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Abstract

Tail equivalence between two distribution functions was introduced in Resnick, S.I.
(1971). Tail equivalence and its applications, Journal of Applied Probability, 8(1), 136-156.
After clarifying a few properties and giving examples of classes of tail equivalent distributions,
this article looks briefly at some interesting applications of tail equivalence in establishing
tail behaviours of mixtures and order statistics, in particular, of limit laws of normalised k-th
upper order statistics from a random sample, for fixed integer k. The tail behaviours of such
limit laws have been studied via tail equivalence. It turns out that tail equivalence simplifies
much of the apparent difficulty in handling the tails of such limit laws. A consequence is
a method of generating random observations from regularly varying tails having different
exponents of regular variation.
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1. Introduction

Resnick (1971) introduces the concept of tail equivalence between two distribution
functions (dfs) on the real line R. Here tail refers to right tail and we confine to right tail in
this article. Similar results for left tail can be derived from the results discussed here. Tail
equivalence divides the class of all dfs on the real line into equivalence classes. In this article,
after giving known definitions of heaviness of tail, illustrations of the use of tail equivalence to
study the tail behaviour of limit laws of normalised mixtures and k-th upper order statistics
from a random sample for fixed integer k are given, under fixed and random sample sizes.
These results were derived by the author and co-workers in several articles.

1.1. Tail equivalence

Definition (Resnick, 1971): Two dfs F and G on R are said to be tail equivalent, denoted
by F

T= G, if
lim

x→∞

1 − F (x)
1 − G(x) = A, 0 < A < ∞. (1)
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We refer to Resnick (1971) for applications of tail equivalence in extreme value theory. The
following are easy consequences of the definition:

• If F
T= G, and r(F ) = sup{x ∈ R : F (x) < 1} denotes the right extremity of F, then

r(F ) = r(G), finite or infinite. This is because, otherwise, A in (1) will be 0 or ∞
according as r(F ) < r(G) ≤ ∞ or r(G) < r(F ) ≤ ∞, respectively.

• Since F
T= F with A = 1 in (1), the relation T= is reflexive.

• If F
T= G with the limit in (1) as A, then G

T= F with the limit in (1) as 1/A, so that
the relation T= is symmetric.

• If F
T= G with the limit in (1) as A, and G

T= H with the limit in (1) as B, then
F

T= H with the limit in (1) as AB, so that the relation T= is transitive, proving that
the relation is an equivalence relation.

Now we give some examples of tail equivalent families of dfs on R.

Examples of classes of tail equivalent dfs:
• Family of exponential distributions with different location parameters:

If F (x; µ) = 1−ex−µ, x > µ, and 0 elsewhere, with µ ∈ R as a location parameter, then
limx→∞

1−F (x;µ1)
1−F (x;µ2) = e−(µ1−µ2). However, note that family of exponential distributions

with different scale parameters, is not a tail equivalent class.

• Family of Pareto distributions with location and scale parameters:
If F (x; µ, σ) = 1− 1

(x−µ
σ ) , x > µ+σ, and 0 elsewhere, with µ ∈ R as a location parameter

and σ > 0 as a scale parameter, then limx→∞
1−F (x;µ1,σ1)
1−F (x;µ2,σ2) = σ2

σ1
.

• Family of log-Pareto distributions with scale and shape parameters:
If F (x; µ, σ) = 1 − 1

ln( x
µ)σ , x > µe1/σ, and 0 elsewhere, with µ > 0 as a scale parameter

and σ > 0 as a shape parameter, then limx→∞
1−F (x;µ1,σ1)
1−F (x;µ2,σ2) = σ2

σ1
.

1.2. Heavy tails

We refer to Praveena and Ravi (2023, 2025) and Nair et al. (2023) for definitions and
results mentioned below and some recent work. We give some definitions now, followed by
some examples.

Definitions:

• A df F on R is heavy tailed if lim supx→∞
1 − F (x)

e−x
= ∞.

