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Abstract 
 

This paper describes small area estimation (SAE) method that incorporates the 
sampling information when estimating small area proportions. This method is applied 
to estimate the incidence of food insecurity in different districts of rural areas of the 
state of Uttar Pradesh in India by linking data from the 2011-12 Household Consumer 
Expenditure Survey collected by the National Sample Survey Office of India and the 
2011 Population Census. A map showing district level inequalities in the distribution 
of food insecure households in Uttar Pradesh is also produced which provides an 
important information for analysis of spatial distribution of food insecurity in the 
state. 
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1. Introduction 

 
The food security is one of the highest priority of the Government of India to 

achieve the Sustainable Development Goal 2. In India, the Household Consumer 
Expenditure Survey (HCES) data collected by National Sample Survey Office 
(NSSO), Ministry of Statistics and Program Implementation, Government of India is 
used to generate the estimates of food insecurity indicators at state and national level 
for both rural and urban sectors separately. In spite of high importance, the estimates 
of food insecurity indicators are not available at local area or lower administrative 
unit (e.g. district) level in the country. Policy planners, researchers, government and 
public agencies are more and more interested in obtaining statistical summaries for 
smaller domains called small areas, created by cross classifying demographic and 
geographic variables such as small geographic areas (e.g. districts) or small 
demographic groups (e.g. age-sex groups, land category, social groups) or a cross 
classification of both. However, the sample sizes for such small areas in the existing 
large scale survey data (e.g. HCES in India) may be very small or even zero. The SAE 
methodology provides a viable and cost effective solution this problem of small 
sample sizes (Rao and Molina, 2015). The SAE methods produce reliable estimates 
for small areas with small sample sizes by borrowing strength from data of other 
areas, other time periods or both. 
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The SAE methods are generally based on model-based methods. The idea is to 
use statistical models to link the variable of interest with auxiliary information, e.g. 
Census and Administrative data, for the small areas to define model-based estimators 
for these areas. Based on the level of auxiliary information available, the models used 
in SAE are categorized as area level or unit level. Area-level modelling is typically 
used when unit-level data are unavailable, or, as is often the case, where model 
covariates (e.g. census variables) are only available in aggregate form. The Fay–
Herriot model (Fay and Herriot, 1979) is a widely used area level model in SAE that 
assumes area-specific survey estimates are available, and that these follow an area 
level linear mixed model with area random effects, Chandra (2013) and Chandra et al 
(2015). Standard SAE methods based on linear mixed models for continuous data can 
produce inefficient and sometime invalid estimates when the variable of interest is 
binary. If the variable of interest is binary and the target of inference is a small area 
proportion (e.g. for estimating food insecurity proportions), then the generalized 
linear mixed model with logit link function, also referred as the logistic linear mixed 
model (LLMM)) is generally used. An empirical plug-in predictor (EPP) under a 
LLMM is commonly used for the estimation of small area proportions, see for 
example, Chandra et al. (2012), Rao and Molina (2015) and references therein, 
although it is not the most efficient predictor under that model. An alternative to EPP 
is the empirical best predictor (EBP, Jiang, 2003). This predictor does not have a 
closed form and can only be computed via numerical approximation. This is generally 
not straightforward, and so national statistical agencies favour computation of an 
approximation like the EP.  

 
In this context, when only area level data are available, an area level version of 

a LLMM is used for SAE, see for example, Johnson et al. (2010), Chandra et al. 
(2011), Chandra et al. (2017), Chandra et al. (2018), Anjoy et al. (2020). Unlike the 
Fay-Herriot model, this approach implicitly assumes simple random sampling with 
replacement within each area and ignores the survey weights. Unfortunately, this has 
the potential to seriously bias the estimates if the small area samples are seriously 
unbalanced with respect to key population characteristics, and consequently use of the 
survey weights appears to be inevitable for if one wishes to generate representative 
small area estimates. Chandra et al. (2019) deliberated the idea of Korn and Graubard 
(1998) and model the survey weighted estimates as binomial proportions, with an 
“effective sample size” chosen to match the binomial variance to the sampling 
variance of the estimates. Using the effective sample size rather than the actual 
sample size allows for the varying information in each area under complex sampling. 
This article considers Chandra et al. (2019) approach to model survey weighted small 
area proportions under a LLMM and attempts to produce the district level estimates of 
proportion of food insecurity (also refers as food insecurity prevalence or incidence of 
food insecurity) for rural areas of Uttar Pradesh. Throughout this article, proportion of 
food insecurity, food insecurity prevalence and incidence of food insecurity will be 
used interchangeably. The state of Uttar Pradesh is the most populous state in the 
country and accounts for about 16.16 percent of India’s population. It covers 
243,290 square km, equal to 6.88% of the total area of the country. The analysis is 
restricted to rural areas of Uttar Pradesh because about 78% of the population of the 
State live in rural areas according to 2011 Population Census. 

