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Abstract
When more repeated measurements than independent observations are available the

classical Growth Curve model cannot produce maximum likelihood estimators. In this article
we are interested in the estimation of the mean parameters whereas the dispersion parameters
are considered to be nuisance parameters. It is possible to produce an unbiased estimator
of the mean parameters which is a function of the Moore-Penrose generalized inverse of a
singular Wishart matrix. However, its dispersion seems very hard to derive. Therefore, upper
and lower bounds of the dispersion are derived. Based on the bounds a general conclusion is
that the proposed estimator will work better when the number of repeated measurements is
much larger than the number of independent observations than when the number of repeated
measurements and the number of independent observations are of similar size.

Key words: Growth curve model; High-dimensional setting; Moore-Penrose generalized in-
verse.
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1. Introduction

High-dimensional statistics (more variables than independent observations) has been
considered for many years and it is clear that many problems still are challenging to statistics.
Kollo et al. (2011) published an article where the classical Growth Curve model (Potthoff &
Roy, 1964) was treated and simulations indicated that the proposed ideas were reasonable.
One overall conclusion was that problems with the Growth Curve model is more likely to
occur when the number of variables is close to the number of independent observations but
that the approach of Kollo et al. (2011) works when there are many more variables (repeated
measurements) than independent observations. Unfortunately, the technical treatment was
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not completely correct since it was utilized that A(A>VA)+A> = V+ for any non-singular
matrix A, V is positive semi-definite and + denotes the Moore-Penrose generalized inverse
(for a definition of the inverse see e.g., Kollo and von Rosen, 2005; Definition 1.1.5). This
relation does however not hold unless A is an orthogonal matrix. In the paper by Kollo et
al. (2011) there was a need to calculate moments of expressions involving the Moore-Penrose
inverse of a singular Wishart matrix and this took place via the incorrect relation and
some invariance arguments. In this article upper and lower bounds of the above mentioned
moments will be derived which will support the overall conclusions in Kollo et al. (2011),
although an exact expression for the dispersion matrix of the mean estimator seems very
difficult to obtain.

Throughout the article bold upper cases will denote real matrices, X ∼ Np,n(0,Σ, In)
means that X of size p × n is matrix normally distributed with n independent columns
which are multivariate normally distributed with mean equal to 0 and dispersion Σ which
is supposed to be positive definite and In is the identity matrix of size n× n. Note that the
dispersion of X is given by D[X] = In ⊗Σ, where ⊗ denotes the Kronecker product. More-
over, V ∼ Wp(Σ, n) denotes that V is Wishart distributed with n degrees of freedom, which
holds if V can be factored as V = XX> (equality in distribution), where X ∼ Np,n(0,Σ, In)
and > denotes the transpose. The rank of a matrix A is denoted r(A).

2. Preparation

In this section three definitions and two useful lemmas are presented. Let A ≥ 0
(A > 0) denote that A is positive semi-definite (positive definite) and let A ≥ B mean that
A−B ≥ 0, where both A and B are supposed to be positive semi-definite.

Definition 1:

(i) (Löwner ordering) Let U and V be positive semi-definite matrices. If for all vectors α
of proper size α>Uα ≤ α>Vα then V ≥ U.

(ii) Let U and V be positive semi-definite matrices. If for all vectors α of proper size
α>E[U]α ≤ α>E[V]α then E[V] ≥ E[U].

(iii) If for all vectors α and β of proper size

(α⊗ β)>D[X](α⊗ β) ≤ (α⊗ β)>D[Y](α⊗ β)

then it is written D[X] � D[Y], i.e., D[β>Xα] ≤ D[β>Yα].

The first lemma is presenting a known result of an explicit expression of a Moore-
Penrose inverse of a singular Wishart matrix which can easily be verified via the four defining
conditions of the Moore-Penrose inverse.

Lemma 1: Let V ∼ Wp(Σ,m), p > m. Then

V+ = U(U>U)−1(U>U)−1U>,
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where V = UU> and U ∼ Np,m(0,Σ, Im).

Now a moment relation is presented which will be fundamental for the main results.

