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Abstract
This article finds locally R-optimal designs for the gamma regression model having

two parameters using the inverse link function. The R-optimality criterion has been proposed
in the literature as an alternative criterion to the well-known D-optimality criterion when
the target is to minimize the volume of the confidence region for unknown parameters based
on the Bonferroni t-intervals. The optimality of the proposed designs is confirmed using the
corresponding equivalence theorem.
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1. Introduction

The Generalized Linear Model (GLM), introduced by Nelder and Wedderburn (1972)
is a generalized version of the ordinary linear regression model. The GLM has extensive
applications in various disciplines of science such as clinical trials, engineering, reliability,
survival analysis, image analysis, bioinformatics, economics, insurance, agriculture, and in-
dustry. For more details on the applications of GLM, one can refer to the articles of Bailey
et al. (1960), Myers and Montgomery (1997), de Jong and Heller (2008), Fox (2015), and
Goldburd (2016).

The Gamma regression model is a particular form of GLM. This model is useful when
the responses are continuous, non-negative, and right-skewed type. There are many instances
in the literature where the gamma model with an appropriate link function has been used
to analyze the real data. The data analysis of car insurance claims (pg. 296, McCullagh and
Nelder, 1989) and clotting times of blood (pg. 300, McCullagh and Nelder, 1989) was carried
out by fitting a first-order Gamma model with the natural link function. Anderson et al.
(2010) used a first-order gamma model with a natural link function to analyze the reaction
time taken by the elders to recognize words on a computer monitor.
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In experimental design, the target for constructing an optimal design is to make the
predicted response closer to the mean response over a certain region of interest based on
a specific criterion of interest. For the seminal work on optimal designs, one can refer to
the work of Kiefer and Wolfowitz (1959), and Kiefer (1959). In the case of GLM, finding
the optimal designs becomes a very difficult task because the optimal design depends on
the unknown values of the model parameters. In this context, Chernoff (1953) proposed an
alternative way of finding optimal design by starting with an initial guess value of parameter
values that can lead to locally optimal designs.

Ford et al. (1992) obtained a locally D-optimal design for the Gamma regression
model that involves a single factor. Subsequently, Burridge and Sebastiani(1992) found the
locally D-optimal design for the Gamma model with two factors but without an intercept.
Burridge and Sebastiani (1994) obtained the same D-optimal design for the Gamma regres-
sion model which involves multiple factors. Aminenjad and Jafari (2017) found Bayesian
A- and D-optimal designs for the Gamma model with inverse link function by considering
various prior distributions such as Normal, Half-normal, Gamma, and Uniform distributions.
Gaffke et al. (2019) provided analytical solutions to derive locally D- and A-optimal designs
for the Gamma models that involve intercept terms. They also established that the derived
designs are essentially a complete class of designs. Idais and Schwabe (2021) found locally
D- and A-optimal designs for the Gamma models having linear predictors without intercept.
Idais (2021) obtained D-, A-, and Kiefer’s Φk -criteria optimality for vertex-type designs.

In experimental design, the D-optimality criterion is the most widely used optimal
design criterion. The geometrical interpretation of the D-optimality criterion is to minimize
the volume of the confidence ellipsoid region of the unknown parameters (see Silvey, 1980).
However, computation of the D-optimal design for a regression model becomes simple if
the number of parameters associated with the given model is small, let’s say 2 or 3. In
this perspective, an alternative design known as the R-optimal design was introduced by
Dette (1997). This design aims at minimizing the volume of the Bonferroni t-intervals.
Recently, many authors have obtained R-optimal designs for different types of regression
models e.g., second-order response surface models (Liu et al., 2016), multi-factor models with
heteroscedastic errors (He and Yue, 2017), multi-response regression models with multiple
factors (Liu et al., 2022), and models with mixture experiments (Panda, 2021; Panda and
Sahoo, 2024). To the best of our knowledge, the construction of R-optimal designs for GLM
has not been discussed yet in the literature except for the work of Panda and Biswal (2024).
In this context, the present article aims to construct locally R-optimal designs for the Gamma
Model with two parameters including the intercept parameter.

