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Abstract 

 
For data on two continuous variables, how should one depict the summary statistics 

(means, SDs, correlation coefficient, coefficient of determination, regression lines) so that their 
values can be read off easily from the depiction and potential outliers can be flagged also? We 
propose the Gaussian covariance ellipse as an answer that will benefit all users of statistics. 
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1.      Introduction 
 
Appropriate graphical representation of data is necessary for easy comprehension of 

underlying information. For each type of variable and for each objective, one must choose the 
correct graph to depict the data. In this paper, we focus only on quantitative variables which 
take values on a continuous scale; that is, even though measurement limitations may force us 
(and ease of comprehension may prompt us) to report the value correct to an integer or up to a 
few decimal places, we recognize that finer values are surely possible. Some quantitative 
variables are measured only on a difference scale, where the difference between two values has 
a meaningful interpretation, but not their ratio; and other quantitative variables are measured 
on an interval or ratio scale, where the ratio of two values has a proper physical interpretation. 

  
The objective of this paper is to depict the summary statistics of two quantitative 

variables that are related via the linear regression model or that exhibit a bivariate normal 
distribution. Section 2 identifies some commonly used bivariate statistics and poses the 
problem of depicting them efficiently. Section 3 depicts bivariate linear association for 
standardized data using a correlation ellipse; and Section 4 depicts bivariate summary statistics 
for raw data using a covariance ellipse. Section 5 highlights the sufficient statistics from which 
other bivariate summary statistics can be reconstructed; and Section 6 further reduces the 
sufficient statistics. Section 7 concludes the paper, interprets the covariance ellipse and poses 
some directions of future research. 
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2.      Depicting Bivariate Summary Statistics: Statement of the Problem 
 

Methods are well-known for depicting summary statistics of a quantitative variable. We 
refer the reader to Maverick (1932), Embse and Engebretsen (1996), and Sarkar and Rashid 
(2016, 2019). Also, above (or below) a dot plot or a histogram one can easily superimpose an 
arrow, whose tail shows the mean and length the SD. See, for example, Devore (2015) and 
Rashid and Sarkar (2018). Likewise, to depict the interrelations between two quantitative 
variables, the commonly used scatter plot can be augmented by the five-number-summary, the 
mean and the SD of each variable in the margins; that is, when the scatter plot is projected 
along each coordinate axis, the corresponding dot plots can be summarized using univariate 
methods. See an example given in Figure 1 with details found in Sarkar and Rashid (2020). 

 
Throughout the paper we illustrate some visualization techniques using the following 

example involving the midterm exam score (𝑥) and the final exam score (𝑦) of 23 students in 
an Introduction to Statistics course.  

  

 
 
Figure 1: The midterm exam (𝒙) and the final exam (𝒚) scores of 23 students, with 
the five-number-summary, mean and SD of each score shown in the margins 
 
To the astute reader we pose a quiz: “Projection of a scatter plot in which direction will 

cause the corresponding dot plot to exhibit the largest (or the smallest) SD? Alternatively, 
which linear combination of 𝑥 and 𝑦 has the largest (or the smallest) SD?” We urge the readers 
to jot down their answers before reading further. Our answer is given later in this paper. 

 
Frequently used bivariate summary statistics include the correlation coefficient 𝑟, the 

least squares regression line 𝑦& as a function of 𝑥, the inverse least squares regression line 𝑥& as 
a function of 𝑦, and the coefficient of determination 𝑟!. How should these bivariate statistics 
be depicted so that their numerical values can be easily read off from the scales of the axes?  

 
As a solution to this question, we propose to draw the Gaussian covariance ellipse that 

fits inside the 𝑐-SD rectangle given by the 𝑐-SD boundaries 𝑦 = 𝑦) ± 𝑐𝑠" and 𝑥 = �̅� ± 𝑐𝑠#. The 
diagonals of this rectangle intersect at the mean vector (�̅�, 𝑦)). We shall exhibit the Gaussian 
covariance ellipse in Section 4. But first, in Section 3, let us look at the Gaussian correlation 
ellipse, which only considers the standardized variables. It strips out the central location vector 
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(�̅�, 𝑦)), suppresses the scale factors 𝑠# and 𝑠", and focuses on the correlation coefficient 𝑟, the 
coefficient of determination 𝑟! and the two regression lines (in standardized units). 