 
Rest of the article is organized as follows. Next Section describes the data from 

the 2011-12 HCES of the NSSO and the 2011 Population Census that will be used to 
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estimate the district-wise proportion of household food insecurity for rural areas of 
Uttar Pradesh. Section 3 presents the SAE methodology. The empirical results and a 
map showing district-level inequalities in the distribution of food insecurity in rural 
Uttar Pradesh along with various diagnostic measures are reported in Section 4. 
Finally, Section 5 provides concluding remarks. 

 
2. Data and Model Specification 

 
This section introduces the basic sources of the data, i.e. the 2011-12 HCES of 

the NSSO for rural areas of Uttar Pradesh and the 2011 Population Census, used in 
SAE application reported in this paper. Data obtained from these sources are then 
used to estimate the proportion of food insecurity (or incidence of food insecurity) at 
district level in Uttar Pradesh. The NSSO conducts nationwide HCE surveys at 
regular intervals as part of its “rounds”, with the duration of each round normally 
being a year. The surveys are conducted through interviews of a representative sample 
of households selected randomly through a suitable sampling design and covering 
almost the entire geographical area of the country. The sampling design used in the 
2011-12 HCES is stratified multi-stage random sampling with districts as strata, 
villages as first stage units and households as second stage units. Although, these 
surveys provide reliable and representative state and national level estimates, they 
cannot be used directly to produce reliable estimates at the district level due to small 
sample sizes. Although district is a very important domain of the planning process in 
India, there are no surveys aimed at producing estimates at this level. The lack of 
robust and reliable outcome measures at the district level puts constraints on the 
design of targeted interventions and policy development. In the 2011-12 HCES, a 
total of 5916 households from the 71 districts of rural areas of Uttar Pradesh were 
surveyed. The district sample sizes ranged from 32 to 128 with average of 83. It is 
evident that these district level sample sizes are relatively small, with an average 
sampling fraction of 0.0002 (see Table 1). Due to this sample size limitation, it is 
challenging to generate reliable district level direct estimates with associated standard 
errors from this survey (Rao and Molina, 2015 and Chandra et al., 2011). This paper 
addresses this small sample size issue in the 2011-12 HCES data for producing 
district level estimates by adopting SAE approach and using auxiliary information 
from the 2011 Population Census to strengthen the limited sample data from the 
districts.  

 
Table 1: Summary of sample size, number of food insecure households in sample 
(sample count) and sampling fraction in 2011 HCES data 

Features Minimum Maximum Average Total 
Sample size 32 128 83 5915 
Sample count  10 111 53 3778 
Sampling fraction 0.00015 0.00032 0.00023 0.01647 

 
The target variable Y at the unit (household) level in the 2011-12 HCES survey 

data file is binary, corresponding to whether a household is food insecure (household 
consuming less than 2400 Kcal per day) or not. Average dietary energy intake per 
person per day in rural India is 2400 kilocalorie (Kcal), as defined by the Ministry of 
Health and Family Welfare, Government of India. The target is to estimate the 
proportion of rural households that are not getting satisfactory proportion of calories 
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consistently at small area level, also referred to as the incidence of food insecurity or 
proportion of household food insecurity. 

