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Abstract
In a mixture experiment, the response depends on the proportions of the mixing

components. Canonical models of different degrees have been suggested by Scheffé (1958)
to represent the mean response in terms of the mixing proportions, and optimum designs
for estimation of the parameters of the models have been investigated by several authors.
In most cases, the optimum design includes the vertex points of the simplex as support
points of the design, which are not mixture combinations in the true non-trivial sense, and
therefore are not acceptable to the practitioners. Further, in some situations, due to physical
or economic limitations, the experimental region forms only a part of the simplex that does
not cover the extreme points. The present paper gives a review of the available literature on
optimum mixture experiments in regular subspaces of the simplex.
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1. Introduction

A systematic study of optimum regression designs began with the pathbreaking work
of Kiefer and Wolfowitz (1959). Soon after, various authors started to investigate optimality
criteria for designs to estimate the model parameters (cf. Elfving, 1959; Karlin and Studden,
1966; Fedorov, 1971; Pukelsheim, 1993; Draper and Pukelsheim, 1996; Liski et al. 1998; Li
et al., 2005). A mixture experiment is a special case of a regression experiment, where the
mean response is dependent on the mixing proportions of the ingredients in the mixture,
rather than on their actual amounts. Thus, for a mixture experiment with q ingredients, the
experimental region is defined by

Ξ =
{

(x1, x2, . . . , xq)T : xi ≥ 0, i = 1 (1) q,
q∑

i=1
xi = 1

}
, (1)

where (x1, x2, . . . , xq) denote the mixing proportions. Graphically, (1) is defined by a
simplex with vertices (1, 0, . . ., 0), (0, 1, . . ., 0), . . ., (0, 0, . . ., 1).
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There are high applications of mixture methodologies in different research areas, like
(a) agricultural experiments, such as (i) intercropping (Dhekale et al., 2003), (ii) split of total
fertilizer application at different growth-stages of plants (Batra et al., 1999), (iii) blend of
waste water/saline water/marginal quality water for effective irrigation (Kan and Rapaport-
Rom, 2012), (b) horticultural experiments, such as preparation of ready-to-serve beverages
(Deka et al., 2001), (c) animal nutritional experiments, such as feeding trials with several
alternatives (Osborne and Mendel, 1921), (d) gasoline blending (Snee, 1981), (e) experiments
with chemical pesticides (Deneer, 2000), and so on.

Mixture models, of the form ηx = f ′(x)β, were first introduced by Scheffé (1958),
who defined canonical models of degrees one to three to express the mean response in terms
of the mixing proportions as follows:

Linear (homogeneous): ηx = ∑
i βixi

Quadratic: ηx = ∑
i βixi+

∑
i<j βijxixj

Full cubic: ηx = ∑
i βixi+

∑
i<j βijxixj +∑i<j<k βijkxixjxk +∑

i<j δij(xi−xj)

Special cubic: ηx = ∑
i βixi+

∑
i<j βijxixj +∑i<j<k βijkxixjxk.

Scheffé (1958, 1963) also proposed the simplex lattice design and the simplex centroid
design as suitable for parameter estimation in his proposed models. Later, other models,
like the log-contrast model, Darroch-Waller quadratic mixture model, linear mixture models
with synergism, were introduced.

Optimal designs for estimation of model parameters in various mixture models have
been investigated by many researchers. Noteworthy are the studies by Kiefer (1961), Farrel
et al. (1967), Atwood (1969), Galil and Kiefer (1977), Liu and Neudecker (1995), to name
a few. Generally, the designs suggested for estimation and analysis in mixture experiments
include the vertex points of the simplex, and such designs also turn out to be optimal
designs. However, practitioners find such suggestions rather absurd and illogical as vertices
of the simplex are not mixtures in the true sense, and they prefer to perform experiments
excluding these points. Further, often due to physical or economic limitations, or interest of
the experimenter, experiments may be confined to a sub-region of the whole experimental
space. For example, when interest lies on the relationship among the ingredients, factorial
arrangements can be used to analyze the response to ratios of ingredients (Kentworthy, 1963).
Here only complete mixtures must be considered, that is, only mixtures where the proportion
of each component is greater than zero. In agricultural/horticultural experiments, there
are instances of usage of mixture experiments, and a growing interest in use of restricted
subspaces of the simplex (Batra et al. 1999; Deka et al. 2001; Dhekale et al. 2003).
Suggestion for the experimental region as a subspace of the simplex that does not include
the vertex points are available in (Cornell, 2002). Though much research has been conducted
to find appropriate designs for mixture experiments with restricted space, not much studies
are available where the optimal design has been investigated.