 
3.      Gaussian Correlation Ellipse 

 
Let us first focus on the correlation coefficient 𝑟. To do so, we replace the variables by 

their standardized versions: Replace 𝑥 by 𝑥0 = (𝑥 − �̅�)/𝑠# and 𝑦 by 𝑦0 = (𝑦 − 𝑦))/𝑠". 
Consequently, the mean vector for (𝑥0, 𝑦0) is (0, 0), and 𝑠"$ = 𝑠#$ = 1. In particular, the 𝑐-SD 
rectangle for (𝑥0, 𝑦0) is a square (so long as the scales of the two axes in the diagram are chosen 
to be the same). We inscribe in this square the 𝑐-SD Gaussian correlation ellipse whose two 
axes pass through (0, 0) and have slopes 1 and −1, and is internally tangential to the 𝑐-SD 
square at exactly four points: bottommost point 𝐵 = (−𝑟𝑐, −𝑐), topmost point 𝑇 = (𝑟𝑐, 𝑐), 
leftmost point 𝐿 = (−𝑐,−𝑟𝑐) and rightmost point 𝑅 = (𝑐, 𝑟𝑐). Then 𝐿𝑅 is the regression line  
𝑦09 = 𝑟𝑥0  line, 𝐵𝑇 is the inverse regression line  𝑥09 = 𝑟𝑦0  line. Furthermore, these two regression 
lines 𝐿𝑅 and 𝐵𝑇 intersect at the center (0, 0) of the 𝑐-SD correlation ellipse, which is also the 
point of intersection of the two diagonals of the 𝑐-SD square and the center of gravity of the 
scatter plot of standardized variables (𝑥0, 𝑦0).  

 
For the example data, shown in Figure 1, after standardizing the scores, Figure 2 depicts 

the standard correlation ellipse, where we have chosen 𝑐 = 1, so that 39.35% of the data are 
expected to fall inside. We will say more about the choice of 𝑐 towards the end of Section 4. 

 

 
 

Figure 2: The 𝟏-SD square and the 𝟏-SD correlation ellipse for midterm and final 
exam scores of 23 students in an Introduction to Statistics course  
 
Based on the standardized variables, the standard (that is, with 𝑐 = 1) correlation ellipse 

is centered at the origin, has one axis with half-length 𝑎 (to be determined in the next paragraph) 
in the direction (1, 1) starting from the center, and has the other (orthogonal) axis with half-
length 𝑏 (also to be determined shortly) in the direction (1, −1) starting from the origin. After 
normalizing the direction vectors (that is, dividing each vector by √2), the standard correlation 
ellipse can be described by the equation 

 
(#$&"$)!

!(!
+ (#$)"$)!

!*!
= 1.     (1) 
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Next, focusing on the upper 𝑦0-value as a function of 𝑥0 and implicitly differentiating with 
respect to 𝑥0, we have 

 
(#$&"$)
(!

(1 + 𝑦0+) + (#$)"$)
*!

(1 − 𝑦0 +) = 0.    (2) 
 

The standard correlation ellipse is internally tangential to the 1-SD square at the point 
(𝑟, 1). Hence, we have 𝑦0’(𝑟) = 0 and 𝑦0(𝑟) = 1, and equations (1) and (2) yield 

 
(,&-)!

!(!
+ (,)-)!

!*!
= 1; 		and						 (,&-)

(!
+ (,)-)

*!
= 0.               (3) 

 
Solving the two equations in (3) simultaneously, we determine 𝑎 = √1 + 𝑟 and 𝑏 = √1 − 𝑟.  

