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Abstract
Frailty models are used in the survival analysis to account for the unobserved hetero-

geneity in individual risks to disease and death. To analyze the bivariate data on related
survival times (e.g. matched pairs experiments, twin or family data), the shared frailty mod-
els were suggested. Shared frailty models are used despite their limitations. To overcome
their disadvantages correlated frailty models may be used. In this paper, we introduce the
correlated inverse Gaussian frailty models based on reversed hazard rate with three different
baseline distributions namely, the generalized log-logistic type I, the generalized log-logistic
type II and the modified inverse Weibull. We introduce the Bayesian estimation procedure
using Markov Chain Monte Carlo (MCMC) technique to estimate the parameters involved
in these models. We present a simulation study to compare the true values of the parameters
with the estimated values. We also apply the proposed models to the Australian twin data
set and a better model is suggested. . . .

Key words: Australian twin data; Bayesian estimation; Correlated inverse Gaussian frailty;
Generalized log-logistic distribution; MCMC; Modified inverse Weibull distribution; Re-
versed hazard rate.
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1. Introduction

Frailty models are extensively used in the survival analysis to account for the unob-
served heterogeneity in individual risks to disease and death. The frailty model is a random
effect model for time to event data which is an extension of the Cox’s proportional hazards
model. To analyze the bivariate data on related survival times (e.g. matched pairs exper-
iments, twin or family data), the shared frailty models were suggested. Bivariate survival
data arises whenever each study subjects experience two events. Particular examples include
failure times of paired human organs, (e.g. kidneys, eyes, lungs, breasts, etc.) and the first
and the second occurrences of a given disease. In the medical literature, several authors
considered paired organs of an individual as a two-component system, which work under in-
terdependency circumstances. In industrial applications, these data may come from systems
whose survival depend on the survival of two similar components.
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Research on the bivariate survival models has grown rapidly several years in the past.
Clayton’s (1978) random effect model of the bivariate survival was a key innovation. He in-
troduced the notion of the shared relative risk. This model was further developed by Oakes
(1982) to analyze the association between two non-negative random variables. Clayton and
Cuzick (1985) added observed covariates to the bivariate survival model with the shared rel-
ative risk. Crowder (1985) and Hougaard (1986) proposed the random effect models of the
bivariate Weibull distributions. A shared frailty model with a positive stable distribution of
frailty was suggested by Hougaard (1987). He also discussed several other bivariate distribu-
tions with biomedical and reliability applications. Oakes (1989) developed a shared frailty
model related to the “archimedean distributions” studied by Genest and MacKay (1986). He
also proposed a local time dependent association measure between bivariate life spans and
discussed its use for a large class of bivariate survival functions. Vaupel (1991), Vaupel et
al. (1991), Nielsen et al. (1992) studied genetic and environmental influences on longevity
using bivariate survival models.

Hanagal (2006) discussed the gamma frailty regression model in the bivariate survival
data and Hanagal (2007) also presented the gamma frailty regression models in the mix-
ture distributions. Hanagal and Dabade (2013), Hanagal and Bhambure (2015, 2016) and
Hanagal and Pandey (2014a, 2014b, 2015a, 2015b, 2016, 2017) and Hanagal et al. (2017a,
2017b) analyzed kidney infection data and Australian twin data using shared gamma and
inverse Gaussian frailty models with different baseline distributions for the multiplicative
model. Hanagal and Sharma (2013, 2015a, 2015b, 2015c) analyzed acute leukemia data, kid-
ney infection data and diabetic retinopathy data using shared gamma and inverse Gaussian
frailty models for the multiplicative model. Hanagal and Bhambure (2014) developed shared
inverse Gaussian frailty model based on the reversed hazard rate for Australian twin data.
Hanagal et al.(2017b) discussed correlated gamma frailty models for bivariate survival data
to analyze kidney infection data and Hanagal and Pandey (2017) proposed correlated gamma
frailty models for bivariate survival data based on reversed hazard rate for Australian twin
data. Hanagal (2017) gave extensive literature review on different shared frailty models.

Shared frailty explains correlation between subjects within clusters. However, it does
have some limitations. Firstly, it forces the unobserved factors to be the same within the
cluster, which may not always reflect reality. For example, at times it may be inappropriate
to assume that all partners in a cluster share all their unobserved risk factors. Secondly,
the dependence between survival times within the cluster is based on marginal distributions
of survival times. However, when covariates are present in a proportional hazards model
with gamma distributed frailty the dependence parameter and the population heterogeneity
are confounded (Clayton and Cuzick, 1985). This implies that the joint distribution can
be identified from the marginal distributions (Hougaard, 1986). Thirdly, in most cases, a
one-dimensional frailty can only induce positive association within the cluster. However,
there are some situations in which the survival times for subjects within the same cluster are
negatively associated. For example, in the Stanford Heart Transplantation Study, generally
the longer an individual must wait for an available heart, the shorter he or she is likely
to survive after the transplantation. Therefore, the waiting time and the survival time
afterwards may be negatively associated.

To avoid these limitations, correlated frailty models are being developed for the anal-
ysis of multivariate failure time data, in which associated random variables are used to
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characterize the frailty effect for each cluster. Correlated frailty models provide not only
variance parameters of the frailties as in shared frailty models, but they also contain addi-
tional parameter for modeling the correlation between frailties in each group. Frequently
one is interested in construction of a bivariate extension of some univariate family distribu-
tions (e.g., gamma). For example, for the purpose of genetic analysis of frailty one might
be interested in estimation of correlation of frailty. It turns out that it is possible to carry
out such extension for the class of infinitely-divisible distributions (Iachine 1995a, 1995b).
In this case an additional parameter representing the correlation coefficient of the bivariate
frailty distribution is introduced.

2. Reversed Hazard Rate and Correlated Frailty

In many practical situations reversed hazard rate (RHR) is more appropriate to analyze
the survival data. Reversed hazard rate was proposed as a dual to the hazard rate by Barlow
et al. (1963). Shaked and Shantikumar (1994) and Block et al. (1998) provided a general
definition of reversed hazard rate (RHR) as,

m(t) = lim
△t→0

P (t− △t < T ≤ t|T ≤ t)/△ t, t > 0. (1)

The reversed hazard rate specifies the instantaneous rate of death or failure at time
t, given that it failed before time t. Thus in a small interval, m(t) △ t is the approximate
probability of failure in the interval, given failure until the end of the interval (t− △t, t]. In
lifetime data analysis, the concepts of reversed hazard rate has potential application when
the time elapsed since failure is a quantity of interest in order to predict the time of failure.
The reversed hazard rate is more useful in estimating reliability function when the data
are left censored or right truncated. Reversed hazard rate plays a vital role in the analysis
of parallel systems, in reliability and survival analysis. For example, in certain systems or
situations, sometimes the failure is prevented through numerous safety measures.