This paper takes the readers on a journey through optimum designs when the experi-
mental region is defined by a regular subspace of the simplex, such as an ellipsoid, a simplex
within the simplex or a cuboid.
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2. Restricted regions

The most common form of restricted region arises when one or more of the proportions
of ingredients in the mixture are subjected to lower and/or upper bounds. This is very
common in pharmaceutical experiments, horticulture experiments, agricultural experiments,
gasoline blending, etc. The experimental region in such cases form a subset of the simplex.
For example, if we have a 4-component mixture with the mixing proportions x1, x2, x3 and
x4 having bounds 0.4 ≤ x1 ≤ 0.6, 0.1 ≤ x2, x3 ≤ 0.5, 0.03 ≤ x4 ≤ 0.08, the experimental
region is given by the bounded region within the simplex in Figure 1.

Figure 1: Experimental region within the simplex
In view of the bounds on the mixing proportions, the vertices of the simplex are

excluded in the experimental region.

An interesting investigation carried out with such lower or upper bounds on mix-
ing proportions, or on linear combinations of them, is due to Martin et al. (1999), who
argued that theory cannot usually be used to obtain a good design. They discussed the
algorithmic methods to obtain optimal designs, mainly using the D-optimality criterion, and
sometimes the V – optimality criterion, and compared the algorithms using several published
3-component mixture examples. Their study was restricted to optimum designs for parame-
ter estimation in Scheffé’s canonical models. Later, Mandal et al. (2008) attempted to find
the optimum design for estimation of the optimum mixing proportions in 2- and 3-component
mixtures using Scheffé’s quadratic mixture model, where one of the components is restricted
by an upper bound less than unity. They used the pseudo-Bayesian approach due to Pal
and Mandal (2006), and obtained the A-optimal design in the case of 2-component mixture.
However, in the case of 3-component mixture, they could suggest an optimum design within
six-point designs, but not within all competing designs. This instigated them to search fur-
ther, and they came up with a seven-point design which was very close to the other design
in terms of the criterion function. So, their suggestion was to start with any one of these
designs, and use a standard numerical algorithm to reach the optimum design.

Other types of restricted experimental regions may be as given in Figure 2, As is
noted, these regions have regular shapes, which are easy to study analytically, rather than
very irregular regions within the simplex.

The restricted regions in Figure 2 also do not include the vertex points of the simplex.

An ellipsoidal experimental region often appears in pharmaceutical and engineering
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Figure 2: Some regular subspaces within the simplex forming the experimental
regions

experiments. For example, Rais et al. (2004) used an ellipsoidal subregion of the space of
mixture components for the optimization of a fluoroanhydrite-based self-levelling floor com-
position. A simplex within a simplex arises as an experimental region when the mixing
proportions lie within a fixed range in (0,1). An example of this can be found in pharma-
ceutical experiment with oral tablets, where 2 or 3 polymers may be used with proportions
having the same fixed non-zero bounds. Again, bounds on the mixing proportions may lead
to a rectangular cuboid experimental region under certain conditions, as shown by Crosier
(1990).

Restricted experimental region, ignoring the vertex points of the simplex, have been
studies in mixture experiments to prescribe designs for parameter estimation (cf. Cornell,
2002). However, few authors attempted to find the optimum designs in such cases. Sections
3 - 5 review optimal designs for parameter estimation in Scheffé’s first and second order
models under regular experimental regions as indicated in Figure 2.

3. Ellipsoidal experimental region in the simplex

Mandal et al. (2015) were perhaps the first to attempt to find optimal design in
an ellipsoidal region. For a q-component mixture experiment, they defined the constrained
experimental region as

Ξ0 =
{

x = (x1, x2, . . . , xq)T : xi ≥ 0, 1 ≤ i ≤ q,
q∑

i=1
xi = 1, (x − x0)T H−2(x − x0) ≤ 1

}

where x0 = (1/q, 1/q, . . . , 1/q)T is the centroid of the simplex, and H is a non-singular
diagonal matrix given by H = diag (h11, h22, . . . , hqq) . The experimental region can be made
to suit a specific situation by varying the hii’s.

