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Abstract
This article is motivated by the author’s pleasant experience when late Professor Rao

helped validate an assertion made in Weerahandi and Berger (1999). Additional implications
of Rao (1967) in Growth Curve Models under compound symmetric covariance structure are
also presented. The inferences are made using the generalized p-value approach. Desired
further research are also discussed.
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1. Introduction

The author of this article had the pleasure of having a short chat with Professor Rao
many years ago on the sidelines at few conferences in New Jersey and in Europe. At that
time I had no idea that this world class researcher would care about a favor requested by
a mediocre researcher like me. Now, to briefly describe the experience, first consider the
following problem in the context of Mixed Effects models in Growth Curves, which is a
particular problem involving repeated measures.

Consider the linear mixed effects growth curve model based on observations from n
subjects

yi = Xiβi + Zibi + ϵi for i = 1, . . . , n, (1)

where yi is the T × 1 vector of responses from ith subject, Xi and Zi are known design
matrices of dimension T × p and T × q, respectively, βi is a vector of fixed effects, and the
random effects, bi and the error vector ϵ, jointly and independently distributed as

bi ∼ Nq(0, Ψ) (2)

and
ϵi ∼ NT (0, Λi) ,
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where Λi is a within-subject covariance matrix of dimension T × T and Ψ is usually a
between-subject covariance matrix of dimension q × q. The model can also be rewritten in
the form of a structured covariance matrix as

yi = Xiβi + ei, (3)

where
ei ∼ NT (0, Λi + ZiΨZ′

i).

When the covariance matrix of a growth curves model has a special structure, classical
approaches do not provide exact solutions to inference problems even for a situation of a
single growth curve. In this article we concentrate on the case of one group of subjects when
the covariances follow compound symmetric structure, which is also known as the intraclass
correlation structure.

2. Case of intraclass correlation structure

Weerahandi and Berger (1999) considered the particular case of one group of subjects
when the covariance matrix is compound symmetric. In this section, we will concentrate
on the distributional results providing details of Professor Rao’s contribution. To do so,
consider the simple growth curve model

Yit = αi + X′
tβ + ϵit, (4)

where X′
t is the p×1 design vector, β is a p×1 vector of parameters common for all subjects,

αi is a random effect due to subjects, and ϵit is the error term. In particular, when one deals
with polynomial growth curves, the design matrix is of the form

X′
t =

(
1, t, , t2, . . . , tp−1

)
If random effects are all normally distributed, we get

αi ∼ N(0, σ2
α) (5)

and
ϵit ∼ N(0, σ2

e),
where σ2

α and σ2
e are variance components of the model. Moreover, αi and all ϵit terms are

assumed to be independently distributed. Collecting data from ith subject, the model for
the T × 1 vector of responses, Yi, can be written in vector form in terms of the T × p design
matrix X as

Yi = αi1T + Xβ + ϵi , (6)
where 1T is a T × 1 vector of 1s. It is easily seen from (5) that V ar(Yit) = σ2

α + σ2
e and that

Cov(Yit, Yit′) = σ2
α, and hence

Yi ∼ NT (Xβ, Σ) with the covariance matrix Σ = σ2
α1T 1′

T + σ2
eIT (7)
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This means that the covariance matrix of the observations vector has the intraclass structure.
The model (6) is a special case of model (1) with

ZiΨiZ′
i = σ2

α1T 1′

T and Λi = σ2
eIT

Being a matrix with intraclass structure, the inverse of Σ is also an intraclass matrix. More
specifically,

Σ−1 = σ−2
e

[
IT − σ2

α

σ2
e + Tσ2

α

1T 1′

T

]
. (8)

The problem is to make inferences about the unknown parameters β and the variance
components σ2

α and σ2
e . It follows from (7) that the maximum likelihood estimate (MLE) of

β is the weighted least-squares estimate (WLSE)

β̂ = (X′Σ−1X)−1X′Σ−1Y, (9)

which is also known as the generalized least squares estimate (GLSE) of β, where Y=∑Yi/N
is a T × 1 vector, where N is the number of subjects, who were observed over time.

