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Abstract

Stepped wedge designs (SWDs) are increasingly gaining popularity in cluster ran-
domized trials. This review provides a comprehensive overview of stepped wedge cluster
randomised trials (SW–CRTs), beginning with their historical development and rationale in
the Introduction. We classify and compare different types of stepped wedge designs, high-
lighting their relative advantages and practical considerations. We then examine the primary
statistical models used for analysis, key approaches to sample size determination, and the
impact of various intracluster and temporal correlation structures on trial inference. Special
attention is given to trials with unequal cluster sizes, addressing design adaptations and
efficiency implications. We review recent advances in Bayesian optimal design strategies for
SW–CRTs and extend the discussion to include adaptations for non-normal outcome data.
As an alternative framework, we explore the staircase design, comparing its logistical and
analytical features with those of traditional stepped wedge trials.

Key words: Staircase design; Stepped wedge trials; Cluster randomized trials; Optimal de-
sign; Bayesian design.

1. Introduction

Cluster Randomized Trials (CRTs) are pivotal in evaluating interventions where
groups, rather than individuals, are randomized. Statistical methods for CRTs have been
the focus of extensive research over the past several decades and are well-documented in
various methodological reviews [Donner and Klar (2000), Turner et al. (2017a), and Turner
et al. (2017b)]. Among CRT designs, the stepped wedge cluster randomized trial (SW-CRT)
has garnered increasing attention, alongside traditional parallel and crossover CRTs [Brown
and Lilford (2006), Mdege et al. (2011), Hemming et al. (2015)]. While parallel designs ran-
domize clusters to fixed intervention or control arms and crossover designs alternate clusters
between arms over time, the SW-CRT employs a unidirectional roll-out of all the clusters
from control to intervention in sequential ”steps”. A SW–CRT comparing control and in-
tervention conditions is illustrated in Table 1. The order in which the different individuals
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or clusters receive the intervention is random. The study continues until all the clusters
are assigned to the intervention and outcome data will be collected from each cluster. The
SW design offers a versatile framework for CRTs, particularly in public health and service
delivery. SW–CRTs offer several distinctive advantages including:

• Evaluation During Rollout: SW–CRTs are particularly useful for assessing the
community level effectiveness of an intervention while it is being gradually rolled out
across clusters.

• Acceptability (Social, Political, Ethical): Since all clusters eventually receive the
intervention, this design is often more acceptable to stakeholders, especially in contexts
where withholding a potentially beneficial intervention may be controversial.

• Logistical and Financial Feasibility: In many cases, it is not practical due to
resource, personnel, or policy constraints to implement the intervention across all units
simultaneously. SW–CRTs accommodate such staged implementation.

• Statistical Efficiency: Because each cluster serves as its own control at different time
points, this design can increase statistical efficiency and may require fewer clusters
compared to parallel-arm trials.

While its ethical and practical benefits are significant, researchers must address analytical
complexities and potential biases. Hemming and Taljaard (2020) discussed several key factors
that should be considered when implementing a SW-CRT.

The Gambia Hepatitis Intervention Study (Hall et al. (1987)) is the first ever reported
stepped wedge trial which is also the longest running. The study was set up in 1986 to
investigate whether vaccination against hepatitis B in infancy could reduce the risk of liver
cancer over the next 30 to 40 years of life. The usefulness of SW-CRTs was recognized only
later, but they are now highly regarded and widely used in medical research, as demonstrated
by a recent review by Varghese et al. (2025), which examines studies published in high-impact
journals. Some previous reviews on SW–CRTs include Brown and Lilford (2006) and Beard
et al. (2015).

This paper focuses on reviewing recent statistical developments related to the design
of SW-CRT trials. In doing so, we also introduce several variants of SW-CRTs that are widely
used in current practice. The organization of this article is as follows: Section 2 reviews types
of stepped wedge designs; Section 3 covers models, sample size determination and correlation
structures; Section 4 examines unequal cluster sizes; Section 5 presents Bayesian optimal SW
designs; Section 6 addresses non-normal outcome data; Section 7 introduces the staircase
design as an alternative to SWD; and Section 8 provides discussion and conclusions.