The correlated frailty model is the important concept in the area of multivariate frailty
models. It is a natural extension of the shared frailty approach on the one hand, and
of the univariate frailty model on the other. In the correlated frailty model, the frailties of
individuals in a cluster are correlated but not necessarily shared. The conditional distribution
function in the bivariate case ( without observed covariates) is

F (t1, t2|Z1, Z2) = S1(t1|Z1)S2(t2|Z2) = e−Z1M01(t1)e−Z2M02(t2), (2)

where Z1 and Z2 are two correlated frailties and M0i(ti) =
� ∞

ti
m0i(u)du, (i = 1, 2) is cu-

mulative reversed hazard rate. The distribution of the random vector (Z1, Z2) needs to be
specified and determines the association structure of the event times in the model.

The reversed hazard of the i-th (i = 1, 2) individual of the j-th (i = j, ..., n) pair has
the form

m(t | Xij, Zij) = Zijm0i(t)eβ
′
Xij , (3)
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where t denotes age or time, Xij is a vector of observed covariates, β is a vector of regression
parameters describing the effect of the covariates Xij, m0i(.) are baseline reversed hazard
functions, and Zij are frailties. Bivariate correlated frailty models are characterized by the
joint distribution of a two-dimensional vector of frailties (Z1j, Z2j). If the two frailties are
independent, the resulting lifetimes are independent, and no clustering is present in the
model. If the two frailties are equal, the shared frailty model is obtained as a special case of
the correlated frailty model with correlation one between the frailties.

In order to derive a marginal likelihood function, the assumption of conditional inde-
pendence of lifespans, given the frailty, is used. Let δij be a censoring indicator for individual
i(i = 1, 2) in pair j(j = 1, ..., n). Indicator δij is 1 if the individual has experienced the event
of interest, and 0 otherwise. According to (2), the conditional distribution function of the
ith individual in the jth pair is

F (t|Xij, Zij) = e−ZijM0i(t)eβ′Xij , (4)
with M0i(t) =

� ∞
t
m0i(u)du denoting the cumulative baseline hazard function. Here and in

the following, F is used as a generic symbol for a distribution function. The contribution of
individual i(i = 1, 2) in pair j(j = 1, ..., n) to the conditional likelihood is given by[

Zijm0i(t)eβ′Xij

]δij

e−ZijM0i(tij)eβ′Xij , (5)

where tij stands for observation time of individual i from pair j. Assuming the conditional
independence of life spans, given the frailty, and integrating out the frailty, we obtain the
marginal likelihood function

n∏
j=1

�

R×

�

R

[
u1jm01(t1j)eβ′X1j

]δ1j

e−z1jM01(t1j)eβ′X1j

[
u2jm02(t2j)eβ′X2j

]δ2j

e−z2jM02(t2j)eβ′X2jf(z1j, z2j)dz1jdz2j (6)

where f(., .) is the probability density function of the corresponding frailty distribution. All
these formulas can be easily extended to the multivariate case, but need a specification of
the correlation structure between individuals in a cluster in terms of the multivariate den-
sity function, which complicates analysis. For more details see Hanagal(2011) and Hanagal
(2019).

3. Correlated Inverse Gaussian Frailty Model

Alternative to the gamma distribution, Hougaard (1984) introduced the inverse Gaus-
sian as a frailty distribution. It provides much flexibility in modeling, when early occurrences
of failures are dominant in a life time distribution and its failure rate is expected to be non-
monotonic. In such situations, the inverse Gaussian distribution might provide a suitable
choice for the lifetime model. Also inverse Gaussian is almost an increasing failure rate distri-
bution when it is slightly skewed and hence is also applicable to describe lifetime distribution
which is not dominated by early failures. Secondly, for the inverse Gaussian distribution, the
surviving population becomes more homogeneous with respect to time, where as for gamma
distribution the relative heterogeneity is constant.



2022] CORRELATED INVERSE GAUSSIAN FRAILTY 93

Consider a continuous random variable Z follows inverse Gaussian distribution with
parameters µ and σ2 then density function of Z is,

fZ(z) =


[ 1
2πσ2

] 1
2
z− 3

2 e
− (z−µ)2

2zσ2µ2 ; z > 0, µ > 0, σ2 > 0
0 ; otherwise,

(7)

and the Laplace transform is,

LZ(s) = exp

 1
µσ2 −

(
1

σ4µ2 + 2s
σ2

) 1
2
 . (8)

The mean and variance of frailty variable are E(Z) = µ and V (Z) = µ3σ2. For identifiability,
we assume Z has expected value equal to one i.e. µ = 1. Under this restriction, the density
function and the Laplace transformation of the inverse Gaussian distribution reduces to,

fZ(z) =


[ 1
2πσ2

] 1
2
z− 3

2 e− (z−1)2

2zσ2 ; z > 0, σ2 > 0
0 ; otherwise,

(9)

and the Laplace transform is,

LZ(s) = exp

1 − (1 + 2σ2s) 1
2

σ2

 , (10)

with variance of Z as σ2. The frailty variable Z is degenerate at Z = 1 when σ2 tends to
zero.

Let Z be an infinitely divisible frailty variable with Laplace transformation LZ(s) and
ρ ∈ [0, 1], then there exist random variables Z1, Z2 each with univariate Laplace transform
LZ(s) such that the Laplace transform of Z1, Z2 is given by:

L(s1, s2) = Lρ
Z(s1 + s2)L1−ρ

Z (s1)L1−ρ
Z (s2) (11)

If Z has a variance the Corr(Z1, Z2) = ρ.
The respective bivariate survival model is identifiable under mild regularity conditions on Z
provided that ρ > 0. The case ρ = 1 is known as the shared frailty model.

The above equation (11) can be extended to multivariate case (ρ > 0) as below.

L(s1, s2, ...., sk) = Lρ
Z(s1, s2, ...., sk)L1−ρ

Z (s1)....L1−ρ
Z (sk).

The case ρ = 1 leads to shared frailty. If ρ = 0, Z1, ....Zk are mutually independent.

