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Abstract 

Estimation of transition probabilities between disease states and determination of length 
of stay in each state are two major concerns underlying the multi-state model based approach 
for cost-effectiveness analysis (CEA). The objective of this study is to apply and compare 
two different methods to estimate transition probabilities between three disease states viz., 
progression-free, progression, and death, for performing CEA of chemoimmunotherapy, as 
compared to chemotherapy, for treating patients suffering from Lymphocytic Leukaemia. In 
the first method, we fit a parametric survival model to the events progression and death, and 
as an alternative approach, we fit a Multinomial- Dirichlet Bayesian model to the number of 
transitions between different states. In the first method a Weibull clock-forward time-
inhomogeneous semi-markov model is used, while in the second method the transition 
probabilities are assumed to be time-independent and are estimated through simulations from 
their posterior distributions using MCMC implementation.  

 
Results from both methods suggest that chemoimmunotherapy is cost-effective over 

chemotherapy. However, a comparison between the predictions of long term transitions from 
the two methods suggests that the method based on Weibull time-inhomogeneous semi-
markov model provides more reliable estimates, especially when the time horizon of the 
study is long. Chemoimmunotherapy is cost effective when patients are willing to pay an 
additional cut off cost of around 13,000-15,000 GBP (by first method) for per unit additional 
gain in QALY.  

Key words: ICER; Multi-state model; IPD reconstruction; Rituximab; Willingness to pay; 
Health economics; Total length of stay. 

1. Introduction 
 

Scientific comparison of alternative treatments for a disease, both in terms of desired 
outcome and costs, is imperative for optimal decision making in medical sciences. Cost-
effectiveness analysis (CEA) is an important aspect of Health Economics and deals with the 
evaluation of cost per outcome gained. Outcome is usually defined in terms of survivability 
and hence, cost-effectiveness analysis evaluates both survival data and costs data 
simultaneously.  
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Markov, semi-Markov and non-Markov multi-state models provide a comprehensive 
approach towards CEA of interventions for diseases for which discrete progression states can 
be defined based on certain clinical and pathological markers. Briggs and Sculpher (1998) 
provided a comprehensive structure of markov modelling for health economic evaluation and 
also discussed the importance of scrutinizing the Markovian assumption before estimating the 
transition probabilities. In a significant number of work based on Markov decision-analytic 
models in health economics, authors have preferred to obtain transition probabilities from 
published literature, refer Gharaibeh et al. (2015), Veldhuijzen et al. (2010), Lee et al. 
(2013), and Yeh et al. (2010). However, as the time horizon of the study from which 
published estimates are obtained is generally different from the time horizon of the study 
being conducted, these estimates are unlikely to act as reliable estimates of the true transition 
probabilities. This is due to the fact that, in most cases of disease progressions, transition 
probabilities are expected to be time dependent owing to the impact of changes in various 
covariates.  

 
In the presence of individual patient data (IPD), parametric and semi-parametric 

survival models can be fitted to the survival data to estimate the transition probabilities of 
multi-state models. Exponential, Gamma, Weibull, Lognormal, and Generalized Gamma 
survival models are popularly found to be appropriate parametric options for the purpose of 
estimating transition probabilities, see for example Wu et al. (2014), Speight et al. (2006), 
Coon et al. (2010), and Diaby et al. (2013). Use of Cox proportional hazards models has been 
suggested by some authors, like Malehi et al. (2015) and Mihaylova et al. (2011) among 
others, especially when our interest also lies in estimating hazards associated with the 
covariates, given the validity of the proportional hazards assumption. Flexible semi-
parametric survival models, like partitioned Cox models, can be adopted to allow for 
flexibility in case of violation of the proportional hazards assumption, refer Jackson et al. 
(2010) and Williams et al. (2017 b). Application of Bayesian parametric models to estimate 
the transition probabilities of multi state models has also been discussed to some extent in the 
literature of Health Economics; see for example Welton and Ades (2005) and Baio (2013). 

 
In the absence of IPD, survival data can be reconstructed from published Kaplan-Meier 

(KM) curves by incorporating the published information about risk sets at different time 
points of the study. The method is discussed in detail by Hoyle and Henley (2011), Guyot et 
al. (2012), and Wan et al. (2015).  