The rest of the article is organized as follows. Section 2 provides the model specifica-
tion as well as brief details on locally R-optimal designs. In Section 3, we obtain R-optimal
designs for the Gamma model with two parameters. Finally, the article is concluded with
some discussions and conclusions in Section 4.
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2. Model specification and locally R-optimal designs

Let the response variables Y1, Y2, . . . , Yn are assumed to be independent gamma-
distributed random variables i.e., the probability density function (p.d.f.) of each Yi

p(yi; ν) = 1
Γ(ν)yν−1

i e−yi , yi, ν > 0, i = 1, 2, . . . , n . (1)

Here ν is the shape parameter associated with the p.d.f as specified in equation (1). It is
assumed to be known and the same for all yi. However the expected value i.e. µi depends
on the values of xi the covariate of x. The canonical link for the Gamma distribution given
by Equation (1) is the inverse link function defined as

ηi = ν

µi

, where ηi = g′(xi)β, i = 1, 2, . . . , n (2)

is the linear predictor. In Equation (2), g = [g1, g2, . . . , gp]′ is a p-dimensional vector valued
function defined on a domain set Ξ ⊂ Rt, t ≥ 1. Here the component functions g1, g2, . . . , gp

are assumed to be linearly independent, and β ∈ Rp are assumed to be a p-dimensional
vector consisting of unknown parameters associated with the model Equation (2).

In this case, the variance function of the gamma distribution is V ar(Y ) = ν−1µ2

therefore the intensity function at a particular point x∈ Ξ (see Atkison and Woods, 2015)
can be defined as

u0(x, β) =
V ar(Y )

(
dη

dµ

)2
−1

= ν(g′(x)β)−2. (3)

As the gamma-distributed responses are continuous and non-negative and thus for a given
experimental region Ξ we assume throughout that the parameter vector β satisfies

g′(x)β > 0 for all x ∈ Ξ . (4)

For the model Equation (2), the Fisher information matrix at x and β can be defined
as

M(x, β) = u(x, β)g(x)g′(x) where u(x, β) = (g′(x)β)−2. (5)
For more details about the assumption made in Equation (4) and the information matrix
defined in Equation (5), one can refer to the articles of Gaffke et al. (2019) and Idais et al.
(2021).

For a given parameter value, let us define gβ as the local regression function then

gβ(x) = (g′(x)β)−1g(x) forall x ∈ Ξ . (6)

Using Equation (6), the Fisher information matrix in model Equation (5) can be rewritten
as

M(x, β) = g(x)g′(x). (7)
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To obtain the R-optimal design for the model Equation (2), we consider the approximate
design ξ ∈ Ω (Ω the set of all approximate designs) of the form

ξ =
{

x1 . . . xs

w1 . . . ws

}
, wi(> 0) and

s∑
i=1

wi = 1 (8)

where x1, x2, . . . , xs ∈ Ξ are the ’s’ distinct points and wi is the weight associated with the
point xi for i = 1, 2, . . . , s. For the model Equation (2), the Fisher information matrix of a
design ξ at parameter vector β is defined as

M(ξ, β) =
s∑

i=1
wiM (xi, β). (9)

R-optimal design: A design ξ ∈ Ω with a non-singular information matrix M(ξ) is called
R-optimal for the model Equation (2) if it minimizes

ϕ(ξ) =
p∏

i=1
(M−1(ξ))ii =

p∏
i=1

e′
iM

−1(ξ)ei (10)

for all ξ ∈ Ω. Here ei denotes the ith unit vector in Rp, where p is the number of unknown
parameters associated with the model Equation (2). The necessary and sufficient conditions
for the R-optimality will be examined using the following equivalence theorem. For further
details, one can refer to the article of Dette (1997).

Theorem 1: For model Equation (2), let

φ(x, ξ) = g′(x)M−1(ξ)
( p∑

i=1

eie
′
i

eiM−1(ξ∗)e′
i

)
M−1(ξ)g(x). (11)

A design ξ∗ ∈ Ω is R-optimal if and only if

sup
x∈Ξ

φ(x, ξ∗) = p

with equality attained at the support points of ξ∗.

3. R-optimal designs

In this section, we obtain locally R-optimal designs for the model Equation (2) that
involves two unknown parameters including the intercept parameter. Thus the assumption
in Equation (4) becomes

g′(x)β = β0 + β1x > 0

for all x ∈ R. Here, we restrict our search to two-, three-, and four-support points design by
considering discrete values of β0 and β1 in the arbitrarily chosen intervals [0, 10] and [0, 100]
respectively.
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3.1. Design based on two support points

Let us consider a 2-point design ξ of the form

ξ =
{

a b
w 1 − w

}
, where 0 < w < 1. (12)

Theorem 2: The design ξ∗ that assigns a weight of w∗ to the point a∗ and 1 − w∗ to the
point b∗ in R [the numerical values of a∗, b∗ and w∗ are given in Table 1 (Appendix-I)] is an
R-optimal design.