Lemma 2: Let Q: p× q, q < p, P: p× p be of full rank and V ∼ Wp(Ip, n), p < n. Then

E[(Q>V−1Q)−1Q>V−1PV−1Q(Q>V−1Q)−1

= (Q>Q)−1Q>PQ(Q>Q)−1 + c1tr{P(I−Q(Q>Q)−1Q>)}(Q>Q)−1,

where c1 = (n− (p− q)− 1)−1. Proof: Factor Q as Q> = H(Iq : 0)Γ, where H: q × q is a
non-singular matrix and Γ: p× p is an orthogonal matrix. Then,

(Q>V−1Q)−1Q>V−1PV−1Q(Q>V−1Q)−1

= (H>)−1((Iq : 0)ΓV−1Γ>(Iq : 0)>)−1(Iq : 0)ΓV−1PV−1Γ>(Iq : 0)>

×((Iq : 0)ΓV−1Γ>(Iq : 0)>)−1H−1. (1)

Moreover, ΓV−1Γ> = (ΓVΓ>)−1 follows the same distribution as V−1. Thus, the right hand
side of (1) follows the same distribution as

(H>)−1(V11)−1(V11 : V12)ΓPΓ>(V11 : V12)>(V11)−1H−1 (2)

where V11 and V12 are defined via

V−1 =
(

V11 V12

V21 V22

)
,

q × q q × (p− q)
(p− q)× q (p− q)× (p− q)

and similarly V12 and V22 are defined through

V =
(

V11 V12
V21 V22

)
,

q × q q × (p− q)
(p− q)× q (p− q)× (p− q) .

The submatrices satisfy (see e.g. Kollo and von Rosen, 2005; Proposition 1.3.4 (i)) (V11)−1V12 =
−V12V−1

22 . Let Γ1 and Γ2 be defined through Γ> = (Γ>1 : Γ>2 ): (p× q : p× (p− q)) and note
that Γ1Γ>1 = Iq. Then (2) equals

(H>)−1(Γ1 −V12V−1
22 Γ2)P(Γ>1 − Γ>2 V−1

22 V12)H−1

= (H>)−1(Γ1PΓ>1 −V12V−1
22 Γ2PΓ>1 − Γ1PΓ>2 V−1

22 V21

+V12V−1
22 Γ2PΓ>2 V−1

22 V21)H−1. (3)

It will be utilized that V12V−1/2
22 ∼ Nq,p−q(0, Iq, Ip−q) which is independent of V22 (see e.g.,

Kollo and von Rosen, 2005; Theorem 2.4.12). The expectation of the expression in the right
hand side of (3) is to be derived. Since E[V12V−1

22 ] = 0 it follows from (3) that the next
expression should be calculated:

(H>)−1Γ1PΓ1H−1 + (H>)−1E[V12V−1
22 Γ2PΓ>2 V−1

22 V21]H−1. (4)

Moreover, applying an expectation result for quadratic forms in normally distributed vari-
ables (e.g., see Kollo and von Rosen, 2005, Theorem 2.2.9 (i)) implies that the expectation
in (4) equals

E[V12V−1
22 Γ2PΓ>2 V−1

22 V21] = E[tr{V−1
22 Γ2PΓ>2 }]Iq (5)
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which since V22 ∼ Wp−q(I, n) (see e.g., Kollo and von Rosen, 2005, Theorem 2.4.14 (iii))

E[V−1
22 ] = c1Ip−q, c1 = 1

n−(p−q)−1

and the right hand side of (5) is identical to c1E[tr{Γ2PΓ>2 }]Iq. In order to arrive to the
statements of the theorem Γ>2 Γ2, (HH>)−1 and Γ>1 H−1 have to be expressed in the original
matrices. From the definition of Γ and H it follows that

Q> = HΓ1, (HH>)−1 = (Q>Q)−1, Γ>1 H−1 = Q(Q>Q)−1

and

Γ>1 Γ1 = Q(Q>Q)−1Q>, Γ>2 Γ2 = I− Γ>1 Γ1 = I−Q(Q>Q)−1Q>.

These relations establish the lemma. Throughout the article let
λ1(A) ≥ λ2(A) ≥ · · · ≥ λn(A) be the ordered eigen values of a symmetric matrix A: n× n.

3. The Growth Curve Model When p > n

The classical Growth Curve model (Potthoff and Roy, 1964) has been applied in many
areas and is a natural extension of the MANOVA model. Therefore the model is also called
GMANOVA model. The model and generalizations of the model together with an almost
complete list of references can be found in von Rosen (2018).