2. Types of stepped wedge designs

Following (Copas et al., 2015), SW–CRTs can be broadly classified in three categories:
(i) Cohort SW–CRTs; (ii) Cross–sectional; and (iii) Continuous recruitment SW–CRTs.
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2.1. Cohort SW–CRTs

When researchers track a group of individuals over time and assess their health out-
comes at regular intervals, this is referred to as a cohort study design. A cohort design further
classified in two categories: (a) Closed cohort SW–CRTs and (b) Open cohort SW–CRTs.
In a stepped wedge trial, where the same clusters are revisited at different time points, it is
common to measure outcomes for some or all of the same individuals on multiple occasions
some before and some after the intervention is introduced. When the measurements are
taken from same individuals at each time point in a cluster, the design is known as a closed
cohort stepped wedge trial (Li et al. (2018a), Li (2020), Gasparini et al. (2025)). While this
is a reasonably appropriate design, it may not always be realistic. In practice, it is more
likely that participants may enter or leave the study over time. So, when some individuals
are the same and others differ across measurement periods within a cluster, the design is
referred to as an open cohort stepped wedge trial (Copas et al. (2015), Kasza et al. (2020)).
Here, the term ”open cohort” reflects the natural flow of participants in and out of the study
population.

2.2. Cross–sectional SW–CRT

Sometimes clusters that are very large or densely populated, where researchers do not
try to measure outcomes for everyone, but instead select a small, random sample at each
visit. In that case, the chance of observing the same person twice is minimal. At this point,
no individual is followed longitudinally across multiple time points (steps). Instead, each
sample taken from a cluster represents a snapshot or cross-section of the population at that
specific time. This type of design is known as a repeated cross-section stepped wedge trial
(Hussey and Hughes (2007), Martin et al. (2019), Thompson et al. (2017)). It is relatively
logistically simpler than cohort SW, since we do not need to track the same individuals over
months, or in other words, we do not have to deal with individual’s auto correlation.

2.3. Continuous recruitment SW–CRTs

In aforementioned SW–CRTs, we have described scenarios where extending the du-
ration of a cluster randomized trial involves returning to the same clusters multiple times
to collect outcome data. But what if, instead, participants enter and exit the trial in a
continuous flow like an ongoing stream of eligible individuals? In this case, extending the
trial simply means recruiting over a longer period of time, allowing more people from that
continuous stream to be included. This type of design is known as a continuous recruitment
stepped wedge trial (Hooper and Copas (2019), Hooper et al. (2020)). An example of a
this type of stepped wedge trial is the Gambia Hepatitis Intervention Study discussed in
the Introduction section. In this study, new eligible participants (newborn infants) arrived
at a fairly steady rate, as is natural. In any continuous one year period of recruitment the
researchers expected to recruit around 30,000 children into the study, and by scheduling the
trial over a total of four years they hoped to see 120,000.
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Table 1: A T–period stepped wedge design with T − 1 sequences, comparing the
control (in grey) and treatment (in blue).

Sequence Time
0 1 2 3 4 5

1
2
3
4
5

Cluster unexposed to intervention Cluster exposed to intervention

3. Models, sample size determination and correlation structures in
SW–CRTs

This section reviews key developments in the statistical methodology of SW-CRTs.
We begin by exploring various modeling structures, followed by a review of sample size
determination methods and the different forms of correlation, a key aspect of SW–CRTs.

3.1. Models

Broadly, SW–CRTs are analyzed using conditional (cluster/subject/time specific) and
marginal (population average) models. Conditional models, commonly implemented via
linear mixed effects models (LMMs) or generalized linear mixed-effects models (GLMMs),
account for clustering through random effects and estimate intervention effects conditional
on these latent cluster/subject/time–level factors. Conditional models are utilized by Hussey
and Hughes (2007), Hughes et al. (2015), Hooper et al. (2016), Girling and Hemming (2016),
Kasza et al. (2019), Kasza and Forbes (2019), and Hemming et al. (2018).

Marginal models, typically fitted via generalized estimating equations (Liang and
Zeger (1986)), directly target the population average treatment effect, offering robust infer-
ence even under correlation structure misspecification. Within each framework, a variety
of correlation structures such as exchangeable, nested exchangeable, and exponential decay
have been proposed to capture within and between period intraclass correlations (ICCs).
Marginal models are used by Hussey and Hughes (2007), Li et al. (2018b), Ford and West-
gate (2020), Li (2020), Thompson et al. (2021), and Li et al. (2022).

