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Abstract

Guptaet al. (2012) proposeda generalizedregression-cum-rati@stimatorand Koyuncu et al.
(2014) proposeda generalizedexponentialestimatorfor the meanof the sensitivevariableutilizing a
non sensitiveauxiliary variable.We proposea new generalizedmixture estimatorfor estimatingthe
populationmeanof a sensitivestudy variable. The expressiondor Bias and Mean SquareError are
derived up to the first order of approximation. Numer-ical examplesshow that the proposed
generalizednixture estimatoiperforms bettethan many of the existingstimators.
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1 Introduction

Randomized response technique (RRT) can be used to estimate the mean of a sensitive
variableY where direct observation ofis subject to bias. We assume a non sensitive auxiliary
variableX is available and can be observed directly. Sousa et al. (2010) introduced a ratio type
estimator and Gupta et al. (2012) proposed a regression and generalized regression-cum-ratio
estimators based on RRT models to deal with this situation. Following Bahl & Tuteja (1991),
Koyuncu et al. (2014) also proposed a generalized exponential type estimator to improve the
efficiency of the mean estimator based on RRT models.

In this paper we propose an ordinary exponential ratipo type estimator and two general-
ized mixture estimators where the RRT estimators of the meahavk further improved by
using information from an auxiliary variabl€é. Expressions for the Bias and Mean Square
Error are derived up to the first order of approximation. We will use the following notations.

LetY be the sensitive study variable which cannot be observed directly beta non
sensitive auxiliary variable which has a positive correlation wittand letS be a scrambling
variable. Assume that S is independentYofind X. The respondent is asked to report a
scrambled response for given byZ =Y + S but is asked to provide the true response for
X. Let a random sample of sizebe drawn without replacement from a finite population
U = (Ug,Uy,...,UyN). Forith population dement, lef; andx; respectively be the values of
the study variableéy and auxiliary variableX. LetY = E(Y),X = E(X) andZ = E(Z) be the
population means foY, X andZ respectively. We assume that the population m¢amnd the
population varianc&? of the auxiliary variable are known. Also, assume that population mean
and the population variance for the scrambling vari&@zaee known and given &8=E(S) =0
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andS%. Thus E(Z) = E(Y) andCZ = CZ+ (£/Y2), whereC, andC, are the coefficients of
the variation ofZ andY respectively. We will use the same error terms as in Sukhatme and
Sukhatme (1970), given as:

e, = 5% ande = 52, whereE(e,) = E(e) = 0 andE(e2) = ACZ, E(&) = ACS,
1

2 Some Exsting Estimators

In this section we will give some existing estimators with corresponding bias and mean
square error.

2.1 RRT Sample mean
If information on X is ignored, then an unbiased estimatorYofs the ordinary RRT
sample meai(z) given by:
y=z (1)

The MSE of [iy is given by:
MSE(fv) = A (§+5). @)

whereS2 = 15N (yi—Y)2, andL = L7 5N, (s — S)° are thepopulation variances of the
study sensitive variablg¥') and the scrambling variab(&).
2.2 RRT Ratio estimator

Sousa et al.(2010) proposed the ratio type estimator of the mean of a sensitive variable
(Y) using a non sensitive auxiliary varial{¥) given by:

X
Z (3

The bas and the mean square error of this ratio estimator, up to the first order of approximation,
are given by:

fir =

Bias(fIr) ~ AY (CZ — pxCLx) , (4)
MSE(fir) ~ AY? (C2 — 2pCLCx+C2) . (5)

2.3 RRT Transformed ratio type estimator
Sousa et al.(2010) proposed the transformed ratio type estimator given by:

. _/cX+d

where c andd are the unit-free parameters, which may be quantities such as the coefficient of
skewnes$; (x) and coefficient of kurtosiB(x) of the auxiliary variabléX). The bias and the
mean square error of this estimator, up to the first order of approximation are given by:

Bias(fiTr) ~ )‘Y_(”IZCE —NPCLy) , (7)
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(8)

MSE (firR) ~ AY? (n°CE — 20 paC.C+C2)

wheren = 2.

