
 

 

Vol. 15, Nos. 1&2

 

An Empirical Estimator In Randomized Response Sampling 
 

Michael Lee Johnson, Stephen A. Sedory and Sarjinder Singh 

Department of Mathematics, Texas A&M University-Kingsville 

Kingsville, TX 78363, USA 

 
Received: January 16, 2017; Revised February 03, 2017; Accepted: February 09, 2017 

___________________________________________________________________________ 

Abstract 
 

In this paper, an open question in the field of randomized response sampling is raised. 

An empirical estimator of the population proportion is suggested as a possible solution to the 

open question. By means of simulation studies the proposed empirical estimator is shown to 

be more efficient than the Warner (1965) and the Greenberg et al. (1969) estimators.  
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1. Introduction 
 

In this paper, an open question is suggested in the field of survey sampling.  A possible 

solution, not necessarily the best solution is also suggested. The collection of data through 

personal interview surveys on sensitive issues such as induced abortions, drug abuse, and 

family income is a serious issue; see for example Fox and Tracy (1986), Gjestvang and Singh 

(2006), Chaudhuri (2011) and Chaudhuri and Christofides (2013). Warner (1965) considered 

the case where the respondents in a population   can be divided into two mutually exclusive 

groups: one group with stigmatizing/ sensitive characteristic A and the other group without it.  

For estimating  , the   proportion   of respondents in the population   belonging to the 

sensitive group A, a simple random sample 1s  of 1n  respondents is selected using with 

replacement sampling from the population. For collecting information on the sensitive 

characteristic, Warner (1965) made use of a randomization device. One such device is a deck 

of cards with each card bearing one of the following two statements: 

 

             (i)  "I belong to group A", and (ii) "I do not belong to group A". 

 

The statements (i) and (ii) occur with relative frequencies P  and  P1 , respectively, 

in the deck. Each respondent in the sample 1s  is asked to select a card at random from the 

well-shuffled deck. Without showing the card to the interviewer, the interviewee answers the 

question, "Is the statement true for you?"  The number of people 1x  that answer "yes" is 

binomially distributed with parameters     111 PP  and 1n .  For large sample 

sizes, the maximum likelihood estimator of   for 5.0P  and is given by:  
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where 111
ˆ nx  is the observed proportion of ‘yes’ answers.  Lee, Sedory and Singh (2013) 

have shown that if sample size is sufficiently large, then there is a very rare chance the 

estimator in (1.1) can take an inadmissible value outside the interval [0, 1].  The estimator 

w̂  in (1.1) is unbiased for   and the variance of the estimator w̂  is given by: 
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Note that in the Warner (1965) model, the two statements relate to groups that are 

perfectly negatively associated with each other; that is, one group is the complement of the 

other group in a population of interest. However, it is intuitively evident that to protect the 

confidentiality of a respondent it is not necessary for the two statements to be 

complementary. For example, one may use two unrelated statements (I belong to group A/ I 

belong to group Y). In fact, it is enough to make use of unrelated non-sensitive characteristics 

in a randomization device, as suggested by Greenberg et al. (1969). They proposed the 

pioneer unrelated questions model which is famous with the name of Simmons’ unrelated 

question model.  To our knowledge no solid evidence is available why this model had been 

names as Simmons’ unrelated question model by Greenberg et al. (1969) or it came from 

Horvitz, Shah and Simmons (1967) work as Simmons’ model. Assume a sample 2s  of 2n  

respondents is selected by using simple random and with replacement sampling from a 

population  .  In their model, each respondent in the sample 2s  should answer one of two 

questions, which are not related to each other. For example:  a respondent is given a deck 

having cards with two types of questions: ( i. ) Do you belong to group A ?,  and ( ii ) Do you 

belong to group Y?,  with known relative frequencies T  and )1( T , respectively. 

Membership in group Y is assumed to be independent of membership in group A. Again let   

be the true proportion of respondents in the population   who possesses sensitive 

characteristic A. Also let Y  be the true proportion of respondents in the population   who 

possesses non-sensitive characteristic Y.  This method also ensures the privacy of respondents 

during a face-to-face survey. In the Simmons’ unrelated question model, the true probability 

of a ‘yes’ answer 2  is given by: 

     YTT  )1 (  2  .                             (1.3) 

Assuming Y  is known, an unbiased estimator of  , due to Greenberg et al. (1969), is given 

by: 
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The variance of the estimator G̂  is given by: 
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In the next section, we raise an open question for those who are working in the area of 

randomized response sampling. 

  

2.  An Open Question 
 

 Assume one company selected a sample 1s  of 1n  respondents from a population   

by using the Warner (1965) model.  Another company selected an independent sample 2s  of 
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2n  respondents from the same population   by using the Greenberg et al. (1969) (or  

Simmons’) unrelated question model.  Later both companies found that they have common 

interest in estimating the population proportion   of a sensitive attribute A in the same 

population  . Both companies worked together and found that the value of the population 

proportion of the unrelated characteristic Y  cannot be exactly known.  There is no time and 

budget to estimate Y  by doing another independent survey. For example, assume a new 

election is coming very soon. Now an open question arises, “Can the information from both 

samples 1s  and 2s  be used to improve the pioneer Warner (1965) estimator w̂  defined in 

(1.1) assuming the exact value of Y  remains unknown?” The answer to this open question is 

not obvious. The new estimator proposed below is an attempt to address such a situation. 