Let Zi be the inverse Gaussian distributed with mean 1, variance σ2, and Laplace
transform

L(si, σ
2) = exp[1 − (1 + 2σ2si)

1
2

σ2 ] (12)
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The bivariate Laplace transform for the correlated inverse Gaussian frailty model is given by

L(s1, s2, σ
2, ρ) = exp

ρ1 − (1 + 2σ2(s1 + s2))
1
2

σ2

 exp
(1 − ρ)1 − (1 + 2σ2s1)

1
2

σ2


exp

(1 − ρ)1 − (1 + 2σ2s2)
1
2

σ2

 (13)

where Corr(Z1, Z2) = ρ.
The correlated inverse Gaussian frailty model in the presence of covariates is charac-

terized by the bivariate distribution function of the form:

F (t1j , t2j) = exp
[

ρ
1 − (1 + 2σ2ηj(M01(t1j) + M02(t2j))) 1

2

σ2

]
exp

[
(1 − ρ)1 − (1 + 2σ2ηjM01(t1j)) 1

2

σ2

]

exp
[

(1 − ρ)1 − (1 + 2σ2ηjM02(t2j)) 1
2

σ2

]
(14)

where M01(t1j) and M02(t2j) are the cumulative baseline hazard functions of the life time
random variables T1j and T2j respectively.

The bivariate distribution function in the presence of covariates, when the frailty vari-
able is degenerate is given by

F (t1j, t2j) = e−[(M01(t1j)+M02(t2j))ηj ] (15)

According to different assumptions on the baseline distributions we get different corre-
lated inverse Gaussian frailty models.

4. Baseline Distributions

We present the modified inverse Weibull distribution, generalized log-logistic type I
and generalized log-logistic type II as baseline distribution with the interesting properties.

4.1. Modified Inverse Weibull Distribution

The modified inverse Weibull distribution is more convenient for computational point
of view for left censored data. The cumulative distribution function, the reversed hazard
rate and the cumulative reversed hazard rate of the modified inverse Weibull are respectively
as follows.

F (t) = exp
(
−αt−λe−γt

)
; t > 0, α > 0, λ > 0, γ > 0, (16)

m(t) = αe−γtt−1−λ(λ+ γt). (17)

M(t) = αt−λe−γt, (18)

When γ = 0, this distribution reduces to the inverse Weibull distribution. The reversed
hazard rate of the modified inverse Weibull distribution is decreasing function of t > 0. For
more details see Devendra et al. (2011).
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4.2. Generalized Log-logistic Distribution

The log-logistic distribution is very useful in a wide variety of applications, especially
in the analysis of survival data (O’ Quigley and Struthers 1982; Bennett 1983; Cox and
Snell 1989). The log-logistic distribution is very similar in shape to the log-normal distri-
bution, however it has the advantage of having simple algebraic expressions for its survivor
and hazard functions and a closed form for its distribution function. It is therefore more
convenient than the log-normal distribution in handling censored data. However, due to
the symmetry of the log-logistic distribution, it may be inappropriate for modeling censored
survival data, especially for the cases where the hazard rate is skewed or heavily tailed. In
order to overcome this, we use a generalization of the log-logistic distribution and refer to
this as the generalized log-logistic distribution given in Mohammed et al.(1990). The gener-
alized log-logistic distribution reflects the skewness and the structure of the heavy tail and
generally shows some improvement over the log-logistic distribution.

Mohammed et al.(1990) show that the distribution function of generalized logistic is
given by

F (x) = 1
β(m,n)

� F0(x)
0 um−1(1 − u)n−1du

where β(m,n) is the complete beta function and

F0(x) = (1 + e−x)−1,−∞ < x < ∞

is the logistic distribution function. We call F (x) the generalized logistic distribution with
parameters (m,n), and use the notation X ∼ GLD(m,n).
The logarithmic transformation X = γln(λT ) applied to GLD(m, 1) to obtain the general-
ized log-logistic distribution GLLD(m, 1). The distribution function of T is

F (t) = (1 + (λt)−γ)−m, t,m, λ > 0, γ ≥ 1. (19)

Similarly logarithmic transformation X = γln(λT ) applied to GLD(1, n) to obtain the
generalized log-logistic distribution GLLD(1, n). The distribution function of T is

F (t) = 1 − (1 + (λt)γ)−n, t, n, λ > 0, γ ≥ 1. (20)

A random variable T with c.d.f. as given by (19) and (20) are generalized log-logistic
distribution with parameters (m, 1) and (1, n) respectively. We call (19) as generalized log-
logistic type I and (20) as generalized log-logistic type II.

Now rearranging the parameters, the cumulative distribution function of the general-
ized log-logistic distribution type I is

F (t) =
(

(λt)γ

1 + (λt)γ

)α

. (21)

The corresponding reversed hazard rate and cumulative reversed hazard rate are respectively
as follows.

m(t) = αγ

t(1 + (λt)γ) . (22)
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M(t) = αln

(
1 + (λt)γ

(λt)γ

)
(23)

Now rearranging the parameters, the cumulative distribution function of the generalized
log-logistic distribution type II is

F (t) = 1 − (1 + (λt)γ)−α . (24)

The corresponding reversed hazard rate and cumulative reversed hazard rate are respectively
as follows.

m(t) = αγλ(λt)−1+γ(1 + (λt)γ)−1−α

1 − (1 + (λt)γ)−α . (25)

M(t) = −ln(1 − (1 + (λt)γ)−α) (26)

When α = 1, this distribution reduces to log-logistic distribution. The reversed hazard
rate of the generalized log-logistic distribution is decreasing function of t > 0.

5. Proposed Models

Substituting cumulative reversed hazard function for the modified inverse Weibull base-
line distribution, generalized log-logistic type I and generalized log-logistic type II, we get
following six models.