Proof: Using Equation (9), the information matrix for the model Equation (2) at the two-
point design ξ will be

M(ξ) =


1 − w

(β0 + bβ1)2 + w

(β0 + aβ1)2
b(1 − w)

(β0 + bβ1)2 + aw

(β0 + aβ1)2

b(1 − w)
(β0 + bβ1)2 + aw

(β0 + aβ1)2
b2(1 − w)

(β0 + bβ1)2 + a2w

(β0 + aβ1)2

 .

The inverse of the information matrix M(ξ) is given by

M−1(ξ) =
[
m11 m12
m21 m22

]
(13)

where

m11 = −b2(β0 + aβ1)2 + (b − a)β0((a + b)β0 + 2abβ1)w
(a − b)2(−1 + w)w ,

m12 = m21 = b(β0 + aβ1)2 + (b − a)(−β2
0 + abβ2

1)w
(a − b)2(−1 + w)w ,

and m22 = −(β0 + aβ1)2 + (a − b)β1(2β0 + (a + b)β1)w
(a − b)2(−1 + w)w .

Using Equation (10), we obtain

ϕ(ξ) =

[{
−b2(β0 + aβ1)2 + (b − a)β0((a + b)β0 + 2abβ1)w

}
×
{

−(β0 + aβ1)2 + (a − b)β1(2β0 + (a + b)β1)w
}]

(a − b)4(−1 + w)2w2 . (14)

Now, the problem is to minimize the function ϕ(ξ) w.r.t a, b and w for given values of β0 and β1.
This is done using the “fminsearch” function of Matlab software and getting the optimal values
a∗, b∗ and w∗ by discrete values of β0 and β1 in the arbitrarily chosen intervals [0, 10] and [0, 100]
respectively. The numerical values a∗, b∗ and w∗ are given in Table 1 (Appendix-I).
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Next, by using Equation (13) we derive the quadratic form as specified in Equation (11)
which is as follows:

φ(x, ξ) = 1
(β0 + β1x)2

{
m11 + m12x + (b(β0 + aβ1)2 + (b − a)(−β2

0 + abβ2
1)w)(m12 + m22x)

−(β0 + aβ1)2 + (a − b)β1(2β0 + (a + b)β1)w

+ x

(
m12 + m22x + (b(β0 + aβ1)2 + (b − a)(−β2

0 + abβ2
1)w)(m11 + m12x)

−b2(β0 + aβ1)2 + (b − a)β0((a + b)β0 + 2abβ1)w

)}
.

(15)

Replacing the numerical values of a∗, b∗ and w∗ in Equation (15) and using the “fminsearch”
function of Matlab software we find sup

x∈R
φ(x, ξ∗) = 2. Thus the necessary and sufficient condition

of the equivalence theorem is established. This proves Theorem 2.

3.2. Design based on three support points

Let us consider a 3-point design ξ of the form

ξ =
{

a b c
w/2 1 − w w/2

}
, where 0 < w < 1. (16)

Theorem 3: The design ξ∗ that assigns a weight of w∗/2 to the point a∗, 1 − w∗ to the
point b∗, and w∗/2 to the point c∗ in R [the numerical values of a∗, b∗, c∗ and w∗ are given
in Table 2 (Appendix-I)] is an R-optimal design.

Proof: Using Equation (9), the information matrix for the model Equation (2) at the three-
point design ξ will be

M(ξ) =


1 − w

(β0 + bβ1)2 + w

2(β0 + aβ1)2 + w

2(β0 + cβ1)2
b(1 − w)

(β0 + bβ1)2 + aw

2(β0 + aβ1)2 + cw

2(β0 + cβ1)2

b(1 − w)
(β0 + bβ1)2 + aw

2(β0 + aβ1)2 + cw

2(β0 + cβ1)2
b2(1 − w)

(β0 + bβ1)2 + a2w

2(β0 + aβ1)2 + c2w

2(β0 + cβ1)2

 .

