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Abstract
Receiver Operating Characteristic (ROC) curve is one of the widely used classification

tool and its applications can be seen in diversified fields of science and engineering. In this
work, we made an attempt to examine the influence of measurement errors on the AUC of a
mixture ROC curve. A bias corrected estimator is proposed and derived. The proposed work
is supported with real dataset and simulation studies and results show that the proposed bias
corrected estimator helps in correcting the AUC with minimum bias and minimum mean
square error.
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1. Introduction

Over the years, classification problems have gained a lot of attention in terms of theoret-
ical development and practical applications in various disciplines. To handle such problems,
one of the classification tool is the Receiver Operating Characteristic (ROC) curve, origi-
nated during World War II for analyzing the radar images. In diagnostic medicine, ROC
curve is widely used for evaluating the test’s performance and also useful in comparing diag-
nostic tests by means of Area under the Curve (AUC) and Sensitivities. It is a unit square
graphical plot between false positive rate (1-specificity) and true positive rate (sensitivity)
at various threshold values. The AUC of an ROC curve plays an important role in assess-
ing the performance of a diagnostic test(s) and also measures the ability of a biomarker to
distinguish between two groups.

Measurement error (ME) problems are among the oldest in the history of statistics and
can be of great practical and economic importance. It is the difference between a measured
quantity and its true value. In diagnostic medicine, markers are subject to substantial mea-
surement errors which may be attributed to instruments used in the laboratory, knowledge of
the technicians, biological variability, temporal changes in subjects, etc. Shear et al. (1987)
has taken the measurements of systolic and diastolic blood pressure on children’s, which
were used as forecasters of future hypertension. Carracio et al. (1995) has done a study on
the children to predict the presence or absence of bacterial menengitis using cerebrospinal
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fluid. Since the outcome of the test in identifying the menengitis is attributed to either lab-
oratory equipment or technician, which may lead to the phenomenon of observing errors in
the measured quantities. With the above two examples, it can be understood that in most
of the data collections which purely depend upon the laboratory equipments, technicians
etc. there are high chances of having errors in the measurements. For more examples on
ME, readers can look into Begg and Greene (1983), Begg and McNeil (1988), Berbaum et
al. (1989), Buonaccorsi (2010) and Fuller (2009).

In ROC analysis, the most popular one is the Bi-normal ROC model, where the two
populations assumed to follow normal distribution. The estimation of AUC and its measures
have been addressed by several authors and a few to mention are Hanley and McNeil (1982),
Faraggi and Reiser (2002), Zhou et al. (2009), Vishnu Vardhan and Sarma (2010). However,
when the data is exposed to measurement errors the estimation of AUC will be a problem of
interest. Because as the measurements are deviated from their true value, it leads to produce
spurious AUC. Hence, the AUC has to be corrected by means of an estimator. The seminal
work on providing an estimator to correct the AUC was addressed by Coffin and Sukhatme
(1996). They showed that in the presence of measurement errors, the AUC will be biased
downwards and also came out with a bias corrected estimator that corrects the AUC. In
similar lines, Faraggi (2000) and Reiser (2000) have worked on estimating the confidence
intervals for the AUC in the presence of measurement error. Tosteson et al. (2005) studied
the effect of measurement errors on AUC of an ROC curve by expressing the magnitude
of the measurement error as a ratio of two variances; graphical and simulated environment
were presented to show the effect of ME.

The above methodologies works well only when the knowledge on class labels is known.
Even though the class labels are known, in most of the practical situations we may get ob-
served with bi-modal or multi-model patterns within each known population. In such sce-
narios the existing binormal structure and correction of AUC in the presence of measurement
error may not feasible to execute.

In this work, we proposed a Mixture ROC model which takes into the account of a
possible mean differences between populations. Let us assume that two sub components are
identified in diseased population and defined as D1 and D2. Now, we take into the account
of the following possible mean differences such as µD1 −µH and µD2 −µD1 (µD2 ≥ µD1 ≥ µH)
and the same is shown in Figure 1. In Section 3, the same scenario is illustrated using OGTT
dataset.