 
This paper aims to apply and compare two different methods to estimate transition 

probabilities between the three states of chronic lymphocytic leukaemia viz., progression-free 
(PF), progression, and death, and carry out CEA of two types of chemotherapies used for 
treating patients. We have reconstructed survival data of two groups of patients suffering 
from chronic lymphocytic leukaemia; one group was treated with the combination of 
fludarabine and cyclophosphamide (chemotherapy group), and the other group was treated 
with the combination of fludarabine, cyclophosphamide, and rituximab 
(chemoimmunotherapy group). Transition probabilities between different states are estimated 
by fitting a a) time-inhomogeneous Weibull semi-markov model and b) Multinomial-
Dirichlet Bayesian model for number of transitions. Quality-adjusted life years (QALYs) and 
incremental cost-effectiveness ratios (ICERs) are calculated to compare the economic and 
survival utility of the two interventions.    
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2. Survival Data: Reconstruction of IPD  
 

KM curves for overall survival (OS) and progression-free survival (PFS) for both 
chemotherapy and chemoimmunotherapy groups are obtained from the published work of 
Hallek et al. (2010) based on a randomized phase 3 trial of patients with chronic lymphocytic 
leukaemia. PFS is defined as the time between randomization and the date of the first 
documented disease progression, relapse, or death by any cause, and OS is defined as the 
time between randomization and the date of death from any cause; refer Roche (2008). 
Summary of the actual (published) data is shown in Table 1. 

 
Enguage Digitizer software is used to extract coordinates from the four KM curves. The 

algorithm (R code) for reconstructing IPD from the extracted coordinates of KM curves 
developed by Guyot et al. (2012) is applied to reconstruct the survival data with right 
censoring for both treatment groups. KM curves based on actual data from Hallek et al. 
(2010) and those based on reconstructed data (with 95% confidence bounds) are shown in 
Figures 1 and 2 respectively. The x-axis in these curves represents time since the start of the 
study in months. 

 
3. Methodology and Results 
 

A three state multi-state model is conceived with possible transitions between states as 
described in Figure 3.  An overview of the methodological structure of this study is outlined 
in Figure 4. A lifetime time horizon of 15 years is taken for base cost-effectiveness analyses 
as only 1.3% of the cohort are estimated to be surviving beyond this period as reported by 
Roche (2008).  However, QALYs and ICERs have also been calculated for a time horizon of 
20 years to evaluate the effect of choice of time horizon on QALYs and ICERs. This is 
necessary to account for the uncertainty underlying the choice of lifetime time horizon, see 
Jackson et al. (2017).  

 
3.1.   Estimation of transition probabilities of the multi-state model using parametric 

survival model 
 

To start with, Gamma, Exponential, Weibull, Log-logistic, Log-normal, and 
Generalized Gamma survival models are fitted to the transitions data of both groups. Based 
on the Akaike Information Criterion (AIC), and size of confidence intervals, survival models 
with Weibull distribution for time to events (progression and death) are found to exhibit best 
fits for both chemotherapy and chemoimmunotherapy groups. AIC values of the fitted 
models are provided in Tables 2 and 3. Plots of estimated survival functions, along with 
corresponding confidence intervals and KM estimates, are presented in Appendix-A, Figures 
A.1 and A.2. A combination of R functions available in the packages ‘flexsurv’ by Jackson 
(2016) and ‘mstate’ by de Wreede et al. (2010) are used to obtain these results. The chosen 
Weibull model is a clock-forward time-inhomogeneous semi-markov model. This suggests 
that the transition probabilities are assumed to vary with time. As an illustration, estimated 
transition probability matrices at the times t = 50 months, t = 100 months, t = 180 months and 
t = 240 months from the start of the study (t = 0) are presented in Table 4 (for chemotherapy 
arm) and Table 5 (for chemoimmunotherapy arm). These transition probabilities, say, 𝑃"#$ , r = 
1,2,3, s = 1,2,3 , and T =  1,2,3…, represent the probability that a patient is in state s at time t 
= T, given that he/she was in state r at time t = 0. These transition probabilities are used to 
calculate expected total length of stay (TLOS) in each state s, when a patient starts from a 
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particular state r at time t = 0. TLOS matrices calculated for both groups, at 15 years’ and 20 
years’ time horizon, are provided in Table 6.  

