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Abstract

Talke and Borkowski (2012) discussed the generation of space-filling uniform designs
in unit hypercube and gave measures of uniformity based on distance criteria. In this paper,
a method is proposed for constructing uniform designs in ellipsoidal region and the designs
are constructed for 2 and 3 dimensional ellipsoidal regions. The uniformity of the constructed
designs is measured by distance based approaches. Further, these designs are used to obtain
3- and 4-component uniform mixture design using a transformation proposed for this purpose.
The uniformity of the constructed mixture designs is measured by the DM, criterion.

Key words: Uniform design; Ellipsoidal Region; Mixture Experiments; Distance based
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1. Introduction

Mixture experiments involve blending of two or more ingredients to form end prod-
ucts. In these experiments, the response or characteristic of interest depends on the propor-
tions of the components or ingredients present in the mixture and not on the total amount of
the mixture. For example, the corrosion resistance or the strength of stainless steel depends
on the proportions in which iron, copper, nickel, and chromium are mixed in the alloy. In a
mixture experiment with s components, if ; represents the proportion of the i** ingredient
in the mixture, then

0<z;<1,i=1,2,...,8 (1)
WlchlexZ:xl—i—:cg—i——l—xS:l

As a result, the factor space reduces to a (s — 1) dimensional simplex S(;_1), where

Sis—1) = {x = (21,22, ..., ) : le =1,2; > 0}. (2)
i=1
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The concept of mixture experiments was introduced by Quenouille (1953). Scheffé
(1958, 1963) gave designs and models for mixture experiments. The simplex-lattice designs
and simplex-centroid designs of Scheffé (1958, 1963) are boundary point designs except for
the overall centroid or face centroids. For more details on mixture experiments see Cornell

(2011).

Fang (1980) and Wang and Fang (1981) introduced uniform designs and discussed
the use of quasi monte carlo method in their constructions. Uniform designs are space filling
designs where design points are scattered uniformly over the experimental region. These
designs can be easily obtained by using U-type designs defined on a unit hypercube. A
U-type design can be obtained by using good lattice point (glp) method of Korobov (1959 a,
b). Hua and Wang (1981) and Fang and Wang (1994) discussed the glp method and used it
in the construction of uniform designs. Uniform design obtained using the glp method tends
to have low discrepancy (Hua and Wang, 1981). Borkowski and Piepel (2009) introduced
distance based criteria to measure the uniformity of a design. Talke and Borkowski (2016)
gave a method to measure uniformity of a design in a spherical region. Ning et al. (2011a)
gave DM, criterion to measure uniformity of a mixture design. For the comprehensive study
on uniform design one can refer to Prescott (2008), Ning et al. (2011b), Fang et al. (2018),
Adriana et al. (2022), Zhou and Xu(2014).

In many industrial and experimental situations, the experimentation at the vertices of
the simplex region is not possible. Also, limited resources, time, and budget does not allow
the exploration of entire simplex. In such cases, instead of exploring the entire simplex, the
region is restricted to any subset of the simplex. In literature, spherical and ellipsoidal regions
are considered. Thompson and Myers (1968) proposed a technique for obtaining mixture
experimental design over some ellipsoidal region of interest with in the simplex. Mandal et al.
(2015) obtained optimum mixture designs used for parameter estimation in Scheffé (1958)
models on the ellipsoidal region within the simplex. The problem of combinatorial drug
experiment on lung cancer was conducted by Al-Shyoukh et al. (2011) for systematically
qualitative characterization of cellular responses induced by multiple signals. Singh and
Shukla (2023) proposed a method for obtaining the design in s-dimensional spherical region
using the design in 2-dimensional spherical region given by Talke and Borkowski (2016).

In this paper, we propose a method for the construction of uniform designs in ellip-
soidal region and introduce a transformation to obtain uniform mixture designs from uniform
designs in ellipsoidal region. The NT-net design based on glp generators is used to obtain
the U-type design for this purpose. The design is then used to obtain design in (s — 1)
dimensional ellipsoidal region from which uniform designs for s component mixture experi-
ments are generated using the proposed transformation. The design for 3 and 4 component
mixture experiments are obtained for illustrative purposes.

First, the designs on 2 and 3 dimensional ellipsoidal region are obtained, then from
these designs uniform designs for 3 and 4 component mixture experiments are obtained. The
uniformity of the designs in ellipsoidal region is measured using distance based approach and
that of the mixture designs is obtained using the D Ms criterion. DM, criterion has an explicit
calculation formula therefore it is quite useful in measuring the uniformity of the design.
Borkowski and Piepel (2009) discussed an approach using G function to obtain uniform
experimental design for the s component mixtures from the design in (s — 1) dimensional
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unit hypercube, but due to nonlinear transformation of the G function the pattern of the
uniformity is not preserved in the simplex. Here, in this paper, two transformations are used
to obtain designs in the simplex and it is observed that the pattern of uniformity is preserved
from the ellipsoidal region to simplex.

In Section 2, various measures of uniformity are discussed. In Section 3, a method
for obtaining designs in ellipsoidal region is developed and the particular cases of 2 and
3 dimensions are discussed in detail. Section 4 includes a transformation that is used to
construct uniform mixture designs in s dimensions from the uniform designs in (s — 1)
dimensional ellipsoidal region and the designs for 3 and 4 components are obtained. The
conclusion of the paper is given in Section 5. Section 6 gives guidance to the beginners in

this field.