The inverse of the information matrix M (ξ) is given by

M−1(ξ) =
[
m∗

11 m∗
12

m∗
21 m∗

22

]
(17)

where

m∗
11 = α1

α2 + (α3 × α4)
,

m∗
12 = m∗

21 = α5

α2 + (α3 × α4)
,

and m∗
22 = 2α6

α2 + (α3 × α4)
,

with



2025] R-OPTIMAL DESIGNS FOR GAMMA REGRESSION MODEL 39

α1 = 2
(

− 2b2(1 − w)
(β0 + bβ1)2 + a2w

(β0 + aβ1)2 + c2w

(β0 + cβ1)2

)
,

α2 = −
(

− 2b(w − 1)
(β0 + bβ1)2 + aw

(β0 + aβ1)2 + cw

(β0 + cβ1)2

)2

,

α3 =
(

− 2(w − 1)
(β0 + bβ1)2 + w

(β0 + aβ1)2 + w

(β0 + cβ1)2

)
,

α4 =
(

− 2b2(w − 1)
(β0 + bβ1)2 + a2w

(β0 + aβ1)2 + c2w

(β0 + cβ1)2

)
,

α5 = 4
(

b(w − 1)
(β0 + bβ1)2 + 1

2

(
− a

(β0 + aβ1)2 − c

(β0 + cβ1)2

)
w

)
,

and α6 =
(

− 2(1 − w)
(β0 + bβ1)2 + w

(β0 + aβ1)2 + w

(β0 + cβ1)2

)
.

Using Equation (10), we obtain the function

ϕ(ξ) = 4(α3 × α4)
{α2 − (α3 × α4)}2 . (18)

Next, we need to minimize the function ϕ(ξ) w.r.t a, b, c and w for given values of β0 and
β1. This is achieved by using the “fminsearch” function of Matlab software and getting the
optimal values a∗, b∗, c∗ and w∗ by discrete values of β0 and β1 in the arbitrarily chosen
intervals [0, 10] and [0, 100] respectively. The numerical values a∗, b∗, c∗ and w∗ are given in
Table 2 (Appendix-I).

Next, by using Equation (17) we derive the quadratic form as specified in Equation
(11) which is as follows:

φ(x, ξ) = 1
(β0 + bβ1)2

m∗
11 + m∗

21x +
(

2(α7)(m∗
21 + m∗

22x)
(α6)

)

+ x

(
m∗

21 + m∗
22x +

(
2(α7)(m∗

11 + m∗
21x)

(α4)

))
(19)

with

α7 = b(w − 1)
(β0 + bβ1)2 + 1

2

(
− a

(β0 + aβ1)2 − c

(β0 + cβ1)2

)
w.

Replacing the numerical values of a∗, b∗, c∗ and w∗ in Equation (19) and using the “fmin-
search” function in Matlab software we find sup

x∈R
φ(x, ξ∗) = 2. Thus the necessary and

sufficient condition of the equivalence theorem is established. This proves Theorem 3.
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3.3. Design based on four support points

Let us consider a 4-point design ξ of the form

ξ =

a b c d

w
(1

2 − w
) (1

2 − w
)

w

 , where 0 < w < 1. (20)

Theorem 4: The design ξ∗ that assigns a weight of w∗ to the point a∗, (1/2) − w∗ to the
point b∗, (1/2) − w∗ to the point c∗ and w∗ to the point d∗ in R [the numerical values of a∗,
b∗, c∗, d∗ and w∗ are given in Table 3 (Appendix-I)] is an R-optimal design.

Proof: Using Equation (9), the information matrix for the model Equation (2) at the four-
point design ξ will be

M (ξ) =
[
λ1 λ2
λ2 λ3

]
where

λ1 =
1
2 − w

(β0 + bβ1)2 +
1
2 − w

(β0 + cβ1)2 + w

(β0 + aβ1)2 + w

(β0 + dβ1)2 ,

λ2 =
b
(1

2 − w
)

(β0 + bβ1)2 +
c
(1

2 − w
)

(β0 + cβ1)2 + aw

(β0 + aβ1)2 + dw

(β0 + dβ1)2 ,

and λ3 =
b2
(1

2 − w
)

(β0 + bβ1)2 +
c2
(1

2 − w
)

(β0 + cβ1)2 + a2w

(β0 + aβ1)2 + d2w

(β0 + dβ1)2 .

The inverse of the information matrix M (ξ) is given by

M−1(ξ) =
[
m+

11 m+
12

m+
21 m+

22

]
(21)

with

m+
11 = λ3

−(λ2)2 + (λ1 × λ3)
,

m+
12 = m+

21 = λ4

2{−(λ2)2 + (λ1 × λ3)}
,

and m+
22 = λ1

−(λ2)2 + (λ1 × λ3)
.