F (t1j , t2j) = exp
[

ρ
1 − (1 + 2σ2η0j(η1jα1t−λ1

1j e−γ1t1j + η2jα2t−λ2
2j e−γ2t2j )) 1

2

σ2

]

exp
[

(1 − ρ)
1 − (1 + 2σ2η0jη1jα1t−λ1

1j e−γ1t1j ) 1
2

σ2

]

exp
[

(1 − ρ)
1 − (1 + 2σ2η0jη2jα2t−λ2

2j e−γ2t2j ) 1
2

σ2

]
(27)

F (t1j , t2j) = exp
(

−η0j

{
η1jα1t−λ1

1j e−γ1t1 + η2jα2t−λ2
2j e−γ2t2

})
(28)

F (t1j , t2j) = exp
[

ρ
1 − (1 + 2σ2η0j(η1jα1 ln(1 + 1/(λ1t1j)γ1) + η2jα2 ln(1 + 1/(λ2t2j)γ2))) 1

2

σ2

]

exp
[

(1 − ρ)1 − (1 + 2σ2η0jη1jα1 ln(1 + 1/(λ1t1j)γ1)) 1
2

σ2

]

exp
[

(1 − ρ)1 − (1 + 2σ2η0jη2jα2 ln(1 + 1/(λ2t2j)γ2)) 1
2

σ2

]
(29)
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F (t1j , t2j) = exp

(
−η0j

{
η1jα1

(
ln(1 + (λ1t1j)γ1

(λ1t1j)γ1
)
)

+ η2jα2

(
ln(1 + (λ2t2j)γ2

(λ2t2j)γ2
)
)})

(30)

F (t1j , t2j) = exp
[

ρ
1 − (1 + 2σ2η0j(η1j ln(1 − (1 + 1(λ1t1j)γ1)−α1) + η2j ln(1 − (1 + 1(λ2t2j)γ2)−α2))) 1

2

σ2

]

exp
[

(1 − ρ)1 − (1 + 2σ2η0jη1j ln(1 − (1 + 1(λ1t1j)γ1)−α1)) 1
2

σ2

]

exp
[

(1 − ρ)1 − (1 + 2σ2η0jη2j ln(1 − (1 + 1(λ2t2j)γ2)−α2)) 1
2

σ2

]
(31)

F (t1j , t2j) = exp
(
η0j

{
η1j ln(1 − (1 + (λ1t1j)γ1)−α1) + η2j ln(1 − (1 + (λ2t2j)γ2)−α2)

})
(32)

Here onwards we call equations (27), (28), (29), (30), (31), and (32) as Model I, Model
II, Model III, Model IV, Model V and Model VI respectively. Model I and Model II are
the modified inverse Weibull baseline distribution with and without frailty, Model III and
Model IV are the generalized log-logistic baseline distribution type I with and without frailty
and likewise Model V and Model VI are the baseline with generalized log-logistic baseline
distribution type II with and without frailty.

6. Likelihood Specification and Bayesian Estimation of Parameters

Suppose there are n individuals under study, whose first and second observed failure
times are represented by (t1j, t2j). Let c1j and c2j be the observed censoring times for the jth

individual (j = 1, 2, 3, ..., n) for the first and the second recurrence times respectively. We
use the left censoring scheme. We assume that the censoring time and the lifetimes of an
individual are independently distributed.

The contribution of the bivariate lifetime random variable of the jth individual to
likelihood function is given by,

Lj(t1j, t2j) =


f1(t1j, t2j), ; t1j > c1j, t2j > c2j,
f2(t1j, c2j), ; t1j > c1j, t2j < c2j,
f3(c1j, t2j), ; t1j < c1j, t2j > c2j,
f4(c1j, c2j), ; t1j < c1j, t2j < c2j.

and likelihood function is,

L(ψ, β, θ) =
n1∏

j=1
f1(t1j, t2j)

n2∏
j=1

f2(t1j, c2j)
n3∏

j=1
f3(c1j, t2j)

n4∏
j=1

f4(c1j, c2j) (33)

where θ, ψ and β are respectively the frailty parameter (σ, ρ), the vector of baseline pa-
rameters and the vector of regression coefficients respectively. For without frailty model,
likelihood function is

L(ψ, β) =
n1∏

j=1
f1(t1j, t2j)

n2∏
j=1

f2(t1j, c2j)
n3∏

j=1
f3(c1j, t2j)

n4∏
j=1

f4(c1j, c2j) (34)
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In equation (34) the frailty parameters θ and ρ are absent and in equation (33) they are
present. The counts n1, n2, n3 and n4 be the numbers of individuals for which first and
second failure times (t1j, t2j) lie in the ranges t1j > c1j, t2j > c2j; t1j > c1j, t2j < c2j;
t1j < c1j, t2j > c2j and t1j < c1j, t2j < c2j respectively such that n1 + n2 + n3 + n4 = n and

f1(t1j, t2j) = ∂2F (t1j, t2j)
∂t1j∂t2j

f2(t1j, c2j) = ∂F (t1j, c2j)
∂t1j

f3(c1j, t2j) = ∂F (c1j, t2j)
∂t2j

f4(c1j, c2j) = F (c1j, c2j) (35)

where ηoj = e(β0X0), η1j = e(β1X1) and η2j = e(β2X2). Substituting cumulative reversed hazard
rate M01(t1j), M02(t2j), reversed hazard rate m01(t1j), m02(t2j) and distribution function
F (c1j, c2j) for six proposed models into the last relations we get the likelihood function given
by equations (33) and (34) for all the six models.

Unfortunately computing the maximum likelihood estimators (MLEs) involves solving
a eleven dimensional optimization problem for Model I, Model III and Model V and nine
dimensional optimization problem for Model II, Model IV and Model VI. As the method
of maximum likelihood fails to estimate the parameters due to convergence problem in the
iterative procedure, so we use the Bayesian approach. The traditional maximum likelihood
approach to estimation is commonly used in survival analysis, but it can encounter difficul-
ties with frailty models. Moreover, standard maximum likelihood based inference methods
may not be suitable for small sample sizes or situations in which there is heavy censoring
(see Kheiri et al. (2007)). Thus, in our problem a Bayesian approach, which does not suffer
from these difficulties, is a natural one, even though it is relatively computationally inten-
sive. To estimate parameters of the model, the Bayesian approach is now popularly used,
because computation of the Bayesian analysis become feasible due to advances in computing
technology.

To estimate the parameters of the model, the Bayesian approach is now popularly
used, because computation of the Bayesian analysis become feasible due to advances in
computing technology. Several authors have discussed Bayesian approach for the estimation
of parameters of the frailty models. Some of them are, Ibrahim et al.(2001) and references
their in, Santos and Achcar (2010). Santos and Achcar (2010) considered parametric models
with Weibull and generalized gamma distribution as baseline distributions and gamma, log-
normal as frailty distributions. Ibrahim et al. (2001) and references therein considered
Weibull model and piecewise exponential model with gamma frailty. They also considered
positive stable frailty models.