The choice between conditional and marginal approaches affects both interpretation
and efficiency. There has existed controversy about the use of marginal and conditional
models. Lee and Nelder (2004) discussed the advantages of conditional models over marginal
models and regarded the conditional model as fundamental, from which marginal predictions
can be made. Various models employed in SW design are thoroughly discussed in the review
paper by Li and Wang (2022).
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3.2. Sample size determination

3.2.1. Foundational work

A critical aspect of SWDs is sample size calculation, which has seen significant
methodological advancements. The seminal paper by Hussey and Hughes (2007) introduced
analytical formulas for power and sample size calculations in SWDs. The model proposed
by Hussey and Hughes (2007), though foundational for sample size estimation in SWDs,
has notable limitations. First, it assumes a cross-sectional design with no repeated mea-
surements on individuals, rendering it unsuitable for cohort-based studies where individual
correlation must be accounted for (Hooper et al., 2016). Second, it presumes constant cluster
sizes and a simplistic intracluster correlation (ICC) structure, ignoring variability in cluster
sizes (Matthews, 2020) or more complex correlation patterns (e.g., decaying correlations over
time). Third, the model assumes fixed time effects and a constant intervention effect, failing
to accommodate time-varying treatment effects or interactions between time and interven-
tion exposure (Kenny et al., 2022). Finally, it is restricted to continuous outcomes and does
not generalize readily to binary, count, or survival data without modification (Zhou et al.,
2020).

3.2.2. Sample size calculations based on design effects

The design effect quantifies the increase in variance of an estimator due to deviations
from a simple random sampling design. In cluster-based studies, it accounts for correlations
within clusters, which reduces the effective sample size. The standard approach to calculat-
ing sample size in parallel group CRTs begins with estimating the required sample size under
individual randomization, denoted as Nu. This unadjusted sample size is then scaled by the
design effect [1+(n−1)ρ] to account for clustering, where n is the number of individuals per
cluster and ρ is the intracluster correlation coefficient (Donner and Klar, 2000). To adopt a
similar framework, Woertman et al. (2013) derived the following design effect for SWDs:

DEsw = 1 + ρ(ktn + bn − 1)
1 + ρ

(
1
2ktn + bn − 1

) 3(1 − ρ)
2t

(
k − 1

k

) .

Here, k represents the number of steps, b is the number of baseline measurements, and t is
the number of measurements after each step. Thus, each cluster is measured (b + kt) times.
This design effect appropriately adjusts for both clustering and the stepped wedge structure
and the required sample size for a stepped wedge trial is Nsw = NuDEsw.

The design effect DEsw is influenced by three key parameters: the number of post–
step measurements t, the number of baseline measurements b, and the number of steps k.
Increasing any of these reduces the design effect and, consequently, the required sample size.
In contrast, increasing the cluster size n slightly increases the design effect. Additionally,
DEsw depends on the intracluster correlation coefficient (ICC), ρ, which reflects variability
between clusters. While ρ is contextd ependent and not under direct control, it should be
estimated using prior studies, pilot data, or domain knowledge. As ρ increases, the design
effect initially rises and then begins to decline. Woertman et al. (2013) have shown that
increasing the number of steps improves efficiency in terms of sample size and also the gain
is substantially larger when increasing from 2 to 3 steps than from 6 to 12 steps.
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3.2.3. Simulation–based sample size calculations

Analytical sample size formulas, while computationally efficient, are often constrained
by simplifying assumptions that limit their applicability in real world SW–CRTs. For ex-
ample, Hussey and Hughes (2007), Woertman et al. (2013) etc assumed balanced design
and intervention effect is modeled as constant across clusters. Also analytical formulas work
well for continuous outcomes but struggle with binary or count outcomes Xia et al. (2021)
or when repeated measures are taken on the same individuals over time, due to the ad-
ditional level of correlation implied in this case. Simulation–based sample size calculation
has emerged as a robust and flexible approach for designing SW-CRT, particularly when
analytical formulas are insufficient due to the complexity of the design or outcome types.
Simulation-based sample size calculation typically follows these steps:

• Define the Data-Generating Model: Specify fixed effects (e.g., intervention effect, time
trends) and random effects (e.g., cluster-level or time-level variability).