Using Equation (10), we obtain the function

ϕ(ξ) = λ1 × λ3

{(λ2)2 − (λ1 × λ3)}2 . (22)
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Now, the problem reduces to minimizing the function ϕ(ξ) w.r.t a, b, c, d and w for given
values of β0 and β1. This is achieved by using the “fminsearch” function of Matlab software
and getting the optimal values a∗, b∗, c∗, d∗ and w∗ by discrete values of β0 and β1 in the
arbitrarily chosen intervals [0, 10] and [0, 100] respectively. The numerical values a∗, b∗, c∗,
d∗ and w∗ are given in Table 3 (Appendix-I).

Next, by using Equation (21) we derive the quadratic form as specified in Equation
(11) which is as follows:

φ(x, ξ) = 1
(β0 + β1x)2

{
m+

11 + m+
12x + λ4(m+

12 + m+
22x)

2λ1

+ x
(
m+

12 + m+
22x + λ4(m+

11 + m+
12x)

2λ3

)} (23)

with λ4 = −2aw

(β0 + aβ1)2 + −2dw

(β0 + dβ1)2 + b(2w − 1)
(β0 + bβ1)2 + c(2w − 1)

(β0 + cβ1)2 .

Replacing the numerical values of a∗, b∗, c∗, d∗ and w∗ in Equation (23) and using the
“fminsearch” function of Matlab software we find sup

x∈R
φ(x, ξ∗) = 2. Thus the necessary and

sufficient condition of the equivalence theorem is established. This proves Theorem 4.

4. Discussion and conclusion

This article finds locally R-optimal designs for two parameters Gamma regression
model when the model is associated with inverse link function based on two-, three-, and
four-support point designs. The support points of the optimal designs and the weights
assigned to these points are calculated numerically using the “fminsearch” function of Matlab
software whereas the necessary and sufficient condition of R-optimality i.e. the equivalence
theorem is also established at the support points of the R-optimal design using “fminsearch”
function of Matlab software. A catalog of support points and the weight assigned to each
of the support points corresponding to R-optimal designs are listed in Table 1, Table 2, and
Table 3 (Appendix I). These Tables provide the solutions for only those values of β0 and β1
when the equivalence theorem is satisfied.

The present work considers three types of designs : (i) two-point designs (ii) three-
point designs where equal weights are assigned to one-pair of support points (iii) four-point
designs where equal weights are assigned to two-pair of support points. In all these cases,
we observe that the equivalence theorem does not hold for many discrete values of the
unknown parameters which indicates that the proposed designs are sensitive towards the
R-optimality criterion with the varying parameter choices. However, when we relax the
assumption of equal weights the optimal search criterion does not converge to any solution
as the problem becomes complicated with an increase in the number of unknown entities
(support points and weights). Therefore, more research work is required especially to propose
an alternative optimal search criterion that can converge to a finite solution that satisfies the
weight restriction as well. Nevertheless, the present work provides the necessary motivation
to find the solution of local R-optimal designs for GLM when the parameters take continuous
values.

For the two-support points design, we find that the support points lie in the third
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quadrant of the two-dimensional space. The values of the first coordinate and second coor-
dinate of the support points are approximately equal.

One can extend this idea to obtain R-optimal designs for the Gamma model with
more than two parameters.
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Appendix-I

Table 1: R-optimal design for Gamma regression model with two parameters
(Two support points)