The joint posterior density function of parameters for given failure times is obtained
as,

π(α1, λ1, γ1, α2, λ2, γ2, θ,β) ∝ L(α1, λ1, γ1, α2, λ2, γ2, θ,β)

×g1(α1)g2(λ1)g3(γ1)g4(α2)g5(λ2)g6(γ2)g7(θ)
5∏

i=1
pi(βi)
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where gi(.) (i = 1, 2, · · · , 7) indicates the prior density function with known hyper parameters
of corresponding arguments for baseline parameters and frailty variance; pi(.) is prior density
function for regression coefficient βi; βi represents a vector of regression coefficients except
βi, i = 1, 2, . . . , k and likelihood function L(.) is given by equation (33) or (34). Here we
assume that all the parameters are independently distributed.

To estimate the parameters of the model, we used Metropolis-Hastings algorithm and
Gibbs sampler. We monitored the convergence of a Markov chain to a stationary distribution
by Geweke test (Geweke 1992)and Gelman-Rubin Statistics (Gelman and Rubin, 1992).
Trace plots, coupling from the past plots and sample autocorrelation plots are used to check
the behaviour of the chain, to decide burn-in period and autocorrelation lag respectively.

Algorithm consists in successively obtaining a sample from the conditional distribution
of each of the parameter given all other parameters of the model. These distributions are
known as full conditional distributions. In our case full conditional distributions are not easy
to integrate out. So full conditional distributions are obtained by considering that they are
proportional to the joint distribution of the parameters of the model.

We have full conditional distribution of the parameter α1 with frailty as,

π1(α1 | λ1, γ1, α2, λ2, γ2, θ,β) ∝ L(α1, λ1, γ1, α2, λ2, γ2, θ,β) · g1(α1) (36)

We have full conditional distribution of the parameter α1 without frailty as,

π1(α1 | λ1, γ1, α2, λ2, γ2,β) ∝ L(α1, λ1, γ1, α2, λ2, γ2,β) · g1(α1) (37)

Similarly full conditional distributions for other parameters can be obtained.

To evaluate the performance of the Bayesian estimation procedure we carry out a
simulation study. For the simulation purpose we have considered only one covariate X0 which
we assume to follow binomial distribution. The frailty variable Z1 and Z2 are assumed to have
inverse Gaussian distribution with known variance and correlation ρ . Lifetimes (T1j, T2j)
for jth individual are conditionally independent for given frailty Z1j = z1j and Z2j = z2j. We
assume that Tij(i = 1, 2.; j = 1, 2, · · · , n) follows one of the baseline distribution modified
inverse Weibull distribution, Generalized log-logistic distribution type I and Generalized log-
logistic distribution type II. As the Bayesian methods are time consuming, we generate only
twenty five pairs of lifetimes.

A widely used prior for frailty parameters σ, are the gamma distributionG(0.0001, 0.0001).
In addition, we assume that the regression coefficients are normal with mean zero and large
variance say 1000. Similar types of prior distributions are used in Ibrahim et al. (2001), Sahu
et al. (1997) and Santos and Achcar (2010). So in our study we also use same non informa-
tive prior for frailty parameters σ, and regression coefficients βi, i = 1, .., 5. Since we do not
have any prior information about baseline parameters, λ1, γ1, α1, λ2, γ2 and α2, prior distri-
butions are assumed to be flat. We consider two different non-informative prior distributions
for baseline parameters, one is G(a1, a2) and another is U(b1, b2). All the hyper-parameters
a1, a2, b1 and b2 are known. Here G(a, b) is the gamma distribution with the shape parameter
a and the scale parameter b and U(b1, b2) represents uniform distribution over the interval
(b1, b2). For correlation parameter we use uniform distribution U(0, 1). We use different
value of baseline parameters for Model I, Model III and Model V, details are given in Table
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1, 2 and 3. We assume the value of the hyper-parameters as a1 = 1, a2 = 0.0001, b1 = 0 and
b2 = 100.

We run two parallel chains for model one using two sets of prior distributions with the
different starting points using Metropolis-Hastings algorithm and Gibbs sampler based on
normal transition kernels. We iterate both the chains for 100000 times. There is no effect of
prior distribution on posterior summaries because the estimates of parameters are nearly the
same and the convergence rate of Gibbs sampler for both the prior sets is almost the same.
Also for both the chains the results were somewhat similar. For all models, the trace plots,
the coupling from the past plots, the running mean plots and the sample autocorrelation
plots for the simulation study are not provided due to lack of space. Table 1, 2 and 3 presents
the estimates, the credible intervals of the parameters for the Model I, Model III and Model V
based on the simulation study. These also contains the Gelman-Rubin (Gelman and Rubin,
1992) convergence statistic and the Geweke test (Geweke, 1992) for all the parameters of
the Model I, Model III and Model V based on the simulation study. The Gelman-Rubin
convergence statistic values are nearly equal to one and also the Geweke test values are
quite small and the corresponding p-values are large enough to say that the chain attains
stationary distribution. Simulated values of the parameters have the autocorrelation of lag
k. So that every kth iteration is selected as a sample from the posterior distribution.

7. Analysis of Australian Twin data

Duffy et al. (1990) considered Australian twin data which consist of information about
the age at appendectomy of monozygotic (MZ) and dizygotic (DZ) twins. There were some
pairs with missing age at onset and those are the left censored observations. Duffy et al.
(1990) excluded these left censored observations in the analysis. It is therefore, appropriate
to model common random effect by including those left censored observations, which can
be done by developing frailty models using RHR. Accordingly, Sankaran and Gleeja (2011)
introduced frailty as a common random effect that acts multiplicatively on reversed hazard
rates, which is useful for the analysis of left censored data.

Now we apply the all six models to the Australian twin data given in Duffy et a1.
(1990). The data consists of six zygote categories. We consider the subset of the data with
zygote category 4. The data consists of males gender only and consist if 350 pair of twins
with 9 and 11 censored in twin 1 and twin 2 respectively. An individual having age at
onset less than 11 are considered as left censored observations. The data has information
on the age at onset at appendectomy of twins. The genetic effect involved in the risk of
appendectomy is the frailty variable. Here there is a common covariate age of twins for
both T1 and T2 and one covariate each for T1, T2, i.e., presence or absence of appendectomy.
To check goodness of fit of Australian twin data set, We obtain Kolmogorov-Smirnov(K-S)
statistics and their p-values for T1 and T2. For Model I, Model III and Model V p-values of
observe that p-values for Kolmogorov-Smirnov (K-S) statistics are provided in Table 4. Thus
from p values of K-S test are quite high. We can say that there is no statistical evidence to
the reject the hypothesis that data are from these three models.