2.4 RRT Regression estimator
Gupta et al.(2012) proposed an ordinary regression type estimator of the population mean
9)

Y given by:
flreg = Z+ Box(X — %),
where B = sg = sg is thesample regression coefficient betwegiand X. The bias of this

regression estimator, up to the first order of approximation, is given as:
Hi2 Ilos) 7 (10)

Bias —A
(Hreg) = —A B <I111 Lo
By is the population regression coefficient grd= 3! ;(z —

Sx _Sx_ 5 S _g
g~ g Prs
X)®. The mean square error of the regression estimator, up to the first order of approx-

wherefx =
Z)" (% — X
(5) 4

imation, is given as:
(11)

SE(firey) = AYZCE (1 p3) = AS]

2.5 Guptaetal (2012) generalized RRT Regression-Cum-Ratio estimator

Gupta et al. (2012) proposed a generalized regression-cum-ratio estimator given as
(12)

fiorr = |k1Z+ ko (X — @] <;—) :
wherek; andk; are suitably chosen constants. The bias of this estimator, up to the first order

of approximation, is given by
(13)

Bias(flcrr) = (ki — 1)Y + K1 YA (CZ — pxCiCx) + ko XAC
The optimum values df; andk, and corresponding mean square error, are given by
1-AC?
Ki(opt) = A ZCX ~i (14)
1-A [Cx _Cz(l_pzx)]
Y P2C;
k (opt) = X [1-1— kl(opt) (C—x — 2)} , (15)
(16)

1-p3)[1-AC)

and
—, AC?
+[1-Acy’

MSE(f L~ Y2
(HGRR)min )\CZZ[l—pZZX]
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2.6 Koyuncu et al. (2014) generalized exponential estimator

Following Bahl & Tuteja (1991) and Gupta et al. (2012), Koyuncu et al. (2014) proposed
a generalized exponential type estimator given by

N — — X—
HGER = [W12+W2(X—>6] eXp(ij)g ) (17)
The bias of this estimator, up to the first order of approximation, is given by
PN — 1 /(35 1 -
Bias([icer) ~ (W1 —1)Y + A EW1Y ZrCX —Cx | + EWZXCX . (18)

The minimum mean square error at the optimum valueg,andws,, are given by

1-3AC2
_ 8
Mitom) = TR C2 (1 pZ) (19)

Y [1 C
Wo(opt) = X {é — Wi(opt) (1— szaz()} ; (20)
and
. 1 1-3rC2)?
M SEmin(flcer) ~ Y? [(1— ZACE) - 11@?1(_:)(;2)] : (21)
X
or

MSE(firg)  ACE[MSE(fireg) +A £:C5Y]

[1-1- MSEY(EReg)] 4 [1-1- MSE&Ep@]

MSEnmin(HGeR) ~ (22)

3 Proposed Generalized Mixture RRT Estimator
Following Bahal & Tuteja we propose the exponential ratio type estimator for estimating

the population mean of the sensitive variable using a non sensitive auxiliary variable. This
estimator is given by:

X
=zexp| = 23
fler p(x+g> (23)
wherez andx are the sample means of the reported responses and the auxiliary variable, re-
spectively. Using to the first order of approximation, the estimator can be written as:

NN, 11 3
um—Z~Z(&—§&—§Q@+§%) (24)

Recognizing thaiZ = Y in (24), the bias and mean square error of the exponential ratio type
estimator are given by:

Bias(fcr) ~ AV (32 poCiCx) . and (25)



2017] Estimator of the Mean in Presence of Non-Sensitive Auxiliary Information 31

" — 1
MSE(figRr) ~ )\YZZ (4C% - 4p,CLC+C2). (26)

It can be verified easily that:
a) MSE(fier) < MSE(fly) if pp > 5 &
b) MSE(flgr) < MSE (i) if px < 3&

By combining the regression, ratio and exponential estimators we furher generalize the estima-
tor (23) and propose a generalized mixture estimator given by:

flcr = {dlz_(é:)ajtdz(i—)@}exp(é%g (27)

whered; (i =1,2) anda are suitably chosen constants. We will consider two values far =
1 anda = 2). To obtain the bias and mean square error, up to the first order of approximation,
[icr can be written in terms, ande, as:

N 4 a7 & &) !
UGR—[dlz(l-l-ez)(l-i—es() —dzx@} exp[(—§> (1+§) ] (28)
Note that,
) _ _ - 1
flor—Z ~ (dy — 1)Z + b Z (&, — Aey — Aee + BEZ) — dX (ex— Eei) ; (29)
where
1 1 3
A=a+5 and  B=Za(@+2)+g. (30)