The authors considered the case where H ∝ Iq, an identity matrix. Then, for the
transformation x → z = H−1 (x − x0) , the domain of z comes out as {z = (z1, z2, ..., zn)T :

zT z ≤ 1, zT 1q = 0}. A further transformation, viz.
[

u
v(q−1)×1

]
= Qz, where Q is an

orthogonal matrix given by
[
q

1
2 1q

P

]
, and 1q is a q × 1 vector with all elements unity, leads
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to u = 0 and v = Pz, with domain of v given by {v = (v1, v2, . . . , v(q−1))T : vT v ≤ 1}. One
can easily express a Scheffé’s model in terms of v.

The problem of determining optimum designs in terms of v in its domain is a standard
one in the context of response surface. Invariance structure, combined with the Loewner
ordering (partial ordering of the information matrices), constitutes the Kiefer ordering, and
this provides an effective tool in tackling optimal design problems of high dimension (cf.
Pukelsheim, 1993). Using inverse transformation, it is easy to obtain the optimal design in
terms of z, and hence in terms of x. Further, the optimum design in terms of x may not
include the vertex points of the simplex, and, therefore, it will be different from the standard
optimum design obtained over the whole simplex.

When Scheffé’s first order mixture model is considered in the restricted space, the
model in terms of v is also of first order, and to construct Kiefer optimal design on the
experimental domain vT v ≤ 1 one needs to vary each of the k = q − 1 components of v
on the two levels ± k−1/2 only. The design that assigns uniform weight to each of the 2k

vertices of [−k−1/2, k−1/2]k is the complete factorial design 2k, and its optimality is established
through the following lemma (cf. Pukelsheim, 1993):

Lemma 1: A first order design D(n×k) with k components is optimum in the sense
of Kiefer ordering if DT D ∝ Ik .

Examples of first order optimal designs for the restricted region are obtained by
exploiting the Kiefer optimal first order designs on the v – space and choice of H as follows:

(i) For q = 2, v ∈ [−1, 1], and the Kiefer optimal design assigns equal mass, namely
1
2 , to the two extreme points v = −1 and v = 1. Accordingly, the optimal design on the
original restricted domain has the support points

(a)
(√

3+
√

2
2
√

3 ,
√

3−
√

2
2
√

3

)
and

(√
3−

√
2

2
√

3 ,
√

3+
√

2
2
√

3

)
when H = 3−1/2 I2,

(b)
(√

2+1
2
√

2 ,
√

2−1
2
√

2

)
and

(√
2−1

2
√

2 ,
√

2+1
2
√

2

)
when H = 2−1 I2,

In general, for q = 2, Lemma1 establishes the Keifer optimality of the designs obtained
for all H of the form H = hIq, when h ≤ 2− 1

2 .

It is to be noted that for H = 2−1/2 I2 the points in the experimental region Ξ0 are
restricted by x1(x1−1) ≤ 0, which leads to the optimum design in the restricted space to have
support points at (1, 0) and (0, 1) with equal masses. This is also the case in the unrestricted
case.. Draper and Pukelsheim (1999) has already established the Kiefer optimality of this
design in their ingenious way.

(ii) For q = 3, the Kiefer optimal design in the v – space has the supports
(
−

√
3

2 , 1
2

)
,(√

3
2 , 1

2

)
, (0, −1), which, on inverse transformation, gives the support points of the optimal

design in the restricted space as (1/6, 1/6, 2/3), (2/3, 1/6, 1/6) and (1/6, 2/3, 1/6) when H =

6−1/2 I3, and P =
(

− 1√
2 0 1√

2
1√
6 − 2√

6
1√
6

)
. This design is an axial design as noted in Figure 3

below.
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Figure 3: Support points of the optimum design in the case of 3-component
mixture with ellipsoidal experimental region

Mandal et al. (2015) established that a design with any three points on the circum-
ference of the circle in Figure 3, which form an equilateral triangle, is Kiefer-optimal. Thus,
though the design indicated in Figure 3 is an axial design, a Kiefer optimal design is not
necessarily so.

For Scheffé’s quadratic mixture model, using the natural constraint ∑k
i=1 xi = 1, it

is possible to have a Kronecker product representation of the model, viz. ηx = (x ⊗ x)T β∗,
which makes it easier to represent the model as a quadratic model in v with its parameter
vector, say τ ∗, having a linear relationship with β∗. As such, a design for estimating τ ∗

with Loewner Order dominance will also have Loewner Order dominance for τ ∗. Pal et
al. (2015) exploited this to obtain a Kiefer optimal design in the ellipsoidal region under
Scheffé’s quadratic mixture model.