• Simulate Datasets: Generate repeated datasets under the assumed model, incorporat-
ing design parameters (for example number of clusters, steps, and observations per
cluster).

• Analyze Simulated Data: Apply the planned statistical method (e.g., mixed-effects
regression) to each dataset, estimate the intervention effect and its standard error and
p-value and then record the proportion of simulations where the intervention effect is
statistically significant (empirical power).

• Iterate Until Target Power is Achieved: Adjust parameters (e.g., cluster size or number
of steps) and repeat simulations until the desired power is reached

But at the same time there are challenges in simulation-based sample size calculation. Sim-
ulations require significant computational resources, especially for large trials or complex
models. Analyzing thousands of datasets with complex models can be slow. Parallel com-
puting is often essential and also complex models may fail to converge in some simulations.
Further, results depend on accurate pre–specification of nuisance parameters (e.g., ICC),
which may be uncertain in practice.

3.3. Correlation structures

Stepped wedge designs inherently involve longitudinal and clustered data, leading to
multiple correlation structures that complicate statistical analysis. These structures arise
from repeated measurements within clusters over time, participant-level dependencies in
cohort designs, and temporal trends.

3.3.1. Correlation parameters in SW–CRTs

Hemming et al. (2015) incorporated both within-period and between-period ICCs in
their sample size calculation for cross-sectional designs. Hooper et al. (2016) and Li et al.
(2018b) extended this by considering a three correlation structure that also accounts for
within individual repeated measurements in closed cohort designs.
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• Within period intracluster correlation (wp–ICC): Measures similarity of outcomes
within the same cluster and time period.

• Between period intracluster correlation (bp–ICC): Captures correlation between out-
comes from the same cluster across different periods.

• Individual level autocorrelation: Relevant in closed cohort designs where the same
participants are measured repeatedly.

For example, in cross sectional designs (new participants each period), wp–ICC and bp–ICC
dominate, while closed cohort designs require an additional parameter for individual autocor-
relation. Ignoring these distinctions can lead to biased variance estimates and underpowered
studies (Girling and Hemming, 2016).

Table 2: Different types of correlation structures in SW design (0 < r < 1 is any
constant value)
(a) Constant ICC over time: within period ICC = between period ICC
Used in Hussey and Hughes (2007) − no decay

Period 1 Period 2 Period 3 Period 4 Period 5
Period 1 ρ ρ ρ ρ ρ
Period 2 ρ ρ ρ ρ
Period 3 ρ ρ ρ
Period 4 ρ ρ
Period 5 ρ

(b) Fixed between period ICC and within period ICC > between period ICC
Used in Hooper et al. (2016)− no decay

Period 1 Period 2 Period 3 Period 4 Period 5
Period 1 ρ rρ rρ rρ rρ
Period 2 ρ rρ rρ rρ
Period 3 ρ rρ rρ
Period 4 ρ rρ
Period 5 ρ

(c) Between ICCs decay exponentially and within period ICC > between period ICC
Used in Kasza and Forbes (2019)− allows decay

Period 1 Period 2 Period 3 Period 4 Period 5
Period 1 ρ rρ r2ρ r3ρ r4ρ
Period 2 ρ rρ r2ρ r3ρ
Period 3 ρ rρ r2ρ
Period 4 ρ rρ
Period 5 ρ
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3.3.2. Modeling decaying correlation structures

In longitudinal studies, “decay in correlation over time” refers to the phenomenon
where the correlation between two measurements decreases as the time interval between
them increases. In other words, observations made closer together in time tend to be more
similar (more correlated) than observations that are farther apart.