 

3.  Proposed Empirical Estimator 
 

 We suggest the following empirical estimator of the population proportion  as: 

 21
ˆˆˆ  e ,                  (3.1) 

where   and   are constants empirically chosen based on certain criterions of interest to an 

investigator, such as reasonable relative bias and/or minimum mean squared error.  We have 

the following theorems: 

 

Theorem 3.1. The empirical estimator e̂  is an inconsistent estimator of the population 

proportion  . 

Proof.  It is easy to verify that the bias )ˆ( eB   in the estimator e̂  is given by: 

 ye TPTPB  )1()1()1)12(()ˆ(  ,             (3.2) 

 

which shows that the bias is not a decreasing function of the values of the sample sizes 1n  

and 2n  for given experience based values of   and  . Thus the proposed empirical 

estimator is an inconsistent estimator of the population proportion  . 

 

Theorem 3.2. The mean squared error of the proposed empirical estimator e̂  is given by: 
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Proof.  Note that both samples 1s  and 2s  are independent, thus the variance of the proposed 

estimator e̂  is given by: 

 )ˆ()ˆ()ˆ( 2
2

1
2  VVV e   

 

2

222

1

112 )1()1(

nn











 .                          (3.4)

  

By the definition of mean squared error, we have: 

 2)}ˆ({)ˆ()ˆ(MSE eee BV                    (3.5) 

 

On using (3.2) and (3.4) in (3.5), we get (3.3). 
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4.  How to Apply the Proposed Empirical Estimator 
 

 Note that the mean squared error of the proposed empirical estimator e̂  is minimum 

if the values of the empirical constants   and   satisfy the ratio given below: 
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 Thus for a given value of  , we can compute the value of   that would result in the 

minimum mean squared error of the proposed estimator, e̂ .  Note that any arbitrary value of 

  can be used to yield the minimum mean squared error, but there may be trouble with the 

percent relative bias. A grid search was done for different choices of the empirical constants 

  and   that could take care of both the percent relative bias and mean squared error. The 

percent relative bias in the proposed estimator e̂  is given by: 
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 The percent relative efficiency of the proposed empirical estimator e̂  with respect to 

the Warner (1965) estimator w̂  is defined as: 
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 The percent relative efficiency of the proposed empirical estimator e̂  with respect to 

the Greenberg et al. (1969) estimator G̂  is defined as: 
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 Following Cochran (1963), choices of    and   were sought such that the absolute 

percent relative bias was less than 10% and the percent relative efficiencies, RE(1) and RE(2) 

were higher than 100%.  

 

 Three situations could arise: ( i.) The sample sizes 1n  and 2n  can be of equal sizes, ( 

ii ) the sample size 1n  can be greater than the sample size 2n , and ( iii )  the sample size  1n  

can be smaller  than the sample size 2n .  The values of   and Y  could be any real numbers 

between 0 and 1.  Recall that our interest is to estimate the value of   regardless of the value 

of Y .  For each value of  , we found optimum values of   and   a range of all values of 

)1,0(Y  under the three situations where the ratio of two sample sizes 1n  and 2n  is one, 

half or double: 2.0or 5.0,0.121 nn .  In particular, we considered 2501 n  and 500  as 

well as 2502 n  and 500 .  A summary of those detailed results is presented in the Table 4.1  

(Appendix-A).  Table 4.1 also provides the frequency, mean, standard deviation, minimum, 

median and maximum value of each parameter when the proposed estimator has been found 

to be more efficient than the Warner (1965) and Greenberg et al. (1969) estimators and has 

absolute RB less than 10%.  In Table 4.1, for example if 2501 n and 2502 n , there are 

4652 values of the parameters where all three criterions are met; that is, absolute value of the 

percent RB is less than 10%, RE(1)>100% and RE(2)>100%.  The RE(1) has a minimum 

value of 352.0%, maximum value of 13284.7% with a median value of 902.5%, and the 
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RE(2) has a minimum value of 101.1%, maximum value of 3536.3% with a median 

efficiency of 226.2%. The average values of RE(1) and RE(2) are 1454.2% and 343.3% with 

respective standard deviations 1783.3% and 382.9%.  No doubt the percent RE(1) and RE(2) 

values are highly appreciable. In this study the value of    is between 0.1453 and 0.6677 and 

the value of   in the range between 0.1370 and 0.8390.  Similarly a practice in choosing 

values of   and   is required if one wishes to use the proposed empirical estimator.  In the 

same way, other results in Table 4.1 can be interpreted.  The detailed results are given in 

Appendix-B via 20 pictorial presentations in Figure. 4.1 through Figure 4.20. 

 

5.  Practical Empirical Estimator 
 

 We suggest a new practical empirical estimator defined as: 

 21
* ˆˆˆˆˆ  e                   (5.1) 

 

where ̂ and ̂  are determined utilizing information from both samples 1s  and 2s  by using 

the following relation: 
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 Note that 1̂  and 2̂  are known proportions of ‘yes’ answers from given samples 1s  

and 2s  of sizes 1n  and 2n , respectively.  Thus for any arbitrary practicable guess of ̂ , we 

can obtain the value of ̂  from the information in the both sample 1s  and 2s .   