Rao (1967) and Rao (1973) showed that, if the columns of ΣX is a subspace of
the vector space spanned by the columns of X, then the GLSE reduces to the ordinary
least-squares estimate (OLSE), regardless of what Σ is. When Σ is as in (7) and the first
column of X is a vector of 1’s (i.e., an intercept term is present in the growth curve model),
this condition is satisfied and consequently (9) reduces to the OLSE, A covariance matrix
satisfying this condition is referred to as Rao’s covariance structure; see also Ghosh and
Gokhale (1987). Then, the point estimator of β is given by

β̂ = (X′X)−1X′Y (10)

3. Controversy about GLSE reducing to OLSE

When the author of this article submitted the manuscript underlying Weerahandi
and Berger (1999) for publication in Biometrics, a referee disputed the validity of the distri-
butional results outlined in the above section. The referee thought that Rao (1967) results
do not imply that GLSE reduces to the OLSE under the compound symmetric covariances
structure. When I referred to McElroy (1967) the referee did not concede and recommended
rejection of manuscript. To overcome this dilemma, then I provided my own algebraic deriva-
tion, which is simpler to understand, but similar to McElroy (1967), even then the editor
did not reconsider the manuscript.

Then, in desperation, I wrote to Professor Rao seeking help. To my surprise, in
two weeks I received a letter in regular mail from Professor Rao stating something like
“Weerahandi, not only your assertion is correct, but also it is valid under milder conditions
and for greater class of covariance structures”. When I sent the letter to the editor, she
conceded and accepted the manuscript with some minor modifications. So, I am extremely
grateful to late professor Rao for his support getting the article published.
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4. Generalized inference

Before we review Weerahandi and Berger (1999) results of relevance, let us briefly
describe the generalized tests introduced by Weerahandi (1987) and Tsui and Weerahandi
(1989. In one-liner, generalized tests are based on random quantities known as General-
ized Test Variables (GTV) that are functions of (i) observable random quantities, (ii) their
observed values, and (iii) unknown parameters, defined in such a way that

(a). the distribution of GTV is free of unknown parameters, and

(b). at the observed sample points, the observed value of GTV will contain no
unknown parameters under the null hypothesis. If a GTV is also monotonic for deviations
from the null hypothesis, then it can be used to define extreme regions, on which generalized
p-values can be based.

Often GTVs can be derived based on what is known as Generalized Pivotal Quantities
(cf. Weerahandi (1993)), abbreviated as GPQs. To be specific, a GPQ of a parameter is also
a function of (i) observable random variables, (ii) their observed values, and (iii) unknown
parameters, defined in such a way that

(a). its distribution does not depend on nuisance parameters, and

(b). at the observed sample points, its observed value becomes equal to the parameter
of interest.

Now getting back to the current problem, although GLSE reduce to OLSE under
the compound symmetric covariance structures, even for models involving just one group
of subjects, classical approach to inference fails to provide classical confidence bounds or
tests of hypothesis concerning even a single parameter of the model. This is because the
distribution of OLSE involves nuisance parameters. To be specific, despite the fact that
GLSE is the same as the OLSE, the distribution β̂ given by

β̂ ∼ N(β, (X′Σ−1X)−1/N) (11)

involves the unknown variance components.

Nevertheless, Weerahandi and Berger (1999) demonstrated, how generalized tests can
be constructed for testing hypotheses concerning one or more component of β. To be specific.
they considered the hypotheses on individual components of the form

H0 : βj ≤ β0

and provided a generalized test based on the independent sufficient statistics

β̂j ∼ N(βj, X′Σ−1X)−1
jj /N) j = 1, · · · p

S2
e =

∑
i

∑
t

(Yit − X′
tβ̂−(Yi − Y ))2,

S2
w = T

∑
i

(Ȳi − Ȳ )2 (12)

due to Lehman (1986), where Ȳi is the sample mean for ith subject, Ȳ is the sample mean of
all the subjects,and (X′Σ−1X)−1

jj is the jjth element of the covariance matrix (X′Σ−1X)−1.
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Let