 
Having determined 𝑎 and 𝑏, the standard correlation ellipse can be described by any one 

of the following equivalent equations {of which we prefer the last; that is, expression (4)}: 
 

(𝑥0 + 𝑦0)!

2(1 + 𝑟) +
(𝑥0 − 𝑦0)!

2(1 − 𝑟) = 1 

 

G
𝑥0 + 𝑦0
√2

𝑥0 − 𝑦0
√2

H I1 + 𝑟 0
0 1 − 𝑟J

)-
K(𝑥
0 + 𝑦0)/√2
(𝑥0 − 𝑦0)/√2

L = 1 

 

(𝑥0 𝑦0) M
N1/2 N1/2
N1/2 −N1/2

O I1 + 𝑟 0
0 1 − 𝑟J

)-
M
N1/2 N1/2
N1/2 −N1/2

O G𝑥0𝑦0H = 1 

 

(𝑥0 𝑦0) I1 𝑟
𝑟 1J

)-
G𝑥0𝑦0H = 1.    (4) 

 

The reader can verify that the correlation matrix I1 𝑟
𝑟 1J has eigen-values (1 + 𝑟) and 

(1 − 𝑟), and eigen-vectors PN1/2, N1/2Q and PN1/2, −N1/2Q, respectively. The 
standard correlation ellipse is also given (among several equivalent expressions) by 

 
(1 − 𝑟!)𝑥0! 	+ 	(𝑦0 − 𝑟𝑥0)! = 1 − 𝑟! 

or, 
	(𝑥0 − 𝑟𝑦0)! + (1 − 𝑟!)𝑦0! 	= 1 − 𝑟!. 

 
The standard correlation ellipse has the following properties: It passes through, not just 

the already mentioned four points 𝐿, 𝑅, 𝐵, 𝑇, but also through other recognizable points on the 
𝑥0-axis, the 𝑦0-axis, the major- and the minor axis such as 

 

±P√1 − 𝑟!, 0Q, ±P0, √1 − 𝑟!Q, ± KR-&,
!
,	sign(𝑟)R-&,

!
L ,±KR-),

!
, −sign(𝑟)R-),

!
L. 

 
Any vertical line segment terminated by the correlation ellipse is bisected by the 𝑦09 = 𝑟𝑥0 

line 𝐿𝑅; and similarly, any horizontal line segment terminated by the correlation ellipse is 
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bisected by the 𝑥09 = 𝑟𝑦0 line 𝐵𝑇. Hence, the standard correlation ellipse also passes through the 
following four points: ±(𝑟, 2𝑟! − 1) and ±(2𝑟! − 1, 𝑟). 

 
When the 1-SD square and the 1-SD Gaussian correlation ellipse of (𝑥0, 𝑦0) are both 

horizontally and vertically dilated (magnified or expanded) by the same factor 𝑐 we obtain the 
𝑐-SD square and the 𝑐-SD Gaussian correlation ellipse of (𝑥0, 𝑦0). To reiterate, the major axis of 
the 𝑐-SD correlation ellipse falls precisely on that diagonal of the 𝑐-SD square whose slope has 
the same sign as 𝑟. The ratio of the lengths of the two axes is 𝑐𝑎/[𝑐𝑏] = √1 + 𝑟/√1 − 𝑟. 
Hence, the 𝑐-SD Gaussian correlation ellipse (for all 𝑐) has eccentricity 

 

𝑒 = √(!)*!

(
= R !|,|

-&|,|
.     (5) 

 
Specifically, when 𝑟 = 0, eccentricity is 0 and the correlation ellipse is a circle; and when 

|𝑟| = 1, eccentricity is 1 and the ellipse with a major axis of half-length √2 and a minor axis 
of half-length 0 collapses into a line segment of length 2√2. 

 
4.      Gaussian Covariance Ellipse 

 
In the more general case, when 𝑠# ≠ 𝑠", let us consider the shifted variables 𝑢 = 𝑥 − �̅� 

and 𝑣 = 𝑦 − 𝑦). Note that the mean vector for (𝑢, 𝑣) is (0, 0), and 𝑠0 = 𝑠# ≠ 𝑠" = 𝑠1.  
 