  
As noted above, the auxiliary variables used in this analysis are taken from the 

2011 Population Census of India. These auxiliary variables are only available as 
counts at district level, and so SAE methods based on area level small area models 
must be employed to derive the small area estimates. There are nearly 30 such 
auxiliary variables that are available for use in SAE analysis. We, therefore, carried 
out an exploratory data analysis to choose few auxiliary variables to determine 
appropriate covariates for SAE modelling. We also employed Principal Component 
Analysis (PCA) to derive composite scores for some selected groups of variables.  In 
particular, we did PCA separately on two groups of variables, all measured at district 
level and identified as S1 and S2 below. The first group (S1) consisted of the 
proportions of main workers by gender, proportions of main cultivators by gender and 
proportions of main agricultural labourers by gender. The first principal component 
(S11) for this first group explained 44% of the variability in the S1 group, while 
adding the second component (S12) increased explained variability to 69%. The 
second group (S2) consisted of proportions of marginal cultivator by gender and 
proportions of marginal agriculture labourers by gender. The first principal 
component (S21) for this second group explained 52% of the variability in the S2 
group, while adding the second component (S22) increased explained variability to 
90%.  

 
We fitted a generalised linear model using direct estimates of proportions of 

food insecure households as the response variable and the four principal component 
scores S11, S12, S21, S22 and few other selected auxiliary variables from the 2011 
Population Census as potential covariates. The final selected model included five 
covariates namely proportional scheduled caste population (SC), literacy rate (Lit), 
proportion of working population (WP), index for main worker population (S11) and 
index for marginal worker population (S21), with Akaike Information Criterion (AIC) 
value of 636.34. For this model, null deviance is 430.88 on 70 degrees of freedom and 
including the five independent has decreased the deviance to 294.72 on 65 degrees of 
freedom, a significant reduction in deviance. The residual deviance has reduced by 
136.16 with a loss of five degrees of freedom. We use Hosmer Lemeshow goodness 
of fit test to examine the fitted model (i.e. model fits depends on the difference 
between the model and the observed data). The p-value of Hosmer Lemeshow 
goodness is 0.9987. This indicates that model appears to fit well because we have no 
significant difference between the model and the observed data (i.e. the p-value is 
above 0.05). In this fitted model it can be noted that SC, Lit, WP, S11 
influence proportion of food insecure households positively, while S21 has a slightly 
negative effect. Further, the coefficients of SC (–1.3741), Lit (–1.10334), WP (–
5.0617), S11 (–0.385) and S21 (0.3123) are significant (p <0.001).  This final model 
was then used to produce district wise estimates of food insecurity.  
 
3. Small Area Estimation Methodology  

 
Let us assume that a finite population U of size N consists of  non-

overlapping and mutually exclusive small areas (or areas), and a sample s of size n is 
drawn from this population using a probability sampling method. We use a subscript d 

D
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to index quantities belonging to small area d. Let  and  be the population and 

sample of sizes  and  in area d, respectively such that , 

, and . We use subscript s and r respectively to 

denote quantities related to sample and non-sample parts of the population. Let  
denotes the value of the variable of interest for unit i  in area d. The 
variable of interest, with values , is binary (e.g.,  if household i in small 
area d is food insecure and 0 otherwise), and the aim is to estimate the small area 
population count, , or equivalently the small area proportion, 

, in area d. The standard direct estimator (denoted by Direct) for  is 

, where  is the survey weight for unit i in area d. 

The estimate of variance of direct estimator is 

 Under simple random 

sampling (SRS), , and , where  

denotes the sample count in area d. Similarly,  denotes the non-sample 

count in area d. If the sampling design is informative, this SRS-based version of 
Direct may be biased. If we ignore the sampling design, the sample count  in area 
d can be assumed to follow a Binomial distribution with parameters  and , i.e. 

. Similarly, for the non-sample count, . 
Further,  and  are assumed to be independent binomial variables with  being 
a common success probability. This leads to  and 

.  
 

