G <, F, equivalently, G~ F is concave, then for for t > 0 and n > 1,

P(Np(t) <n)>P (NG <nW <t>> < n) .
n
Since F' <. G = F <, G, applying Theorem 6, we get
P(Ngp(t) <n) > P(Ng(W(t)) <n). (27)
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Combining (25) and (27), we get the (24). Using similar arguments, it can be proved that if
G <. F or in other words, G™!(F(.)) is concave, then for t > 0 and n > 1,

P (NG (nW (;)) < n) < P(Np(t) < n) < P(Na(W (1)) < n),
completing the proof. O

Corollary 3: If G in Theorem 7 is exponential so that {N¢g(t),t > 0} is a Poisson process
and F is log-concave (log-convex), then the bounds in Theorem 7 are the same as those in
Theorem 5(i) (Theorem 5(ii)).

Remark 2: Under the assumption that W(¢) is either convex for all ¢ > 0 or concave
for all £ > 0, the reverse implications in Theorems 6, 7, are trivially true giving rise to
characterization results.

Example 8: Let us consider two renewal processes: {Ng(t),t > 0} and {Ng(t),t > 0} where
F is Weibull (u1,v) and G is exponential (pg) with v > 1,7 > 0, gz > 0. Then we obtain
the following bounds: for for t > 0 and n > 1,

n—1 7)J B n—1 ((tat?)’
e*/hﬂ Z (MI.t' ) S P(Np(t) < n) < e (m—l) (n‘/" ) )
=0 J: j=0 J:

The inequalities will reverse when 0 < v < 1.
We have F(t) = 1—e™% G(t) = 1—e !, W (t) = GTH(F(t)) = — L0 — (1) 7 ¢ >

w2
Therefore, & = (Wl) = LW = (7(7;21)”1) 172 = LW > (<) 0 for t >0,

v > (<) 1, py, 2 > 0. Therefore, W () is a convex (concave) function as v > (<) 1 and hence
we can apply Theorem 7. Slnce {Ng(t),t > 0} is a Poisson process with rate p2, by The-

orem 7, lower bound = P(Ng (W (t)) < n) = 372, W@ﬂmw@ =05 (’“%)]e*’“” =

e—Hit? ;?;01 (mt7)? By Theorem 7, upper boqnd =P (NG (nW (%)) < n)

7!

= st () () _ e 1(:5;”1)”6 (45) _ - (35) 5o 1(::31)]'.

].

Example 9: Let us consider two renewal processes { Ng(t),t > 0} and {Ng(t),t > 0} where
F' is Pareto(a, #) and G is exponential (1). Then we have the following bounds:

—nap_1 Y —ap1 )
(1+5) S (nalo %f ) < p(vaty <m < (1+4) % (o (if )
t>0n>1,a>0,8>0u>0.
We have F(t) =1 — (%)",t > =B, Gy) = -2 0 <y < 1, W) = GHF() =
oo (14 L),0>0.So, W = (L) W _a( 10 0fort>0,a>0,5>0u>0.
Therefore W(-) is concave and by Theorem 7, since G ~ exponential (u), {Ng(t),t > 0}

is a Poisson process with rate pu and P(Ng (W (t)) < n) = (1 + %)70{ ) (aln(%?» By

Theorem 7, P (Ng (nW (£)) <n) = (1+ &) " gy Lol

jl
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4. Conclusions

In this paper, we have presented some bounds on the sf and df of the renewal counting
variable N (t) when the renewal distribution F' is concave, log-concave, convex, log-convex,
IFR, DFR, NBU, NWU. The bounds would be useful when the exact value for the proba-
bility distribution of a renewal process can not be obtained. The bounds also appears to be
more strict than the previously obtained bounds which is illustrated with some numerical
examples. Some bounds are also obtained by comparing renewal processes with respect to
stochastic order relationship between the inter-arrival times. In future, we plan to develop
bounds for the probability distribution of bivariate renewal process based on various forms
of the baseline joint distribution function.
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Appendix

Assuming that a rv X has df F(-) and sf F(-) with mean p, F(0) = 0, we have used the
following definitions (for details see Barlow and Proschan 1975, Shaked and Shanthikumar
2007, Bagnoli and Bergstrom 2005):

1. X / F is said to be new better than used (NBU) or new worse than used (NWU)

accordingly as F(z +y) < (>) F(z)F(y) for all z,y > 0.

2. X / F is said to be new better than used in expectation (NBUE) or new worse than
used in expectation (NWUE) accordingly as [, F(z)dz < (>) pF(t) for all t > 0.
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. X / F is said to be increasing failure rate (IFR) or decreasing failure rate (DFR) if

t+a)—F(t)

and only if £ 20 is increasing (decreasing) in t for all > 0.

. X / F is said to be increasing failure rate average (IFRA) or decreasing failure rate

average (DFRA) if (F(z))+ decreasing (increasing) in z for z > 0.

F is said to be concave (convex) if for any x,y > 0 and for any « € [0, 1]

F((1-a)r+ay) > () (1 —a)F(z) +aF(y).

F is said to be log-concave (log-convex) if In F' is concave (convex).

F' is said to be super-additive (sub-additive) if F(x +y) > (<) F(z) + F(y) for all
x,y > 0.

For two independent rvs X and Y with respective dfs F' and G, X is said to be smaller
than Y is convex transform order, denoted X <.V, if G~'F is convex on the support
of F.

For two independent rvs X and Y with respective dfs F' and G, X is said to be smaller
than Y is super-additive (sub-additive) order, denoted X <, (<s ) Y, if G7'F is
super-additive (sub-additive), or equivalently, G 'F(z+y) > (<) G™'F(z)+ G F(y)
for all z,y > 0.
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