 

 In the next section, we provide a simulation study which is more appropriate than a 

real survey in several ways. For example, in a real survey, a respondent: ( i..) may not be able 

to understand a randomized response procedure, ( ii ) could report untruthfully after using a 

randomization device, and ( iii ) might refuse to respond to a sensitive question, etc.  The 

simulation considered in the next section is free from such difficulties and hence removes 

sources of distortions when comparing different randomized response models. 

 

6.   Simulation Study As Good As A Real Survey 
 

 Assume one company selected a sample 1s  of 2501 n  respondents from a population 

  of interest by using the Warner (1965) model with 7.0P . Let 1.0   be the proportion 

of the sensitive characteristic to be estimated in the population  .  Obviously the probability 

of a ‘yes’ answer in a single trial is computed as: 34.0)1)(1(1   PP . We used the 

subroutine CALL RNBIN (NITR, N1, TH1, IR1)  to generate a response from a binomial 

distribution with parameter 2501 n  and 34.01  .  The observed number of ‘yes’ 

responses denoted as IR1 were then transformed to find a simulated estimate 

)12())1(/IR1()1(ˆ 1  PPnw  of   by using the Warner (1965) estimator. We repeated 

the same procedure NITR2000  (iterations) times and obtained 2000 estimates of   as: 

)12())1(/)IR1(()(ˆ 1  PPnjjw , for .2000,....,3,2,1j  Assume another independent 

company selected a sample 2s  of 2502 n  respondents from the same population   of 

interest by using the Greenberg et. al. (1969) model with 2.0y  (assumed known), and 

75.0T . Again let 1.0   be the proportion of the same sensitive characteristic to be 

estimated from the same population  .  Obviously, the probability of a ‘yes’ answer in a 
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single trial is computed as: 125.0)1(2  yTT  . We used the subroutine CALL 

RNBIN (NITR, N2, TH2, IR2) to generate a response from binomial distribution with 

parameter 2502 n  and 125.02  . The observed number of ‘yes’ responses, denoted as IR2, 

were then transformed to find a simulated estimate TTn yG ))1(/IR2()1(ˆ 2    of   by 

using the Greenberg et al. (1969) model.  We repeated the same experiment 2000   times 

and obtained 2000 estimates of   as: TTnjj yG ))1(/)IR2(()(ˆ 2    , for  ,....,3,2,1j .  

We computed the empirical variances of the Warner (1965) and Greenberg et al. (1969) 

estimator over the 2000  iterations as: 
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 For 2000 different ̂  values, the jth empirical estimator of   was: 
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 Next we computed the mean squared error of the proposed empirical practical 

estimator *ˆe  as: 
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 We also computed the value of the percent relative bias (RB
*
) in the proposed 

practical empirical estimator as: 
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 The percent relative efficiencies of the proposed practical estimator over the Warner 

(1965) and the Greenberg et al. (1969) estimators are, respectively, computed as: 
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 Note the use of “*” on the top of RE
*
 and RB

*
 values, because these are simulated 

values based on 2000 iterations.  For a given value of 1.0  (say), we did a grid search for 

the different values of   in the range -1 to +1 with a step of 0.005 and for all vales of y  in 

the range of 0.1 to 0.9 with a step of 0.1.  The grid search was based on the criterion that the 

absolute percent RB
*
 value be less than 10% (Cochran, 1963), and that the RE

*
(1) and RE

*
(2) 
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values be higher than 100%.  A summary of the detailed results is given in Table 6.1 

(Appendix-A). The detailed results obtained are presented in Figure 6.1 through Figure 6.9 in 

Appendix-C.  The results in Table 6.1 are very easily interpretable.  For example, in the case 

1.0 , if one makes a good guess of ̂  between 0.090 and 0.330  and computes the value of 

̂ , which is likely to be between 0.1867 and 0.2777 assuming the unknown value of y  is 

0.1, then the value of RE
*
(1) is likely to be between 1886% and 5822% with a median RE

*
(1) 

value of 3751%; the value of RE
*
(2) lies between 146.4% and 806.7% with a median value of 

322.9%.  The percent relative bias expected to be between -9.85% and 9.88%.  Now if for 

1.0 , if one makes a good guess of ̂  between 0.090 and 0.310  and computes the value of 

̂  which is likely to be between 0.1659 and 0.2748 assuming the unknown value of y  is 

0.2, then the value of RE
*
(1) is likely to be between 1822% and 6597% with a median RE

*
(1) 

value of 3936%; the value of RE
*
(2) lies between 459.6% and 984.8% with a median value of 

459.6%.  The percent relative bias is likely to be expected between -8.67% and 9.87% and 

similar results for true for the value of  y  between 0.1 and 0.9.   Note that the values of the 

percent relative efficiencies RE
*
(1) and RE

*
(2) are very much appreciable for the values of   

between 0.1 and 0.6, however there are several situations where the required criterions are 

not met for   between 0.7 and 0.9. Further recall that that Greenberg et al. (1969) have 

suggested using their proposed unrelated question model when   is very close to y .  Thus 

the proposed estimator *ˆe  is likely to more efficient than the both the Warner (1965) and the 

Greenberg et al. (1969) estimator if   is likely to be close to the guessed value y .  In 

general, the value of   is likely to be less than 0.5 because of the sensitive nature of the 

characteristic under study. We conclude that the proposed empirical estimator can help the 

companies to estimate efficiently by pooling information from both samples. We shall also 

keep our eyes open as to whether someone comes up with a better solution to the open 

question raised in this paper.   
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Appendix-A 

Table 4.1: Search results for different values of the parameters considered in the 

investigation. 