• If not, F is said to be light tailed.

• A df F on R is super-heavy tailed to the right if lim supx→∞
1 − F (x)

x−α
= ∞, for all

α > 0.
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Examples:

• Pareto df F (x) = 1 − 1
xα

, x > 0, α > 0, Weibull df with shape parameter greater than
1, are examples of heavy tailed dfs.

• Normal, exponential dfs are examples of light tailed dfs.

• Cauchy, Fréchet, Burr dfs are super-heavy tailed distributions.

• But there can be heavier tails like dfs log-Pareto, log-log-Pareto, etc.

1.3. Extremes and upper order statistics

The extreme value laws: If X1, X2, . . . , are independent and identically distributed ran-
dom variables with common df F, Mn = max{X1, . . . , Xn}, and limn→∞ P (Mn ≤ anx+bn) =
limn→∞ F n(anx + bn) = G(x), x ∈ C(G), the set of all continuity points of the limit df G,
then we denote this as F ∈ Dl(G). It is known that G is a type of the extreme value laws,
given by:

• Fréchet law: Φα(x) = exp(−x−α), 0 ≤ x,

• Weibull law: Ψα(x) = exp(−|x|α), x < 0,

• Gumbel law, Λ(x) = exp(− exp(−x)), x ∈ R; where α > 0 a parameter.

Max stability: The extreme value laws satisfy the following stability property:

Φn
α

(
n1/αx

)
= Φα(x), Ψn

α

(
n−1/αx

)
= Ψα(x), Λn(x + log n) = Λ(x), x ∈ R.

1.4. Order statistics and k-th extremes

We denote the order statistics of {X1, . . . , Xn} by X1:n ≤ . . . ≤ Xn:n and assume
that F ∈ Dl(G) for some G. The df of the k-th upper order statistic Xn−k+1:n, for a fixed
positive integer k is given by

Fk:n(x) = P (Xn−k+1:n ≤ x) =
k−1∑
i=0

(
n

i

)
F n−i(x)(1 − F (x))i, x ∈ R.

The limit Gk(x) = limn→∞ Fk:n(anx + bn) is given by

Gk(x) = G(x)
k−1∑
i=0

(− log G(x))i

i! , x ∈ {y : G(y) > 0}.

2. Applications of tail equivalence to tail behaviour

The following questions on tails of dfs were answered by using tail equivalence.
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2.1. Questions and motivation

• If F (.) = αF1(.) + (1 − α)F2(.) is a mixture df with component dfs F1, F2, how are the
tails of F related to those of F1, F2? Or, how is F ∈ Dl(.) related to Fi ∈ Dl(.), i =
1, 2?

• What is the tail of Gk like? Or, Gk ∈ Dl(.)?

2.2. On mixtures

The following discussion is from Praveena et al. (2019).

• If F is the mixture df, r(F ) = max{r(F1), r(F2)}.

• If F ∈ Dl(.) with some norming constants and r(F1) < r(F2), then F2 ∈ Dl(.) with
the same norming constants. This is because F

T= F2.

• If F ∈ Dl(.) with some norming constants and r(F1) = r(F2), then nothing can be
said about the max domains to which F1, F2 may belong to. Examples have been given.

• If F1
T= F2 and one of them belong to Dl(.) with some norming constants, then F ∈ Dl(.)

with the same norming constants.

2.3. On k-th extremes via tail equivalence

The discussion here is from Ravi and Manohar (2018).

A recurrence relation: For any df F, fixed integer k ≥ 1, define
Fk(x) = F (x)

k−1∑
i=0

(− ln F (x))i

i! , x ∈ {y : F (y) > 0}. The df Fk satisfies the recurrence
relation

Fk+1(x) = Fk(x) + F (x)
k! (− ln F (x))k, k ≥ 1, x ∈ {y : F (y) > 0}.

