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Abstract
This paper proposes a target oriented online path planning algorithm which is ca-

pable of navigating a mobile robot autonomously in unknown environments. The proposed
technique called Free Configuation Eigenspace (FCE) finds collision free path from laser
sensor data by computing its eigenvectors. The paper describes an online 2D simulation
method of FCE with static obstacles and start and goal positions. The proposed method
is benchmarked aginst the well known online path planner Vector Field Histogram (VFH).
In this 2D simulation, the robot model used is a differential drive robot and it is assumed
that the robot is equipped with a laser scanner. Simulation experiments are done with start
and goal positions on simulated 2D maps in MATLAB with different obstacle courses. The
respective trajectories for different start and goal positions were generated on the map and
path lengths analyzed
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1. Introduction

An autonomous robot’s ability to plan its motion in real-time has become a crucial
part of modern intelligent robotics. Applications of path planning in online environments
include the mining industry, planet exploration, reconnaissance, etc. This is also known
as local path planning. Online path planning deals with the assessment of the dynamic
conditions of the environment and identifying the positional relationships among various
elements in the environment. In online navigation, the robot can autonomously decide its
motion using equipped sensors such as laser sensors, ultrasonic range finders, sharp infrared
range sensors, vision (camera) sensors, etc.

Pioneering work in online obstacle avoidance and path planning was initiated by
Khatib (1986), konown as Artificialal Potential Fields method (APF) and is popular in
mobile robotics. The idea of (APF) comes from the concept of the potential field in physics,
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which regards the movement of objects as the result of two kinds of forces. The robot is
subjected to attractive forces from the target and repulsive forces from the obstacle. Under
the action of the two forces, the robot moves toward the target point due to the resultant
force and during the moving process, it can effectively avoid the obstacles and reach the
target. Bug algorithms by Lumelsky and Stepanov (1987) are also used for online path
planning which uses two-dimensional scenes filled with unknown obstacles. Bug algorithm
assumes the robot as a point operating in the plane with a contact sensor or range sensor
to detect obstacles. Bug algorithm uses a straightforward path planning approach to move
towards the goal unless an obstacle is encountered, in which case it circumnavigates the
obstacle until motion towards the goal is once again allowable. Another online planner in
literature is the Dynamic Windows Approach (DWA), by Fox et al. (1997). This approach
is derived directly from the motion dynamics of the robot and is therefore particularly well
suited for robots operating at high speed. The dynamic window contains the feasible linear
and angular velocities taking into consideration the acceleration capability of the robot.The
collision cone concept based online path planning was proposed by Chakravarthy and Ghose
(1998). The collision cone can be used to predict the possibility of collisions between two
objects and to design collision avoidance strategies. In this method, a collision of a robot
can be averted if the relative velocity of a robot with respect to a particular obstacle falls
exterior to the collision cone.

One of the widely used sensor-based online path planning algorithms is Vector Field
Histogram (VFH) by Borenstein et al. (1991). In VFH, a polar histogram is generated at
every discrete point step to represent the polar density of the obstacles around the robot.
The robot’s steering direction is chosen based on the least polar density and closeness to
the current steering direction. The VFH algorithm is fast, very robust, and insensitive to
misreadings, allowing continuous and fast motion of the mobile robot without stopping for
obstacles. But the VFH-controlled robot may get ”trapped” in dead-end situations (as is the
case with other local path planners). When trapped, mobile robots usually exhibit ”cyclic
behavior”. Another limitation of this technique is that the polar histogram must be regularly
generated for every time step. Hence in narrow hallways, the robot may move in an oscillatory
fashion. Also, this method is suited for environments with sparse moving obstacles. Ulrich
and Borenstein (1998) proposed a method known as VFH+ that introduces some of the
parameters tuning to accommodate the robot’s width, also.

This paper is organized as follows: first it describes the materials and methods used
for this study followed by the 2D simulation method of VFH with static obstacles and start
and goal positions. Then it describes the proposed Free Configuration Technique(FCE)
path planner proposed by us Zaheer et al. (2022). Detailed simulation results are included
in section 4 and followed by result analysis and conclusion.