Let  be the k-vector of covariates for area d from available from secondary 
data sources. Following Johnson et al. (2010), Chandra et al. (2011) and Anjoy et al. 
(2020), the model linking the probability  with the covariates  is the logistic 
linear mixed model (LLMM) of form 

 

,     (1) 
 

with . Here  is the k-

vector of regression coefficients and  is the area-specific random effect that capture 
the area dissimilarities. We assume that  is independent and normally distributed 
with mean zero and variance . The total population counts can be written as 

, where , the sample count is known whereas , the non-sample 
count, is unknown. Under (1), a plug-in empirical predictor (EPP) of  in area d is 
  

.     (2) 
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An estimate of the corresponding proportion in area d is .  It is 

obvious that in order to compute the small area estimates by equation (2), we require 
estimates of the unknown parameters  and . We use an iterative 
procedure that combines the Penalized Quasi-Likelihood estimation of  and with 
REML estimation of  to estimate unknown parameters.   

 
The model (1) is based on unweighted sample counts, and hence it assumes that 

sampling within areas is non-informative given the values of the contextual variables 
and the random area effects. The EPP predictor based on (2) therefore ignores the 
complex survey design used in HCES data. But, the sampling design used in HCES is 
informative. The precision of an estimate from a complex sample can be higher than 
for a simple random sample, because of the better use of population data through a 
representative sample drawn using a suitable sampling design. Following Chandra et 
al. (2019), we model the survey weighted probability estimate for an area as a 
binomial proportion, with an “effective sample size” that equates the resulting 
binomial variance to the actual sampling variance of the survey weighted direct 
estimate for the area. Hence, in our analysis we replaced the “actual sample size” and 
the “actual sample count” with the “effective sample size” and the “effective sample 
count” respectively. The mean squared error (MSE) estimation is followed from 
Chandra et al. (2019).  
 
4. Results and Discussions 

 
In this Section we first examine if sampling design in HCES sample data is 

informative. The sampling design is called informative design if the distribution in 
the sample is different from the distribution in the population. Such sampling design 
is also referred as non-ignorable design. The sampling design used in survey data 
collected must be incorporated in making the valid analytic inference about the 
population. For this purpose, we compute the effective sample sizes and the effective 
sample counts for the HCES data. Readers are suggested to refer Chandra et al. 
(2019) for details about calculation of the effective sample sizes and the effective 
sample counts.  

 

    
Figure 1: Effective sample size versus observed sample size (left) and effective 

sample count versus observed sample count (right) in 2011 HCES data  
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Figure 1 plots the effective sample sizes against the observed sample sizes (left 

side) and the effective sample counts against the observed sample counts (right side). 
It is evident from Figure 1 that the effective sample size is smaller than the observed 
sample sizes in almost all the districts. Similarly, the effective sample counts is lower 
than the observed sample counts. This indicates that the sampling design results in a 
loss in information, when compared with simple random sampling, in all the districts.  

 
Figure 2 presents the district-wise survey weighted and unweighted direct 

estimates of proportion of household food insecurity. It can be seen from Figure 2 that 
the unweighted direct estimates underestimate the proportion of food insecurity, in 
majority of the districts. These examples are evident that the sampling design is 
informative and therefore must be accounted in SAE. Following the idea of Korn and 
Graubard (1998) and Chandra et al. (2019), we use the effective sample sizes in 
replace of observed sample sizes to incorporate the sampling design of HCES data.  

 

 
Figure 2: District-wise survey weighted direct estimates versus unweighted direct 