Sj(σ2
e , σ2

w) = 1√
N

(X′Σ−1X)1/2
jj and σ2

w = σ2
e + Tσ2

α. (13)

The sums of squares appearing in (11) are distributed as

W1 = S2
e

σ2
e

∼ χ2
ν1 , where ν1 = N(T − 1) − p + 1, and

W2 = S2
w

σ2
w

∼ χ2
ν2 , where ν2 = N − 1. (14)

Then by taking the generalized approach to inference, Weerahandi and Berger (1999) showed
that

p = Pr
 Z√

W/ν
≥

√
ν

(b0 − βj)
Sj( s2

e

B
, s2

w

1−B
)

 , (15)

is a generalized p-value appropriate for testing the above null hypothesis, where

B ∼ Beta(ν1/2, ν2/2) and W = W1 + W2 ∼ χ2
ν : ν = ν1 + ν2 = NT − p

Although, they did not address the problem of interval estimation, one can construct general-
ized confidence Intervals on any single component using the Generalized Confidence interval
approach suggested by Weerahandi (1993). Using the notion of Generalized Pivotal Quan-
tity, one can also construct generalized confidence ellipsoids for few components of interest,
as we demonstrate in the next section.

Taking that approach one can tackle problems involving more complicated compound
symmetric covariance structures and number of groups of subjects, in a one-way layout
setting as Chi and Weerahandi (1998) did. The Weerahandi and Berger (1999) results itself
can be extended to make inferences on a number of regression coefficients, as we further
discuss in the following sections.

5. Generalized inference on a vector of coefficients

Weerahandi and Berger (1999) results can be extended way beyond the problem they
considered. Confining to the distributional results concerning Rao’s covariance structure,
consider the problem of constructing confidence regions on a subset of β, say βj, a sub
vector of β, or β itself. The generalized inference on βj can be constructed based on the
foregoing distributional results along with the following:

β̂j ∼ N(βj, (X′Σ−1X)−1
jj /N), (16)

where (X′Σ−1X)jj is the jjth subset of (X′Σ−1X) corresponding to the β coefficients of
interest. Assuming positive definite covariance matrices, we can standardize (16) as

Z =
√

N(X′Σ−1X)1/2
jj )

(
β̂j − βj

)
∼ N(0, I), (17)
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Now it is evident that, if the covariance matrix Σ were known, testing of hypotheses
concerning βj or confidence ellipsoids can be constructed using the χ2 statistic,

H̃ = N
(
β̂j − βj

)′ (
X′Σ−1X)jj

) (
β̂j − βj

)
=

(
β̂j − βj

)′
(S2

j (σ2
e , σ2

w)jj)
(
β̂j − βj

)
∼ χ2

pj
(18)

where pj is the dimension of βj

5.1. Hypothesis testing

Typically the covariance matrix is unknown, and in that case, the generalized infer-
ences can be performed based on the generalized Hotelling T 2 statistic

H =
(
β̂j − βj

)′
(S2

j (s2
e/W1, s2

w/W2)jj)
(
β̂j − βj

)
, (19)

because

s2
e

W1
is a GPQ for σ2

e and s2
w

W2
is a GPQ for σ2

w. (20)

First, to perform hypotheses testing concerning sub-vectors of coefficients βj, consider null
hypotheses of the form

H0 : βj = β0,

where β0 is a certain hypothesized value. Under the null hypothesis, we get from (17)

Z
√

N(X′Σ−1X)1/2
jj )

(
β̂j − β0

)
= ZSj(σ2

e , σ2
w)jj, where Z ∼ N(0, I). (21)

By taking advantage of the two results (21) and (18), we can define a potential GTV,
a generalized Hotelling T 2 as

T 2 =
(
β̂j − β0

)′
Sj(σ2

e , σ2
w)jj

(
(S2

j ( s2
e

W1 ,
s2

w

W2)jj

)−1

Sj(σ2
e , σ2

w)jj

(
β̂j − β0

)