2. Materials and methodology

This section describes the materials and methods used for this study. The robot
model used here is a differential drive robot and the sensor used is a laser sensor. In this 2D
simulation, it is assumed that a vehicle is equipped with a scanning laser range sensor with
a field of view of 240°. Also, vehicle location is known and only kinematic motion of the
vehicle is considered. The simulation experiments are done with Start and Goal positions
on simulated 2D maps with different obstacle courses. The performance analysis is done
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for different scenarios: namely Scenario-I with 3 separate obstacles with and L-shaped
wall obstacle and Scenario-II and III with differently shaped obstacles. The respective
trajectories for different Start and Goal positions were plotted on the map and path lengths
analyzed.

2.1. Differential drive kinematics

A differential drive robot consists of 2 drive wheels mounted on a common axis,
and each wheel can independently be driven either forward or backward. For the robot
to perform direction change in it’s translational motion, the velocity of each wheel may
be varied appropriately. The robot actually performs rotatory motion about a point along
the common left and right wheel axis which is known as the ICC (Instantaneous Center of
Curvature) as seen in Figure 1. Hence by varying the velocities of the two wheels, we can
vary the trajectories that the robot take

Figure 1: Differential drive kinematics
Since the rate of rotation ω about the ICC must be the same for both wheels, we can

write the following equations:

ω(R + l

2) = V R (1)

ω(R − l

2) = V L (2)

where l is the distance between the wheels, VR and VL are the right and left wheel velocities
along the ground respectively, and R is the signed distance from the ICC to the midpoint
between the wheels. At any instance in time we can solve for R and ω:

R = l(V L + V R)
2(V R − V L) (3)
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ω = V R − V L

l
(4)

In Figure 2, the velocity of the robot can be represented as a pair of vectors, v⃗ and ω⃗,
where v⃗ represents the linear velocity (forwards and backwards) of the robot and ω⃗ represents
the angular velocity of the robot. Given angular veocities of the right and left wheels ωR and
ωL respectively, the linear and angular velocities of the differential drive robot are represented
as shown in Equations 5 and 6.

Figure 2: Physical configuration of the robot

v = rR

2 ωR + rL

2 ωL (5)

ω = rR

l
ωR − rL

l
ωL (6)

where rR and rL are the wheel radii of the left and right wheels, respectively, and l is the
width of the wheelbase as shown in Figure 2. The robot in the global coordinate frame is
represented in Figure 3. The equations of motion are shown in Equation 7.
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Figure 3: Robot’s kinematics in global frame

ẋ
ẏ
θ̇

 =

v cosθ
v sinθ

ω

 (7)

Suppose, at the initial time T0 the pose is [x0, y0, θ0]; the pose at time t is [x(t), y(t), θ(t)];
to find the pose at time T, we will have to integrate the variables at the pose t + ∆t from
within the limit T0 to T which is added to the initial pose coordinates [x0, y0, θ0], as follows:

x(T ) =
� T

T0

v(t) cos(θ(t))dt + x0 (8)

y(T ) =
� T

T0

v(t) sin(θ(t))dt + y0 (9)

θ(T ) =
� T

T0

ω(t)dt + θ0 (10)

2.2. Principal component analysis (PCA)

PCA is a way of identifying patterns in data and expressing the data in such a way as
to highlight their similarities and differences. Since patterns can be hard to find in data of
high dimension, PCA helps us to identify patterns in data based on the correlation between
features. It aims to find the directions of maximum variance in high-dimensional data and
projects it onto a new subspace with equal or fewer dimensions than the original one.

In our case, with a laser range sensor, individual range measurements can be con-
sidered as an independent dimension. With such an approach, a range scanner with a 10

resolution and a 2400 field view generates 240 observations which are called as point cloud
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sensor data. Analysis of the point cloud data from such a scanner will show that adjacent
range measurements are highly correlated. Thus, it is possible to use principal component
analysis to determine a linear subspace with a minimum number of dimensions for repre-
senting an environment using a range sensor.