Definitiion 2: Let X: p×n, p ≥ n− r(C), A: p× q, q ≤ p, B: q× k, C: k×n, and Σ > 0:
p× p. Then

X = ABC + E

defines the Growth Curve model, where E ∼ Np,n(0,Σ, I), A and C are known matrices,
and B and Σ are unknown parameter matrices.

Since p ≥ n − r(C) we assume a high-dimensional setting. The main purpose of this
article is to discuss a specific estimator of B. Note that the size of B, i.e., q × k, does not
depend on n and p, and that Σ is thought of being a nuisance parameter. For some details of
how to treat the Growth Curve model in a high-dimensional setting see Kollo et al. (2011).
Alternatively, we can suppose that Σ is known and then from linear models theory it follows
that under the assumption r(A) = q, r(C) = k which will be supposed to hold throughout
the article, an estimator of B equals

B̃ = (A>Σ−1A)−1A>Σ−1XC>(CC>)−1.

However, Σ−1 has to be estimated. One can use the sums of squares matrix S = X(I −
C>(CC>)−1C)X> as an estimator of nΣ but if p > n− r(C) the inverse S−1 does not exist
and cannot be used to estimate Σ−1. Therefore, instead of S−1 the Moore-Penrose inverse
S+ can be used and then the same estimator as in Kollo et al. (2011) is obtained:

B̂ = (A>S+A)−1A>S+XC>(CC>)−1, (6)



2020] BOUNDS OF DISPERSION OF A MEAN ESTIMATOR IN GROWTH CURVE MODEL 39

where it has to be assumed that the column vector space relation C(A) ∩ C(S) = {0} is
satisfied which implies that (A>S+A)−1 holds.

4. E[B̂] and Bounds For D[B̂]

In order to derive the expectation and bounds for the dispersion for B̂ in (6) it will be
utilized that XC> and S are independently distributed.

Theorem 1: Let B̂ be defined in (6). Then E[B̂] = B.

Proof:
E[B̂] = E[(A>S+A)−1A>S+]E[XC>(CC>)−1] = E[(A>S+A)−1A>S+AB] = B.

Turning to a discussion of the dispersion matrix for B̂ it follows that the dispersion
matrix for B̂ in (6) can be presented as
D[B̂] = E[vec(B̂−B)vec>(B̂−B)]

= E[((CC>)−1C⊗ (A>S+A)−1A>S+)D[X](C>(CC>)−1 ⊗ S+A(A>S+A)−1)]
= (CC>)−1 ⊗ E[(A>S+A)−1A>S+ΣS+A(A>S+A)−1]. (7)

From Lemma 1 it follows that the expectation in (7) is complicated to express. We will show
some calculations but the aim will be to find upper and lower bounds for the expectation
similarly to the approach for obtaining bounds for the expectation and dispersion of the
Moore-Penrose inverse of a singular Wishart matrix (see Imori and von Rosen, 2020).

When deriving the bounds a number of transformations will take place: S = UU>,
where U ∼ Np,n−r(C)(0,Σ, In−r(C)), Y = Σ−1/2U, where Σ−1/2 is a symmetric square root;
Y> = TL where T: (n−r(C))×(n−r(C)) is a lower triangular matrix and L: (n−r(C))×p
is a semi-orthogonal matrix, i.e. LL> = In−r(C); V = T>T. Firstly it is noted that the
expectation in (7) can be expressed as (see Lemma 1 )

E[(A>S+A)−1A>S+ΣS+A(A>S+A)−1]
= E[(A>U(U>U)−1(U>U)−1U>A)−1A>U(U>U)−1(U>U)−1U>Σ
×U(U>U)−1(U>U)−1U>A(A>U(U>U)−1(U>U)−1U>A)−1].

Now the first transformation is applied to this relation and it yields
E[(A>Σ1/2Y(Y>ΣY)−1(Y>ΣY)−1Y>Σ1/2A)−1

×A>Σ1/2Y(Y>ΣY)−1(Y>ΣY)−1Y>Σ
×ΣY(Y>ΣY)−1(Y>ΣY)−1Y>Σ1/2A
×(A>Σ1/2Y(Y>ΣY)−1(Y>ΣY)−1Y>Σ1/2A)−1].