Starting from the 𝑐-SD square and the 𝑐-SD Gaussian correlation ellipse of (𝑥0, 𝑦0), shown 

in Figure 3(a), if both are horizontally dilated by a factor 𝑠0 = 𝑠# and vertically dilated by a 
factor 𝑠1 = 𝑠", and then the image is translated by (�̅�, 𝑦)), the transformed regions are shown 
in Figure 3(b). We have chosen two different values, 𝑐 = 2.448 and 𝑐 = 2.7972, for reasons 
given at the end of this section. What exactly are the shapes of these transformed regions? 

 

(a) (b) 
 

Figure 3: A scatter plot of midterm and final exam scores, together with (a) the 𝒄-SD 
square and the 𝒄-SD correlation ellipse for standardized data, and (b) the corresponding 
transformed regions after dilations and translation for raw data, choosing 𝒄 = 𝟐. 𝟒𝟒𝟖 and 
𝒄 = 𝟐. 𝟕𝟗𝟕𝟐. What shapes are these transformed regions? 

 
It is trivial to see that each 𝑐-SD square in Figure 3(a) turns into a 𝑐-SD rectangle in 

Figure 3(b). But it is not easy to recognize that each 𝑐-SD correlation ellipse turns into another 
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ellipse, which we shall call the 𝑐-SD covariance ellipse. Why is the dilations-translation of an 
ellipse another ellipse? How do the major- and the minor axes of the correlation ellipse morph 
into the corresponding axes of the covariance ellipse?  

 
The answers to these questions are straightforward in the special case when 𝑠0 = 𝑠1 = 𝑠, 

say: The axes of the covariance ellipse coincide with the SD lines and their half-lengths are 𝑠-
multiples of those of the correlation ellipse. To answer the questions in the more general case 
when 𝑠0 ≠ 𝑠1, we use matrix algebra. Note that after dilations, the standard correlation ellipse, 
given in (4), changes into  

 

G
𝑢
𝑠0

𝑣
𝑠1
H I1 𝑟
𝑟 1J

)-
G𝑢/𝑠0	𝑣/𝑠1	

H = 1 

 
or equivalently, 

(𝑢 𝑣) d 𝑠0! 𝑟𝑠0𝑠1
𝑟𝑠0𝑠1 𝑠1!

e
)-

f𝑢𝑣g = 1,    (6) 

 
which is an ellipse (called the shifted standard covariance ellipse, shifted because the mean is 
(0, 0) and standard because 𝑐 = 1). 
 

Let the eigen-values of the covariance matrix 𝑆 = d 𝑠0! 𝑟𝑠0𝑠1
𝑟𝑠0𝑠1 𝑠1!

e be 𝛼 and 𝛽; let the 

associated (orthonormal) eigen-vectors be (𝑒--, 𝑒-!) and (𝑒!-, 𝑒!!) respectively; that is, 
 

d 𝑠0! 𝑟𝑠0𝑠1
𝑟𝑠0𝑠1 𝑠1!

e = I
𝑒-- 𝑒!-
𝑒-! 𝑒!!J d

𝛼 0
0 𝛽e I

𝑒-- 𝑒-!
𝑒!- 𝑒!!J; 

and 

I
𝑒-- 𝑒!-
𝑒-! 𝑒!!J I

𝑒-- 𝑒-!
𝑒!- 𝑒!!J = I1 0

0 1J. 
 

Then, reversing the steps shown for the standard correlation ellipse, the shifted standard 
covariance ellipse, given in (6), becomes  

 
(2""0&2"!1)!

3
+ (2!"0&2!!1)!

4
= 1.    (7) 

 
Returning to the original variables (𝑥 = 𝑢 + �̅�, 𝑦 = 𝑣 + 𝑦)) with mean vector (�̅�, 𝑦)), 

the shifted standard correlation ellipse (7) becomes the general covariance ellipse (with 
arbitrary 𝑐) given by 

 
(2""(#)#̅)&2"!(")"6))!