estimates of proportion of food insecure households 
 

The estimates of proportion of food insecurity (or incidence of food insecurity) 
at district level for rural areas in the state of Uttar Pradesh is generated from the EPP 
method described in Section 3 using 5 significant covariates described in Section 2.  
Here we assume a binomial specification for the “effective” district level sample 
counts of food insecurity. Some important diagnostics measures are now discussed to 
examine the assumptions of the underlying models, and to validate the empirical 
performances of the EPP method. Generally, two types of diagnostics measures are 
advised in SAE applications. These are (i) the model diagnostics, and (ii) the 
diagnostics for the small area estimates. See Brown et al. (2001). The model 
diagnostics are applied to verify model assumptions. The other diagnostics are used to 
validate reliability of the model-based small area estimates of incidence of food 
insecurity generated by the EPP method. In LLMM (1) the random specific effects are 
assumed to have a normal distribution with mean zero and fixed variance. If the 
model assumptions are satisfied then the district level residuals are expected to be 
randomly distributed around zero. Histogram and normal probability (q-q) plot can be 
used to examine the normality assumption. Figure 3 shows the histogram (left plot), 
the normal probability (q-q) plot (centre plot) and the distribution of the district-level 
residuals (right plot). We also use the Shapiro-Wilk test (implemented using the 
shapiro.test() function in R) to examine the normality of the district random effects. 
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The Shapiro-Wilk test with p-value lower than 0.05 indicate that the data deviate from 
normality. Here, the value of Shapiro-Wilk test statistics is 0.988 with 71 degree of 
freedom and p-value 0.746.  In Figure 3, the district level residuals appear to be 
randomly distributed around zero. Further, histogram and the q-q plot also provide 
evidence in support of the normality assumption. The Shapiro-Wilk p-value is larger 
than 0.05 and hence, the district random effects are likely to be normally distributed. 

 
Following Chandra et al. (2011) and Brown et al. (2001), we use three 

commonly used measures for assessing the validity and the reliability of the model-
based estimates generated by the EPP: the bias diagnostic, the percent coefficient of 
variation (CV) diagnostic and the 95 percent confidence interval diagnostic. The first 
diagnostics assesses the validity and last two assess the improved precision of the 
model based small area estimates. We also implemented a calibration diagnostic 
where the EPP estimates are aggregated to higher level and compared with direct 
estimates at this level. The bias diagnostic is based on following idea. The direct 
estimates are unbiased estimates of the population values of interest (i.e. true values), 
their regression on the true values should be linear and correspond to the identity line. 
If model-based small area estimates are close to these true values the regression of the 
direct estimates on these model-based estimates should be similar. We therefore plot 
direct estimates (y-axis) vs. model-based small area estimates (x-axis) and we looked 
for divergence of the fitted least squares regression line from the line of equality.  

 

   
 
Figure 3: Histograms (left plot), normal q-q plots (centre plot) and distributions 

of the district-level residuals (right plot) 
 

Figure 4 provides a bias diagnostic plot, defined by plotting direct estimates (Y 
axis) against corresponding small area estimates generated by the EPP (X-axis) and 
testing for divergence of the fitted least squares regression line (dashed line) from the 
line of equality,  i.e. Y = X line (solid line). The bias diagnostic plot in Figure 4 clearly 
indicate that the EPP estimates are less extreme when compared to the direct 
estimates, demonstrating the typical SAE outcome of shrinking more extreme values 
towards the average. The value of R2 for the fitted regression line between the direct 
estimates and the EPP estimates is 95.6 per cent. The bias diagnostics indicates that 
the estimates generated by the EPP appear to be consistent with the direct estimates.  
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Figure 4: Bias diagnostic plot with y = x line (solid) and regression line (dotted) 

for proportion of food insecurity for rural areas in Uttar Pradesh: EPP 
estimates versus direct survey estimates. 

 
We now illustrate the second set of diagnostics to assess the extent to which the 

EPP estimates improve in precision compared to the direct estimates. The percent 
coefficient of variation (CV) is the estimated sampling standard error as a percentage 
of the estimate. Small area estimates with large CVs are considered unreliable. Table 
2 provides a summary of CVs of the direct estimates and the EPP estimates. Figure 5 
presents the District-wise values of CV for the direct and EPP methods. In one of the 
71 districts, smaller CV (2.16%) of direct estimate is due to extreme value of 
proportion. Sample size and sample count for this district are 64 and 58 respectively 
while and direct estimate of proportion of food insecurity is 0.967. Note that the 
effective sample size and effective sample count for this districts are 25 and 24 
respectively. In Table 2, we therefore presented the summary based on 70 districts 
(excluding one district extreme value of proportion). In further discussion we refer 
summary based on 70 districts only. The CVs of the direct estimates are larger than 
the EPP estimates.  