Moreover, the second transformation implies that one should consider
E[(A>Σ1/2L>(LΣL>)−1T−1(T>)−1(LΣL>)−1LΣ1/2A)−1

×A>Σ1/2L>(LΣL>)−1T−1(T>)−1(LΣL>)−1LΣ
×ΣL>(LΣL>)−1T−1(T>)−1(LΣL>)−1LΣ1/2A
×(A>Σ1/2L>(LΣL>)−1T−1(T>)−1(LΣL>)−1LΣ1/2A)−1]
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and then the third transformation implies an expression which will be studied in detail:

E[(A>Σ1/2L>(LΣL>)−1V−1(LΣL>)−1LΣ1/2A)−1

×A>Σ1/2L>(LΣL>)−1V−1(LΣL>)−1LΣ
×ΣL>(LΣL>)−1V−1(LΣL>)−1LΣ1/2A
×(A>Σ1/2L>(LΣL>)−1V−1(LΣL>)−1LΣ1/2A)−1], (8)

where it can be shown that V ∼ Wn−r(C)(In−r(C), p) which for example follows from the
derivation of the Wishart density in Srivastava and Khatri (1979; Theorem 3.2.1) or Imori
and von Rosen (2020; Section 3.1). Put

Q = (LΣL>)−1LΣ1/2A, (9)
P = (LΣL>)−1LΣΣL>(LΣL>)−1. (10)

Then (8) is identical to

E[(Q>V−1Q)−1Q>V−1PV−1Q(Q>V−1Q)−1]

which, since V ∼ Wn−r(C)(In−r(C), p), according to Lemma 2

E[(Q>Q)−1Q>PQ(Q>Q)−1] + c1E[tr{P(I−Q(Q>Q)−1Q>)}(Q>Q)−1], (11)

where c−1
1 = p − (n − r(C) − q) − 1 and the expectation in (11) is taken over the semi-

orthogonal matrix L. Note that it has to be assumed that c1 > 0, i.e., p > n− r(C)− q + 1
but later we need that p ≥ n− r(C)) . However, it is difficult to perform the integration in
(11) and therefore we first focus on finding upper and lower bounds of

(Q>Q)−1Q>PQ(Q>Q)−1, tr{P(I−Q(Q>Q)−1Q>)}

which are either functionally independent of L or are so simplified that only E[(Q>Q)−1]
has to be derived.

Lemma 3: Let P be given by (10). Then

λp(Σ)λp(Σ−1)In−r(C) ≤ P ≤ λ1(Σ)λ1(Σ−1)In−r(C).

Proof: The proof is based on a spectral decomposition of Σ which yields λp(Σ)Ip ≤
Σ ≤ λ1(Σ)Ip. Note that λp(Σ)Σ ≤ ΣΣ ≤ λ1(Σ)Σ and therefore λ1(LΣL>) ≤ λ1(Σ),
λn(LΣL>) ≥ λp(Σ) which jointly establish the lemma. Applying Lemma 3 yields that
upper and lower bounds for (11) are given by

λp(Σ)λp(Σ−1)(1 + c1(n− r(C)− q))E[(QQ>)−1]
≤ E[(Q>Q)−1Q>PQ(Q>Q)−1] + c1E[tr{P(I−Q(Q>Q)−1Q>)}(Q>Q)−1]
≤ λ1(Σ)λ1(Σ−1)(1 + c1(n− r(C)− q))E[(QQ>)−1]. (12)

Note that 1 + c1(n − r(C) − q) = (p − 1)/(n − r(C) − q). Moreover, (12) implies that we
now need to find bounds for E[(QQ>)−1].
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Lemma 4: Let Q be defined in (9). Then

λp(ΣΣ)(A>Σ1/2L>LΣ1/2A)−1 ≤ (Q>Q)−1

≤ λ1(ΣΣ)(A>Σ1/2L>LΣ1/2A)−1.

Proof: It is enough to show upper and lower limits for (LΣL>)−1(LΣL>)−1 which should be
independent of L and proportional to In−r(C). By pre- and post-multiplying by A>Σ1/2L>
and then taking the inverse establish the lemma. Now

λn((LΣL>)−1(LΣL>)−1) = (λ1(LΣL>))−2 ≥ (λ1(ΣΣ))−1

and

λ1((LΣL>)−1(LΣL>)−1) = (λn(LΣL>))−2 ≤ (λp(ΣΣ))−1

which yield the inequalities of the lemma. From Lemma 4 it follows that we need to
calculate E[(A>Σ1/2L>LΣ1/2A)−1], where LL> = In−r(C). The result is stated in the next
lemma.