3
+ (2!"(#)#̅)&2!!(")"6))!

4
= 𝑐!.   (8) 

 
Thus, matching (8) with (1), we note that the 𝑐-SD covariance ellipse has major and 

minor axes given by   
 

Major axis: 𝑦 − 𝑦) = (𝑒-!/𝑒--)	(𝑥 − �̅�) with half-length 𝑐√𝛼  (9) 
  Minor axis: 𝑦 − 𝑦) = (𝑒!!/𝑒!-)	(𝑥 − �̅�) with half-length 𝑐N𝛽.   
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To complete the discussion on the major and the minor axes, shown in (9), it remains to 
obtain the eigen-decomposition of the covariance matrix 𝑆. The eigen-values are the solutions 

𝜏 of the quadrative equation 𝑑𝑒𝑡 M
𝑠#! − 𝜏 𝑟𝑠#𝑠"
𝑟𝑠#𝑠" 𝑠"! − 𝜏

O = 0; or equivalently, 

 
𝜏! − P𝑠#! + 𝑠"!Q𝜏 + 𝑠#!𝑠"!(1 − 𝑟!) = 0 

or, 

𝜏 =
1
2nP𝑠#

! + 𝑠"!Q ± RP𝑠#! − 𝑠"!Q
! + P2𝑟𝑠#𝑠"Q

!o	. 

 

The larger eigen-value is 𝛼 = -
!
nP𝑠#! + 𝑠"!Q + RP𝑠#! − 𝑠"!Q

! + P2𝑟𝑠#𝑠"Q
!o, and the 

eigen-vector associated with 𝛼 satisfies (𝑠#! − 𝛼)𝑒-- + 𝑟𝑠#𝑠"𝑒-! = 0, whence 
 

𝑒-!
𝑒--

=
𝛼 − 𝑠#!

𝑟𝑠#𝑠"
=
RP𝑠#! − 𝑠"!Q

!
+ P2𝑟𝑠#𝑠"Q

!
− P𝑠#! − 𝑠"!Q

2𝑟𝑠#𝑠"
 

 
which has the same sign as that of 𝑟. 
 

Likewise, the smaller eigen-value is 𝛽 = -
!
nP𝑠#! + 𝑠"!Q − RP𝑠#! − 𝑠"!Q

! + P2𝑟𝑠#𝑠"Q
!o, 

and the eigen-vector associated with 𝛽 satisfies (𝑠#! − 𝛽)𝑒!- + 𝑟𝑠#𝑠"𝑒!! = 0, whence  
 

𝑒!!
𝑒!-

=
𝛽 − 𝑠#!

𝑟𝑠#𝑠"
= −

RP𝑠#! − 𝑠"!Q
!
+ P2𝑟𝑠#𝑠"Q

!
+ P𝑠#! − 𝑠"!Q

2𝑟𝑠#𝑠"
 

 
which has the opposite sign as that of 𝑟. 

 
Moreover, instead of documenting the two eigen-vectors, it may suffice to record only 

the slope 𝑚 = 𝑒-!/𝑒-- of the major axis (since the minor axis is orthogonal to the major axis, 
the slope of the minor axis is −1/𝑚 = 𝑒!!/𝑒!-). Let us compare 𝑚 with the ratio 𝑠"/𝑠# of the 
two SDs in all possible cases:  

 
1. When 𝑟 = 0, the major- and minor axes of the covariance ellipse may be chosen to 

coincide with the two coordinate axes. In this case, 𝑚 = 0 if 𝑠# > 𝑠" and 𝑚 = ∞ if 
𝑠# < 𝑠". 

2. When 𝑠# = 𝑠" and 𝑟 ≠ 0, we have 𝑚 = 𝑠𝑖𝑔𝑛(𝑟); that is, the major axis falls on the 
SD line if 𝑟 > 0, and the minor axis falls on the SD line if 𝑟 < 0.  