2. Measures of uniformity

Fang (1980) and Wang and Fang (1981) were the first to apply the idea of Number-
Theoretic methods (NTM) to experimental designs. Number-theoretic method or Quasi
Monte Carlo method is a combination of number-theory and numerical analysis and has a
variety of applications in statistics. Fang and Wang (1994) discussed tha glp set and some
measures of uniformity of a design. Borkowski and Piepel (2009) introduced three distance-
based criteria, (i) root mean square distance (RMSD), (ii) average distance (AD) and (iii)
maximum distance (MD).

Generally Monte Carlo sampling method is used to compute these values. In this
method two sets a training set and a sampling set are taken and the design points of these
sets are obtained using Number-Theoretic net (NT-net). From the given training set, a
sampling set with smaller number of runs is obtained and the value of uniformity measure
of the sampling set is evaluated based on the training set. However, in this article, we
are generating different sampling sets based on different glp generator and the training set
is separately generated by an appropriate glp generator. The criteria values of different
sampling sets are evaluated using the training set.

Suppose D = {z; = (z1,%j2,...,%js);J = 1,2,...,n} represents a sampling set i.e.
a design with s components and n runs for which the distance based uniformity measures
are to be computed and T = {tx = (tg1, tg2, -, tks), k = 1,2, ..., N} represent a training set
consisting of N(> n) runs and s components. Then D and T matrices of order n x s and
N X s respectively, where

T11 Ti9 - e T1s tll t12 e Ce tls

Top Tog - e Tog t21 t22 e Ce t2$
D= ) L ) } and T = .

Tpl Tpo - Tns tNl tNQ th

Let d%(zj,t;) denote the Euclidean distance between the points z; and ¢ scaled
between 0 and 1, then

S

A2z te) =D (55 — ti)?

i=1
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and the three distance-based criteria are defined as follows:

1 N
(1) RMSD = J ¥ 2 mimi<j<ndi (@), )
k=1
1 &
(2) AD = N Z mini<j<nds(;,t5)
k=1

(3) MD = maxlngN(minlngnds(xj, tk>>

The above mentioned distance based measures can also be applied for mixture exper-
iments where >°7_, x;; = 1 and )7, t; = 1 to measure the uniformity of the design. When
the number of runs is small, the uniformity of a mixture design can be measured using the
D M,-discrepancy which is generalization of star discrepancy (Ning et al., 2011a). Star dis-
crepancy given by Weyl (1916) is a basic and simplest measure of uniformity. Ning et al.
(2011a) gave the following analytical expression to compute the D Ms-discrepancy value of
a design P, with n runs defined over the s dimensional simplex.

DM, (P,) =
\/g 1/2 2(5_1>' n - s -
O Cnys—iz ar - (xn)™ - H%‘ﬂ’
<S B ) n =1 (12,...,75)€[0,1]5—1 Jj=2 (3)
s—1 1/2
1 n S
— > |max | 1= max (z,zk) ,0
N =1 k=1 j=2
where
0,1°7" = {(t1,t2,...,ts—1) : t; =0 or 1},
s—2
Cns = ((s=D)%2°7/(2(s = 1)) [](2s + k — 1),
k=0
ar = (s—=1)/ (2(5 -1) - ZTZ')!,
and 11 =2(s — 1) = > _ 7.
2
3. Uniform designs in ellipsoidal region

Consider an s dimensional ellipsoidal region defined as

E. (yo) = E; (a1, 0z, ..., a5)

2 2 2
— — — 4

_ {(yhy% Ys) | (11 2y01) + (2 2%2) NI (s 2905) < 1} (4)
ay a3 @

where yo = (Yo1, Yoz, ---, Yos) is the center, n is the number of points in the region and a? +
G+ 1.

When yo = (0,0, ...,0) and a? +a3+---+a? = 1, it represents the standard ellipsoidal
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region denoted by E2(1),

ai a?

Ei(l):{(yl,yz,---,ys):@g+---+<y3) gl}. (5)

To obtain uniform designs in ellipsoidal region, we first obtain U-type design for s
dimensional unit hypercube using the good lattice point (glp) method and then convert this
into a design in ellipsoidal region using some transformation.

Construction 1:
The steps for generating the uniform design are as follows:

Step 1: For a given number of runs n, obtain the initial generating vector H,, = (hy, ho,
ooy hy), with 1 < hy < hye < n for t < t°, such that the greatest common divisor

ged(n,hy) =1fort =1,2,... k.

Step 2: For a given number of factors s(< k), select a generator (hy,, by, ..., he,); by, < by
for t; < t; ; hyy = 1 from H, and generate an n x s NT-net design Z = (2;5); i =1,2,...,n
2'Lu2liL 1
Step 3. Obtain the design y = (y1, 92, - ,¥ys) in s dimensional ellipsoidal region E2(1) by

using the transformation

and j = 1,2, ..., s where z;; = with u;; = h;; (mod n).

yi = an | ] cos(2mzi),

k=2
. 2 , (6)
Yij = aisin(2mzy) [ cos(2mzu);j = 2,3, s,

k=j
Yis = Q;sSIN(272;5),

where a;1, a;o, - - -, a;s are axis half lengths satisfying ijl afj =1.