By taking expectation of (29) and recognizing tEat Y, the bias of this estimator, up to the
first order of approximation, is given by:

o - - —1
Bias(flomr) & (d1 — 1)Y +AdyY (BCZ — Ap,C,Cy) + A dpX écf (31)

Squaring (29) and using first order of approximation, we get:
(Rer—2)? = (01— 1222 + dfZ2 | 26, — 2Aex — 4Aesex+ & + (A2 + 2B) &
+doX7e; — 2cy 77 [ez — A — Aesey+ Bei] (32)
—2d1dxXZ [a(+ €8x — (A+ 5) ef] +2doXZ (ex — éei) .

By taking expectation of (32) and recognizing t@at Y, the mean square error of the proposed
estimator, up to the first order of approximation, is given by:
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MSE(figr) ~ (dh — 1)2Y2 4 A d2Y? [ (A2 4-2B) CZ — 4Ap,CLx + Qz}
+ Ad3X2C2 —2AdyY? {Bcf - Apzxczcx]
— 22 dhdpXY {pZXCZCX — (A+ %) cf} — AdoXYC2. (33)

By taking partial derivatives of (33) with respectdpandd,, we get:

5'\"3'57;?6@ —=2(d; —1)Y2+2AdyY? {(AZ +2B)C2 — 4ApC,Cy + Qz} (34)
—2AY? [chz — ApZXCZCX} — 20 doXY [pzxc:zc:X —~ <A+ %) Cf} :
and IMSEE ([icr) Z2A2 7 1 Y C2
T ag,  ~ AXC-2AdiXY [pZXCZCX —~ <A+ é)} —AXYC. (35)
msgiéi’]@) =0 (i =1,2), the optimum value ofi; andd, are given by:

1+4] (B~ 3A- 1) G+ (3-A) i

dl(opt) = , and (36)

1+A {(ZB—A— %)C)%—l-(l—ZA)pszsz—F(1_p22x)czz}

Y (1 1 C
d2(opt) = i{é - dl(opt) {(A‘i‘ é) —szc_j } (37)

Substituting the optimum values ofy andds in (33), the minimum mean square, up to the first
order of approximation, is given by:

M SEnmin(figr) ~ \?2{ (1— %)\ cf) (38)

2
142 {(B-3A- )G+ (- M) paCC} }

1+A {(2B—A—%)CX2+(1—2A)pZXCZCX+ (1—p22X)C22}
For a = 1 the generalized mixture estimator is given by:

fer1 = {dlz_ <§—) +dp (X — i)} eXp<§:L—® (39)

Theoptimum values ofl; andd, are given by:
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1+ [%C% - pZXCZCX]

diGRi(opt) =
T (202 - 20,0+ (1- p2)CH]
Y [1 C
dacRi(opt) = X {é — d1(opt) <2 - szaz()} (40)

and the minimum mean square error is given by:

142 (3C2 - a0 |
|2C3~ 205C.Cx+ (1 P3) C2|

n 1
MSEpin(flomri) ~ Y2 <1— —)\Cf) — (41)
1+

4

Whena = 2, the generalized mixture estimator is given by:
X —X
exp( ——=| . 42
o (3x) 42)

1+ | 5CE - 205C.Cx|
1+A [6C)% —4p,CLCx+ (1— p22x>C22]

_/X\? —
fere = [dlz(;—) +d2 (X —X)

The optimum values ofl, andd, are given by:

dicro(opt) =

Y [1 C
dacro(opt) = X [é — di(opt) (3— szé()} : (43)

The minimum mean square error is given as:

[1+/\ (%\°)c3—2pzxczcx)]2
—4pxCLCx+6CZ+ (1—-p3%) sz}

A 1
MSEmin(flomre) ~ Y2 <1— Z/\CXZ) — (44)
1A |
4 Efficiency Comparisons

In this section efficiency of the proposed estimator is compared with the some commonly
used RRT estimators. Conditions under which the proposed estimator is more efficient are
given below:

1. MSE(figr) < MSE (i) if

ACE—{(l—%)\Cf) (45)