3. When 𝑠# < 𝑠" and 𝑟 > 0, we have 𝑚 > 𝑠"/𝑠#; but when 𝑠# < 𝑠" and 𝑟 < 0, we have 
𝑚 < −𝑠"/𝑠#;	that is, the major axis is steeper than the SD line.  

4. When 𝑠# > 𝑠" and 𝑟 > 0, we have 𝑚 < 𝑠"/𝑠#; but when 𝑠# > 𝑠" and 𝑟 < 0, we have 
𝑚 > −𝑠"/𝑠#;	that is, the major axis is less steep than the SD line. 
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How should one choose the multiplier 𝑐 to construct the 𝑐-SD rectangle? If one desires a 
fraction 𝑝 of points to fall outside the covariance ellipse, one can choose 𝑐 as the (1 − 𝑝)th 
percentile of a chi-square distribution with two degrees of freedom, obtained from R using 
code: sqrt(qchisq(1–p,2). For example, 60.65% of points fall outside the 1–SD covariance 
ellipse; 5% of points will fall outside the 2.448–SD covariance ellipse; 1.11% outside the 3–
SD covariance ellipse; 1% outside the 3.035–SD covariance ellipse. In Figure 3, we have used 
𝑐 = 2.448 and 𝑐 = 2.7972 to flag the farthest (in 2-d sense) 5% and 2% of the scatter points. 
We recommend using 𝑐 = 2.8, since this value is easy to remember and since with this choice, 
for a bivariate normal distribution, roughly 2% of the points fall outside the covariance ellipse.  

 
Whereas the 𝑥-outliers and the 𝑦-outliers are already detected using the single variable 

𝑐-SD line segments, the 𝑐-SD covariance ellipse is a handy tool to detect the regression outliers 
or bivariate outliers. 

 
We mention a few properties of the 𝑐-SD Gaussian covariance ellipse: As  mentioned 

before, the 𝑐-SD Gaussian covariance ellipse is internally tangent to the 𝑐-SD rectangle at four 
points: bottommost point 𝐵 = (�̅� − 𝑟𝑐𝑠# , 𝑦) − 𝑐𝑠"), topmost point 𝑇 = (�̅� + 𝑟𝑐𝑠# , 𝑦) + 𝑐𝑠"), 
leftmost point 𝐿 = (�̅� − 𝑐𝑠# , 𝑦) − 𝑟𝑐𝑠") and rightmost point 𝑅 = (�̅� + 𝑐𝑠# , 𝑦) + 𝑟𝑐𝑠"). 
Moreover, 𝐿𝑅 is the 𝑦& line, 𝐵𝑇 is the 𝑥& line. These two regression lines 𝐿𝑅 and 𝐵𝑇 intersect at 
the center of the ellipse, which is also the point of intersection of the two diagonals of the 𝑐-
SD rectangle and is also the mean vector (�̅�, 𝑦)). As it was for the correlation ellipse, any vertical 
line segment terminated by the covariance ellipse is bisected by the 𝑦&-line 𝐿𝑅; and any 
horizontal line segment terminated by the covariance ellipse is bisected by the 𝑥&-line 𝐵𝑇. 
Admittedly, the directions and lengths of the major- and the minor-axis of the 𝑐-SD Gaussian 
covariance ellipse, given in (9) and the discussion afterwards, are relatively more difficult to 
fathom. Nonetheless, astute students of statistics will do wisely to learn them. 

 
5.      Sufficiency 

 
So far, we established that the 𝑐-SD rectangle and the 𝑐-SD covariance ellipse summarize 

all bivariate statistics mentioned in Section 2. Now we go a step further to claim that it suffices 
to draw only one 𝑐-SD Gaussian covariance ellipse (for any value of 𝑐) since all summary 
statistics can be recovered from it. How so? 