Step 4. Compute the criteria values RMSD, AD, and MD of the designs obtained in step 3
for all the possible generators.
Step 5. Select the designs with minimum values of the RMSD, AD, and MD criteria value.

Note that there are many ways to obtain a;;’s satisfying >°7_; a?j = 1. In this paper,
Number theoretic-net (NT-net) approach is used. The NT-net design lies between 0 and 1.
Some of the values are near 0 and some are near 1. The harmonic mean is one of the ways to
choose a;;’s as it gives less weightage to larger values and large weightage to smaller values
to maintain balance and equal importance of each pair of a;;’s in obtaining the a;;’s. If there
is availability of the normally distributed data then the axis of the ellipsoid can be obtained
by using the concept of the confidence region given by Tzeng and Berns (2005).

The N points of the training set used in computation of criteria value in step 4 are
generated using a generator chosen arbitrarily.
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In step 5, if the generator giving minimum value of RMSD and AD is different from
the generator giving minimum value of MD, then it may be considered as optimal generator
whereas if the generator giving the smallest value of AD is also different from the generator
giving minimum value of RMSD, then the generator for RMSD is considered as optimal
generator as RMSD is least affected by variation of points near the boundary.

It may also be noted that for large n, the number of design generators are large
therefore all non-equivalent design generators can be considered to generate designs and the
design with minimum value of criteria is selected. For saving time, one can also use a good
lattice point with a power generator in Step 4.

According to Talke and Borkowski (2016), equivalent glp generators are those gener-
ators whose design points can be found by column permutation of other glp generators. Let
H,, = (hi, ha, ..., hy) be the initial generating vector with 1 < hy < hy < n for t < t‘ such
that the greatest common divisor ged(n, hy) = 1 for t = 1,2, ..., k. In a two dimensional unit
hypercube [0, 1]?, the two glp generators (1, h;) and (1, h;) are said to be equivalent if

(hi x hj)(mod n) = 1.

Similarly, in a three dimensional unit hypercube [0,1]%, a glp generator (1, h;, h;) is
said to be equivalent to (1, hy, ) and (1, hy,, hs) with h; > h; and hy, > h;, if it satisfies the
five conditions given below:

(7) (h; X hg)mod(n) =1
(13) (hj X hp)mod(n) =1
(7i1) (h; X hy X hy)mod(n) = 1
(1v) (hy X hg)mod(n) =1
(v) (hj X hy x hg)mod(n) = 1.

Remark: 1. Fang and Wang (1994) have defined a glp set as a set P, = {zy = (Tg1, Tx2, ...,
xys) } of lattice points with smallest discrepancy among all possible generating vectors (n; by,
ha, ..., hs) for given n and s(< n). They also showed that h; = 1 can always be assumed in
a generator (hi, hs,...,hs). However, in general for a given n there can be more than ’s’
hi’s say k in the initial generating vactor H, = (hq, ho, ..., ht). This is described in Talke
and Borkowski (2012). This leads to choosing a generating vector of size s out of the k
elements in H, which is possible in m= ¥~1C,_; ways if h; = 1 is fixed. In the proposed
method, we have first obtained the set H,, = (hq, ho, ..., h) with all possible h;’s satisfying
1 < h; < hj <nfori< jwith ged(n,h;) = 1;4 = 1,2,...,k(< n) and then selected a
generating vector of size s from it for a given s.

2. Fang and Wang (1994) have also discussed various methods to measure the uniformity of
the design but distance-based approach of Talke and Borkowski (2016) is not discussed in
this book. In the proposed method, we have used three distance-based criteria to measure
the uniformity of the designs in ellipsoidal region. Obiri et al. (2020) has mentioned that
with increase in the number of experimental factors or dimensions of the design space, it is
difficult to compute discrepancy, therefore, the distance-based approach is more suitable. In
the proposed method, instead of obtaining a glp set in unit hypercube, the discrepancy values
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of the designs in ellipsoidal region are computed and the best design is selected. Further, as
mentioned in Talke and Borkowski (2016), the design points obtained by the transformation
given by Fang and Wang (1994, Section 1.5) does not preserve uniformity of the design in
2-dimensional ball B, despite the fact that set of points obtained from C? being uniformly
scattered in C?. Thus, a different transformation is provided by Talke and Borkowski (2016)
to obtain design points in B,. The transformation given in Fang and Wang (1994) de-
pends on the value of (r;, §;) to obtain designs. In the proposed method, the transformation
used for obtaining the design in ellipsoidal region depends on the value of a;;’s and z;;’s for
i=1,2,...,n;7=12,...,s where Z = (2;;) is the design in unit hypercube and a;;’s are
the axis half-length satisfying >27_, a?j = 1. The value of r; used in Fang and Wang (1994)
depends only on the number of design points whereas the value of a;; in the proposed trans-
formation depends on the number of design points and the number of components. Here,
a;;’s are obtained by considering the harmonic mean which gives equal weightage to all the
NT-net design points whereas in transformation of Fang and Wang (1994) chosen r;’s gives
higher weightage to higher value of r; and lower weightage to smaller value of r;.

The specific transformation for s=2 and s=3 are discussed in Section 3.1 and 3.2
respectively.
3.1. Designs in two dimensional ellipsoidal region

Consider a two dimensional standard ellipsoidal region given by

En (1) = {(yh?ﬁ) 3 <y;2)2 + (y22)2 < 1}

1 as

where a? + a3 = 1.