1n  2n  Parameter freq  Mean StDev Minimum Median Maximum 

250 250   4652 0.4909 0.2305 0.1 0.5 0.9 

    
y  4652 0.4983 0.2573 0.1 0.5 0.9 

    4652 0.4421 0.1113 0.1453 0.4462 0.6675 

    4652 0.4822 0.1606 0.1370 0.4820 0.8390 

  RB(%) 4652 -0.097 4.410 -9.982 -0.103 9.999 

  RE(1) 4652 1454.2 1783.3 352.0 902.5 13284.7 

  RE(2) 4652 343.3 382.9 100.1 226.2 3536.3 

 500   4616 0.4413 0.2339 0.1 0.4 0.9 

  
y  4616 0.4939 0.2567 0.1 0.5 0.9 

    4616 0.2874 0.0783 0.0997 0.2862 0.4508 

    4616 0.5951 0.1869 0.1880 0.6070 0.9230 

  RB(%) 4616 -0.114 3.925 -9.995 -0.107 9.972 

  RE(1) 4616 2437.9 2599.0 695.3 1546.2 19281.7 

  RE(2) 4616 284.6 281.7 100.1 193.4 2566.3 

500 250   3287 0.5131 0.2309 0.1 0.5 0.9 

  
y  3287 0.5072 0.2572 0.1 0.5 0.9 

    3287 0.6011 0.1492 0.1887 0.6157 0.8881 

    3287 0.3428 0.1331 0.0880 0.3350 0.7130 

  RB(%) 3287 -0.074 4.432 -9.988 -0.096 9.999 

  RE(1) 3287 919.0 1283.8 175.4 560.0 10220.9 

  RE(2) 3287 434.31 549.31 100.1 273.4 5441.4 

 500   3615 0.4652 0.2361 0.1 0.4 0.9 

  
y  3615 0.5005 0.2572 0.1 0.5 0.9 

    3615 0.4306 0.1149 0.1453 0.4356 0.6600 

    3615 0.4637 0.1661 0.1370 0.4600 0.8340 

  RB(%) 3615 -0.069 3.893 -9.977 -0.076 9.999 

  RE(1) 3615 1434.9 1726.9 346.3 891.4 13261.5 

  RE(2) 3615 336.4 370.7 100.1 221.3 3530.1 

 

Table 6.1: Good guess of the estimator ̂  and the computed values of ̂ , RB
*
(%), 

RE
*
(1) and RE

*
(2) for all  9.0,1.0y  and given values of  9.0,1.0  for all possible 

four  pairs of sample sizes 1n  and 2n  with values of 250 and 500. 
        

y      

0.1   0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

  Freq 31 29 29 27 26 26 25 25 24 

  Min. 0.1867 0.1659 0.1511 0.1458 0.1405 0.1217 0.1143 0.1036 0.0969 

 Alpha Med. 0.2250 0.2247 0.2130 0.1906 0.1877 0.1786 0.1715 0.1553 0.1508 

  Max. 0.2777 0.2748 0.2770 0.2627 0.2585 0.2632 0.2213 0.2303 0.2319 

  Min. 0.090 0.090 0.090 0.090 0.090 0.090 0.090 0.090 0.090 

 Beta Med. 0.185 0.185 0.180 0.170 0.170 0.165 0.165 0.160 0156 

  Max. 0.330 0.310 0.295 0.280 0.270 0.255 0.245 0.235 0.225 

  Min. 1886 1822 1980 1997 2265 1995 2481 2332 2466 

 RE*(1) Med. 3751 3936 4277 4583 4840 5493 5459 6061 5977 

  Max. 5822 6597 7674 8696 9921 10856 12178 13765 15147 

  Min. 146.4 215.7 247.1 330.1 330.1 436.9 491.9 557 637 

 RE*(2) Med. 322.9 459.6 576.0 747.1 747.1 1058.2 1213.8 1445 1569 

  Max. 806.7 984.8 1212.4 1600.2 1771.3 2143.8 2433.9 2773 3037 

  Min. -9.85 -8.67 -9.53 -9.54 -8.49 -9.14 -8.68 -9.68 -8.54 

 RB* Med. -0.33 0.60 0.13 -0.49 0.33 0.10 -0.25 -0.63 0.34 

  Max. 9.88 9.87 9.58 8.90 9.90 9.59 8.85 8.90 9.51 

0.2 Freq  44 44 46 46 45 44 44 42 41 
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  Min. 0.2698 0.2308 0.2311 0.2098 0.2099 0.1848 0.1737 0.1610 0.1513 