 
Here is how: Refer to Figure 3(b) again. Given the 𝑐-SD covariance ellipse, the 𝑐-SD 

rectangle can be reconstructed by sandwiching the ellipse between lines parallel to the two 
coordinate axes. Hence, we can locate the four points of tangency 𝐵, 𝑇, 𝐿, 𝑅 between the 𝑐-SD 
covariance ellipse and the 𝑐-SD rectangle. Then, using the points of tangency, we obtain the 
regression lines 𝐿𝑅 (for 𝑦&) and 𝐵𝑇 (for 𝑥&). The center of the ellipse is found either as the point 
of intersection between 𝐿𝑅 and 𝐵𝑇, or the point of intersection of the two diagonals of the 𝑐-
SD rectangle. The correlation coefficient 𝑟 is the ratio of the horizontal distance between 𝐵 and 
𝑇 to the horizontal distance between 𝐿 and 𝑅 of the 𝑐-SD rectangle (with sign positive if 𝑇 is 
to the right of 𝐵, and negative otherwise); or equivalently, it is the ratio of the vertical distance 
between 𝐿 and 𝑅 to the vertical height 𝐵𝑇 of the 𝑐-SD rectangle (with sign positive if 𝐿 is 
below 𝑅, and negative otherwise). The major and the minor axes are found (at least visually) 
as the largest and the smallest diameters (line segments passing through the center and 
terminated by the ellipse). If the two axes have half-lengths 𝑎 and 𝑏 respectively, we can also 

calculate 𝑟 = (!)*!

(!&*!
, since one can verify that (

*
= R-&,

-),
	. Finally, if the vertical line from 𝑇 to 
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the horizontal line 𝑦 = 𝑦) intersects 𝐿𝑅 (the 𝑦& line) at 𝐽 and ends at 𝐾, then the coefficient of 
determination is 𝑟! = 𝐽𝐾/𝑇𝐾. 

 
6.      Further Reduction 

 
To help the user decipher all bivariate summary statistics, we recommend superposing 

the entire 𝑐-SD covariance ellipse on the scatter plot. However, for mathematical completeness, 
we must mention that it suffices to superpose the four points of tangency 𝐵, 𝑇, 𝐿, 𝑅 between the 
covariance ellipse and the 𝑐-SD rectangle. In fact, any three of these points will also suffice. 
For instance, given 𝐵, 𝑇, 𝐿, you can discover 𝑅 as follows: Join 𝐵𝑇; find its midpoint 𝑀; join 
𝐿𝑀 and produce it to 𝑅 such that 𝐿𝑀 = 𝑀𝑅. Using these four points, we can obtain the 𝑐-SD 
rectangle, as explained below and shown in Figure 4.  

 
Draw horizontal lines through 𝐵 and 𝑇 and vertical lines through 𝐿 and 𝑅. Their points 

of intersection form the 𝑐-SD rectangle 𝐸𝐹𝐺𝐻, whose vertices are labeled clockwise starting 
from the north-west corner. Then we have 

 
                   𝑠# =

-
!7
𝐸𝐹, 𝑠" =

-
!7
𝐹𝐺,         and  𝑟 = 2 89

8:
− 1 = 1 − 2 9:

8:
.            (10) 

 

 
Figure 4: Any three points, out of the four points of tangency 𝑻,𝑩, 𝑳, 𝑹, suffice to 
reconstruct the 𝒄-SD rectangle and the two regression lines 
 
As already mentioned before, 𝐿𝑅 is the 𝑦& line, 𝐵𝑇 is the 𝑥& line. Furthermore, if we draw 

vertical lines through 𝐵 and 𝑇, and horizontal lines through 𝐿 and 𝑅, then their intersections 
form the inner rectangle 𝐸′𝐹′𝐺′𝐻′ whose area as a proportion of the area of the outer rectangle 
𝐸𝐹𝐺𝐻 represents the coefficient of determination 𝑟!. See Figure 5. In particular, as 𝑟 
approaches 0, the inner rectangle 𝐸′𝐹′𝐺′𝐻′ reduces in size until it coincides with the center; 
and as 𝑟 approaches 1, the inner rectangle 𝐸′𝐹′𝐺′𝐻′ increases in size until it coincides with the 
outer rectangle EFGH. 
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Figure 5: Any three of the four points of tangency 𝑩, 𝑻, 𝑳, 𝑹, suffice to calculate the 
coefficient of determination and the correlation coefficient. 
 