Let z, = {z,(i) = (211, 2i2);4 = 1,2,...,n} be an n point design obtained after Step
1 of the Construction 1, then the uniform design in 2 dimensional ellipsoidal region E?(1)
can be obtained using the transformation:

Ei(l) = {(yn, Yio) = (a;1 Cos (2m2;2) , az Sin (272;9)) ; afl + a?z =1;1=1,2,... ,n} (7)

where aigzjj“ﬁ and a;; = /1 —a;i=1,2,...,n.

Example 1: Consider a design with s=2 and n=21. For n=21, the design can be ob-
tained using the generators from the initial candidate generating vector Hoy with Hoy =
{1,2,4,5,8,10,11,13,16,17,19,20}. Different generating vectors for constructing designs in
unit hypercube C? = [0, 1]* are given in Table 1.

Table 1: List of glp generators for design in C?

12) (1,4) (15) (18) (1,10) (1,11) (1,13) (1,16) (1,17) (1,19) (1,20)

For each of these eleven glp generators listed in Table 1, a design is obtained in 2
dimensional ellipsoidal region. The design points of these designs are displayed in Figure 1.

From the Figure 1, it can be observed that the design points in designs obtained using
glp generators (1,2), (1,4), (1,8), (1,19) are scattered more uniformly in comparison to the
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Figure 1: Plot of design points in designs obtained using generators (i) to (xi)

other designs. Scatteredness of these four designs are almost same so for choosing the most
uniformly scattered design, the design with minimum value of criterion used can be selected.

Out of eleven generators only seven generators are non-equivalent. The generators
(1,2), (1,4), (1,5), (1,8) are equivalent to (1,11), (1,16), (1,17), (1,19) respectively. The values
of the three distance based criteria of uniformity for all the eleven designs are given in Table
2. For computing the criteria values a design, the points of the training set are obtained
by using the generator (1,13) and the values are computed on the basis of 3000 evaluation
points.

From the Table 2, it can be observed that the generator (1,2) gives the smallest
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Table 2: Criteria values for all possible 21 run designs in 2 dimensional ellipsoidal
region

Design Generator RMSD AD MD

(1,2) 0.120193 0.103221 0.341422
(1,4) 0.127202 0.106910 0.328640
(1,5) 0.130708 0.105731 0.372629
(1,8) 0.122616 0.103479 0.317779
(1,10) 0.126546 0.104291 0.408531
(1,11) 0.129088 0.105089 0.394096
(1,13) 0.125127 0.105774 0.340943
(1,16) 0.143172 0.115458 0.425651
(1,17) 0.141105 0.115841 0.416019
(1,19) 0.123441 0.103987 0.350676
(1,20) 0.179616 0.132331 0.552201

value of ‘RMSD’ and ‘AD’ and the ‘MD’ value of the design obtained by generator (1,8) is
minimum. Therefore, the generator (1,2) can be taken as optimal generator. It can also be
observed from Figure 1 that the design points obtained by generator (1,2) are clustered less
in comparison to that obtained by the generator (1,8).

3.2. Designs in three dimensional ellipsoidal region

Consider a three dimensional standard ellipsoidal region given by

E; (1) = {(y1,y2,y3) : (?21%)2 + ('122%)2 + (‘f’;z < 1}

where af + a3 + a3 = 1.

Let z, = {z,(7) = (211, 2i2, 2i3);7 = 1,2, ...,n} be the design in three dimensional unit
hypercube obtained after step 1 of the construction 1, then the design in three-dimensional
ellipsoidal region with n runs can be obtained using transformation

Ei(l) = {(yﬂ, Yi2, y13) — (aﬂ COS(27TZi2> COS(27TZZ‘3), (075)) Sin(27rzi2) COS(27TZZ‘3), a;3 Sin(27rzl-3);

2 2 2 1.5 _
ai1+ai2+axi3—1,7f— 1,2,...,77,

(8)

; o — 2Zzi1zi3 . 22012 R (2 2., —
with a;p = 258 a3 = 2552 and a4 = /1 — (a +a3);i=1,2,...,n.

Example 2: Consider a design with s=3 and n=34. For n=34, the design can be ob-
tained using the generators from the initial candidate generating vector Hsy with Hsy =
{1,3,5,7,9,11,13, 15,19, 21, 25, 27,29, 31, 33}. For n=34, we have 35 different non-equivalent
glp generators. The design obtained using all non-equivalent glp generators can be trans-
formed into designs in 3 dimensional ellipsoidal region using the transformation (8). The
criteria values of all these designs are computed and are given in Table 3. For computing the
criteria values a design, the points of the training set are obtained by using the generator
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(1,13,27) and the values are obtained on the basis of 8000 evaluation points.