= Z′
(

S2
j ( s2

e

W1 ,
s2

w

W2)jj

)−1

Z. (22)

The above random quantity is indeed a GTV, because (i) it is distributed free of unknown
parameters, (ii) being a Hotelling T 2 type statistic, it tends to increase for deviations from the
null hypothesis, (iii) its observed value

(
β̂j − βj

)′ (
β̂j − β0

)
is free of nuisance parameters,

namely the unknown variances. Therefore, the random quantity defined by (22) is indeed a
valid GTV. Therefore, the hypothesis can be tested based on the generalized p-value

p = Pr(Z′(S2
j ( s2

e

W1
,

s2
w

W2
)−1

jj Z) >
(
β̂j − β0

)′ (
β̂j − β0

)
).

The p-value is easily computed by numerical integration or Monte Carlo integration, as we
further describe below.
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5.2. Confidence regions

Generalized confidence ellipsoids for βj are easily computed based on the GPQ cor-
responding to the above GTV. For example, the 100γ% generalized regions is constructed
as follows. First, find the cdf of T 2 as

FT (t) = Pr

((
β̂j − βj

)′
S2

j ((σ2
e , σ2

w)1/2
jj (S2

j ( s2
e

W1
,

s2
w

W2
)−1

jj )S2
j ((σ2

e , σ2
w)1/2

jj

(
β̂j − βj

)
≤ t

)

=
(

Z′(S2
j ( s2

e

W1 ,
s2

w

W2)−1
jj )Z ≤ t

)
. (23)

Then, find the quantile qγ such that FT (qγ) = γ.

The generalized confidence ellipsoid for βj implied by the above results is(
β̂j − βj

)′ (
β̂j − βj

)
≤ qγ,

because at the observed sample points, mid terms of (23) cancel out, The computation is
carried out as follows:

(a). Generate large number, say M , samples from Z ∼ N(0, I),

(b). Generate M random numbers from χ2
ν1 and χ2

ν2 ,

(c). Compute and sort the values of
(
Z′(S2

j ( s2
e

W 1 , s2
w

W 2)jj)Z
)
,

(d). Estimate the quantile qγ as the Mγth value of the sorted data.

(e). Construct the generalized ellipsoid using the above formula.

6. Discussion

Further research is necessary to extend forgoing results to more complicated mod-
els and hypotheses. Of particular interest is RANOVA (repeated measures ANOVA) and
RMANOVA (repeated measures MANOVA) type models involving a number of groups of
subjects. Growth curve models involving a number of groups of subjects is a particular case of
RMANOVA. Chi and Weerahandi (1998) provided some preliminary results on RMANOVA
and provided some guidance on how to handle such problems as multiple comparisons, but
did not directly address them. Moreover, there is a need to extend such results to Two-Way
RMANOVA, when there are two factors of interest, say treatments groups and groups of
subjects characterized by some subject attributes.

One may also consider other approaches to inference, such as the Parametric Boot-
strap (PB) approach and the Generalized Fiducial (GF) approach. However, it should be
noted, as argued by Ananda et al. (2022), that in most applications, these two methods tend
to be subsets of the generalized inference approach. In other words, the latter can reproduce
or beat PB based tests and GF based tests, as shown by Ananda et al. (2022).

Kurata (1998) provided a generalization of Rao’s Covariance Structure. The results
in that article provided distribution theory necessary to tackle greater class of applications
combined with generalized approach to inference to handle nuisance parameters.
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In a slightly different context, Ghosh and Sinha (1980) studied the criterion robustness
of the standard likelihood ratio test (LRT) under the multivariate normal regression model
and also the inference robustness of the same test under the univariate set up for certain
non-normal distributions of errors. Restricting attention to the normal distribution of errors
in the context of univariate regression models, they derived conditions on the design matrix
under which the usual LRT of a linear hypothesis (under homoscedasticity of errors) remains
valid if the errors have an intraclass covariance structure. The conditions hold in the case
of some standard designs. For further related results, the reader is referred to Rao (1967),
Zyskind (1967), and Mukhopadhyay and Sinha (1980).
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