Lemma 5: Let all matrices be as in Lemma 4. Then, if p ≥ n− r(C) > q − 1,

E[(A>Σ1/2L>LΣ1/2A)−1] = p− q − 1
n− r(C)− q − 1(A>ΣA)−1.

Proof: The same transformations as when deriving (8) will now be applied. Let Y ∼
Np,n−r(C)(0, Ip, In−r(C)), p ≥ n − r(C). Then A>Σ1/2YY>Σ1/2A ∼ Wq(A>ΣA, n − r(C))
and (expectation of an inverse Wishart matrix is applied; e.g., see Kollo and von Rosen,
2005, Theorem 2.4.14 (iii))

E[(A>Σ1/2YY>Σ1/2A)−1] = 1
n− r(C)− q − 1(A>ΣA)−1. (13)

Next the variable substitution Y> = TL is made, where T: (n−r(C))× (n−r(C)), is lower
triangular with positive diagonal elements and L is semi-orthogonal, i.e., LL> = In−r(C). The
matrices T and L are independently distributed. Moreover, V = T>T ∼ Wn−r(C)(In−r(C), p)
and given L

A>Σ1/2L>VLΣ1/2A ∼ Wq(A>Σ1/2L>LΣ1/2A, p).

Thus,

E[(A>Σ1/2YY>Σ1/2A)−1] = E[(A>Σ1/2L>T>TLΣ1/2A)−1]

= E[(A>Σ1/2L>VLΣ1/2A)−1] = 1
p− q − 1E[(A>Σ1/2L>LΣ1/2A)−1]

and combining this result with (13) establishes the lemma From Lemma 3 and Lemma
5 it follows that

λp(Σ)λp(Σ−1)λp(ΣΣ)(1 + c1(n− r(C)− q) p−q−1
n−r(C)−q−1)(A>ΣA)−1

≤ E[(A>S+A)−1A>S+ΣS+A(A>S+A)−1]
≤ λ1(Σ)λ1(Σ−1)λ1(ΣΣ)(1 + c1(n− r(C)− q) p−q−1

n−r(C)−q−1)(A>ΣA)−1.

(14)
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Now all preparations are finished and the main result can immediately be presented:

Theorem 2: Let B̂ be defined in (6) and assume p ≥ n − r(C) > q − 1. Then, (� was
introduced in Definition 1 (iii))

(i) D[B̂] � (CC>)−1 ⊗ λp(Σ)3λp(Σ−1) p−1
p−(n−r(C)−q)−1

p−q−1
n−r(C)−q−1(A>ΣA)−1;

(ii) D[B̂] � (CC>)−1 ⊗ λ1(Σ)3λ1(Σ−1) p−1
p−(n−r(C)−q)−1

p−q−1
n−r(C)−q−1(A>ΣA)−1.

Remark 1: If p−1 is close to n−r(C)−q or n−r(C) is close to q−1 the dispersion for B̂
becomes large because the lower bound becomes large. In this case an alternative estimator
for B should be used, e.g., the ”unweighted” estimator (A>A)−1A>XC>(CC>)−1.

If all eigen values of Σ are equal, e.g., Σ = I, the lower and upper bound of Theorem
2 are equal, i.e.,

D[B̂] = λ1(Σ) p−1
p−(n−r(C)−q)−1

p−q−1
n−r(C)−q−1(CC>)−1 ⊗ (A>A)−1

which however is larger than the variance for the unweighted estimator, as it should be
according to least squares theory.

5. Simulation Study

In this section a small simulation study is conducted to illustrate Theorem 1. In
Remark 1 it was noted that when p is close to n both the upper and lower bounds, for given
(CC>)−1 ⊗ (A>ΣA)−1, depend on

λ•(Σ)3λ•(Σ−1) p−1
p−(n−r(C)−q)−1

p−q−1
n−r(C)−q−1 , p ≥ n− r(C),

where λ•(Σ) denotes either λ1(Σ) or λp(Σ) and the same holds for λ•(Σ−1). If p = n− r(C)
this expression reduces to

λ•(Σ)3λ•(Σ−1)p−1
q−1 . (15)

Thus, if the largest and smallest eigenvalues of Σ are stable with respect to p (15) increases
linearly with p but at the same time (A>ΣA)−1 becomes ”smaller”. Note also that (CC>)−1

becomes ”smaller” when n increases.