[Vol. 23, No. 2

Table 3: Criteria values for all non-equivalent designs in 3 dimensional ellipsoidal

region

Design Generator RMSD AD MD
(1,3,5) 0.19366 0.17805 0.48729
(1,3,7) 0.18659 0.16590 0.59109
(1,3,9) 0.19181 0.17475 0.58436
(1,3,11) 0.19181 0.17475 0.58436
(1,3,13) 0.20657 0.18613 0.55194
(1,3,15) 0.19796 0.17902 0.49603
(1,3,19) 0.20066 0.18114 0.50394
(1,3,21) 0.19043 0.17420 0.55360
(1,3,25) 0.21661 0.19547 0.52553
(1,3,27) 0.20181 0.18323 0.49835
(1,3,29) 0.20210 0.18420 0.50646
(1,3,31) 0.34922 0.28035 0.99897
(1,3,33) 0.23548 0.20737 0.70056
(1,5,7) 0.20323 0.18267 0.60436
(1,5,9) 0.19300 0.17361 0.51461
(1,5,11) 0.19723 0.17434 0.54075
(1,5,19) 0.21192 0.18817 0.32439
(1,5,21) 0.21578 0.19718 0.66106
(1,5,27) 0.20802 0.18742 0.59109
(1,5,29) 0.35220 0.28477 1.01637
(1,5,31) 0.19961 0.18250 0.51467
(1,5,33) 0.22281 0.19422 0.66455
(1,9,13) 0.20751 0.18886 0.57064
(1,9,15) 0.19687 0.18306 0.46457
(1,9,21) 0.20429 0.18215 0.57527
(1,9,25) 0.34638 0.28098 0.44235
(1,9,31) 0.20321 0.18469 0.64441
(1,9,33) 0.21291 0.18723 0.61685
(1,11,13) 0.20094 0.17888 0.40342
(1,11,25) 0.20902 0.18785 0.54557
(1,11,27) 0.20441 0.18483 0.51833
(1,11,29) 0.20375 0.18224 0.53322
(1,13,21) 0.34145 0.27485 0.99529
(1,13,25) 0.20427 0.18413 0.52374
(1,13,27) 0.22557 0.19462 0.64485

From Table 3, it can be observed that the design with generators (1,3,7) has least ‘RMSD’
and ‘AD’ value whereas ‘MD’ value of design with generator (1,5,19) is less. Therefore, we
consider all the generators equivalent to (1,3,7) and (1,5,19) and out of all the equivalent
design, the design with minimum criteria value should be chosen. The distance based cri-
teria values for designs with generator equivalent to (1, 3, 7) and (1,5,19) are given in Table 4.



2025] UNIFORM MIXTURE DESIGNS BASED ON ELLIPSOIDAL REGIONS 81

Table 4: Criteria value of designs equivalent to designs with generators (1,3,7)
and (1,5,19) in E3, (1)

Generator Equivalent Generators RMSD AD MD
(1,3,7) (1,3,7) 0.18659 0.1659  0.59109
(1,23,25) 0.19469 0.17739  0.56514
(1,5,15) 0.21131 0.18756  0.54959
1519  (1,5,19) 0.21192 0.18817 0.32439
(1,7,31) 0.19808 0.17776  0.55356
(1,9,11) 0.20558 0.18323  0.50081
(1,9,31) 0.20321 0.18469  0.64441

From Table 4, it can be observed that the generator (1,3,7) gives the smallest value of
‘RMSD’ and ‘AD’, whereas the ‘MD’ value is minimum for the design obtained by generator
(1,5,19). Therefore, the generator (1,3,7) can be taken as optimal generator. The scatter
plots of the designs obtained by the generator (1,3,7) and (1,5,19) are displayed in Figure 2.

///
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Figure 2: Scatter plot of the designs obtained by generator (i) (1,3,7) and
(i) (1,5,19)

From Figure 2, it can be observed that the design based on generator (1, 3, 7) is more
uniform.
4. Uniform mixture designs for simplex

The designs in 2 and 3 dimensional ellipsoidal region can be obtain using the trans-
formation (7) and (8) by using the methods discussed in Section 3. These designs are used
to obtain the designs for mixture experiments as described in construction 2.

Construction 2:

Let y = (y1, Y2, .-, Ys—1) represents the design in (s-1) dimensional ellipsoidal region,
then a mixture design can be obtained from this using the following transformation:

Fori=1,2,...5s — 1, define & = —<%+— and make the following transformation:

Sy et
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1'1:1_517

1—1
j=1

s—1
Ts = H 57,
=1

then z = (xy, z9, ..., z5) is the required s component mixture design.

4.1. Designs for three component mixtures

[Vol. 23, No. 2

Consider the 2 dimensional ellipsoidal region and the two designs obtained by using
the glp generators (1,2) and (1,8). Then,, the two 3 component mixture designs corresponding
to these designs are obtained by using the transformation (9). The design in 2 dimensional
ellipsoidal region obtained using generator (1,2) along with corresponding mixture design is
given in Table 5 and that obtained using the generator (1,8) are given in Table 6.