 
Table 2: Summary of area distributions of percentage coefficients of variation 

(CV, %) for the direct and EPP methods applied to HCES data 

Values 
Summary of 71 Districts Summary of 70 Districts 

Direct EPP Direct EPP 
Minimum 2.16 5.12 5.53 5.12 
Q1 8.97 7.90 9.06 7.99 
Mean 14.41 10.60 14.59 10.65 
Median 12.31 9.56 12.38 9.56 
Q3 12.31 9.56 12.38 9.56 
Maximum 45.52 24.29 45.52 24.29 

 
Table 2 and Figure 5 show that direct estimates of incidence food insecurity are 

unstable with CVs that vary from 5.53 to 45.52 % with average of 14.59 %. In 
contrast, the CV values of EPP range from 5.12 to 24.29% with average of 10.65%. 
The relative performance of the EPP as compared to the direct survey estimates 
improve with decreasing district specific observed sample sizes. The estimates 
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computed from the EPP are more reliable and provide a better indication of food 
insecurity incidence. The district-wise plot of the 95 % confidence intervals (CIs) 
generated by direct and EPP methods are displayed in Figure 6, which shows that the 
95% CIs for the direct estimates are wider than the 95% CIs for the EPP.  

 

 
Figure 5: District-wise percentage coefficient of variation (CV, %) for the direct 

(dotted line, o) and EPP (solid line, •) estimates for the food insecurity 
prevalence  in Uttar Pradesh 

 

 
Figure 6: District-wise 95 percentage nominal confidence interval (95% CI) for 

the direct (solid line) and EPP (thin line) methods. Direct (dotted 
point) and EPP estimates (dash point) for the food insecurity 
prevalence in Uttar Pradesh are shown in the 95% CI  

 
We inspect the aggregation property of the model-based district-level estimates 

generated by EPP at higher (e.g. State or Region) level. Let  and  denote the 
estimate of proportion of household food insecurity and population size for district d. 
The state-level estimate of the proportion of food insecure households is calculated as 

. The state of Uttar Pradesh is divided into Central, Eastern, 
Western and Southern regions, and calibration properties has been examined for these 
regions. State and regional level estimates of the proportion of food insecurity 
generated by the EPP is reported in Table 3. Comparing these with the corresponding 
direct estimates we see that the EPP estimates are very close to the direct estimates at 
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state level as well in each of the four regions. In Figure 7 we present a map showing 
the estimates of proportion of food insecurity in different districts in rural areas of 
Uttar Pradesh produced by the EPP method. This map provides the district-wise 
degree of inequality with respect to distribution of extent of food insecurity in rural 
areas of Uttar Pradesh. This map is supplemented by the results set out in Table 4, 
where we report the district-wise estimates along with CVs and 95 % confidence 
intervals generated by direct and EPP. The results indicate an east-west divide in the 
distribution of food insecurity. For example, in the western part of Uttar Pradesh there 
are many districts with low level of incidence of food insecurity. Similarly, in the 
eastern part and in the Bundelkhand region (north-east) we see districts with high 
incidence of food insecurity. This should prove useful for policy planners and 
administrators aiming to take effective financial and administrative decisions. 
 
Table 3: Aggregated level estimates of incidence of food insecurity generated by 

direct and EPP method in different regions in Uttar Pradesh. 

Estimator State Central Eastern Southern Western 
Direct 0.644 0.557 0.698 0.431 0.649 
EPP 0.646 0.565 0.695 0.455 0.650 

 
 

 
Figure 7: EPP estimates showing the spatial distribution of incidence of food 

insecurity by District in Uttar Pradesh 
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Table 4: Direct and EPP estimates along with 95 % confidence interval (95% CI) 
and percentage coefficient of variation (CV) of the incidence of food 
insecurity by District in rural areas of Uttar Pradesh  