As in case of simulation, here also we assume the same set of prior distributions. We
run two parallel chains for all models using two sets of prior distributions with the different
starting points using the Metropolis-Hastings algorithm and the Gibbs sampler based on
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normal transition kernels. We iterate both the chains for 100000 times. As seen in simulation
study here also we got nearly same estimates of parameters for both the set of priors, so
estimates are not dependent on the different prior distributions. Convergence rates of Gibbs
sampler for both the prior sets are almost the same. Also both the chains show somewhat
similar results, so we present here the analysis for only one chain with G(1, 0.0001) as prior
for baseline parameters and G(0.0001, 0.0001) as the prior for the frailty parameter σ2. Due
to lack of space we are presenting only for model one( trace plots and coupling from the
past plots ) for the parameters. Trace plots for all the parameters shows zigzag pattern
which indicates that parameters move and mix more freely. Thus, it seems that the Markov
chain has reached the stationary state. Burn in period is decided by using coupling from
the past plot. However, a sequence of draws after burn-in period may have autocorrelation.
Because of autocorrelation consecutive draws may not be random, but values at widely
separated time points are approximately independent. So, a pseudo random sample from
the posterior distribution can be found by taking values from a single run of the Markov chain
at widely spaced time points (autocorrelation lag) after burn-in period. The autocorrelation
of parameters become almost negligible after the certain lag.

The Gelman-Rubin convergence statistic values are nearly equal to one and the Geweke
test statistic values are quite small and corresponding p-values are large enough to say the
chains attains stationary distribution. The posterior mean and standard error with 95%
credible intervals for baseline parameters, frailty parameter and regression coefficients are
presented in Tables 5-10. The posterior summery of the Model I, Model II, Model III, Model
IV, Model V and Model VI are given in Tables 5, 6, 7, 8, 9 and 10. Tables 5, 6, 7, 8, 9
and 10 presents estimates, credible intervals, Geweke test and Gelman-Rubin statistics for
all the parameters of the Model I, Model II, Model III, Model IV, Model V and Model
VI respectively, based on data. For Model I, Model III and Model V the estimates of
frailty parameter σ are respectively 5.6081, 5.4875 and 4.7686. This shows that there is a
heterogeneity between the pairs of twins. Bayes factor for Model I with Model II is 32.80,
for Model III and Model IV is 298.41 and Model V with Model VI is 1704.12. This is also
a Bayesian test based on Bayes factor for testing σ2 = 0 against σ2 > 0 and which supports
the alternative hypothesis, i.e., models with frailty fits better. The credible interval of
regression coefficient β0 does not contain zero for all models except, Model VI. The credible
interval of regression coefficient β1 contain zero for all models except, Model III and Model
V. The credible interval of regression coefficient β2 contain zero for all models. Hence age
is the significant covariate for Model I, Model II, Model III, Model IV and Model V. The
convergence rate of Gibbs sampling algorithm does not depend on these choices of prior
distributions in our proposed model for Australian twin data. The Geweke test values are
near to zero and corresponding p-values are quite high and the Gelman-Rubin Statistics for
all the parameters of all six models based on data are very close to one.

To compare six models we first use Aikaike information criteria (AIC), Bayesian in-
formation criteria (BIC) and deviance information criteria (DIC) values which are given in
Table 11 and Bayes factor in Table 12. The AIC, BIC and DIC values for Model V is least
among all six models. On the basis of AIC, BIC and DIC values Model V is the best among
all six models. Similarly the Bayes factor show that models with frailty (Model I, Model
III and Model V) are better than the models without frailty and Model V, the correlated
inverse Gaussian frailty based on reversed hazard rate with generalised log-logistic type II
baseline is the best and the frailty is significant.
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8. Conclusions

Our main aim of the study is to examine the role of the bivariate correlated frailty
model based on the reversed hazard rate in survival studies. For this we used the correlated
inverse Gaussian frailty model with the modified inverse Weibull distribution, generalized
log-logistic type I and generalized log-logistic type II as a baseline distribution and these
models are compared with their baseline model based on reversed hazard rate. We also
found that the correlated inverse Gaussian frailty models are better models as compared to
their baseline model on the basis of AIC, BIC and DIC values for Australian twin data set.
Bayes factor support the correlated frailty models.

Initially we thought to use the method of maximum likelihood to estimate the param-
eters but likelihood equations do not converge and the method of maximum likelihood fails
to estimate the parameters so we used the Bayesian approach. In this study, the model is
specified in a Bayesian framework and estimated with the MCMC algorithms. The estimates
of the parameters are not dependent on the different prior distributions.

Two different chains were run for the proposed models from different starting points
using the Metropolis-Hastings algorithm within Gibbs sampler. We have provided 100,000
iterations to perform the simulation study. Estimates were calculated after discarding a
burn-in interval for each chain. The quality of convergence was checked by Gelman-Rubin
statistics. The values of the Gelman-Rubin statistics in this case are quite close to one and
also the Geweke test values are small with large p-values. Thus the sample can be considered
to have arisen from stationary distribution and descriptive statistics can be seen as valid
estimates of unknown parameters. The simulation results indicate that the performance of
the Bayesian estimation method is quite satisfactory. Bayes factor is used to test the frailty
parameter σ2 = 0 and it is observed that the frailty parameter is highly significant in all
frailty models. From Table 12 it is clear that the models with frailty fit better than without
frailty models and Model V is best among the all six models. Age is the significant for all
the models except Model VI.