 
3.2. Costs data 
 

In both treatment regimes, some of the costs are fixed, while some of them are variable 
and depend on the length of the treatment. Cost of supportive care in PF state, cost of 
supportive care in progression, and cost of second-line and subsequent therapy are dependent 
on the duration of treatment/ care in the respective states and so, total expected costs under 
these heads have been calculated using estimated TLOS in the respective states. Monthly 
mean costs for these heads are obtained from Roche (2008). Expected total costs for the 
variable heads are calculated at discount rates of 3.5% and 5% per annum over the lengths of 
stay. Estimated mean total costs of both treatment regimes, and the expected cost incremental 
for chemoimmunotherapy with respect to chemotherapy, are shown in Table 7 (15 years time 
horizon) and Table 8 (20 years time horizon). Discount rate of 3.5% has been advised by the 
National Institute of Health and Care Excellence (NICE), UK, and discount rate of 5% is 
taken to analyze the sensitivity of the results towards the choice of discount rates. Remaining 
mean costs, which are not related to the length of stay in any state and are essentially fixed 
costs, are taken from Williams et al. (2017 a). Since a patient is not expected to go back to 
the PF state after entering progression state, it is safe to use the generic formula given in 
equation (1) to calculate discounted costs.  

 
𝑃𝑉 = ∑ ()

(+,-))/                                                              (1) 
 

Here, d is per unit time discount rate, PV is present value of the total cost and Vi is 
actual cost incurred at ith time point (with base period at i = 0). 

 
3.3.    QALY and ICER 
   

For calculation of mean QALYs, utility values of 0.8 and 0.6 have been considered for 
the PF health state and the progression health state respectively; refer Roche (2008). QALYs 
are discounted at 3.5% and 5% rates, in concurrence with the rates of discount for costs, and 
using the formula given in equation (1) after replacing costs with lengths of stay. ICER, 
which represents the cost per unit increase in QALY, is calculated for each time horizon at 
both discount rates. Calculated values of discounted mean QALYs for both treatment groups, 
QALY incremental, cost incremental and ICERs are reported in Table 9. QALY incremental, 
cost incremental, and ICERs have been calculated taking chemotherapy as the base 
intervention. Figure 5 exhibits the cost-effectiveness plane, showing acceptability of the 
chemoimmunotherapy over chemotherapy at two different values of willingness to pay, viz. K 
= 15,000 GBP and K = 13,000 GBP, for a unit additional gain in QALY.  

  
3.4.    Estimation of transition probabilities of the multi-state model using Multinomial- 

Dirichlet Bayesian model 
 

In this method, instead of getting into the realm of survival models, we define the 
observed number of transitions between states as a vector of random variables following 
Multinomial distribution and estimate the parameters under Bayesian framework using 
Dirichlet as the prior distribution; refer Baio (2013) and Welton and Ades (2005). Dirichlet 
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distribution is a conjugate prior for Multinomial distribution. The Multinomial- Dirichlet 
Bayesian model for our multi-state set up is defined as follows: 

 
Notations: 

 𝑟#1
(2): Total number of observed transitions from state s to state t for intervention I. 

𝜆#1
(2): Transition probability from state s to state t for intervention I. 

𝑛#
(2): Total number of transitions from state s to all other states for intervention I. 

𝑟#
(2) = (𝑟#+

(2), 𝑟#6
(2), 𝑟#7

(2)) 

𝜆#
(2) = (𝜆#+

(2), 𝜆#6
(2), 𝜆#7

(2)) 

Here, s = 1, 2, 3 and I = 1, 2. 

𝑟#
(2)|𝜆#

(2)~𝑀𝑢𝑙𝑡𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝜆#
(2), 𝑛#

(2)) 

             =	 CD
(E)

"DF
(E)!"DH

(E)!"DI
(E)!
𝜆#+
(2)"DF

(E)

𝜆#6
(2)"DH

(E)

𝜆#7
(2)"DI

(E)

                                                             (2)                                            

And prior distribution of the transition probabilities is defined as, 

𝜆#
(2)|𝛼(2)~𝐷𝑖𝑟𝑖𝑐ℎ𝑙𝑒𝑡(𝛼+

(2), 𝛼6
(2), 𝛼7

(2)) 

             = O(PF
(E),PH

(E),PI
(E))

OQPF
(E)RO(SH

(T))O(PI
(E))
𝜆#+
(2)(PF

(E)U	+)𝜆#6
(2)(PH

(E)U	+)𝜆#7
(2)(PI

(E)U	+)         (3)  