District 

Direct EPP 
 

Estimate 
95 % CI   

Estimate 
95 % CI  

CV Lower Upper CV Lower Upper 
Saharanpur 0.641 0.488 0.794 11.90 0.637 0.514 0.760 9.65 
Muzaffarnagar 0.696 0.575 0.817 8.72 0.685 0.578 0.792 7.79 
Bijnor 0.667 0.523 0.811 10.81 0.675 0.559 0.791 8.59 
Moradabad 0.664 0.545 0.783 8.98 0.679 0.576 0.782 7.58 
Rampur 0.681 0.512 0.850 12.44 0.714 0.590 0.838 8.69 
Jyotiba Phule Nr 0.700 0.537 0.863 11.67 0.685 0.558 0.812 9.26 
Meerut 0.452 0.275 0.629 19.62 0.505 0.367 0.643 13.63 
Baghpat 0.480 0.191 0.769 30.12 0.538 0.363 0.713 16.29 
Ghaziabad 0.843 0.727 0.959 6.90 0.762 0.647 0.877 7.55 
Gautam B. Nr 0.486 0.232 0.740 26.17 0.553 0.389 0.717 14.87 
Bulandshahr  0.611 0.480 0.742 10.70 0.595 0.482 0.708 9.46 
Aligarh 0.516 0.337 0.695 17.37 0.551 0.414 0.688 12.42 
Hathras 0.356 0.165 0.547 26.82 0.429 0.287 0.571 16.53 
Mathura 0.685 0.514 0.856 12.45 0.666 0.539 0.793 9.56 
Agra 0.844 0.743 0.945 5.97 0.786 0.687 0.885 6.28 
Firozabad 0.698 0.519 0.877 12.83 0.679 0.550 0.808 9.51 
Etah 0.777 0.643 0.911 8.59 0.718 0.593 0.843 8.73 
Mainpuri 0.967 0.925 1.009 2.16 0.811 0.698 0.924 6.96 
Budaun 0.701 0.543 0.859 11.29 0.705 0.579 0.831 8.94 
Bareilly 0.585 0.427 0.743 13.50 0.627 0.500 0.754 10.12 
Pilibhit 0.842 0.733 0.951 6.46 0.776 0.659 0.893 7.54 
Shahjahanpur 0.673 0.502 0.844 12.72 0.668 0.540 0.796 9.56 
Kheri 0.465 0.306 0.624 17.12 0.506 0.376 0.636 12.82 
Sitapur 0.483 0.345 0.621 14.25 0.519 0.400 0.638 11.50 
Hardoi 0.626 0.496 0.756 10.35 0.627 0.512 0.742 9.18 
Unnao 0.608 0.452 0.764 12.85 0.588 0.462 0.714 10.68 
Lucknow 0.639 0.472 0.806 13.04 0.646 0.515 0.777 10.16 
Rae Bareli 0.647 0.527 0.767 9.30 0.637 0.531 0.743 8.32 
Farrukhabad 0.649 0.443 0.855 15.89 0.665 0.524 0.806 10.63 
Kannauj 0.776 0.625 0.927 9.71 0.700 0.563 0.837 9.76 
Etawah 0.279 0.105 0.453 31.22 0.401 0.252 0.550 18.63 
Auraiya 0.659 0.495 0.823 12.45 0.647 0.514 0.780 10.31 
Kanpur Dehat 0.483 0.265 0.701 22.60 0.506 0.354 0.658 14.99 
Kanpur Nagar 0.646 0.459 0.833 14.51 0.600 0.458 0.742 11.83 
Jalaun  0.550 0.368 0.732 16.57 0.529 0.392 0.666 12.96 
Jhansi 0.217 0.083 0.351 30.96 0.272 0.152 0.392 22.12 
Lalitpur 0.271 0.059 0.483 39.19 0.355 0.189 0.521 23.35 
Hamirpur 0.399 0.095 0.703 38.16 0.427 0.244 0.610 21.44 
Mahoba 0.282 0.025 0.539 45.52 0.364 0.187 0.541 24.29 
Banda 0.727 0.539 0.915 12.96 0.678 0.542 0.814 10.04 
Chitrakoot 0.432 0.165 0.699 30.95 0.481 0.310 0.652 17.82 
Fatehpur 0.489 0.345 0.633 14.76 0.486 0.364 0.608 12.52 
Pratapgarh 0.887 0.789 0.985 5.53 0.828 0.743 0.913 5.12 
Kaushambi 0.896 0.769 1.023 7.10 0.800 0.697 0.903 6.43 
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Allahabad  0.621 0.468 0.774 12.31 0.623 0.505 0.741 9.48 
BaraBanki 0.674 0.499 0.849 12.95 0.637 0.507 0.767 10.20 
Faizabad 0.584 0.356 0.812 19.49 0.610 0.463 0.757 12.05 
Ambedkar Nr 0.701 0.578 0.824 8.74 0.690 0.585 0.795 7.63 
Sultanpur 0.650 0.529 0.771 9.35 0.662 0.558 0.766 7.88 
Bahraich 0.740 0.583 0.897 10.60 0.739 0.622 0.856 7.93 
Shrawasti 0.819 0.672 0.966 8.96 0.768 0.642 0.894 8.19 
Balrampur 0.616 0.405 0.827 17.14 0.644 0.496 0.792 11.49 
Gonda 0.866 0.770 0.962 5.56 0.810 0.720 0.900 5.56 
Siddharthnagar 0.839 0.735 0.943 6.17 0.800 0.705 0.895 5.93 
Basti 0.839 0.737 0.941 6.05 0.791 0.695 0.887 6.05 
Sant Kabir Nr 0.823 0.697 0.949 7.68 0.799 0.699 0.899 6.23 
Mahrajganj 0.708 0.558 0.858 10.60 0.707 0.590 0.824 8.27 
Gorakhpur 0.787 0.690 0.884 6.19 0.783 0.692 0.874 5.81 
Kushinagar 0.696 0.573 0.819 8.87 0.727 0.620 0.834 7.37 
Deoria 0.790 0.664 0.916 7.98 0.788 0.687 0.889 6.40 
Azamgarh 0.593 0.470 0.716 10.41 0.626 0.518 0.734 8.65 
Mau 0.634 0.457 0.811 13.98 0.665 0.531 0.799 10.10 
Ballia 0.414 0.242 0.586 20.77 0.517 0.377 0.657 13.58 
Jaunpur 0.650 0.522 0.778 9.84 0.661 0.550 0.772 8.37 
Ghazipur 0.609 0.482 0.736 10.43 0.629 0.520 0.738 8.63 
Chandauli 0.650 0.476 0.824 13.40 0.660 0.531 0.789 9.75 
Varanasi 0.596 0.456 0.736 11.71 0.610 0.492 0.728 9.66 
Bhadohi 0.827 0.686 0.968 8.50 0.785 0.679 0.891 6.76 
Mirzapur 0.588 0.453 0.723 11.50 0.604 0.489 0.719 9.54 
Sonbhadra 0.629 0.466 0.792 12.94 0.632 0.501 0.763 10.36 
Kanshiram Nr 0.395 0.173 0.617 28.14 0.528 0.358 0.698 16.06 
Nr- Nagar 
 