The choice of the best model for Australian twin data is based on AIC, BIC, DIC and
Bayes factor values. We found that Model V is a best Model on the basis of AIC, BIC, DIC
and Bayes factor values. The age is the significant covariate for all models except Model IV.
Correlated inverse Gaussian frailty models(Model I, Model III and Model V) are better than
their baseline model. We also compare with correlated gamma frailty models suggested by
Hanagal and Pandey (2017) and observe that correlated inverse Gaussian frailty based on
reversed hazard rate with generalized log-logistic type II baseline performs better and more
suitable than the correlated gamma frailty models proposed by Hanagal and Pandey (2017)
for Australian twin data set, with left censored observations. The methods discussed in this
paper may be extended into other frailty models and correlated frailty models with different
baseline distributions, using the Bayesian approach, provided the models fit to the data.
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ANNEXURE

Table 1: Baseline Distribution Modified inverse Weibull Distribution Model I
with Correlated Inverse Gaussian Frailty (Simulation for Model I )

Parameter Estimate Standard Lower Upper Geweke p Gelman
( value) Error Credible Credible values values & Rubin

Limit Limit values
burn in period = 2500; autocorrelation lag = 250
α1 (2.0) 1.9894 0.1319 1.7806 2.2365 -0.00670 0.4973 0.9999
λ1 (1.5) 1.5197 0.0188 1.4725 1.5510 -0.00085 0.4996 1.0003
γ1 (2.5) 2.5306 0.1482 2.2461 2.7781 0.00052 0.5002 1.0020
α2 (2.2) 2.2126 0.0370 2.1228 2.2726 -0.00321 0.4987 1.0007
λ2 (2.5) 2.5197 0.0186 2.4721 2.5474 -0.02074 0.4917 1.0332
γ2 (3.0) 3.0537 0.1413 2.7424 3.2960 -0.00574 0.4977 1.0006
σ (2.0) 2.0660 0.0544 1.8817 2.1360 0.00084 0.5003 1.0031
ρ (0.7) 0.7349 0.0324 0.6458 0.7785 -0.00578 0.4976 1.0047
β (0.50) 0.5131 0.0343 0.4157 0.5812 -0.00229 0.4990 1.0059

Table 2: Baseline Distribution Generalized Logistic Distribution Type I Model-
III with Correlated Inverse Gaussian Frailty(Simulation for Model III )

Parameter Estimate Standard Lower Upper Geweke p Gelman
( value) Error Credible Credible values values & Rubin

Limit Limit values
burn in period = 7000; autocorrelation lag = 350
α1 (2.0) 1.8692 0.0528 1.7779 2.0937 0.00261 0.5010 0.9999
λ1 (1.5) 1.5621 0.0211 1.5032 1.5786 0.00171 0.5006 1.0031
γ1 (2.5) 2.3454 0.0836 2.2347 2.6174 -0.01263 0.4949 1.0099
α2 (2.2) 2.0152 0.0472 1.9713 2.2819 0.00531 0.5021 1.0138
λ2 (2.5) 2.5667 0.0425 2.4663 2.6287 0.00511 0.5020 1.0043
γ2 (2.5) 2.4307 0.1117 2.2773 2.6411 -0.00644 0.4974 1.0015
σ (0.20) 0.2304 0.0085 0.2091 0.2396 0.01255 0.5050 1.0071
ρ (0.7) 0.7686 0.0745 0.6106 0.8548 0.00563 0.5022 1.0001
β (0.50) 0.4879 0.0149 0.4702 0.5105 -0.02020 0.4919 1.0005
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Table 3: Baseline Distribution Generalized Logistic Distribution Type II Model-
V with Correlated Inverse Gaussian Frailty(Simulation for Model V )

Parameter Estimate Standard Lower Upper Geweke p Gelman
( value) Error Credible Credible values values & Rubin

Limit Limit values
burn in period = 7000; autocorrelation lag = 250
α1 (2.0) 2.0512 0.1433 1.7726 2.2631 -0.00394 0.4984 1.0012
λ1 (1.5) 1.5015 0.0218 1.4812 1.5492 0.00149 0.5005 1.0027
γ1 (3.5) 3.5009 0.1216 3.3806 3.6401 0.00061 0.5002 1.0009
α2 (2.2) 2.1858 0.1226 1.9576 2.4178 -0.01473 0.4941 0.9999
λ2 (2.5) 2.5055 0.0212 2.4715 2.5318 0.00056 0.5002 1.0004
γ2 (3.5) 3.4905 0.1519 3.4567 3.6781 -0.00213 0.4991 1.0097
σ (0.2) 0.21811 0.0198 0.1801 0.2191 -0.00431 0.4982 1.0047
ρ (0.7) 0.7125 0.1011 0.6128 0.7867 -0.00015 0.4999 1.0055
β (0.50) 0.4888 0.0402 0.4557 0.5549 -0.00171 0.4993 1.0000

Table 4: p-values of K-S Statistics for Goodness of Fit Test for Australian Twin
Data Set

Recurrence time
Distribution First Second
Model I 0.57402 0.59688
Model III 0.85443 0.7794
Model V 0.99977 0.99787

Table 5: Posterior Summary for Australian Twin Data Set (Model I)

Parameter Estimate Standard Lower Upper Geweke p Gelman
( value) Error Credible Credible values values & Rubin

Limit Limit values
burn in period = 7500; autocorrelation lag = 1300

α1 44.1762 2.7887 39.12322 48.7418 0.01771 0.5070 1.0068
λ1 0.4632 0.0311 0.4111 0.5071 -0.00162 0.4993 1.0341
γ1 0.1227 0.0042 0.1106 0.1312 -0.00224 0.4991 1.0034
α2 41.1201 2.9285 35.816 46.3785 0.00857 0.5034 1.0192
λ2 0.4574 0.0217 0.4161 0.4989 0.00243 0.5009 1.0041
γ2 0.2011 0.0035 0.1913 0.2112 -0.01221 0.4951 1.0066
ρ 0.9294 0.0414 0.8424 0.9978 -0.00069 0.4997 1.0099
σ 5.6081 0.0651 5.4172 5.7571 -0.01036 0.4958 1.0054
β0 0.0209 0.0023 0.0133 0.0304 -0.01873 0.4925 1.0000
β1 -0.0742 0.0641 -0.2287 0.1041 -0.00320 0.4987 1.0086
β2 -0.0312 0.0204 -0.0564 0.0161 -0.00684 0.4972 1.0045



2022] CORRELATED INVERSE GAUSSIAN FRAILTY 109

Table 6: Posterior Summary for Australian Twin Data Set (Model II)

Parameter Estimate Standard Lower Upper Geweke p Gelman
( value) Error Credible Credible values values & Rubin