Consider the central composite design (CCD) ξ∗ in the v -space {v : vT v ≤ 1}, which
is a mixture of three blocks of designs, viz.

(i) cubes ξc , where ξc is a regular 2k−r fraction of the full factorial design (with levels
±1/

√
k), of resolution V . (For k ≤ 5, we have to take 2k full factorial design);

(ii) stars ξs, where ξs is a set of star points of the form (±1, 0, 0, ..., 0), (0, ±1, 0, ..., 0), ...,
(0, 0, ..., ±1);

(iii) centre points : ξ0 = {v : vT v = 0},

and ξ∗ is defined as
ξ∗ = (1 − α)ξ0 + αξ̃, (2)

where ξ̃ = ncξc+nsξs

n
, nc = k2, ns = 2k−r, n = 2k−rnc + 2kns, 0 < α < 1 Mandal et al. (2015)

proved the following Theorem:

Theorem 1: The class of central composite designs (CCD), given by (2), is complete in the
sense that given any design ξ, there is always a CCD of the form ξ∗ given by (2) which is
better in terms of

(i) Kiefer ordering

(ii) ϕ-optimality, provided it is invariant with respect to orthogonal transformation.
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Through inverse transformation, it is then easy to conclude that the Kiefer optimal
design for parameter estimation in Scheffé’s quadratic mixture model in the ellipsoidal ex-
perimental region is obtained from a CCD, which is Kiefer optimal for the model in terms
of v.

For a 3-component mixture, ξ∗ is obtained from the following blocks of designs:

(i) 4 star points: (±1, 0), (0, ±1)

(ii) 22 factorial design points: 1√
2(−1, 1), 1√

2(−1, 1), 1√
2(1, −1), 1√

2(1, 1)

(iii) centre point: (0, 0).

Then, for H =
√

6I3, the optimal design in the restricted experimental region has the
supports

(1)
(

1
3 + 1

2
√

3 , 1
3 , 1

3 − 1
2
√

3

)
; (2)

(
1
3 − 1

2
√

3 , 1
3 , 1

3 + 1
2
√

3

)
; (3)

(
1
6 , 2

3 , 1
6

)
;

(4)
(

1
2 , 0, 1

2

)
; (5)

(
1
3 + 1

2
√

6 − 1
6
√

2 , 1
3 + 1

3
√

2 , 1
3 − 1

2
√

6 − 1
6
√

2

)
;

(6)
(

1
3 − 1

2
√

6 − 1
6
√

2 , 1
3 + 1

3
√

2 , 1
3 + 1

2
√

6 − 1
6
√

2

)
;

(7)
(

1
3 + 1

2
√

6 + 1
6
√

2 , 1
3 − 1

3
√

2 , 1
3 − 1

2
√

6 + 1
6
√

2

)
;

(8)
(

1
3 − 1

2
√

6 − 1
6
√

2 , 1
3 + 1

3
√

2 , 1
3 + 1

2
√

6 − 1
6
√

2

)
;

(9)
(

1
3 , 1

3 , 1
3

)
.

which are presented in Figure 4.

Figure 4: Support points of a Kiefer optimal design for the quadratic mixture
model under ellipsoidal experimental region

It is noted that the Kiefer optimal design has 8 support points in the interior of the
simplex, including the centroid, given by (9), and one on an edge, namely (4).
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4. A restricted region in the form of a simplex within the unrestricted simplex

Mandal and Pal (2017) investigated the Kiefer optimal design when the experimental
region is given by the form

Ξ1 =
{

x= (x1, x2, . . . ,xq)T :1
q

− h

q − 1 ≤ xi ≤ 1
q

+ h

q − 1 , 1 ≤ i ≤ q,
q∑

i=1
xi = 1

}
,

where h ∈
(
0, q−1

q

)
.

It is noteworthy that the centroid of the restricted region coincides with that of the
simplex, viz. x0 =

(
1
q
, 1

q
, . . . , 1

q

)T
.

The transformation x → z = q−1
qh

[x − (x0 − h
q−11q)] transforms the experimental

region to

Ξz =
{

z = (z1, z2, . . . zq)T : zi ∈ [0.1] , i = 1 (1) q,
q∑

i=1
zi = 1

}
, (3)

which is same as the unrestricted experimental region Ξ.