5. Concluding Remarks  

 
In this paper we outlined a plug-in empirical predictor (EPP) for small area 

proportions and employed for estimating the district-wise incidence of food insecurity 
in rural areas of the state of Uttar Pradesh using the 2011-12 HCES data collected by 
the NSSO of India. The auxiliary variables used in this analysis were taken from the 
2011 Population Census. The effective sample sizes in place of the observed sample 
sizes were used to account for sampling design information of the 2011-12 HCES. 
The use of survey information through effective sample size leads to better 
representative and realistic estimates of incidence of food insecurity. The empirical 
results were also evaluated through several diagnostic measures and showed that the 
model-based SAE method defined by EPP provide significant gains in efficiency for 
generating district level estimates of proportion of food insecurity. Spatial map 
produced from the estimates generated by the EPP provides an evidence of inequality 
in distribution of incidence food insecurity across different districts in Uttar Pradesh. 
Availability of reliable district level estimates can definitely be useful for various 
Departments and Ministries in Government of India as well as International 
organizations for their policy research and strategic planning. These estimates will 
also be useful for budget allocation and to target welfare interventions by identifying 
the districts/regions with high food insecurity incidence. This application clearly 
demonstrates the advantage of using SAE technique to cope up the small sample size 
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problem in producing the cost effective and reliable disaggregate level estimates and 
confidence intervals from existing survey data by combining auxiliary information 
from different published sources with direct survey estimates.  
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