Thereafter, we impose a coordinate system such that the point of intersection between 

𝐵𝑇 and 𝐿𝑅 represents (�̅�, 𝑦)). Then using the SDs and the correlation given in (10) and scaling 
both variables in (6) by the same factor 𝑐, the 𝑐-SD covariance ellipse is given by  

 

(𝑥 − �̅�, 𝑦 − 𝑦))	M
𝑠#! 𝑟𝑠#𝑠"

𝑟𝑠#𝑠" 𝑠"!
O
)-

G𝑥 − �̅�𝑦 − 𝑦)H = 𝑐!.            (11) 

 
We can draw (at least a free-hand sketch of) the 𝑐-SD covariance ellipse internally tangential 
to the 𝑐-SD rectangle at the four points 𝐵, 𝑇, 𝐿, 𝑅 and passing through 𝐵′, 𝑇′, 𝐿′, 𝑅′ obtained by 
moving vertically points 𝐵, 𝑇 towards the regression line 𝑦& (or 𝐿𝑅) and continuing equally far 
on the opposite side of 𝐿𝑅, and similarly moving points 𝐿, 𝑅 horizontally towards the regression 
line 𝑥& (or 𝐵𝑇) and continuing equally far on the opposite side of 𝐵𝑇. Additional points on the 
ellipse are found by repeating the process. 

 
7.     Conclusion 

 
While a box plot and a mean-SD arrow (or alternatively, a 𝑐-SD line) offer graphical 

summaries of one continuous variable, our proposed 𝑐-SD covariance ellipse does the same for 
two continuous variables. Using the 𝑐-SD covariance ellipse, we can recover the means, the 
SDs, the correlation coefficient 𝑟, the regression line 𝑦& (as a linear function of 𝑥), the regression 
line 𝑥& (as a linear function of 𝑦), and the coefficient of determination 𝑟!. Thereafter, the 
equation of the ellipse can be recovered from (11). Moreover, scatter points outside the 𝑐-SD 
covariance ellipse (with a desired choice of 𝑐) are flagged as potential outliers. We hope that 
the 𝑐-SD covariance ellipse (or simply any three points of tangency between the 𝑐-SD 
covariance ellipse and the 𝑐-SD rectangle) will help users develop better intuitions about the 
important concepts of correlation, regression and bivariate outliers.  

 
It is worth mentioning that the 𝑐-SD covariance ellipse, given in (11), is the shortest area 

region (of any shape) that captures inside it a specific fraction of the bivariate normal 
distribution approximately equal to the cumulative distribution function of a chi-square 
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variable with two degrees of freedom {given by R codes: pchisq(c^2, 2) = pexp(c^2/2)}. 
Equivalently, the contour plots of a bivariate normal distribution form a family of ellipses for 
various values of 𝑐. What we have demonstrated in this paper is that given any one of these 
contour ellipses (even when not knowing the value of 𝑐) we can discover the mean vector, the 
SD line, the SD-ratio 𝑠"/𝑠#, the correlation coefficient 𝑟, the two regression lines 𝑦,� 𝑥&, and the 
coefficient of determination 𝑟!. 

 
Here is the answer to the quiz we posed in the Section 2 regarding the largest (or the 

smallest) SD of a suitable projection of a scatter plot: The largest SD is attained when the 
scatter plot is projected on to the major axis of the 𝑐-SD covariance ellipse, for any 𝑐. Similarly, 
the smallest SD is attained when the scatter plot is projected on to the minor axis of the 𝑐-SD 
covariance ellipse. 

 
We invite the interested reader to depict simultaneously the summary statistics involving 

three or more quantitative variables—specifically focusing on multiple correlation coefficient 
partial correlation coefficients, and principal components. 
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