PCA finds Principal Components (PCs) that are linear combinations of the original
variables ranked in terms of the variability in the data given by the variances. The corre-
sponding orthogonal directions are given by the eigenvectors of the covariance matrix (C) of
the data. The steps involved in PCA analysis are as follows :

• Standardize the dataset
• Compute the covariance matrix of the dataset.
• Perform eigen decomposition on the covariance matrix.
• Order the eigenvectors in decreasing order based on the magnitude of their correspond-

ing eigenvalues.

Let S be the 2D point cloud data,where, Sj = (xj, yj); (Sj ∈ S ∈ R2) and S̄ is the mean of
k no of sensor data points as given below.

To perform the PCA transformation, we have to compute the covariance matrix C of
point cloud data set S using the below equation:

C2x2 = 1
K

k∑
j=1

(Sj − S̄)(Sj − S̄)T ; S̄ = 1
K

k∑
j=1

Sj (11)

To perform transformation we have to solve the eigenvalue Equation 12

CV = λV (12)

Solving the Equation 12 , we can get the eigenvalues λ, where λ1 ≥ λ2 and eigenvec-
tors V [V1, V2].

These eigenvectors are called Principal Components (PCs). By applying a proper
technique we can identify the pattern in 2D point cloud range data. In our case, the obstacle
area or free area identification can be performed with this PCA technique .

3. Vector field histogram (VFH)

VFH method is executed in three main steps that are: Two dimensional cartesian his-
togram grid, Polar histogram sector and candidate valley selection. To begin with, on-board
sensors such as ultrasonic sensor or laser rangefinder are used for mapping obstacles into
histogram grid. In this step, the two-dimensional cartesian histogram grid is continuously
updated in with range data sampled by the on-board range sensors as shown in Figure 4a.

At the second step, a one-dimensional polar histogram is constructed around the
robot’s momentary location by dividing the polar histogram into angular sectors of suitable
width as shown in Figure 4b. At the third step the output of the VFH algorithm, which
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(a) Cratesian histogram (b) Polar histogram
Figure 4: Algorithm steps - I and II

(a) Polar obstacle density of wide valley (b) POD with narrow valley
Figure 5: VFH Algorithm steps - III

is the reference value for the new steering direction of the robot. The optimal direction
is selected in each candidate valley such that every sector density is less than a suitable
threshold value. The algorithm measures the size of the selected valley. Hence, two types
of valleys are distinguished, namely, wide and narrow ones.A valley is considered wide if the
no of consecutive polar sectors (S) are greater than 18 nos (Smax=18).

The sector nearest to target is denoted as kn and the far border sector is denoted
as kf and is defined as kf = kn + Smax. The desired steering direction is then defined by
θ = (kn+kf)

2 and is closer to the goal or target directions as shown in Figure 5a.

In the second case, a narrow valley between closely spaced obstacles (shown in Pink),
are shown in Figure 5b. Here the far border kf is less than Smax . However, the direction
of travel is again chosen as θ = (kn+kf)

2 and the robot maintains a course centered between
obstacles as shown in Figure 5b.

3.1. VFH 2D simulation

In this section, we have done 2D Simulation of VFH algorithm in MATLAB. The
scenario-I is an exact replica of the simulation done in the original paper by Borenstein et
al. (1991). This scenario-I is shown in Figure 6b which contains three obstacles denoted as
A,B,C with a L shaped wall.
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(a) VFH simulation flow chart (b) Original VFH simulation scenario
Figure 6: VFH 2D Simulation

Figure 7: VFH Path: Start[10,10] , Goal[25,35]

The flow chart of VFH’s 2D simulation is shown in below Figure 6a. 2D simulation is
carried out for the VFH algorithm using MATLAB. The robot is assumed to be of circular
shape of radius 0.025m and moving at a speed of 0.8 m/s. The Start position is at [10,10]
and the Goal position is at [25,35] with a map scale 1 unit = 0.1m. The simulated robot
trajectory is shown in Figure 7 and its path length is recorded in Table 1.
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4. Free configuration eigenspace (FCE) formulation

The FCE method uses a two-stage sensor data reduction technique and three levels
of sensor data representation :

• The first level represents the detailed description of the robot’s environment. In this
level, the two-dimensional cartesian map (world model) is created.