In section 2, we present the methodology of mixture ROC curves and its correction in
measurement error. In section 3, a real dataset is considered to assess the performance of the
proposed methodology and in section 4, monte carlo simulations are performed to compare
the MSE of estimated and bias corrected estimator of the true AUC values. This has helped
to examine how the bias and MSE of the estimators are influenced by measurement errors
at different sample sizes.
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Figure 1: Hypothetically overlapping density curves of Healthy and Diseased
populations

2. Methodology

2.1. Mixture receiver operating characteristic curve with measurement error

Let us consider the data where the class labels of subjects are known. In most of the
cases, we directly start with developing a classifier rule. But there are chances of having
several subgroups in each of the known populations. For instance, consider the oral glucose
tolerance test (OGTT) data, where the subjects disease status is defined. However, on
investigating the diseased population, it resulted with a bi-modal pattern. This indicates
that there are two sub populations with in the diseased population (Figure 2).

Figure 2: (a) The overall density plot of OGTT, (b) Plot after identifying the
components in the OGTT data set.

Let us consider a binary classified data (Healthy, H and Diseased, D) where the D
population consists of two sub populations within it. The identification of two sub popula-
tions (D1 and D2) will be done through EM algorithm. Let µH , µD1 , µD2 and σ2

H , σ2
D1 , σ2

D2
are the means and variances of three populations, respectively.
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The expressions for the False Positive Rate (1-specificity) and True Positive Rate (sen-
sitivity) in the mixture form is defined as

FPR = x(c) = λ1 x(c1) + λ2 x(c2) (1)

TPR = y(c) = λ1 y(c1) + λ2 y(c2) (2)
here, λ1 and λ2 are the mixing proportions; c1 and c2 are threshold values for the pairs
(D1, H) and (D2, D1).

By definition, we write

x(c1) = Φ
(

µH − c1

σH

)
; x(c2) = Φ

(
µD1 − c2

σD1

)
(3)

y(c1) = Φ
(

µD1 − c1

σD1

)
; y(c2) = Φ

(
µD2 − c2

σD2

)
(4)

The expressions for c1 and c2 will take the following form

c1 = µH − σHΦ−1[x(c1)] ; c2 = µD1 − σD2Φ−1[x(c2)] (5)

where Φ−1 is the inverse cumulative distribution function of normal. The mixture ROC
expression is derived by substituting (5) in (2) and is given in (6)

ROC = λ1

[
Φ
(

µD1 − µH

σD1

+ σH

σD1

Φ−1[x(c1)]
)]

+ λ2

[
Φ
(

µD2 − µD1

σD2

+ σD1

σD2

Φ−1[x(c2)]
)]

(6)

In general, if the diseased component has ‘p’ sub populations then (6) can be rewritten as

ROC(c) =
p∑

i=1
λi

[
Φ
(
Ai + Bi Φ−1[FPR]

)]
(7)

where
p∑

i=1
λi = 1; Ai = µi − µi−1

σi

; Bi = σi−1

σi

2.2. Corrected bias approximation

Let us define X1, X2, . . . , Xm
iid∼ N(µH , σ2

H) , Y1, Y2, . . . , Yn
iid∼ N(µD1 , σ2

D1) and
Z1, Z2, . . . , Zk

iid∼ N(µD2 , σ2
D2), then the AUC expression for mixture ROC curve is given as

mAUC = θ = λ1Φ
 µD1 − µH√

σ2
D1 + σ2

H

+ λ2Φ
 µD2 − µD1√

σ2
D2 + σ2

D1


If the observations in H, D1 and D2 are observed with measurement errors then we define

xi = Xi + ui, i = 1, 2, . . . , m; ui ∼ iid N(0, σ2
u)

yi = Yi + vj, j = 1, 2, . . . , n; vi ∼ iid N(0, σ2
v)
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zk = Zk + γk, k = 1, 2, . . . , l; γk ∼ iid N(0, σ2
γ)

we assume ui, vj, zk, Xi, Yj and Zk are all independent. The natural estimator of θ is
ˆmAUC = θ̂ = λ1 θ̂1 + λ2 θ̂2

where θ̂1 = Φ
 µ̂D1 − µ̂H√

s2
D1 + s2

H

 , θ̂2 = Φ
 µ̂D2 − µ̂D1√

s2
D2 + s2

D1


here s2

H , s2
D1 and s2

D2 are the sample variances. Using Taylor series expansion, it can be
shown that E(θ̂) = θ + O(1). Since, the observations are measured with errors, the resulting
area estimates i.e., AUC’s will be biased downward. By adopting the methodology of Coffin
and Sukhathme (1996), the expressions for θ̂1 and θ̂2 are