The pdf of Fk+1 is

fk+1(x) = f(x)
k! (− ln F (x))k, k ≥ 1, x ∈ {y : F (y) > 0}.

A result for fixed sample size: If F is a df with pdf f, then for every positive integer
k, (1 − F (x))k is tail of the df Hk(x) = 1 − (1 − F (x))k , x ∈ R, and Hk is also
absolutely continuous with pdf H ′

k(x) = k{1 − F (x)}k−1f(x), x ∈ R. Further, the following
are true:

• If F ∈ Dl(Φα), then r(Hk) = r(F ) = ∞, and Hk ∈ Dl(Φkα) with an =
F −(1 − (1/n)1/k), bn = 0.

• If F ∈ Dl(Ψα) then r(Hk) = r(F ) < ∞, and Hk ∈ Dl(Ψkα) with an =
r(F ) − F −(1 − (1/n)1/k), bn = r(F ).



2025] EXPLORING TAILS VIA TAIL EQUIVALENCE 47

• If F ∈ Dl(Λ), an = v(bn) and bn = F −
(
1 − 1

n

)
then r(Hk) = r(F ), and

Hk ∈ Dl(Λ) with an = v(bn)
k

, bn = H−
k (1 − 1/n).

Another result for fixed sample size: Let rv X have absolutely continuous df F

with pdf f and k be a positive integer. Then for Fk(x) = F (x)∑k−1
i=0

(− ln F (x))i

i! ,

x ∈ {y : F (y) > 0}, the following results are true:

• Fk is a df with r(Fk) = r(F ), pdf fk(x) = f(x)
(k − 1)!(− ln F (x))k−1, x ∈ {y ∈ R :

F (y) > 0}; and limx→r(F )
1 − Fk(x)

(1 − F (x))k
= 1

k! , so that Fk
T E= Hk.

• If F ∈ Dl(Φα), then r(Fk) = r(F ) = ∞, and Fk ∈ Dl(Φkα) with an =
F −(1 − (k!/n)1/k), bn = 0.

• If F ∈ Dl(Ψα) then r(Fk) = r(F ) < ∞, and Fk ∈ Dl(Ψkα) with an =
r(F ) − F −(1 − (k!/n)1/k), bn = r(F ).

• If F ∈ Dl(Λ), an = v(bn) and bn = F −
(
1 − 1

n

)
then r(Fk) = r(F ), and

Fk ∈ Dl(Λ) with an = v(bn)
k

, bn = F −
k (1 − 1/n).

2.3.1. Results for random sample size

Uniform k-th extremes: Suppose that n in the previous section is replaced by a discrete
uniform rv Nn with P (Nn = r) = 1

n
, r = m + 1, m + 2, . . . , m + n, Nn independent of the

iid rvs X1, X2, . . . , m ≥ 1 a fixed integer. We look at the tail behaviour of the limit of
linearly normalized XNn−k+1:Nn . Observe that XNn−k+1:Nn is well defined for 1 ≤ k ≤ m.
We have Fk:Nn(x) = P (XNn−k+1:Nn ≤ x) = ∑∞

r=m P (XNn−k+1:Nn ≤ x, Nn = r)
= ∑∞

r=m

∑k−1
i=0

(
r
i

)
F r−i(x)(1 − F (x))iP (Nn = r), x ∈ R. The following results are true:

• If F ∈ Dl(G) for some max stable df G then limn→∞ Fk:Nn(anx + bn) is equal to
Uk,G(x) = k{ 1−G(x)

− ln G(x)} − G(x)∑k−1
l=1 (k − l) (− ln G(x))l−1

l! , x ∈ {y ∈ R : G(y) > 0},

G = Φα or Ψα or Λ.