 Alpha Med. 0.3790 0.3689 0.3314 0.3131 0.3132 0.2980 0.2800 0.2732 0.2490 

  Max. 0.4919 0.4975 0.4838 0.4346 0.4384 0.4253 0.4039 0.4127 0.4058 

  Min. 0.1550 0.1550 0.1550 0.1550 0.1550 0.1600 0.1600 0.1600 0.1600 

 Beta Med. 0.3050 0.3000 0.2975 0.2925 0.2900 0.2875 0.2800 0.2750 0.2700 

  Max. 0.5000 0.4800 0.4700 0.4550 0.4400 0.4250 0.4100 0.3950 0.3850 

  Min. 579.3 470.0 499.0 543.8 522.0 572.0 518.0 542.0 634.0 

 RE*(1) Med. 1288.7 1382.2 1381.2 1431.0 1464.0 1589.0 1638.0 1774.0 1879.0 

  Max. 2160.4 2529.5 2798.3 3186.7 3504.0 3896.0 4344.0 4778.0 5519.0 

  Min. 102.8 104.1 105.9 108.8 124.5 132.2 155.7 185.1 171.9 

 RE*(2) Med. 184.5 221.3 250.9 270.7 328.2 363.1 408.3 456.6 500.5 

  Max. 404.7 500.4 554.4 611.6 643.0 764.8 875.3 985.8 1026.8 

  Min. -9.295 -8.567 -9.404 -9.748 -9.764 -9.707 -9.423 -9.819 -9.203 

 RB* Med. -0.420 0.234 0.245 -0.216 -0.232 0.418 -0.083 -0.209 0.071 

  Max. 9.383 9.399 9.153 9.588 9.986 9.730 9.606 9.189 9.246 

0.3 Freq  41 44 49 50 51 50 52 54 51 

  Min. 0.3343 0.3214 0.2885 0.2683 0.2536 0.2375 0.2186 0.1957 0.1899 

 Alpha Med. 0.4635 0.4683 0.4290 0.4148 0.4042 0.4042 0.3510 0.3376 0.3262 

  Max. 0.6446 0.6382 0.6441 0.5787 0.5617 0.5617 0.5328 0.5350 0.5352 

  Min. 0.2050 0.2050 0.2100 0.2100 0.2150 0.2150 0.2150 0.2150 0.2200 

 Beta Med. 0.3800 0.3750 0.3750 0.3750 0.3700 0.3675 0.3675 0.3625 0.3600 

  Max. 0.5950 0.5800 0.5700 0.5600 0.5450 0.5300 0.5250 0.5100 0.5000 

  Min. 283.5 250.7 214.8 249.3 263.6 264.2 293.7 252.6 319.0 

 RE*(1) Med. 750.2 770.2 829.1 854.5 862.7 921.2 930.5 912.2 1039.0 

  Max. 1326.0 1504.0 1670.0 1879.1 2047.9 2378.9 2595.4 2929.3 3310.0 

  Min. 100.38 102.70 101.64 101.74 102.2 109.6 101.1 105.7 111.4 

 RE*(2) Med. 147.87 161.45 176.00 192.28 216.3 235.7 252.0 269.1 271.8 

  Max. 257.89 297.22 340.15 364.54 413.8 418.3 451.4 462.5 538.2 

  Min. -8.615 -9.351 -9.634 -9.992 -9.430 -9.793 -9.352 -9.900 -9.213 

 RB* Med. -0.451 -0.530 -0.141 0.011 -0.178 -0.390 0.068 -0.110 -0.092 

  Max. 7.455 8.261 9.729 9.729 9.927 9.247 8.695 9.777 9.215 

0.4 Freq  33 37 40 42 46 48 49 50 50 

  Min. 0.3582 0.3350 0.3265 0.3014 0.2639 0.2547 0.2455 0.2261 0.2124 

 Alpha Med. 0.5476 0.5333 0.4979 0.4866 0.4457 0.4336 0.4020 0.3895 0.3740 

  Max. 0.7243 0.7240 0.7947 0.7027 0.6977 0.6345 0.6777 0.5663 0.6881 

  Min. 0.2550 0.2550 0.2550 0.2600 0.2600 0.2650 0.2650 0.2700 0.2750 

 Beta Med. 0.4400 0.4400 0.4375 0.4425 0.4375 0.4350 0.4350 0.4350 0.4325 

  Max. 0.6650 0.6550 0.6450 0.6350 0.6250 0.6150 0.6050 0.5900 0.5800 

  Min. 215.9 208.1 191.8 190.1 185.9 190.6 173.8 189.0 218.3 

 RE*(1) Med. 522.0 553.8 592.0 645.3 681.2 699.2 701.1 744.1 766.5 

  Max. 972.9 1089.1 1207.0 1340.7 1511.0 1735.9 1915.7 2154.4 2443.8 

  Min. 102.60 102.81 102.05 104.30 102.52 103.14 100.02 101.00 102.40 

 RE*(2) Med. 125.27 139.82 149.74 157.16 171.84 182.79 184.90 196.20 221.40 

  Max. 204.79 206.13 239.00 235.40 255.92 291.45 299.95 335.10 373.60 

  Min. -6.157 -7.044 -7.863 -7.191 -8.284 -7.925 -8.928 -8.538 -9.002 

 RB* Med. -0.494 -0.303 -0.831 0.035 -0.081 -0.298 -0.163 -0.171 -0.331 

  Max. 5.516 5.979 6.370 6.917 7.482 7.654 8.073 7.995 7.290 

0.5 Freq  17 26 29 34 37 37 40 42 44 

  Min. 0.4101 0.3462 0.3296 0.3221 0.2746 0.2881 0.2677 0.2080 0.2122 

 Alpha Med. 0.5897 0.5930 0.5458 0.5273 0.4919 0.4661 0.4367 0.4014 0.3894 

  Max. 0.8078 0.7842 0.7927 0.8063 0.7617 0.7453 0.7152 0.7300 0.6636 

  Min. 0.3000 0.3000 0.3050 0.3100 0.3150 0.3200 0.3250 0.3300 0.3350 

 Beta Med. 0.4950 0.4950 0.4950 0.5025 0.5000 0.5000 0.5025 0.5000 0.5025 

  Max. 0.7150 0.7050 0.7000 0.6950 0.6950 0.6750 0.6700 0.6600 0.6500 

  Min. 206.2 181.4 186.6 194.9 183.8 192.2 196.6 200.5 190.2 

 RE*(1) Med. 401.9 430.4 467.9 506.5 545.1 573.7 651.7 681.6 721.1 

  Max. 780.0 862.9 960.2 1097.4 1211.2 1370.7 1564.9 1839.7 2064.4 

  Min. 101.01 100.92 101.72 102.27 103.43 107.40 102.23 100.35 101.63 

 RE*(2) Med. 113.60 120.06 127.75 137.14 143.28 159.55 163.81 169.82 178.14 

  Max. 128.36 154.82 173.93 167.25 184.81 197.92 247.43 251.80 273.74 

  Min. -3.518 -5.186 -5.229 -5.188 -5.806 -5.736 -5.649 -6.767 -6.243 

 RB* Med. -0.376 -0.778 -0.517 -0.416 -0.607 -0.611 -0.267 -0.348 -0.078 

  Max. 2.864 2.902 4.221 4.298 4.931 4.680 5.640 5.110 6.270 

0.6 Freq  1 6 17 22 26 29 31 32 33 



2017]                                    Empirical Estimator in Randomized Response Sampling                                        47 