Table 5: Design in two dimensional ellipsoidal region and three component mix-
ture design using generator (1,2)

Design Point

Design in Ellipsoidal Region

Mixture Design

1 Y2 T T2 T3
1 0.90039 0.01550 0.29216 | 0.50103 | 0.20680
2 0.49749 0.08660 0.39870 | 0.36156 | 0.23974
3 -0.07372 0.16323 0.55896 | 0.19451 | 0.24652
4 -0.60717 0.17769 0.68673 | 0.09814 | 0.21513
5! -0.91427 0.08572 0.73106 | 0.07233 | 0.19661
6 -0.89357 -0.10444 0.68764 | 0.09757 | 0.21479
7 -0.56645 -0.32669 0.55965 | 0.19391 | 0.24644
8 -0.06550 -0.48002 0.39783 | 0.36261 | 0.23956
9 0.41926 -0.47187 0.29088 | 0.50286 | 0.20627
10 0.71505 -0.26396 0.27309 | 0.52840 | 0.19851
11 0.98781 0.00677 0.27269 | 0.52898 | 0.19833
12 0.71890 0.13303 0.35758 | 0.41270 | 0.22972
13 0.21118 0.30723 0.52399 | 0.22658 | 0.24942
14 -0.33192 0.38897 0.67280 | 0.10706 | 0.22014
15 -0.71054 0.28749 0.73067 | 0.07254 | 0.19679
16 -0.80287 0.00000 0.69059 | 0.09574 | 0.21368
17 -0.60784 -0.38156 0.55633 | 0.19684 | 0.24683
18 -0.23948 -0.70300 0.38615 | 0.37681 | 0.23704
19 0.12391 -0.80979 0.28218 | 0.51527 | 0.20255
20 0.31319 -0.61497 0.28330 | 0.51366 | 0.20304
21 0.21449 -0.14549 0.41096 | 0.34696 | 0.24207

For the two, 3 component mixture designs given in Table 5 and Table 6, the DM,
values are calculated which are given in Table 7.
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Table 6: Design in two dimensional ellipsoidal region and three component mix-
ture design using generator (1,8)

Design Point | Design in Ellipsoidal Region Mixture Design
h Yo T T2 I3
1 -0.62287 0.03490 0.65876 | 0.11645 | 0.22480
2 -0.07409 -0.12989 0.48606 | 0.26414 | 0.24981
3 0.72784 0.08097 0.34370 | 0.43073 | 0.22557
4 -0.96825 0.00000 0.72477 1 0.07575 | 0.19948
) 0.68812 -0.23447 0.28443 | 0.51204 | 0.20353
6 -0.07212 0.26117 0.58256 | 0.17426 | 0.24318
7 -0.56645 -0.32669 0.55965 | 0.19391 | 0.24644
8 0.98784 0.00665 0.27266 | 0.52903 | 0.19831
9 -0.75553 0.22801 0.72781 | 0.07409 | 0.19810
10 0.18219 -0.55978 0.32257 | 0.45891 | 0.21852
11 0.48412 0.21651 0.43349 | 0.32093 | 0.24558
12 -0.79955 -0.16141 0.65433 | 0.11949 | 0.22618
13 0.62012 -0.31476 0.28194 | 0.51562 | 0.20245
14 -0.33192 0.38897 0.67280 | 0.10706 | 0.22014
15 -0.26427 -0.64275 0.40649 | 0.35225 | 0.24126
16 0.89329 0.05651 0.30221 | 0.48691 | 0.21088
17 -0.78236 0.16924 0.72144 | 0.07760 | 0.20097
18 0.27639 -0.72169 0.26932 | 0.53389 | 0.19679
19 0.20888 0.33608 0.53176 | 0.21925 | 0.24899
20 -0.56868 -0.40866 0.53992 | 0.21167 | 0.24841
21 0.21449 -0.14549 0.41096 | 0.34696 | 0.24207

Table 7: DM, value of the 3 component mixture designs

Design Generator DM, value
(1,2) 0.20811
(1,8) 0.21414

From the Table 7, it can be observed that the criteria value of design based on
generator (1,2) has less DM, value and therefore it provides design with better uniformity.

4.2. Designs for four component mixtures

Consider the 3 dimensional ellipsoidal region and the designs obtained using the glp
generators (1,3,7) and (1,5,19). Then, the two four component mixture designs correspond-
ing to these two designs are obtained by using the transformation (9). The designs in 3
dimensional ellipsoidal region obtained using the generator (1,3,7) along with corresponding
mixture design is given in Table 8 and that obtained using the generator (1,5,19) are given
in Table 9.