. 1AlB A GARCS) g
1+ A [(2B—A—2)C2+ (1— 2A) poClCx + (1 p2) C7]
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2. MSE(ficr) < MSE(fig) if

A (Cx— poCr)® +A (1 - p2)C2 (46)

1 5 {14A[(B-3A- D+ (3-A) paCL )
{(1 4ACX) 174 [(28-A-3)CP+ (1-2A) ot (1-p2)CE] |

3. MSE(ficr) < MSE(firey) f

A\?ZCZZ(l—pzzx)—{<l i ) (47)

{1 [(B-3A- D 3-A) paColY }>0
L+ [(2B—A—3)CE+ (1 2A) poClCc+ (1 p3)

4. MSE(fir) < MSE(figR) if

1 2
A (écx - pszz) +A (1 - pzzx) sz (48)

B el

2 >0
| (2B—A+3) G2+ (1—28) pCCc+ (1 p3) CZ|

Numerical examples and simulation results show that these conditions are generally true,
and hence the proposed estimator o= 1 anda = 2 may be preferred over the existing
estimators.

5 Numerical example

In this section, we compare the efficiency of proposed estimators with other existing RRT
mean estimators considered in Section 2 using real data. The Population Statistics for the real
data are given in Table 1. The scrambling variag®ie taken to be a normal distribution with
mean zero and standard deviation equal to two. The reported response is g&enYy S.

Table 2 gives Theoretical Percent Relative Efficiency (in bold) for various estimators based on
the first order of approximation. The Theoretical Percent Relative Efficiency of the estimators
as compared to the ordinary RRT sample mean are calculated from the following equation:

PRET (1) = 100 MSET(ZV)

MSET (L)
wherei = R Reg, ER,GRR, GER, GR1, andGR2.

(49)
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Table 1: Population Statistics

Parameters Population 1 Population 2 Population 3 Population 4

35

N 70 34 256 204

n 25 20 100 50

Pyx 0.7293 0.4491 0.887 0.71
Pz 0.81079 0.44909 0.8867 0.7099
Y 96.7 856.4118 56.47 966

X 175.2671 208.8824 44.45 26441
& 19842.15 22650.18 3872.573 2061327175
Sg 3657.368 537544.3 6430.019 5711084
S 3.67395 3.67395 3.67395 3.67395
Cy 0.6254 0.8561 1.42 2.4739
Cx 0.8037 0.7205 1.40 1.7171
C; 0.6257 0.8561 1.4204 2.4739

f 0.3571 0.5882 0.3906 0.2451

1. Population 1 [Source: Singh and Chaudhary (1986), pp.108]
2. Population 2 [Source: Singh and Chaudhary(1986), pp. 177]
3. Population 3 [Source: Cochran (1977), pp. 196]

4. Population 4 [Source: Kadilar & Cingi (2005)]

Table 2: The Theoretical Percent Relative Efficiency for the Mean Estimators

Estimators PRET Population1l Population2 Population3 Population 4

[y PRET 100 100 100 100

OR PRET 176.3753 105.001 447.5094 201.5505
[IReg PRET 291.8705 125.2645 467.9889 201.6534
Her PRET 269.5187 125.1390 271.1049 159.3275
Herr PRET 292.8943 126.7898 472.3173 211.3242
fcEr PRET 294.468 127.1320 478.3395 213.413
fer1 PRET 303.6344 128.7935 485.3493 212.9479
Here PRET 431.1358 137.8521 775.2617 242.964

6 Conclusion

In this study, we proposed a generalized mixture estimator for the mean of a sensitive
variable in simple random sampling without replacement by using information about a non
sensitive auxiliary variable. The proposed generalized mixture estimator is a mixture of some
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of the commonly known RRT estimators. For the proposed estimators all the percent relative
efficiencies are greater 100 indicating that all these estimators are better than the RRT ordinary
mean estimator. We also note that both of the proposed generalized mixture estimators are
more efficient than the other estimators considered here. Furthemore, the @hoizevorks

better thamo = 1. We may note that at a theoretical level, one may be tempted to optimize

Our goal though was to have a general family of estimators where many of the existing estima-
tors become special cases of the proposed estimator with specific chaiceFair example,

with a = 0 our generalized mixture estimator Il becomes combination of the regression and
exponential ratio type estimators. For= 1, it involves the ratio term also. For = —1, it
involves the product term.
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