• For any df F, and fixed integer k ≥ 1, let Uk,F (x) = k{ 1−F (x)
− ln F (x)} − F (x)∑k−1

l=1 (k −
l) (− ln F (x))l−1

l! , x ∈ {y : F (y) > 0}. If X has df F, pdf f, k is a fixed positive inte-

ger, and U1,F (x) = 1 − F (x)
− ln F (x) , x ∈ {y : F (y) > 0}, then U1,F is a df with r(U1,F ) =

r(F ), pdf u1,F (x) = f(x)
F (x)

U1,F (x) − F (x)
− ln F (x) = f(x)

F (x)

{
1 − F (x) + F (x) ln F (x)

(− ln F (x))2

}
, x ∈

{y ∈ R : F (y) > 0}; and limx→r(F )
1 − U1,F (x)
1 − F (x) = 1

2 so that U1,F
T= F.
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For the family of dfs Uk,F and Hk(x) = 1 − (1 − F (x))k, x ∈ R, the following results are
true.

• Uk,F is a df with r(Uk,F ) = r(F ), pdf uk,F (x) = kf(x)
(− ln F (x))2

{
1

F (x)−

∑k
l=0

(− ln F (x))l

l!

}
, x ∈ {y ∈ R : F (y) > 0}, limx→r(F )

1 − Uk,F (x)
(1 − F (x))k

= 1
(k + 1)! , and

Uk,F
T= Hk.

• If F ∈ Dl(Φα), then r(Uk,F ) = r(F ) = ∞, Uk,F ∈ Dl(Φkα) with an = F −(1 −
((k + 1)!/n)1/k), bn = 0.

• If F ∈ Dl(Ψα) then r(Uk,F ) = r(F ) < ∞, Uk,F ∈ Dl(Ψkα) with an = r(F ) −
F −(1 − ((k + 1)!/n)1/k), bn = r(F ).

• If F ∈ Dl(Λ), an = v(bn) with bn = F −
(
1 − 1

n

)
then r(Uk,F ) = r(F ), Uk,F ∈

Dl(Λ) with F = Uk,F , G = Λ, an = v(bn)
k

, bn = U−
k,F (1 − 1/n).

• The df Uk,F satisfies the recurrence relation

Uk+1(x) = Uk,F (x) + U1,F (x) − F (x)
k∑

l=1

(− ln F (x))l−1

l! .

Geometric k-th extremes: Let Nn be a shifted geometric rv with pmf P (Nn = r) =
pnqr−m

n , r = m, m + 1, m + 2, . . . , 0 < pn < 1, qn = 1 − pn and limn→∞ npn = 1.

• If F ∈ Dl(G) for some max stable law G, then for fixed integer k, 1 ≤ k ≤ m,
limn→∞ Fk:Nn(anx + bn) is equal to

Rk,G(x) = 1 −
(

− ln G(x)
1 − ln G(x)

)k

, x ∈ {y ∈ R : G(y) > 0}, with

Rk,G(x) =



1 −
(

1
1+xα

)k
if G(x) = Φα(x),

1 −
(

(−x)α

1 + (−x)α

)k

if G(x) = Ψα(x),

1 −
(

e−x

1+e−x

)k
if G(x) = Λ(x).

The first two are Burr distributions of XII kind (Burr, 1942) and the last is the logistic
distribution.

• If X has df F, pdf f, k a positive integer and Rk,F is as defined above, then the
following are true:

• Rk,F is a df with pdf rk,F (x) = kf(x)(− ln F (x))k−1

F (x)(1 − ln F (x))k+1 , x ∈ {y ∈ R : F (y) > 0},

r(Rk,F ) = r(F ), and limx→r(F )
1 − Rk,F (x)
(1 − F (x))k

= 1, and Rk,F
T= Hk.
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• If F ∈ Dl(Φα), then r(Rk,F ) = r(F ) = ∞, and Rk,F ∈ Dl(Φkα) with an =
F −(1 − (1/n)1/k), bn = 0.

• If F ∈ Dl(Ψα) then r(Rk,F ) = r(F ) < ∞, and Rk,F ∈ Dl(Ψkα) with F =
Rk,F , G = Ψkα, an = r(F ) − F −(1 − (1/n)1/k), bn = r(F ).