Limit Limit values
burn in period = 12000; autocorrelation lag = 180

α1 11.44908 0.5554 10.47060 12.34491 -0.00330 0.4986 1.0075
λ1 0.06949 0.0112 0.04948 0.08727 0.01716 0.5068 1.0043
γ1 0.10227 0.0036 0.09499 0.10941 -0.00179 0.4992 1.0065
α2 10.43929 0.5275 9.44735 11.34131 -0.00460 0.4981 1.0008
λ2 0.07101 0.0106 0.05109 0.08880 -0.00714 0.4971 1.0031
γ2 0.09919 0.0038 0.09192 0.10693 9.27e-05 0.5001 0.9999
β0 0.00575 0.0020 0.00152 0.00950 0.003835 0.5015 1.0000
β1 -0.01649 0.0715 -0.14075 0.12942 -0.007237 0.4971 1.0008
β2 0.06323 0.1238 -0.17651 0.29295 0.004567 0.5018 1.0000

Table 7: Posterior Summary for Australian Twin Data Set (Model III)

Parameter Estimate Standard Lower Upper Geweke p Gelman
( value) Error Credible Credible values values & Rubin

Limit Limit values
burn in period = 7500; autocorrelation lag = 1100

α1 18.5175 0.2150 18.0612 18.8641 0.0015 0.5006 1.0004
λ1 0.0701 0.0012 0.0676 0.0722 -0.0259 0.4896 1.0095
γ1 23.1861 0.2119 22.6789 23.4689 -0.0056 0.4977 1.0000
α2 18.0016 0.5215 17.1468 18.1801 0.0022 0.5008 1.0003
λ2 0.0801 0.0012 0.0771 0.0823 -0.0254 0.4898 1.0149
γ2 24.1014 0.2182 23.6952 24.4461 -0.0043 0.4982 1.0026
ρ 0.8941 0.0151 0.8721 0.9078 0.0026 0.5010 0.9999
σ 5.7845 0.1155 5.5526 5.9101 -0.0061 0.4975 1.0039
β0 0.8465 0.0290 0.8161 0.8722 -0.0235 0.4906 1.0083
β1 -0.0507 0.0277 -0.0971 -0.0052 0.0042 0.5017 1.0134
β2 -0.0143 0.0314 -0.0426 0.0413 0.0113 0.5045 1.0321



110 DAVID D. HANAGAL [Vol. 20, No. 1

Table 8: Posterior Summary for Australian Twin Data Set (Model IV)

Parameter Estimate Standard Lower Upper Geweke p Gelman
( value) Error Credible Credible values values & Rubin

Limit Limit values
burn in period = 6500; autocorrelation lag = 200

α1 1.4806 0.2172 1.08298 1.87900 -0.00716 0.4971 1.0091
λ1 0.0475 0.0031 0.04162 0.05341 -0.00838 0.4966 1.0008
γ1 1.3022 0.1518 3.29435 3.93994 0.00624 0.5024 1.0017
α2 0.0456 0.0026 1.00322 1.56740 -0.00976 0.4961 1.0096
λ2 3.6265 0.1957 0.04062 0.05151 -0.00932 0.4962 1.0088
γ2 3.6135 0.1680 3.25814 3.99208 0.01088 0.5043 1.0018
β0 0.0059 0.0026 0.00068 0.01158 -0.00174 0.4993 1.0005
β1 8.9e-06 0.0024 -0.00437 0.00442 -0.00050 0.4997 1.0054
β2 0.0592 0.1285 -0.20118 0.29163 -7.76e-05 0.4999 1.0134

Table 9: Posterior Summary for Australian Twin Data Set (Model V)

Parameter Estimate Standard Lower Upper Geweke p Gelman
( value) Error Credible Credible values values & Rubin

Limit Limit values
burn in period = 6500; autocorrelation lag = 300

α1 0.2817 0.0032 0.2781 0.2877 -0.00066 0.4997 1.0002
λ1 0.0701 0.0025 0.0585 0.0724 -0.00274 0.4989 1.0004
γ1 55.4383 1.1412 52.9768 57.2222 0.00761 0.5030 1.0026
α2 0.1051 0.0031 0.0891 0.1108 0.00678 0.5027 1.0069
λ2 0.0706 0.0012 0.0687 0.0728 -0.00166 0.4993 1.0012
γ2 58.6274 1.6105 55.7728 61.0344 -0.00435 0.4983 1.0057
ρ 0.8824 0.0242 0.8461 0.9165 0.00041 0.5001 0.9999
σ 4.7686 0.0505 4.5495 4.8869 0.00315 0.5012 0.9999
β0 0.0785 0.0057 0.0751 0.0903 0.00317 0.5012 1.0002
β1 -0.0412 0.0202 -0.0819 -0.0051 0.01608 0.5064 1.0018
β2 -0.0214 0.0247 -0.0615 0.0221 -0.00370 0.4985 1.0136
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Table 10: Posterior Summary for Australian Twin Data Set (Model VI)

Parameter Estimate Standard Lower Upper Geweke p Gelman
( value) Error Credible Credible values values & Rubin

Limit Limit values
burn in period = 6500; autocorrelation lag = 200

α1 0.6047 0.1027 0.4205 0.8341 0.01169 0.5047 1.00
λ1 0.0475 0.0026 0.0428 0.0526 -0.00679 0.4972 1.03
γ1 5.1896 0.5964 4.1191 6.4377 -0.01175 0.4953 1.00
α2 0.6736 0.0885 0.5048 0.8412 0.01642 0.5065 1.00
λ2 0.0463 0.0029 0.0406 0.0524 -0.00860 0.4965 1.00
γ2 4.7336 0.4456 3.9453 5.7410 -0.01335 0.4946 1.01
β0 0.0042 0.0041 -0.0041 0.0119 0.00415 0.5016 1.00
β1 -0.0013 0.0239 -0.0441 0.0452 0.01221 0.5048 1.00
β2 0.0481 0.1225 -0.1985 0.2838 -0.00571 0.4977 1.01

Table 11: AIC, BIC and DIC Comparison

Model AIC BIC DIC
Model- I 5155.713 5188.813 5113.985
Model- II 5384.161 5426.847 5375.313
Model- III 5071.699 5082.212 5057.809
Model- IV 5355.809 5396.766 5351.894
Model- V 5016.714 5018.908 5003.065
Model- VI 5781.328 5901.931 5935.093

Table 12: Bayes Factors for Four Models

- M12 M31 M14 M51 M16 M32 M42 M52
Bayes Factor 32.80 302.08 5.59 336.81 1274.5 301.2 27.40 338.49

- M26 M34 M53 M36 M54 M46 M56 -
Bayes Factor 1268.83 298.41 32.79 1582.82 316.8 1271.11 1704.12 -

Mij = 2 ∗ ln( Ii
Ij

)