 47 

  Min. 0.7031 0.4459 0.3305 0.3438 0.3085 0.2860 0.2569 0.2376 0.2010 

 Alpha Med. 0.7031 0.7195 0.5863 0.5132 0.4984 0.4567 0.4363 0.4293 0.3729 

  Max. 0.7031 0.8719 0.8363 0.7530 0.8034 0.7900 0.7555 0.7007 0.6372 

  Min. 0.3500 0.3500 0.3550 0.3650 0.3700 0.3800 0.3850 0.3950 0.4050 

 Beta Med. 0.3500 0.4525 0.5500 0.5550 0.5600 0.5600 0.5650 0.5675 0.5700 

  Max. 0.3500 0.7550 0.7450 0.7450 0.7400 0.7400 0.7300 0.7200 0.7150 

  Min. 172.19 175.00 175.9 187.9 189.6 180.7 180.3 179.6 234.5 

 RE*(1) Med. 172.19 266.00 381.6 418.1 459.6 506.6 556.0 601.4 689.1 

  Max. 172.19 706.00 812.7 924.6 1041.1 1220.3 1400.7 1657.7 1886.6 

  Min. 109.38 100.63 101.31 101.44 102.33 101.18 101.44 104.09 101.12 

 RE*(2) Med. 109.38 104.50 109.37 114.87 123.20 129.20 139.71 143.32 148.56 

  Max. 109.38 113.03 125.95 139.96 148.00 170.92 185.13 208.02 233.12 

  Min. 0.1384 -2.144 -2.820 -3.369 -3.869 -4.239 -3.761 -4.271 -4.579 

 RB* Med. 0.1384 -0.961 -0.015 -0.262 -0.297 -0.014 -0.246 0.031 -0.364 

  Max. 0.1384 0.671 1.352 1.924 2.443 3.154 3.308 3.764 4.067 

0.7 Freq  - - 1 4 9 15 19 21 21 

  Min. - - 0.3686 0.3549 0.2555 0.2496 0.2467 0.1984 0.1773 

 Alpha Med. - - 0.3686 0.3735 0.3283 0.4126 0.4000 0.3742 0.3204 

  Max. - - 0.3686 0.4038 0.5699 0.6068 0.5218 0.4953 0.4459 

  Min. - - 0.7950 0.7800 0.6100 0.6100 0.6100 0.6150 0.6200 

 Beta Med. - - 0.7950 0.7875 0.7750 0.6300 0.6350 0.6400 0.6450 

  Max. - - 0.7950 0.7950 0.7900 0.7900 0.7850 0.7800 0.7750 

  Min. - - 715.06 775.22 380.40 410.00 395.80 400.0 488.0 

 RE*(1) Med. - - 715.06 789.53 785.50 449.00 507.80 587.4 687.0 

  Max. - - 715.06 817.46 928.40 1135.4 1327.3 1599.3 1944.0 

  Min. - - 113.74 102.74 102.06 105.35 101.54 102.78 109.13 

 RE*(2) Med. - - 113.74 105.28 112.97 113.00 118.16 124.66 142.40 

  Max. - - 113.74 117.01 123.62 155.11 160.62 193.39 211.28 

  Min. - - -0.225 -1.158 -1.699 -2.118 -2.605 -2.650 -2.703 

 RB* Med. - - -0.225 -0.239 -0.251 -0.123 -0.472 -0.146 -0.381 

  Max. - - -0.225 0.717 1.634 1.728 2.024 2.193 2.388 

0.8 Freq  - - - - 3 5 8 13 15 

  Min. - - - - 0.2877 0.2471 0.2147 0.1737 0.1527 

 Alpha Med. - - - - 0.2931 0.2925 0.2529 0.2841 0.2745 

  Max. - - - - 0.3180 0.3270 0.3943 0.4526 0.3872 

  Min. - - - - 0.8350 0.8250 0.7000 0.7000 0.7100 

 Beta Med. - - - - 0.8400 0.8350 0.8275 0.8150 0.7250 

  Max. - - - - 0.8450 0.8450 0.8450 0.8450 0.8400 

  Min. - - - - 884.6 928.2 447.00 467.0 561.0 

 RE*(1) Med. - - - - 887.3 1057.1 1102.0 1037.0 677.0 

  Max. - - - - 932.5 1105.3 1380.0 1746.0 2307.0 

  Min. - - - - 104.00 101.84 101.24 100.00 100.64 

 RE*(2) Med. - - - - 105.89 118.15 114.45 108.72 115.55 

  Max. - - - - 107.89 123.52 138.00 163.68 189.43 

  Min. - - - - -0.671 -1.399 -1.651 -1.714 -1.877 

 RB* Med. - - - - -0.115 -0.339 0.155 0.117 0.041 

  Max. - - - - 0.563 1.043 1.563 1.877 1.688 

0.9 Freq  - - - - 1 3 4 5 5 