For the two, 4 component mixture designs given in Table 8 and Table 9, the DM,
values are calculated and are given in Table 10.
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mixture design using generator (1,3,7)
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Design Point | Design in Ellipsoidal Region Mixture Design
Y1 Yo Ys 21 Lo 3 Ly
1 0.32315 | 0.00440 | 0.02285 | 0.59476 | 0.28585 | 0.08356 | 0.03583
2 -0.41776 | -0.05388 | 0.04178 | 0.75138 | 0.15968 | 0.05393 | 0.03501
3 0.00000 | -0.10460 | -0.06848 | 0.64720 | 0.24069 | 0.07517 | 0.03693
4 -0.18455 | 0.05609 | -0.14718 | 0.69790 | 0.18601 | 0.07969 | 0.03641
5 -0.87265 | 0.01175 | 0.01864 | 0.82935 | 0.10013 | 0.04118 | 0.02934
6 -0.17402 | -0.00316 | 0.24197 | 0.72989 | 0.18356 | 0.05111 | 0.03544
7 0.65706 | 0.14242 | 0.12940 | 0.54290 | 0.33221 | 0.09121 | 0.03368
8 0.21510 | 0.20547 | -0.24715 | 0.61836 | 0.23739 | 0.10958 | 0.03468
9 0.08141 | -0.19930 | -0.32187 | 0.58735 | 0.28405 | 0.09315 | 0.03546
10 0.58516 | -0.05417 | 0.11568 | 0.53553 | 0.35064 | 0.08077 | 0.03306
11 0.00000 | 0.00000 | 0.46683 | 0.72183 | 0.20079 | 0.04305 | 0.03433
12 -0.84944 | -0.10222 | 0.02136 | 0.81818 | 0.11203 | 0.03948 | 0.03031
13 -0.30481 | -0.18389 | -0.16548 | 0.69494 | 0.20004 | 0.06820 | 0.03683
14 0.09769 | 0.36078 | -0.20959 | 0.67066 | 0.18823 | 0.10693 | 0.03418
15 -0.29917 | 0.10470 | 0.15968 | 0.75489 | 0.15513 | 0.05508 | 0.03489
16 0.12267 | -0.03837 | 0.41722 | 0.68689 | 0.22965 | 0.04837 | 0.03508
17 0.72112 | -0.04459 | 0.04478 | 0.49328 | 0.38732 | 0.08863 | 0.03076
18 0.19336 | 0.09501 | -0.50589 | 0.58390 | 0.25918 | 0.12447 | 0.03245
19 -0.18046 | -0.45959 | -0.35989 | 0.61422 | 0.27320 | 0.07628 | 0.03630
20 0.00000 | -0.13930 | 0.39171 | 0.70145 | 0.22101 | 0.04329 | 0.03425
21 -0.11109 | 0.12545 | 0.65402 | 0.77355 | 0.16148 | 0.03335 | 0.03162
22 -0.29956 | 0.25188 | -0.06935 | 0.74966 | 0.14156 | 0.07450 | 0.03428
23 -0.13234 | -0.01170 | -0.02828 | 0.69116 | 0.20123 | 0.07073 | 0.03688
24 0.41720 | 0.42709 | -0.07987 | 0.61807 | 0.23461 | 0.11310 | 0.03423
25 0.22552 | 0.14049 | 0.22332 | 0.65710 | 0.23490 | 0.07105 | 0.03695
26 0.07597 | -0.24125 | 0.34616 | 0.67088 | 0.25025 | 0.04486 | 0.03401
27 0.37766 | -0.45551 | -0.13673 | 0.50800 | 0.38678 | 0.07427 | 0.03095
28 0.00000 | 0.00000 | -0.58311 | 0.60909 | 0.23810 | 0.11947 | 0.03334
29 -0.44680 | -0.23511 | -0.18059 | 0.71758 | 0.18385 | 0.06224 | 0.03633
30 -0.22162 | -0.10609 | 0.62197 | 0.77514 | 0.16811 | 0.02709 | 0.02967
31 0.03699 | 0.34538 | 0.59061 | 0.75614 | 0.16291 | 0.04661 | 0.03434
32 -0.16099 | 0.59138 | -0.38497 | 0.74499 | 0.11702 | 0.10987 | 0.02813
33 0.11301 | -0.09508 | -0.90978 | 0.53954 | 0.28827 | 0.14368 | 0.02851
34 0.96210 | -0.09052 | -0.09091 | 0.41104 | 0.46790 | 0.09619 | 0.02488

From the Table 10, it can observed that the criteria value for design using generator
(1,3,7) has less DM, value and hence it provides more uniformly scattered design points.
5. Conclusion

In this paper, a method is proposed to construct uniform designs in ellipsoidal region
and the designs in 2 and 3 dimensional ellipsoidal regions are obtained. It is observed
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Table 9: Design in three dimensional ellipsoidal region and four component

mixture design using generator (1,5,19)