The assumption of constant ICC, as used by Hooper et al. (2016) and Li et al. (2018b),
may not reflect real world data structures. Therefore, alternative design and analysis strate-
gies that account for temporal correlation decay are essential in stepped wedge trials. In
cross sectional designs, where different individuals are observed in each period, some studies
(Hemming et al., 2015) allowed between period ICC to differ from within period ICC but
assumed constancy across time. Kasza et al. (2019), Kasza and Forbes (2019) introduced
a nonuniform correlation model incorporating exponential decay, improving sample size es-
timation. Grantham et al. (2019) extended this to continuous time correlation decay in
multiple periods CRTs with continuous recruitment. Ignoring correlation decay, as shown
by Kasza et al. (2019), can lead to misestimate intervention effects and incorrect sample size
calculations.

4. SW–CRTs with unequal cluster size

Methods for calculating power and sample size in SW-CRTs assuming equal cluster
sizes have been extensively discussed in the literature see for example Hussey and Hughes
(2007), Woertman et al. (2013), Baio et al. (2015), and Hemming and Taljaard (2016). In
many studies, such as observational studies, unequal cluster sizes are a common occurrence.
This presents significant challenges in the design and analysis of SW–CRTs. A comprehensive
methodological review addressing unequal cluster sizes in cluster randomized trials, including
SW-CRTs, is provided in Zhan et al. (2021b). The impact of cluster size imbalance on the
power is discussed in Ouyang et al. (2020). Martin et al. (2019) examined how randomly
allocating clusters of varying sizes to sequences impacts different aspects of the analysis.
They investigated cluster–balanced stepped wedge designs (SWDs) with unequal cluster
sizes and observed that, when the total number of individuals is fixed, such designs can be
more efficient than those with equal cluster sizes. This finding contrasts with traditional
cluster balanced designs, where equal sized clusters are typically considered optimal. Girling
(2018) investigate the impact of unequal cluster size and found the expressions for the relative
efficiency (RE) of the treatment effect estimate relative to that for the equal cluster design
with the same total number of observations. Matthews (2020) proposed near optimal designs
for unequal cluster size. Kristunas et al. (2017) proposed corrections to the design effect(DE)
for SWD with unequal cluster sizes. Girling (2018) investigate the impact of unequal cluster
size and found the expressions for the relative efficiency (RE) of the treatment effect estimate
relative to that for the equal cluster design with the same total number of observations. Using
simulations Martin et al. (2019) showed that the while the average power reduction in SW-
CRTs is smaller than in parallel designs, the variance in power across allocations is higher,
particularly with fewer clusters.

Typically, larger clusters are assigned to the extreme sequences. However, this pattern
may not hold in closed-cohort stepped wedge designs (SWDs), where optimal allocation
depends on various correlation parameters. In a working paper, we observed that an efficient
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design tends to allocate an equal number of clusters to sequences i and T − 1 − i for i =
1, . . . , T − 1. A similar symmetry is also observed in the allocation of total cluster size
across these sequences. The determination of optimal cluster–to–sequence proportions in the
context of unequal cluster sizes remains an area that requires further detailed investigation.

5. Bayesian optimal SWD

An optimal design is obtained by optimizing a specific criterion. For example, by min-
imizing the variance of the estimated treatment effect or by maximizing the study’s power
or precision. Lawrie et al. (2015) found out optimal allocation of clusters into sequences
under the linear mixed effect model given by Hussey and Hughes (2007) by minimizing the
variance of the treatment effect. They demonstrated that when cluster sizes are equal, the
extreme sequences (first and last) receive the same level of allocation, while all intermediate
sequences receive an equal but smaller allocation compared to the extremes. This work is
then extended to closed cohort SW–CRT designs with repeated measures per subject by Li
et al. (2018a). Thompson et al. (2017) examined the optimal structure of stepped wedge
cluster randomized trial (SW–CRT) designs under the assumption of normally distributed
data and equal allocation of clusters across sequences. In contrast, Zhan et al. (2018) ex-
plored optimal designs where some clusters may not be sampled during certain stages of the
trial. Optimal design, thus obtained, is called locally optimized design as they are sensitive
to the choice of different correlation parameters. More recently, to obtain a robust optimal
design a Bayesian approach is adopted. Zhan et al. (2021a) demonstrated that incorporating
prior information on time effects through a Bayesian approach can significantly reduce the
required sample size. However, due to the risk of bias from mis-specified prior distributions,
they do not recommend this as the default method for sample size calculation. Nevertheless,
when it is difficult to recruit enough clusters or participants, using external information on
time effects with a Bayesian approach can help assess if a smaller sample size would still
be sufficient, making it easier to decide whether the trial can go ahead. Singh (2024) pro-
posed a Bayesian optimal SWD by placing priors on the ICC and demonstrating robustness
against ICC misspecification compared to locally optimal designs. Under a marginal (GEE)
model with either exchangeable or exponential-decay working correlation, Etfer et al. (2024)
developed a framework for finding Bayesian D-optimal SW designs for binary outcomes.