  Min. - - - - 0.2468 0.2125 0.1672 0.1401 0.1174 

 Alpha Med. - - - - 0.2468 0.2250 0.1989 0.1628 0.1456 

  Max. - - - - 0.2468 0.2251 0.2166 0.2017 0.1648 

  Min. - - - - 0.9050 0.9000 0.8950 0.8900 0.8900 

 Beta Med. - - - - 0.9050 0.9050 0.9025 0.9000 0.9000 

  Max. - - - - 0.9050 0.9100 0.9100 0.9100 0.9100 

  Min. - - - - 969.95 1146.7 1500.4 1515.0 2002.0 

 RE*(1) Med. - - - - 969.95 1222.4 1566.0 1566.0 3007.0 

  Max. - - - - 969.95 1245.6 1677.4 1677.4 3809.0 

  Min. - - - - 105.87 108.54 122.84 106.20 113.60 

 RE*(2) Med. - - - - 105.87 114.26 129.82 132.60 171.50 

  Max. - - - - 105.87 117.86 142.64 171.60 224.30 

  Min. - - - - 0.1679 -0.335 -0.802 -1.362 -1.327 

 RB* Med. - - - - 0.1679 0.286 0.005 -0.209 -0.196 

  Max. - - - - 0.1679 0.711 0.738 0.817 0.997 
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Figure 4.1: A set of choice of values of  for equal sample sizes 25021  nn  for 

different combinations of values of   and y  in the range (0.1, 0.9) with a step of 0.1. 
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Figure 4.2: A set of choice of values of  for equal sample sizes 25021  nn  for different 

combinations of values of   and y  in the range (0.1, 0.9) with a step of 0.1. 
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Figure 4.3: Percent relative bias (RB) for equal sample sizes 25021  nn  for different 

combinations of values of   and y  in the range (0.1, 0.9) with a step of 0.1 and different 

choices of   and  . 
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Figure 4.4: Percent relative efficiency RE(1) for equal sample sizes 25021  nn  for 

different combinations of values of   and y  in the range (0.1, 0.9) with a step of 0.1 and 

different choices of   and  . 
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Figure 4.5: Percent relative efficiency RE(2) for equal sample sizes 25021  nn  for 

different combinations of values of   and y  in the range (0.1, 0.9) with a step of 0.1 and 

different choices of   and  . 
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Figure 4.6: A set of choice of values of  for equal sample sizes 2501 n  and 5002 n  for 

different combinations of values of   and y  in the range (0.1, 0.9) with a step of 0.1. 
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Figure 4.7: A set of choice of values of  for equal sample sizes 2501 n  and 5002 n  for 

different combinations of values of   and y  in the range (0.1, 0.9) with a step of 0.1. 
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Figure 4.8: Percent relative bias (RB) for equal sample sizes 2501 n  and 5002 n  for 

different combinations of values of   and y  in the range (0.1, 0.9) with a step of 0.1 and 

different choices of   and  . 

 



52         MICHAEL LEE JOHNSON, STEPHEN A. SEDORY AND SARJINDER SINGH    [Vol. 15, Nos. 1&2 

 

0.75

0 0.50

10000

0.00 0.25

20000

0.25
0.50 0.00

0.75

RE(1)