Instead of studying Theorem 1 we will study (14) since (CC>)−1 is of no interest. In
the simulations the following matrices are used: A = (a1, a2, a3), where

a1 = 1p, a>2 = 0.7 · (1, 2, . . . , p), a>3 = 0.01 · (1, 4, . . . , p2)

and

C =
(

1>20 0
0 1>20

)
, B =

1 2
3 7
2 2

 .
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Table 1: The table summarizes the conducted simulation study: (EST)ii, i ∈
{1, 2, 3} is the ith diagonal element of EST defined in (16), (LB)ii and (UB)ii, i ∈
{1, 2, 3}, are the ith diagonal element of the lower and upper bounds respectively
defined in (18) and (19). Moreover, p is the number of repeated measurements
and the data has been generated according to the description in Section 5. In
particular n = 40, q = 3 and r(C) = 2.

p (LB)11 (EST)11 (UB)11 (LB)22 (EST)22 (UB)22 (LB)33 (EST)33 (UB)33

38 5.1 11.8 26.3 0.14 0.36 0.7 1.8 4.3 9.4

39 3.6 8.2 18.8 0.10 0.22 0.50 1.1 2.7 5.9

40 2.8 6.5 14.5 0.073 0.16 0.37 0.84 1.8 4.3

50 0.95 2.3 5.2 0.016 0.040 0.085 0.11 0.29 0.62

60 0.66 1.7 3.6 0.0077 0.020 0.042 0.040 0.10 0.22

80 0.49 1.2 2.7 0.0032 0.0080 0.017 0.0093 0.023 0.051

100 0.44 1.1 2.4 0.0018 0.0045 0.010 0.0034 0.0085 0.019

150 0.35 0.88 2.0 0.00069 0.0017 0.0039 0.00058 0.0014 0.0033

200 0.33 0.84 1.8 0.00035 0.00091 0.0020 0.00016 0.00043 0.00094

Concerning Σ we randomly generated eigenvectors Γ via another covariance matrix and also
randomly generated eigenvalues {λk} uniformly on the interval [2, 3.1]. The eigenvalues build
up a diagonal matrix D = (λk) and then the Σ which has been used in the simulations equals
Σ = ΓDΓ>. Note that in the simulations n = 40, r(C) = 2 and q = 3. The simulations
were carried out for p ∈ {38, 39, 40, 50, 60, 80, 100, 150, 200}. According to Theorem 1 we
have to assume that p ≥ 38 and it can be shown that the theorem is not true for p = 37 and
if p < 37 our bounds do not even exist. In (14) we have

E[(A>S+A)−1A>S+ΣS+A(A>S+A)−1] (16)

which has to be estimated. The simulation data is generated according to the model Xi ∼
Np,n(ABC,Σ, In), i = 1, 2, . . . , 500, i.e., there are 500 replicates performed in the simulation
study. Let S+

i denote the S+ from the ith simulation and we have

EST = 1
n

n∑
i=1

E[(A>S+
i A)−1A>S+

i ΣS+
i A(A>S+

i A)−1] (17)

as an unbiased estimator of the expectation in (16). The results of the simulation study are
presented in Table 1. In our case EST is of size 3 × 3. Moreover, we calculated the lower
bound, LB, and the upper bound, UB, as

LB = λ3
p(Σ)λp(Σ−1) p− 1

p− 34
p− 4

35 (A>ΣA)−1, (18)

UB = λ3
1(Σ)λ1(Σ−1) p− 1

p− 34
p− 4

35 (A>ΣA)−1 (19)

which according to the theory should give upper and lower bounds of the expectation in
(16). In Table 1 the diagonal elements of EST, LB and UB are presented. The results
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follow the theory, i.e., (LB)ii < (EST)ii < (UB)ii, i ∈ {1, 2, 3}. Moreover, when p increases
(EST)ii becomes smaller and the difference (UB)ii − (LB)ii is largest when p = 38. Thus,
the results of Theorem 1 are in full agreement with the simulation study.
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