• If F ∈ Dl(Λ), an = v(bn) and bn = F −
(

1 − 1
n

)
then r(Rk,F ) = r(F ), and

Rk,F ∈ Dl(Λ) with F = Rk,F , G = Λ, an = v(bn)
k

, bn = R−
k,F (1 − 1/n).

The Burr connection: Burr (1942) proposed twelve explicit forms of dfs which have since
come to be known as the Burr system of distributions. A number of well-known distributions
such as the uniform, Rayleigh, logistic, and log-logistic are special cases of Burr dfs.

A df W is said to belong to the Burr family if it satisfies the differential equation
dW (x)

dx
= W (x)(1 − W (x))h(x, W (x)), where h(x, W (x)) is a non-negative function for

x for which the function is increasing, h(x, W (x)) could be h(x, W (x)) = h1(x)
W (x) where

h1(x) ≥ 0. Then dW (x)
dx

= (1 − W (x))h1(x).

The dfs Rk,F belong to the Burr family.

Negative Binomial k-th extremes: Let Nn be a shifted negative binomial rv with
P (Nn = l) =

(
l−m+r−1

l−m

)
pr

nql−m
n , r = m, m + 1, m + 2, . . . , where 0 < pn < 1, qn = 1 − pn

and limn→∞ npn = 1.

If F ∈ Dl(G) for some G, then for fixed integer k, 1 ≤ k ≤ m,
limn→∞ Fk:Nn(anx + bn) is equal to

Tk,G(x) =
k−1∑
l=0

(
l + r − 1

l

)
(− ln G(x))l

(1 − ln G(x))r+l
, x ∈ {y ∈ R : G(y) > 0}.

The df Tk,F satisfies the recurrence relation

Tk+1,F (x) = Tk,F (x) +
(

k + r − 1
k

)
(− ln F (x))k

(1 − ln F (x))k+r
, k ≥ 1, x ∈ R.

Its pdf is tk+1,F (x) = 1
B(r, k + 1)

f(x)
F (x)

(− ln F (x))k

(1 − ln F (x))r+k+1 , k ≥ 1, x ∈ R.

Let rv X have df F with pdf f and k be a fixed positive integer. Then for Tk,F ,
the following results are true.

• Tk,F is a df with pdf tk,F (x) = 1
B(r, k)

f(x)
F (x)

(− ln F (x))k−1

(1 − ln F (x))r+k
, x ∈ {y ∈ R : F (y) > 0},

right extremity r(Tk,F ) = r(F ), and limx→r(F )
1 − Tk,F (x)
(1 − F (x))k

= k

B(r, k) .
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• If F ∈ Dl(Φα), then r(Tk,F ) = r(F ) = ∞, and Tk,F ∈ Dl(Φkα) with an =
F −(1 − (1/n)1/k), bn = 0.

• If F ∈ Dl(Ψα) then r(Tk,F ) = r(F ) < ∞, and Tk,F ∈ Dl(Ψkα) with an =
r(F ) − F −(1 − (1/n)1/k), bn = r(F ).

• If F ∈ Dl(Λ), an = v(bn) and bn = F −
(

1 − 1
n

)
then r(Tk,F ) = r(F ), and

Tk,F ∈ Dl(Λ) with an = v(bn)
k

, bn = T −
k,F (1 − 1/n).

3. Conclusion

In this article, tail behaviour of several interesting tails are explored through the
concept of tail equivalence which simplifies several proofs. After recalling the definition of
tail equivalence and clarifying some simple properties of tail equivalence, the article explores
tail behaviour of mixtures of dfs and the limit laws of linearly normalised k upper order
statistics of a random sample of size n, when n is fixed and n is replaced by Uniform,
Geometric and Negative Binomial random sample sizes. Several results stated here can be
used to simulate random observations from a variety of tails.
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