                                 
Unknown parameter of the Multinomial distribution in (2) is nothing but the vector of 

transition probabilities from state s to all other states, whose prior distribution is defined by 
the Dirichlet distribution with density function given in (3). It should be noted that while 
specifying this model, the transition probabilities are assumed to be constant, i.e. independent 
of time, unlike in the case of previous method based on Weibull clock-forward semi-markov 
model. Markov Chain Monte Carlo (MCMC) method is implemented through JAGS (Just 
Another Gibbs Sampler) within R session for simulating posterior distributions of the vectors 
of transition probabilities. R and JAGS codes are adopted from Baio (2013), and 
implemented with necessary modifications, corrections and additions to estimate transition 
probabilities from their posterior realizations. Beyond this point, two approaches are 
implemented to carry out CEA.  

 
In the first approach, CEA is performed using the function bcea( ) available in the R 

package ‘BCEA’. In this method, ICERs are determined from vectors of cost incremental 
values and benefit incremental values calculated at all simulated values of the transition 
probabilities. Here, benefit is defined as the total number of time units (months) spent by 
patients in the first state, i.e. PF state; which is mathematically equal to the total number of 
patients in PF state summed over the entire time horizon. Calculations of costs and benefits 
are done at discount rates of 3.5% and 5% each.  ICERs and Cost Effectiveness Acceptability 
Curves (CEACs) are obtained for time horizons of 15 and 20 years. Results at discount rates 
of 3.5% and 5% are presented in the Figures 6 and 7, respectively.  

 
The second approach has been adopted to gain better insight into the comparative 

assessment between the Weibull semi-markov method and the Multinomial-Dirichlet 
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Bayesian method. Expected TLOS in each state and respective 95% confidence intervals are 
calculated on the basis of transition probabilities simulated from their posterior distribution. 
Further, at utility values of 0.8 for PF state and 0.6 for progression state, QALYs are obtained 
using TLOS matrices at 3.5% and 5% discount rates. Estimated time-independent probability 
transition matrices (with 95% CIs), and expected TLOS matrices, for both treatment groups, 
are provided in Tables 10 and 11 respectively.  

 
4. Summary and Discussions 
 
4.1. CEA based on Weibull semi-markov model  
 

The estimated transition probability matrices based on Weibull semi-markov models 
for chemotherapy group and chemoimmunotherapy group exhibit notable differences in the 
probability of a patient in PF state to remain in the same state after a time interval t (>0). A 
resultant major impact of this finding from the CEA point of view is the significant difference 
between the expected TLOS in the first state, PF, of the two intervention groups. PF state has 
maximum utility value among the three states and contributes the most to gain in QALYs. 
From Table 6, for time horizons of both 15 years and 20 years, the expected TLOS in the PF 
state for the chemoimmunotherapy group is around 52 months as opposed to that of just 35 
months for the chemotherapy group; a difference of around 17 months. However, difference 
in the expected TLOS in the progression state between the two intervention groups is least 
prominent.  

 
QALY results in Table 9 show additional/ incremental gains of 0.84 (d = 3.5%) and 

0.94 (d = 5 %) QALYs for 15 years’ time horizon, and of 0.79 (d = 3.5%) and 0.90 (d = 5%) 
QALYs for 20 years’ time horizon, for the chemoimmunotherapy group over the 
chemotherapy group. At both discount rates, QALY incremental is lower and cost 
incremental is higher in case of 20 years’ time horizon, as compared to those for 15 years’ 
time horizon.  As a result, the ICERs for 20 years’ time horizon are on the higher side as 
compared to those for 15 years’ time horizon. For a fixed time horizon, ICERs corresponding 
to the discount rate of 3.5% are significantly higher than those corresponding to the discount 
rate of 5%. It can also be noted that the ICERs are more sensitive towards the choice of 
discount rates (keeping time horizon fixed), than towards the choice of time horizon (keeping 
discount rate fixed). ICERs corresponding to 5% discount rate are below the willingness to 
pay line of K = 13,000 GBP, while both ICERs corresponding to 3.5% discount rate are 
above that line. At the willingness to pay of 15,000 GBP or more for a unit increase in 
QALY, choosing chemoimmunotherapy over chemotherapy accounts for an optimal decision 
as all the four points A,B,C and D lie below the line corresponding to K = 15,000 GBP 
(Figure 5).  
 