E(θ̂1) ≈ P (Y > X + δ1) =
� �

[1 − GY (s + t)]fX(s)fδ1(t)dtds

≈ θ1 − 1
2V ar(δ1)

�
gT

Y (s)fX(s)ds

E(θ̂2) ≈ P (Z > Y + δ2) =
� �

[1 − GZ(s + t)]fY (s)fδ2(t)dtds

≈ θ2 − 1
2V ar(δ2)

�
gT

Z(s)fY (s)ds

where δ1 = u − v ∼ N(0, σ2
u + σ2

v) and δ2 = v − γ ∼ N(0, σ2
v + σ2

γ), here GY (.), GZ(.)
are distribution functions of Y, Z and fδ1(.), fδ2(.) are density functions of δ1, δ2. Thus, the
approximate bias in using θ̂1 and θ̂2 to estimate θ will be

−B1 = −1
2V ar(δ1)

�
gT

Y (s)fX(s)ds

= −
1
2(σ2

u + σ2
v)√

2πτ 2
XY

(
µD1 − µH

τXY

)
exp

{
−1

2

(
µD1 − µH

τXY

)2
}

−B2 = −1
2V ar(δ2)

�
gT

Z(s)fY (s)ds

= −
1
2(σ2

v + σ2
γ)

√
2πτ 2

Y Z

(
µD2 − µD1

τY Z

)
exp

{
−1

2

(
µD2 − µD1

τY Z

)2
}

where τXY =
√

σ2
H + σ2

D1 , τY Z =
√

σ2
D1 + σ2

D2 , then the bias corrected estimator for θ in the
mixture form is defined as

mAUCcorr = θ∗ = λ1 θ∗
1 + λ2 θ∗

2 (8)

where θ∗
1 = θ̂1 + B̂1 and θ∗

2 = θ̂2 + B̂2. Using the unbiased estimates σ̂2
u, σ̂2

v and σ̂2
γ, the

estimated value of B1 and B2 will be

B̂1 = (σ̂2
u + σ̂2

v)
2
√

2π(s2
H + s2

D1
− σ̂2

u − σ̂2
v)

 µ̂D1 − µ̂H√
s2

H + s2
D1

− σ̂2
u − σ̂2

v

 exp

−1
2

(
µ̂D1 − µ̂H

s2
H + s2

D1
− σ̂2

u − σ̂2
v

)2


B̂2 =
(σ̂2

v + σ̂2
γ)

2
√

2π(s2
D1

+ s2
D2

− σ̂2
v − σ̂2

γ)

 µ̂D2 − µ̂D1√
s2

D1
+ s2

D2
− σ̂2

v − σ̂2
γ

 exp

−1
2

(
µ̂D2 − µ̂D1

s2
D1

+ s2
D2

− σ̂2
v − σ̂2

γ

)2

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The confidence intervals (CI) for corrected AUC measures are obtained using

m̂AUCcorr ± Z(1− α
2 ) S.E(m̂AUCcorr)

3. Real data set

The OGTT dataset (Lasko et al., 2005) consists of 21 samples of Healthy and a mixture
of Diseased individuals. In order to show the measurement error in the data, random error
observations are generated N(0, 1.2) and added to the original samples. This is done to
mimic the situation where the actual data is affected with ME.