The Kiefer optimal design in the permutation invariant class for estimation of the
parameters of a first-degree or second-degree model, with unrestricted experimental region,
is available in literature (Draper and Pukelsheim, 1999). This leads to the Kiefer optimal
design for parameter estimation of the model in the restricted region owing to the 1:1 relation
between x and z.

For q = 3, the Kiefer optimal design in the z-space has support points (1, 0, 0), (0, 1, 0)
and (0, 0, 1) for Scheffé’s linear homogeneous model, and (1, 0, 0), (0, 1, 0), (0, 0, 1), (1/2, 1/2, 0),
(1/2, 0, 1/2) and (0, 1/2, 1/2) for Scheffé’s quadratic mixture model. This enables to find the
support points of the Kiefer optimal design in the restricted x-space as shown in Figure 5
for Scheffé’s first order mixture model, and Figure 6 for Scheffé’s quadratic mixture model.
The points marked by alphabets in parentheses denote the support points.

Remark: As the experimental region is well within the simplex, the vertex points of
the simplex can never be included in a design.

5. Cuboidal experimental region in the simplex

A q-dimensional hypercube often defines the experimental region in industrial experi-
mentation. In case of a cuboidal region, no result has been established so far that could help
in finding the Kiefer optimal design. In view of that, Mandal and Pal (2017) attempted to
find the D-optimal design for parameter estimation in the linear, homogeneous and quadratic
mixture models due to Scheffé in the cuboidal region.

The restricted region within the simplex is defined by

Ξ2 =
{

(x1, . . . , xq)T : 0 ≤ xi0 − hi ≤ xi ≤ xi0 + hi,
q∑

i=1
xi = 1

}
,
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(a) =
(1

3 + 4
9h

,
1
3 − 2

9h
,
1
3 − 2

9h

)

(b) =
(1

3 − 2
9h

,
1
3 + 4

9h
,
1
3 − 2

9h

)

(c) =
(1

3 − 2
9h

,
1
3 − 2

9h
,
1
3 + 4

9h

)

Figure 5: Support points of a Kiefer optimal design for the first-order mixture
model in the experimental region Ξ1

(a)
(

1
3 + h,

1
3 − h

2 ,
1
3 − h

2

)
; (b)

(
1
3 − h

2 ,
1
3 + h,

1
3 − h

2

)
; (c)

(
1
3 − h

2 ,
1
3 − h

2 ,
1
3 + h

)

(d)
(

1
3 + h

4 ,
1
3 + h

4 ,
1
3 − h

2

)
; (e)

(
1
3 + h

4 ,
1
3 − h

2 ,
1
3 + h

4

)
; (f)

(
1
3 − h

2 ,
1
3 + h

4 ,
1
3 + h

4

)

Figure 6: Support points of a Kiefer optimal design for the quadratic mixture
model in the experimental region Ξ1

where x0 = (x10, . . . , xq0)T is the centre of Ξ2, hi ≤ min [xi0, 1 − xi0] ∀i = 1 (1) q, and it is
assumed that x0 is the centroid of the simplex .
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A transformation x → z = H−1(x − x0) , where H = Diag(h1, h2, . . . , hq), along
with the natural constraint ∑q

i=1 xi = 1, gives

−1 ≤ zi ≤ 1, for i = 1 (1) q,
∑q

i=1 hizi = 0.

For H ∝ Iq, or hi = h for all i, the z – space reduces to

Ξz =
{

z = (z1, z2, . . . zq)T : −1 ≤ zi ≤ 1, , i = 1 (1) q,
q∑

i=1
zi = 0

}
.

A further orthogonal transformation z →
[

u
v(q−1)×1

]
=
[√

q1q

P

]
z, gives u = 0, and

the range of values of vi as −c ≤ vi ≤ c, where v = (v1, v2, . . . vq−1) and

c ≤ c∗ = min
1≤i≤q

xi0

[
1
h2

i

− 1
a − h2

i

]1/2

, a =
q∑

i=1
h2

i

(vide Cornell (2002), pp. 122). c∗ gives the greatest possible distance from x = x0 to the
closest boundary opposite the vertex xi = 1.