 4.2.    CEA based on Multinomial- Dirichlet Bayesian model 
  

First approach: Optimal decisions derived from this approach find 
chemoimmunotherapy to be cost-effective over chemotherapy for willingness to pay 
parameter more than or equal to around 227,000 GBP, for both time horizons, and 3.5% 
discount rate (Figure 6). At 5% discount rate, chemoimmunotherapy is cost-effective over 
chemotherapy if a patient is willing to pay around 306,000 GBP for an additional gain of 
QALY, for both 15 years’ and 20 years’ time horizons (Figure 7). In this case also, ICERs are 
found to be significantly sensitive towards the choice of discount rates, but not towards the 
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choice of time horizon. These values of ICERs are strikingly and absurdly higher than those 
obtained from the first method. 

 
Second approach: As is apparent from the results reported in Table 11, the expected 

TLOS in the PF state are much higher and in progression state are unreliably low, raising 
speculations of wrong predictions. However, because of the drastic underestimation of TLOS 
in progression state and overestimation in PF state, the ICER comes out to be balanced. At 
3.5% discount rate and for 15 years time horizon, while the cost incremental is approximately 
11,560 GBP, QALY incremental is only 0.66, rendering ICER to around 17,515 GBP for one 
unit additional gain in QALY. 

 
Another notable difference in these two approaches is that utility values have not been 

used for calculation of benefits in the first approach. Also, in the first approach, using the 
function bcea( ), the benefit incremental is calculated as difference in the total number of 
months spent by patients in PF state for the two intervention groups; which is equivalent to 
expected TLOS incremental in months in PF state. Thus, the first approach completely 
ignores the gain in utility because of stay in progression state. Extremely high ICER from the 
first approach suggests that the difference in expected number months spent by patients in PF 
state is very small and does not capture the actual difference in gain in QALY between the 
two groups. 

 
 4.3.   Comparing predictions from the two models 
 

As the study involves long lifetime time horizons, accuracy of prediction of transitions 
is of utmost importance for conducting CEA. Remarkable differences in the results of 
QALYs and ICERs obtained from the two methods suggest that at least one of them may not 
be reliable. To compare and examine the predictions from the two methods, graphs of 
estimated proportion of patients in each state at different time points (virtual follow-up times) 
are plotted for both intervention groups (Figures 8 and 9). From the graphs in Figure 8, 
pertaining to first method, we can see that only few patients are expected to remain in PF 
state till around 150 months in chemotherapy group, and till 180 months in 
chemoimmunotherapy group. While based on the transition probabilities of the second 
method, it is apparent from the graphs in Figure 9 that more than 25% of patients are 
expected to live even after 180 months in both intervention groups. This is in clear contrast 
with the observed survival data and the contradiction can be visualized easily on comparing 
the original KM curves in Figure 1with the graphs in Figure 9. However, we can safely claim 
that the shapes of the graphs in Figure 8 conform to those of the original KM curves till the 
observed time period of 5 years (or 60 months). According to the KM curves, at the end of 60 
months, around 25% patients in chemotherapy group and 40% patients in 
chemoimmunotherapy group were free of progression (i.e. in PF state), while around 60% 
patients in chemotherapy group and more than 50% patients in chemoimmunotherapy group 
were still alive. Around same proportions are depicted by the patient proportion graphs based 
on Weibull time-inhomogeneous semi-markov model.  

 
Failure of the Multinomial-Dirichlet Bayesian model in this study can be attributed to 

the assumption of time-homogeneous (or constant) transition probabilities over the entire 
time horizon of the study. In a long-term study, transition probabilities from a state to other 
states are expected to change with time, especially when patients stay in the state for a longer 
duration. So, it is safe to conclude that this method, or any other method with the assumption 
of constant transition probabilities, should be avoided for CEA in long-term studies.  



 GURPRIT GROVER AND VISHAL DEO [Vol. 18, No. 1 42 

For further comparison, plots of estimated transition probabilities against time for the 
two methods are provided in Appendix-B (Figures B.1 and B.2).  

 
 5.      Conclusion 
 

We have applied two different methods for analyzing cost-effectiveness of 
chemoimmunotherapy over chemotherapy for treating patients with chronic lymphocytic 
leukaemia. Although results from both methods find chemoimmunotherapy to be cost 
effective over chemotherapy, values of QALYs and ICERs from the Weibull time-
inhomogeneous semi-markov model are found to be more reliable. To be precise, 
chemoimmunotherapy is cost effective over chemotherapy if the patients are willing to pay 
around 15,000 GBP or more for a unit additional gain in QALY. Also, it can be inferred from 
the results that administration of chemoimmunotherapy in place of chemotherapy is expected 
to result in a patient to stay for a much longer period (over a year on an average) in the PF 
state, which is the state of highest utility.  