Along with the accuracy measures, it’s bias and MSE’s are obtained and presented in
table (1). From the results, it is shown that by adding error observations to the original
data, the accuracy measure is affected and biased downwards (i.e., from θ = 0.94626 to
θ̂ = 0.91641). In such situation, the proposed bias corrected estimator helps in achieving
the true accuracy and which has minimum bias and minimum MSE when compared with
the estimated accuracy. The ROC curves are drawn for the original dataset (True ROC)

Table 1: Bias and MSE of estimated and corrected estimator of AUC of OGTT
dataset

θ̂ θ̂ME Bias MSE θ̂∗
Bias MSE

(True AUC) (Uncorrected AUC) (Corrected AUC)
Mixture ROC 0.94626 0.91641 -0.02985 0.00089 0.94061 -0.00565 0.00003

and after adding error observations to the data (ROC with ME). From Figure 3, it is clearly
seen that errors in measurement will affect the shape of the ROC curve and it is downwards
than the true ROC curve.

Figure 3: True and contaminated ROC (with ME) curves for OGTT dataset
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4. Simulation studies

Monte Carlo simulations are carried out to illustrate the behavior of the proposed bias
corrected estimator in the mixture ROC forms when the observations are measured with
error.

In Table 2, two sets of means and variances are considered along with the initial values
for mixing proportions. Set A and set B has unequal and equal variances, respectively. To
show the influence of measurement errors in the data, the error component, ϵ ∼ N(0, 1.9)
is added to set A and B & AUC’s are estimated (before and after correction). In each
population, random samples of size n = {25, 50, 100, 200} were generated using the parameter
values listed in Table 2.

Table 2: Considered parameters for simulation studies

Sets λ1 λ2 µH µD1 µD2 σH σD1 σD2

A 0.5 0.5 29.3 32.5 35.2 1.0 1.5 2.0
B 0.5 0.5 29.3 32.5 35.2 1.5 1.5 1.5

The estimated and bias corrected AUC values along with its bias and mean square
errors at various sample sizes are presented in Table 3.

Table 3: The Bias, MSE of the estimated and bias-corrected estimator of AUC

Sets θ̂ n θ̂ME Bias MSE θ̂∗
Bias MSE(CIL,CIU) (CIL,CIU)

A 0.91099

25 0.83777 -0.07322 0.01855 0.94898 0.03799 0.00144
(0.82228,0.85326) (0.92649,0.97146)

50 0.85403 -0.05696 0.01356 0.93654 0.02555 0.00065
(0.83667,0.87139) (0.91489,0.95820)

100 0.86416 -0.04683 0.01212 0.92650 0.01551 0.00024
(0.84844,0.87988) (0.90554,0.94746)

200 0.86922 -0.04177 0.01101 0.91561 0.00461 0.00002
(0.84916,0.88929) (0.88365,0.94756)

B 0.91673

25 0.83488 -0.08149 0.01508 0.93858 0.02221 0.00049
(0.81679,0.85298) (0.91483,0.96234)

50 0.86306 -0.03150 0.00917 0.93614 0.01977 0.00039
(0.84866,0.87746) (0.90054,0.97174)

100 0.87897 -0.05331 0.00819 0.92754 0.01117 0.00012
(0.86447,0.89347) (0.90604,0.94904)

200 0.88487 -0.03740 0.00682 0.90702 -0.00935 0.00009
(0.86705,0.90268) (0.87457,0.93947)
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From the results, it is understood that the area estimates (θ̂ME) are biased downward at
each sample size. Using the proposed mixture of bias corrected approximation, it is observed
that the bias corrected estimator of AUC’s (θ̂∗) are closer to the true AUC’s (θ̂) values and
has minimum MSE when compared with the estimated AUC’s (θ̂). Using the proposed
methodology of bias corrected approximation in mixture ROC, we can obtain the reliable
estimates of AUC’s in the presence of measurement errors.

Figure 4: The true and estimated ROC curves at various sample sizes

The graphical representation of the true mixture ROC curve and the estimated mixture
ROC curves (errors in the data) at various sample sizes is presented in Figure 4. From this
graphical ROC plots also it is understood that, the resulting area estimates are downward
in the presence of measurement errors.

5. Summary

In this paper, we made an attempt to address the problem of measurement errors in
estimating the AUC of mixture normal ROC model. A bias corrected approximation has
been defined in the mixture form. The methodology is supported by a OGTT dataset and
monte carlo simulation studies. Results indicates that the proposed bias corrected estimator
provides the corrected AUC’s and it will be closer to the true AUC values with minimum
bias and minimum MSE.
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