Bayesian designs for stepped wedge trials remain a significantly underdeveloped area
of research with considerable potential. For instance, in closed–cohort studies, the presence
of multiple correlation parameters introduces substantial uncertainty in the design process.
This challenge can be effectively addressed by adopting a Bayesian framework. Moreover,
in the case of non–normal responses where the optimal design criteria depend on unknown
model parameters, a Bayesian approach can offer substantial advantages.

6. SW design for non–normal data

In recent years, a substantial body of work has extended the SW-CRT framework to
accommodate non-normal outcomes, most notably binary and count data through a variety
of methodological and practical innovations. Stepped-wedge trials with non-normal out-
comes (counts or binary) extend the usual mixed-effects framework by replacing the linear
mixed model with a generalized linear mixed model (GLMM) or generalized estimating equa-
tions (GEE). Broadly, for binary outcomes one uses logistic-link GLMMs or marginal GEE,



60 SOUMADEB PAIN AND SATYA PRAKASH SINGH [SPL. PROC.

whereas for counts one adopts Poisson (or negative-binomial) GLMMs. Zhou et al. (2020)
developed a numerical method for the power analysis for stepped-wedge cluster randomized
trials (SW-CRTs) with binary outcomes, utilizing a maximum-likelihood estimation frame-
work. Their approach allows researchers to assess the statistical power of complex SW-CRT
designs without relying on simplified analytical approximations, making it particularly useful
for settings with unequal cluster sizes or varying intraclass correlations.Wang et al. (2021)
found out a sample size and power calculation method using GEE that can be broadly
applied to both closed-cohort and cross-sectional SW-CRTs with binary outcomes. Also,
they introduced a correction method to address the problem of underestimated variance
in the GEE approach when the number of clusters is small in SW-CRTs. Building on the
Laplace approximation of Breslow and Clayton (1993), Xia et al. (2021) have derived an
analytical variance formula for the intervention effect estimator using GLMM, encompassing
both normal (identity link) and non-normal (e.g., logistic, Poisson) outcomes. Lastly as
mentioned in the previous section, Etfer et al. (2024) develop a Bayesian D-optimal design
framework for stepped-wedge cluster randomized trials with binary outcomes by combining
generalized estimating equations and approximate design theory under both exchangeable
and exponential-decay correlation structures.

7. Staircase design: An alternative to SWD

Stepped wedge designs require clusters to collect data across all trial periods, leading
to high logistical and financial burdens. A staircase design is an “incomplete” variant of the
stepped-wedge, in which each cluster contributes data only for a small number of periods
immediately before and after its switch from control to intervention. The staircase design was
first formalized by Grantham et al. (2024), who noted that the most informative observations
in a stepped-wedge lie along its main diagonal (the “zigzag” of switches) and proposed
focusing data collection there only. Like a stepped-wedge, all clusters eventually receive the
intervention and the rollout is staggered; unlike a complete stepped-wedge, clusters do not
collect data in every period, reducing burden and potentially attrition.

The general class of staircase designs is denoted by SC(S, K, R0, R1), where S and R0
denote the number of distinct treatment sequences and the number of clusters per sequence,
R0 is the number of control periods before the switch to intervention, and R1 is the number
of intervention periods after the switch. Different types of staircase designs can be achieved
depending on the values of R0 and R1 (see Figure 1). In total, the design includes SK
clusters, and the trial spans S + R0 + R1 − 1 periods. Clusters in sequence s are observed
from period s through s + R0 + R1 − 1. A balanced staircase design has equal numbers of
control and intervention periods in each sequence (i.e. R0 = R1). In contrast, an imbalanced
staircase design allows for different numbers of pre and post switch periods (R0 ̸= R1).