Design Point | Design in Ellipsoidal Region Mixture Design
hn Yo Ys T T2 T3 L4

1 -0.64748 | -0.02036 | -0.00724 | 0.79032 | 0.12737 | 0.04957 | 0.03274
2 -0.14593 | 0.04845 | 0.04592 | 0.70812 | 0.18841 | 0.06688 | 0.03659
3 0.46334 | -0.03106 | -0.10664 | 0.54033 | 0.33079 | 0.09538 | 0.03350
4 -0.16031 | -0.01150 | 0.17158 | 0.71863 | 0.18950 | 0.05585 | 0.03602
5 -0.03201 | -0.04087 | -0.21982 | 0.64538 | 0.22997 | 0.08801 | 0.03663
6 -0.33227 | 0.08514 | 0.23184 | 0.76613 | 0.15084 | 0.04889 | 0.03413
7 0.75380 | 0.02321 | -0.01646 | 0.48573 | 0.38689 | 0.09705 | 0.03032
8 -0.47411 | -0.24313 | 0.05108 | 0.74687 | 0.17240 | 0.04617 | 0.03455
9 -0.34555 | 0.02579 | 0.02550 | 0.74352 | 0.16112 | 0.05992 | 0.03545
10 0.74003 | -0.09205 | -0.15444 | 0.45769 | 0.41433 | 0.09960 | 0.02837
11 -0.48051 | -0.07523 | 0.30184 | 0.78661 | 0.14510 | 0.03643 | 0.03186
12 0.00000 | 0.16408 | -0.43473 | 0.64611 | 0.20632 | 0.11376 | 0.03381
13 0.00000 | 0.00000 | 0.52155 | 0.72860 | 0.19774 | 0.03998 | 0.03368
14 0.29277 | 0.05266 | -0.07405 | 0.59669 | 0.27537 | 0.09218 | 0.03575
15 -0.21416 | -0.24806 | 0.19510 | 0.71201 | 0.20782 | 0.04541 | 0.03476
16 -0.32505 | 0.46508 | -0.17310 | 0.77105 | 0.11344 | 0.08473 | 0.03079
17 0.72112 | -0.04459 | 0.04478 | 0.49328 | 0.38732 | 0.08863 | 0.03076
18 -0.53092 | -0.05777 | 0.15530 | 0.78219 | 0.14166 | 0.04320 | 0.03294
19 -0.07507 | 0.44871 | -0.38620 | 0.70769 | 0.14804 | 0.11337 | 0.03089
20 0.31058 | -0.05921 | 0.60236 | 0.66993 | 0.25480 | 0.04201 | 0.03326
21 -0.12218 | -0.05377 | -0.12884 | 0.67365 | 0.21231 | 0.07707 | 0.03697
22 -0.02910 | -0.07000 | 0.32151 | 0.70413 | 0.21184 | 0.04873 | 0.03530
23 -0.16991 | 0.28774 | -0.40189 | 0.70356 | 0.15756 | 0.10623 | 0.03265
24 0.50097 | 0.03714 | 0.35557 | 0.59897 | 0.29989 | 0.06607 | 0.03507
25 -0.19690 | -0.67197 | -0.18881 | 0.61977 | 0.29033 | 0.05544 | 0.03446
26 -0.05284 | 0.56681 | -0.07181 | 0.73955 | 0.13439 | 0.09384 | 0.03221
27 0.42584 | -0.03292 | 0.38274 | 0.61388 | 0.29188 | 0.05938 | 0.03485
28 -0.36576 | -0.28817 | -0.13497 | 0.70062 | 0.20252 | 0.06033 | 0.03652
29 0.00000 | 0.11247 | 0.35913 | 0.71840 | 0.19286 | 0.05295 | 0.03579
30 0.00000 | 0.00000 | -0.54480 | 0.61240 | 0.23737 | 0.11646 | 0.03377
31 0.19961 | 0.04542 | 0.63163 | 0.70566 | 0.22008 | 0.04059 | 0.03367
32 -0.15955 | -0.56293 | -0.58508 | 0.56924 | 0.30680 | 0.08907 | 0.03489
33 -0.17986 | 0.44889 | 0.39813 | 0.78530 | 0.12826 | 0.05336 | 0.03308
34 0.96210 | -0.09052 | -0.09091 | 0.41104 | 0.46790 | 0.09619 | 0.02488

Table 10: DM, value of the 4 component mixture designs

Design Generator DM, value
(1,3,7) 0.2942798
(1,5,19) 0.2977485
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that the designs chosen by ‘RMSD’ and ‘AD’ criteria have better uniformity as compared
to designs selected by ‘MD’ criterion. This may be because ‘MD’ is greatly influenced by
points near the boundary and it fails to provide the representative points for the overall
space. A transformation to construct mixture designs from the design in ellipsoidal region
is also given in this paper. Designs for 3 and 4 component mixtures are constructed and
the DM; criterion is used to measure the uniformity of these designs. The mixture design
obtained by using the design selected in ellipsoidal region by ‘RMSD’ and ‘AD’ criteria
has less discrepancy value as compared to that obtained by using the design selected by
‘MD’ criterion. The design which was found best in ellipsoidal region also possesses greater
uniformity in simplex region. Hence, the transformation proposed in this paper preserves
the uniformity when a design is transformed from the ellipsoidal region to simplex region.

6. Guidance to the beginners

The researchers who are new in this area can start with the understanding of the
basic terminology and concepts provided in Section 1 and the references cited therein. They
can begin with clearly identifying the number of components of the mixture and the region of
interest. Here, an ellipsoidal region is considered. A suitable method needs to be developed
for obtaining the design in the region of interest. Here, in Section 3, a method for obtaining
the design in s-dimensional ellipsoidal region is given in steps 1-3 of Construction 1. The
next step is to select a suitable measure of uniformity to obtain the criteria values for the
generated designs and select the designs with lowest discrepancy. Section 2 can be referred
for the distance-based approach and D Ms-discrepancy. The constructed designs for (s-
1)-dimensional ellipsoidal region can then be utilized to generate designs for s component
mixtures by using the construction 2 given in Section 4 and the best design is selected on
the basis of D M,-discrepancy described in Section 2. The method discussed in the paper is
provided in the form of following steps:

1. Obtain initial generating vector H,, = (hq, ha, ..., hy) for a given n.
2. For the given number of factor s, obtain all possible generators of size s from H, with
hy = 1. This leads to m = *~1C,_; distinct generators.
3. For each of the m generators, obtain the design Z = (2;;) , i =1,2,...,n; j =1,2,...,;s
in unit hypercube.
4. For each of the m generators, obtain the design Y in the ellipsoidal region from Z.
5. Compute the RMSD, AD, and MD value of all the Y designs and select the designs with
lowest criteria values and note their corresponding generators.
6. For each of m generators, obtain the mixture design X for s component mixture from all
design Y in (s-1) dimensional ellipsoidal region.
7. Compute the DM, discrepancy value for all the mixture designs and select the design
with lowest value of D Ms-discrepancy.
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