PI

PY

3D Scatterplot of RE(1) vs PI vs PY

 
Figure 4.9: Percent relative efficiency RE(1) for equal sample sizes 2501 n  and 5002 n  

for different combinations of values of   and y  in the range (0.1, 0.9) with a step of 0.1 

and different choices of   and  . 
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Figure 4.10: Percent relative efficiency RE(2) for equal sample sizes 2501 n  and 5002 n  

for different combinations of values of   and y  in the range (0.1, 0.9) with a step of 0.1 

and different choices of   and  . 
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Figure 4.11: A set of choice of values of  for equal sample sizes 5001 n  and 2502 n  for 

different combinations of values of   and y  in the range (0.1, 0.9) with a step of 0.1. 
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Figure 4.12: A set of choice of values of  for equal sample sizes 5001 n  and 2502 n  for 

different combinations of values of   and y  in the range (0.1, 0.9) with a step of 0.1. 
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Figure 4.13: Percent relative bias (RB) for equal sample sizes 5001 n  and 2502 n  for 

different combinations of values of   and y  in the range (0.1, 0.9) with a step of 0.1 and 

different choices of   and  . 
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Figure 4.14: Percent relative efficiency RE(1) for equal sample sizes 5001 n  and 2502 n  

for different combinations of values of   and y  in the range (0.1, 0.9) with a step of 0.1 

and different choices of   and  . 
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Figure 4.15: Percent relative efficiency RE(2) for equal sample sizes 5001 n  and 2502 n  

for different combinations of values of   and y  in the range (0.1, 0.9) with a step of 0.1 

and different choices of   and  . 
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Figure 4.16: A set of choice of values of  for equal sample sizes 50021  nn  for different 

combinations of values of   and y  in the range (0.1, 0.9) with a step of 0.1. 
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Figure 4.17: A set of choice of values of  for equal sample sizes 50021  nn  for different 

combinations of values of   and y  in the range (0.1, 0.9) with a step of 0.1. 
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Figure 4.18: Percent relative bias (RB) for equal sample sizes 50021  nn  for different 

combinations of values of   and y  in the range (0.1, 0.9) with a step of 0.1 and different 

choices of   and  . 
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Figure 4.19: Percent relative efficiency RE(1) for equal sample sizes 50021  nn for 

different combinations of values of   and y  in the range (0.1, 0.9) with a step of 0.1 and 

different choices of   and  . 
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Figure 4.20: Percent relative efficiency RE(2) for equal sample sizes 50021  nn   for 

different combinations of values of   and y  in the range (0.1, 0.9) with a step of 0.1 and 

different choices of   and  . 

 

 

 

 

 



58         MICHAEL LEE JOHNSON, STEPHEN A. SEDORY AND SARJINDER SINGH    [Vol. 15, Nos. 1&2 

 

Appendix-C 

 

0.30

0.25

0.20

0.15

0.10

1.00.50.0

0.30

0.25

0.20

0.15

0.10

1.00.50.0

16000

12000

8000

4000

0

1.00.50.0

3000

2000

1000

0

10

5

0

-5

-10

Alpha

PY

Beta RE(1)

RE(2) RB

Scatterplot of Alpha, Beta, RE(1), RE(2), RB vs PY (for PI=0.1)

 

Figure 6.1: Good guess of the estimate ̂  and the computed values of ̂ , RB
*
(%), 

RE
*
(1) and RE

*
(2) for all  9.0,1.0y  and given value of 1.0  for all possible four  

pairs of sample sizes 1n  and 2n  with values of 250 and 500. 
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Figure 6.2: Good guess of the estimate ̂  and the computed values of ̂ , RB
*
(%), 

RE
*
(1) and RE

*
(2) for all  9.0,1.0y  and given value of 2.0  for all possible 

four  pairs of sample sizes 1n  and 2n  with values of 250 and 500. 
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Figure 6.3: Good guess of the estimate ̂  and the computed values of ̂ , RB

*
(%), 

RE
*
(1) and RE

*
(2) for all  9.0,1.0y  and given value of 3.0  for all possible 

four  pairs of sample sizes 1n  and 2n  with values of 250 and 500. 
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Figure 6.4: Good guess of the estimate ̂  and the computed values of ̂ , RB

*
(%), 

RE
*
(1) and RE

*
(2) for all  9.0,1.0y  and given value of 4.0  for all possible 

four  pairs of sample sizes 1n  and 2n  with values of 250 and 500. 
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Figure 6.5: Good guess of the estimate ̂  and the computed values of ̂ , RB

*
(%), 

RE
*
(1) and RE

*
(2) for all  9.0,1.0y  and given value of 5.0  for all possible 

four  pairs of sample sizes 1n  and 2n  with values of 250 and 500. 
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Figure 6.6: Good guess of the estimate ̂  and the computed values of ̂ , RB

*
(%), 

RE
*
(1) and RE

*
(2) for all  9.0,1.0y  and given value of 6.0  for all possible 

four  pairs of sample sizes 1n  and 2n  with values of 250 and 500. 
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Figure 6.7: Good guess of the estimate ̂  and the computed values of ̂ , RB

*
(%), 

RE
*
(1) and RE

*
(2) for all  9.0,1.0y  and given value of 7.0  for all possible 

four  pairs of sample sizes 1n  and 2n  with values of 250 and 500. 
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Figure 6.8: Good guess of the estimate ̂  and the computed values of ̂ , RB

*
(%), 

RE
*
(1) and RE

*
(2) for all  9.0,1.0y  and given value of 8.0  for all possible 

four  pairs of sample sizes 1n  and 2n  with values of 250 and 500. 
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Figure 6.9: Good guess of the estimate ̂  and the computed values of ̂ , RB

*
(%), 

RE
*
(1) and RE

*
(2) for all  9.0,1.0y  and given value of 9.0  for all possible 

four  pairs of sample sizes 1n  and 2n  with values of 250 and 500. 

 

 