Expressing the Scheffé’s response model in terms of v, the problem of determining
the D-optimum design in the domain −c ≤ vi ≤ c, i = 1 (1) (q − 1) , is a standard one in the
context of response surface and the results are well known (cf. Pukelsheim, 1993). Mandal
and Pal (2017) made use of this to find the D-optimum design for parameter estimation in
the model in x with cuboidal experimental region.

For Scheffé’s first-degree model in x, the model in terms of v is also a first-degree
model with its parameters sharing a 1:1 relationship with the parameters of the model in
x, and the restricted x -space Ξ2 is permutation invariant. Hence, If ξx is a design in Ξ2
corresponding to a design ξv in the v-space, and, if ξv is D-optimal in the v–space, then ξx

will also be D-optimal in Ξ2.

For q = 2 and hi = h for all i, v is a single variable in the interval [−c, c]. In this
case, the D-optimal design in the v – space assigns mass 1/2 at each of the values −c and
+c. Accordingly, the D-optimal design in the restricted space of x puts equal masses at
(x01 − hc√

2 , x02 + hc√
2) and (x01 + hc√

2 , x02 − hc√
2).

For q = 3, the D-optimal design assigns equal masses at its support points (±c, ±c).
Reverse transformation gives the support points of the D-optimal design with equal masses
in the restricted x – space as

x01 +

(√
3 − 1

)
hc

√
6

, x02 + 2hc√
6

, x03 −

(√
3 + 1

)
hc

√
6


x01 +

(√
3 + 1

)
hc

√
6

, x02 − 2hc√
6

, x03 −

(√
3 − 1

)
hc

√
6
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x01 −

(√
3 + 1

)
hc

√
6

, x02 + 2hc√
6

, x03 +

(√
3 − 1

)
hc

√
6


x01 −

(√
3 − 1

)
hc

√
6

, x02 − 2hc√
6

, x03 +

(√
3 + 1

)
hc

√
6


These points lie within the cuboidal region Ξ2.

Remark: Different choices of H lead to different optimal designs in the restricted
space.

In the quadratic response model due to Scheffé, using similar transformations [x →
z → (0, v)], and observing that there is a 1:1 relation between the parameters of the model
in terms of x and that in terms of v, the D-optimal design in the v–space leads to the
D-optimal design in the restricted x–space through reverse transformation.

From Mandal (1989), the support points of the D-optimal design in the v–space is
obtained from the following result:

Theorem 2: D-optimum design in the v–space is supported on the lattice of points with
coordinates only 0 or ±c.

For the case of 3-component mixture, the support points of the D-optimum design in
the v–space are the points (0, 0), (±c, 0), (0, ±c), (±c, ±c).

Reverse transformation gives the support points of the D-optimum design in the
restricted x–space as

(i) (x01, x02, x03) with mass 0;

(ii)
(
x01 − hc√

2 , x02, x03 + hc√
2

)
,
(
x01 + hc√

2 , x02, x03 − hc√
2

)
,

(
x01 − hc√

6
, x02 − 2hc√

6
, x03 + hc√

6

)
,

(
x01 + hc√

6
, x02 + 2hc√

6
, x03 − hc√

6

)

each with mass 0.1325;

(iii)
(

x01 + (√
3−1)hc
√

6 , x02 + 2hc√
6 , x03 − (√

3+1)hc
√

6

)
,
(

x01 + (√
3+1)hc
√

6 , x02 − 2hc√
6 , x03 − (√

3−1)hc
√

6

)
,(

x01 − (√
3+1)hc
√

6 , x02 + 2hc√
6 , x03 + (√

3−1)hc
√

6

)
,
(

x01 − (√
3−1)hc
√

6 , x02 − 2hc√
6 , x03 + (√

3+1)hc
√

6

)
each with mass 0.1175.

6. Concluding remarks

The restricted experimental regions reviewed in this paper are proper subspaces of the
simplex, and have suitable permutation invariance property. As such, it has been possible to
characterize the optimal designs for Scheffé’s linear and quadratic mixture models. Though
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the derivations are non-trivial, the tools used in earlier studies have been exploited to find
the optimum designs.

In case of the absence of symmetry and invariance, it would be very difficult to obtain
the optimum designs. This is the case if (i) the restricted region has its centre/centroid
different from the centroid of the unrestricted simplex, or (ii) H ∝ Iq does not hold for
the ellipsoidal/cuboid region. These remain as open problems which perhaps would be very
challenging to tackle analytically.
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