 
For one-way sensitivity analysis of cost-effectiveness towards the choice of lifetime 

time horizon and the choice of discount rate, analyses are carried out for two different 
lifetime time horizons and at two different discount rates for cost and QALY calculations. 
Results from both models confirm that ICERs are more sensitive towards the choice of 
discount rate than the choice of lifetime time horizon. This suggests that discount rate should 
be chosen carefully after consulting relevant economic parameters of the region of study to 
avoid biased and misleading results. 

 
Since a reconstructed data has been used for the analyses, the data consists of only 

survival times for the events progression and death, and no information is available on 
covariates and factors affecting survivability. Inclusion of data on covariates, like 
pathological and clinical factors, demographic variables etc., will make such cost-
effectiveness studies more comprehensive and informative.  
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TABLES AND FIGURES 

Table 1: Summary of original data 
 

Total no. of patients enrolled: 817 Chemotherapy Group Chemoimmunotherapy Group 
Total assigned to group 409 408 
Lost to follow up 40 14 
No. of PFS events observed 227 162 
No. of death events observed 86 65 
Total follow-up period 5 year 5 years 
Source: Hallek et al. (2010) 
 
Table 2: Chemotherapy data fit Table 3: Chemoimmunotherapy data fit 

 
Distribution AIC Distribution AIC 
Exponential 2597.634 Exponential 3286.647 
Gamma 2597.693 Gamma 3281.338 
Weibull 2585.173 Weibull 3269.976 
Log-logistic 2600.635 Log-logistic 3287.074 
Log-normal 2620.277 Log-normal 3323.709 
Generalized Gamma 2596.533 Generalized Gamma 3280.407 

 

 
Table 4: Chemotherapy—estimated transition probabilities (and 95% confidence 
intervals)) 
 

At t = 1 month Progression  Free Progression Death 
Progression  Free 0.990 (0.984; 0.993) 0.006 (0.004; 0.009) 0.004 (0.003; 0.007) 

Progression 0 0.997 (0.995; 0.998) 0.003 (0.002; 0.005) 
Death 0 0 1 

At t= 50 months Progression  Free Progression Death 
Progression  Free 0.237 (0.192; 0.277) 0.348 (0.295; 0.399) 0.415 (0.365; 0.476) 

Progression 0 0.658 (0.574; 0.726) 0.342 (0.274; 0.426) 
Death 0 0 1 

At t= 180 months Progression  Free Progression Death 
Progression  Free 0.001 (0; 0.003) 0.101 (0.043; 0.174) 0.898 (0.824; 0.957) 

Progression 0 0.123 (0.05; 0.215) 0.877 (0.785; 0.950) 
Death 0 0 1 
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At t= 240 months Progression  Free Progression Death 
Progression  Free 0 0.041 (0.011; 0.093) 0.959 (0.907; 0.989) 

Progression 0 0.049 (0.012; 0.115) 0.951 (0.885; 0.988) 
Death 0 0 1 

 
Table 5: Chemoimmunotherapy—estimated transition probabilities (and 95% confidence 
intervals) 
 

At t= 1 month Progression  Free Progression Death 
Progression  Free 0.994 (0.99; 0.997) 0.003 (0.002; 0.005) 0.003 (0.001; 0.005) 

Progression 0 0.998 (0.996; 0.999) 0.002 (0.001; 0.004) 
Death 0 0 1 

At t= 50 months Progression  Free Progression Death 
Progression  Free 0.425 (0.371; 0.469) 0.253 (0.211; 0.304) 0.322 (0.277; 0.375) 

Progression 0 0.705 (0.613; 0.779) 0.295 (0.221; 0.387) 
Death 0 0 1 

At t= 180 months Progression  Free Progression Death 
Progression  Free 0.012 (0.003; 0.032) 0.138 (0.061; 0.230) 0.850 (0.748; 0.933) 

Progression 0 0.166 (0.063; 0.296) 0.834 (0.704; 0.937) 
Death 0 0 1 

At t= 240 months Progression  Free Progression Death 
Progression  Free 0.002 (0; 0.009) 0.065 (0.014; 0.143) 0.933 (0.853; 0.986) 