• At the second level, the high dimensional sensor space is reduced to a low-dimensional
Eigenspace around the momentary location of the robot by computing Principle Com-
ponents of sensor data. These PCs provides a spatial interpretation of the environment
in terms of its variance of the sensor data.

• The third level of data representation is the output of the FCE algorithm, which selects
the PC direction which is closest to the goal direction

4.1. Proposed FCE goal reaching algorithm

A 2D online pathplanning algorithm has been formulated with static obstacles using
FCE philosophy by Zaheer et al.(2014). The below sections describe the algorithm formula-
tion and implementation of FCE’s 2D Trajectory generation with Start and Goal positions
for a robot A. The flow chart of 2D simulation is shown in Figure 8.

The flowchart has the followings steps:
• The algorithm starts by computing the distance and the angle from the Start to Goal

positions.
• If the goal is not reached, then the sensor cartesian data is acquired from the map’s

obstacle positions.
• The two PCs of sensor data are computed by applying PCA
• From the two PCs, the PC direction closer to the goal position is found.
• Then the velocity components of the new PC angle is calculated
• The new position is computed from the current position and the velocity components.
• The new position is added to robot path array .
• Finally, the robot traverses the generated path.

4.2. FCE’s 2D simulation algorithm

Algorithm 1 FCE - Eigen vector trajectory
Input:

RobotA Start Position: PosA[ ]
RobotA Goal Position : GoalA[ ]
Scan Data: S[ ]
Initialize Simulation parameters :(v = 0.8m/s, rA = 0.025m, t = 1s, P = 1, N = 100)

Output: Path[ ] Path from Start to Goal
1: Compute distance (D) and angle between from Start to Goal(angA)
2: Path[P, 1] = PosA(1)
3: Path[P, 2] = PosA(2)
4: if (D≥0) and(D < 2.5) then
5: GoalReached=1
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Figure 8: FCE 2D simulation flow chart

6: else
7: GoalReached=0
8: end if
9: while (GoalReached==0) do

10: repeat
11: S=Get Cartetian Coordiante of Scan data
12: [ PC ] = eig (covariance (S));
13: DirPC1 = atan2(PC(2, 1), PC(1, 1))
14: DirPC2 = atan2(PC(2, 2), PC(1, 2))
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15: newangleA=[DirPC1,DirPC2]
16: angleFuture=findFutureAngle(newangleA, angA);
17: angA=angleFuture
18: V = [vcos(angA), vsin(angA)]
19: newX = PosA(1) + V (1) ∗ t
20: newY = PosA(2) + V (2) ∗ t
21: PosA = [newX, newY ]
22: P = P + 1
23: Path[P, 1] = PosA(1)
24: Path[P, 2] = PosA(2)
25: until (GoalReached==1) or (P==N)
26: end while
27: Plot the Path Points with robot A as circular shape

Algorithm 2 : Function: findFutureAngle()
Input: newangleA, angA
Output:angleFuture

1: X1 = cos(newangleA(1)) − cos(angA)
2: Y 1 = sin(newangleA(1)) − sin(angA)
3: Point1 = sqrt(X12 + Y 12)
4: X2 = cos(newangleA(2)) − cos(angA)
5: Y 2 = sin(newangleA(2)) − sin(angA)
6: Point2 = sqrt(X22 + Y 22)
7: if ( Point1¡Point2 ) then
8: angleFuture=newangleA(1)
9: else

10: angleFuture=newangleA(2)
11: end if
12: Return (angleFuture)

In this simulation, the robot is assumed to be of circular shape with radius 0.025m
and moving at a speed of 0.8 m/s. The simulation assumes that the robot is equipped with
range sensor. The simulation starts with the input of initial Start position as (PosA) and
the final Goal position as (GoalA). The initial step is to compute the distance (D) and the
angle between the Start and the Goal Position (angA). If the distance value is greater than
zero, then the obstacle free position which is more close to the Goal position has to be found
from scan data. With FCE, this is achieved by computing the eigenvectors of the covariance
matrix of the sensor cartesian data. This will give two PCs as shown in Figure 9. From
these two PC’s, the next suitable direction (angleFuture) to move towards the Goal with
out hitting obstacles is identified by computing the distance between the new PCs direction
point and the initial angle point (angA) and then selecting the minimum distance point
among them as given in algorithm 2. Once the closest direction to the Goal is selected, the
next step is to find the velocity components and the next position of the robot to move on.
The next waypoint is computed by differential drive robot’s kinematic equations and the
values will be stored in the path array, which will give the obstacle free path from Start to
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Figure 9: FCE cartesian map with eigenvectors