Grantham et al. (2024) have derived explicit expressions for the variance of the gen-
eralized least squares estimator of treatment effect for the basic staircase design under the
assumption that the observed periods in each sequence follow the same schedule of control
and intervention periods. This expression can be used to calculate sample size and power
for staircase designs. Grantham et al. (2025) examined the relative efficiency of the stepped
wedge design compared to various forms of the basic staircase design, where each sequence
consists of one control period followed by one intervention period. Their analysis began
with a basic staircase design embedded within a stepped wedge framework, and extends to
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Figure 1: Design schematics for several staircase designs with 6 clusters: a basic
staircase with two clusters assigned to each of three unique sequences (top left),
a basic staircase with one cluster assigned to each of six unique sequences (top
right), a balanced staircase with two control periods followed by two intervention
periods in each sequence and one cluster assigned to each of six unique sequences
(bottom left), and an imbalanced staircase with one control period followed by
two intervention periods in each sequence and one cluster assigned to each of six
unique sequences (bottom right).

versions with either more clusters or larger cluster-period sizes–some maintaining the same
total number of participants as the stepped wedge design, and others using fewer participants
overall. The relative efficiency of these designs is influenced by the intracluster correlation
structure, correlation parameters, and trial configuration, including the number of sequences
and the size of each cluster–period. They concluded that basic staircase design is a par-
ticularly lean and potentially powerful alternative to the stepped wedge design as across
a broad range of realistic trial scenarios, the basic staircase design often provides greater
statistical power than the stepped wedge design, even when using the same or even fewer
total participants. A comprehensive analysis of staircase design including optimal cluster
proportion to the sequences, appropriate cluster sizes, and Bayesian design strategies should
be thoroughly explored.

8. Discussion and conclusion

In this review we have traced the evolution of stepped wedge designs (SWDs) from the
foundational Hussey–Hughes random-intercept model through modern Bayesian and “stair-
case” alternatives. A recurring theme is the trade–off between analytical simplicity and
realistic correlation structure. Early formulas for power and sample size assume constant
ICCs, cross-sectional sampling, and equal cluster sizes; these yield closed-form design effects
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but can mislead when within- and between-period correlations differ or clusters vary in size.
Extensions to cohort and open-cohort SWDs introduced additional ICC parameters and de-
cay models, but at the cost of analytical intractability. Simulation-based approaches remedy
this at the expense of computational burden and reliance on assumed nuisance parameters.
Our survey of optimal-allocation methods highlights how design efficiency depends critically
on the allocation of clusters to sequences. Bayesian D-optimal frameworks then add robust-
ness by placing priors on ICC or time-effect parameters, reducing required sample size when
external information is reliable but risking bias under prior misspecification. Lastly, the
staircase design represents a pragmatic compromise: by sampling only around each cluster’s
switch point, it retains most information on treatment contrasts while cutting data-collection
burden. Across a broad range of ICC scenarios, basic staircase trials can even outperform
full SWDs in power per participant.

Despite these advances, several gaps remain. First, most methods target continuous
outcomes; extensions to binary, count or time–to–event endpoints require further develop-
ment. Second, while correlation-decay models are conceptually appealing, real world valida-
tion via intensive pilot data or retrospective re-analysis of completed SWDs remains scarce.
Third, the increasing complexity of hybrid designs (e.g. unequal cluster sizes, open cohorts,
Bayesian priors) calls for user friendly software that integrates power, sample size, and op-
timal allocation routines under a unified interface. Finally, practical considerations such as
staggered enrollment logistics, missing data, and secular trends–deserve more attention in
design-stage simulations.

In sum, the stepped wedge framework has matured from simple cross sectional formu-
las to a rich design space encompassing complex correlation structures, Bayesian robustness,
and lean staircase variants. The choice among these should be driven by the substantive
context–outcome type, anticipated ICC patterns, logistical constraints and cluster sizes. In
this review paper, we not only mention a few relevant works in various field of SW design but
also explain fundamental terminologies related to this design in a concise manner, aiming
to assist readers who are encountering these concepts for the very first time. We hope this
introductory yet informative overview provides a solid foundation for further exploration
into the field of SW design.
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