Progression 0 0.074 (0.013; 0.174) 0.926 (0.826; 0.987) 
Death 0 0 1 

 
Table 6: Expected total length of stay in months (and 95% confidence intervals) 

 
Chemotherapy 

15-Year Horizon=180 months Progression  Free Progression Death 

Progression  Free 34.80 (31.74; 38.08) 41.66 (31.80; 51.73) 103.54 (92.78; 114.25) 
Progression 0 85.14 (70.64; 99.43) 94.86 (80.57; 109.36) 

Death 0 0 180 
Chemotherapy 

20-Year Horizon=240 months Progression  Free Progression Death 

Progression  Free 34.81 (31.56; 38.45) 45.67 (33.24; 59.04) 159.52 (145.35; 73.57) 
Progression 0 90.01 (71.29; 108.45) 149.99 (131.55; 168.71) 

Death 0 0 240 
Chemoimmunotherapy 

15-Year Horizon=180 months Progression  Free Progression Death 

Progression  Free 51.92 (46.25; 57.51) 37.48 (27.47; 47.48) 90.60 (79.56; 102.46) 
Progression 0 93.52 (76.61; 108.83) 86.48 (71.17; 103.39) 

Death 0 0 180 
Chemoimmunotherapy 

20-Year Horizon=240 months Progression  Free Progression Death 

Progression  Free 52.24 (46.28; 59.46) 43.38 (30.90; 58.34) 144.38 (127.39; 160.44) 
Progression 0 100.40 (78.68; 122.97) 139.60 (117.03; 161.32) 

Death 0 0 240 
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Table 7: Mean costs (in GBP) for 15-year lifetime time horizon 

 

Cost Head 

Chemoimmunotherapy Chemotherapy 

In
cr

em
en

ta
l 

( d
=3

.5
%

)  

In
cr

em
en

ta
l 

(d
=5

%
) 

Mean total cost 
(d=3.5%) 

Mean total 
cost (d=5%) 

Mean total 
cost 

(d=3.5%) 

Mean total 
cost 

(d=5%) 
Mean cost of PFS 18645.28 18605.12 6650.10 6634.65 11995.18 11970.47 

Costs of rituximab 10113 10113 0 0 10113 10113 
Administration costs of 
rituximab 1224 1224 0 0 1224 1224 

Cost of fludarabine 2776 2776 2790 2790 −14 −14 
Administration costs of 
fludarabine 1109 1109 1115 1115 − 6 − 6 

Costs of 
cyclophosphamide 21 21 22 22 −1 −1 

Administration costs of 
cyclophosphamide 1109 1109 1115 1115 − 6 − 6 

*Cost of supportive care 
in PFS 1061.28 1021.12 741.10 725.65 320.18 295.47 

Cost of bone marrow 
transplantation 592 592 360 360 232 232 

Cost of blood 
transfusions 
 

640 640 507 507 133 133 

Mean cost of 
progression 7329.60 7178.44 8061.20 7893.01 − 731.60 − 714.57 

*Cost of supportive care 
in progression 1802.04 1764.88 1981.91 1940.56 − 179.87 − 175.68 

*Cost of second-line & 
subsequent therapy 5527.55 5413.56 6079.28 5952.45 − 551.73 − 538.89 

Mean total cost 25974.88 25783.57 14711.30 14527.66 11263.58 11255.90 
*Calculated and discounted with respect to the total length of stay in the given state 

 
Table 8: Mean costs (in GBP) for 20-year lifetime time horizon 

 

 

Cost Head 

Chemoimmunotherapy Chemotherapy 

In
cr

em
en

ta
l 

(d
=3

.5
%

) 

In
cr

em
en

ta
l 

(d
=5

%
) 

Mean total cost 
(d=3.5%) 

Mean total 
cost (d=5%) 

Mean total 
cost 

(d=3.5%) 

Mean total 
cost 

(d=5%) 
Mean cost of PFS 18648.36 18611.09 6650.10 6634.65 11998.26 11976.45 

Costs of rituximab 10113 10113 0 0 10113 10113 
Administration costs of 
rituximab 1224 1224 0 0 1224 1224 

Cost of fludarabine 2776 2776 2790 2790 −14 −14 
Administration costs of 
fludarabine 1109 1109 1115 1115 − 6 − 6 