Figure 10: FCE result of scenario-I : Start[10,10], Goal[25,35 ]
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Goal. Once the path is generated, the simulated robot trajectory can be plotted, assuming
robot to be circular in shape.

The simulation scenario here is also the same as in the case of VFH described in the
above section (Scenario-I) with Start [10,10] and Goal [25,35]. The FCE simulation result
is shown in Figure 10 and the map scale is taken as 1 unit = 0.1m. Since the eigenspace
generates only two PCs, the robot trajectory comprises of straight line segments as compared
to the curved trajectory of VFH. This is shown in Figure 10 and the path length is recorded
in Table 1.

5. Result analysis

Trajectory analysis of VFH and FCE technique was carried out by creating different
obstacle configurations with different Start and Goal positions and the path lengths generated
by each algorithm are computed. The analysis is done in two scenarios; Scenario-I, scenario-
II and scenario-III having different Start and Goal locations. Then the VFH and FCE
trajectory are plotted as shown in Figures 11, 12, 13 and 14 and the path lengths are
recorded in Table 1. From the table it’s can conclude that the VFH performance is better
in terms of path length but have lots of abrupt change in directions. The FCE has straight
line trajectory and shows some oscillations at some segments, as well.

(a) Start[10,10],Goal[30,20] (b) Start[10,10], Goal[30,20]
Figure 11: Scenario -I

As shown in Figure 11 for Scenario-I with Start[10,10] and Goal[30,20], the path
generated by both VFH and FCE are in the same direction but the VFH path length is
shorter than FCE. Also, it is seen that the both trajectories are colliding with obstacle C.

As shown in Figure 12 for Scenario-I with Start[12,10] and Goal[25,50], the path
generated by both VFH and FCE are in different coordinates but the VFH path length is
shorter than FCE path length as seen in Table 1.
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(a) Start[12,10],Goal[25,50] (b) Start[12,10], Goal[25,50]
Figure 12: Scenario -I

(a) Start[10,10],Goal[30,20] (b) Start[10,10], Goal[30,20]
Figure 13: Scenario -II

(a) Start[10,10],Goal[40,30] (b) Start[10,10], Goal[40,30]
Figure 14: Scenario -III

As shown in Figure 14 for Scenario-III which has more clutterd obastacles with
Start[10,10] and Goal[40,30], VFH method robot is getting “trapped” in this Senario. When
trapped, mobile robots exhibit “cyclic behavior”, which is evident in Figure 14. But FCE
method finds a path from start to goal as we can see in the Figure 14.
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Table 1: 2D Simulation results

Technique Scenario Start Goal Path length(m)
VFH Scenario -I [10,10] [25,35] 3.52000
FCE Scenario -I [10,10] [25,35] 3.84000
VFH Scenario -I [10,10] [30,20] 2.40000
FCE Scenario -I [10,10] [30,20] 2.88000
VFH Scenario -I [12,10] [25,50] 4.88000
FCE Scenario -I [12,10] [25,50] 5.04000
VFH Scenario -II [10,10] [30,30] 3.44000
FCE Scenario -II [10,10] [30,30] 11.28000
VFH Scenario -III [10,10] [30,30] 0.14000
FCE Scenario -III [10,10] [30,30] 4.64000

6. Conclusion

Performance analysis with FCE and VFH for different scenrios shows that VFH gives
the shortest path but have many changes in directions. But in the case of FCE, trajectory
segments are almost straight lines but show some ocilllations in certain situations. The result
analysis shows that the VFH perfomance is better in environments with unclutterd static
obstacles. For exploring future scope, this research can be extended to path planning with
dynamic obstacles.
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