Costs of 
cyclophosphamide 21 21 22 22 − 1 − 1 

Administration costs of 
cyclophosphamide 1109 1109 1115 1115 − 6 − 6 

*Cost of supportive care 
in PFS 1064.36 1027.09 741.10 725.65 323.26 301.45 

Cost of bone marrow 
transplantation 592 592 360 360 232 232 

Cost of blood 
transfusions 640 640 507 507 133 133 
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Mean cost of 
progression 8377.23 8160.49 8769.82 8547.54 − 392.60 − 387.05 

*Cost of supportive care 
in progression 2059.61 2006.33 2156.14 2101.49 − 96.52 − 95.16 

*Cost of second-line & 
subsequent therapy 6317.61 6154.16 6613.69 6446.06 − 296.07 − 291.89 

Mean Total cost 27025.58 26771.58 15419.92 15182.19 11605.66 11589.39 
*Calculated and discounted with respect to the total length of stay in the given state 

 
Table 9: QALYs and ICERs (in GBP/ QALY) 

 
State 15-year Horizon 20-year Horizon 

d = 3.5% d = 5% d = 3.5% d = 5% 
Gain in QALY for a patient in PF state at randomization−chemotherapy 

Progression Free 2.25 2.22 2.25 2.22 
Progression 2 1.97 2.18 2.14 

Death 0 0 0 0 
Total QALY 4.25 4.19 4.43 4.36 

Gain in QALY for a patient in PF state at randomization−chemoimmunotherapy 

Progression Free 3.28 3.20 3.29 3.22 
Progression 1.81 1.78 2.08 2.04 

Death 0 0 0 0 
Total QALY 5.09 4.98 5.37 5.26 

QALY Incremental 0.84 0.94 0.79 0.90 
Cost Incremental 11263.58 11255.90 11605.66 11589.39 

ICER 13409.02 11974.37 14690.71 12877.10 
 

Table 10: Bayesian model—estimated transition probabilities (with 95% confidence limits) 
 

Chemotherapy Progression Free Progression Death 
Progression Free 0.99 (0.977; 0.998) 0.01 (0.002; 0.023) 0 

Progression 0 0.794 (0.401; 0.0.993) 0.206(0.007; 0.599) 
Death 0 0 1 

Chemoimmunotherapy Progression Free Progression Death 
Progression Free 0.993 (0.982; 0.998) 0.007 (0.002; 0.018) 0 

Progression 0 0.798 (0.414; 0.993) 0.202 (0.007; 0.586) 
Death 0 0 1 

 

Table 11: Bayesian model—expected total length of stay in each state for 15-year lifetime 
time horizon (in months) 
 

Chemotherapy Progression Free Progression Death 
Progression Free 90.91 (72.97; 145.91) 10.17 (2.45; 56.33) 78.92 (61.29; 127) 

Progression 0 15.40 (3.30; 102.15) 164.60 (160.12; 178.33) 
Death 0 0 180 

Chemoimmunotherapy Progression Free Progression Death 
Progression Free 106.70 (85.76; 157.38) 8.54 (2.11; 45.74) 64.77 (44.11; 118.99) 

Progression 0 15.54 (3.32; 103.76) 164.46 (160.12; 178.29) 
Death 0 0 180 
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Figure 1: Kaplan-Meier curves used for data reconstruction 
 

 
 Source: Hallek et al. (2010)  

 
Figure 2: Kaplan-Meier curves from reconstructed data 
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Figure 3: Transition map between three states of the multi-state model 
 

  

 

Figure 4: Methodological structure 

 
 

Figure 5: Cost-effectiveness plane from the first method 
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Figure 6: Results of Bayesian cost-effectiveness analysis using BCEA (d = 3.5%) 
 

 

 
Figure 7: Results of Bayesian cost-effectiveness analysis using BCEA (d = 5%) 
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Figure 8: Proportion of patients expected to be in each state at different virtual follow-
up time points—Weibull time-inhomogeneous semi-markov model 
 

 
 

Figure 9: Proportion of patients expected to be in each state at different virtual follow-
up time points—Multinomial-Dirichlet Bayesian model 
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Appendix-A 
Figure A.1: Estimated survival functions of fitted models—Chemotherapy group 

 

 

Figure A.2: Estimated survival functions of fitted models—Chemoimmunotherapy 
group 
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Appendix-B 

Figure B.1: Transition probabilities plotted against time—Weibull semi-markov model 
 

 

Figure B.2: Transition probabilities plotted against time—Multinomial-Dirichlet 
Bayesian model 
 

 