β β0 = 1, β1 = 2 β0 = 1, β1 = 3 β0 = 1, β1 = 4 β0 = 1, β1 = 5
x
w

(
−0.5000 −0.4999
0.1057 0.8943

) (
−0.3333 −0.3333
0.3042 0.6958

) (
−0.2500 −0.2499
0.5512 0.4488

) (
−0.2000 −0.1999
0.6098 0.3092

)
β β0 = 1, β1 = 6 β0 = 1, β1 = 7 β0 = 1, β1 = 8 β0 = 1, β1 = 9
x
w

(
−0.1666 −0.1666
0.6084 0.3916

) (
−0.1428 −0.1428
0.6067 0.3933

) (
−0.1250 −0.1250
0.5672 0.4328

) (
−0.1111 −0.1111
0.5824 0.4176

)
β β0 = 1, β1 = 10 β0 = 1, β1 = 11 β0 = 1, β1 = 12 β0 = 1, β1 = 13
x
w

(
−0.1000 −0.0999
0.6891 0.3109

) (
−0.0909 −0.0909
0.6094 0.3906

) (
−0.0833 −0.0833
0.6905 0.3095

) (
−0.0769 −0.0769
0.6137 0.3863

)
β β0 = 1, β1 = 14 β0 = 1, β1 = 15 β0 = 2, β1 = 4 β0 = 2, β1 = 5
x
w

(
−0.0714 −0.0714
0.6344 0.3656

) (
−0.0666 −0.0666
0.6135 0.3865

) (
−0.5000 −0.4998
0.1058 0.8942

) (
−0.4000 −0.3999
0.2226 0.7774

)
β β0 = 2, β1 = 6 β0 = 2, β1 = 7 β0 = 2, β1 = 8 β0 = 2, β1 = 9
x
w

(
−0.3333 −0.3333
0.3043 0.6957

) (
−0.2857 −0.2856
0.1965 0.8035

) (
−0.2500 −0.2499
0.5512 0.4488

) (
−0.2222 −0.2222
0.5871 0.4129

)
β β0 = 2, β1 = 10 β0 = 2, β1 = 11 β0 = 2, β1 = 12 β0 = 2, β1 = 13
x
w

(
−0.2000 −0.1999
0.6098 0.3902

) (
−0.1818 −0.1818
0.6003 0.3997

) (
−0.1666 −0.1666
0.6148 0.3852

) (
−0.1538 −0.1538
0.6397 0.3603

)
β β0 = 2, β1 = 14 β0 = 2, β1 = 15 β0 = 3, β1 = 6 β0 = 3, β1 = 7
x
w

(
−0.1428 −0.1428
0.6067 0.3933

) (
−0.1333 −0.1333
0.6100 0.3900

) (
−0.5000 −0.4997
0.1058 0.8942

) (
−0.4285 −0.4285
0.1702 0.8298

)
β β0 = 3, β1 = 8 β0 = 3, β1 = 9 β0 = 3, β1 = 10 β0 = 3, β1 = 11
x
w

(
−0.3750 −0.3749
0.2920 0.7080

) (
−0.3333 −0.3333
0.3043 0.6957

) (
−0.3000 −0.2999
0.3204 0.6796

) (
−0.2727 −0.2727
0.6455 0.3545

)
β β0 = 3, β1 = 12 β0 = 3, β1 = 13 β0 = 3, β1 = 14 β0 = 3, β1 = 15
x
w

(
−0.2500 −0.2499
0.5512 0.4488

) (
−0.2307 −0.2307
0.5830 0.4170

) (
−0.2142 −0.2142
0.6218 0.3782

) (
−0.2000 −0.1999
0.6098 0.3902

)
β β0 = 4, β1 = 7 β0 = 4, β1 = 8 β0 = 4, β1 = 10 β0 = 4, β1 = 11
x
w

(
−0.5714 −0.5715
0.0837 0.9163

) (
−0.4999 −0.5000
0.1061 0.8939

) (
−0.4000 −0.3999
0.2226 0.7774

) (
−0.3636 −0.3636
0.2373 0.7627

)
β β0 = 4, β1 = 12 β0 = 4, β1 = 13 β0 = 4, β1 = 14 β0 = 4, β1 = 15
x
w

(
−0.3333 −0.3333
0.3043 0.6957

) (
−0.3076 −0.3076
0.3441 0.6559

) (
−0.2857 −0.2856
0.1965 0.8035

) (
−0.2666 −0.2666
0.5384 0.4616

)
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Table 1: Continued

β β0 = 5, β1 = 10 β0 = 5, β1 = 11 β0 = 5, β1 = 12 β0 = 5, β1 = 13
x
w

(
−0.5000 −0.4997
0.1058 0.8942

) (
−0.4545 −0.4544
0.0894 0.9106

) (
−0.4166 −0.4167
0.1951 0.8049

) (
−0.3846 −0.3846
0.3048 0.6952

)
β β0 = 5, β1 = 14 β0 = 5, β1 = 15 β0 = 5, β1 = 16 β0 = 5, β1 = 17
x
w

(
−0.3571 −0.3571
0.3731 0.6269

) (
−0.3333 −0.3333
0.3043 0.6957

) (
−0.3125 −0.3124
0.3168 0.6832

) (
−0.2941 −0.2941
0.3197 0.6803

)
β β0 = 5, β1 = 18 β0 = 5, β1 = 19 β0 = 5, β1 = 20 β0 = 6, β1 = 11
x
w

(
−0.2777 −0.2777
0.5890 0.4110

) (
−0.2631 −0.2631
0.6598 0.3402

) (
−0.2500 −0.2499
0.5512 0.4488

) (
−0.5454 −0.5454
0.0680 0.9320

)
β β0 = 6, β1 = 12 β0 = 6, β1 = 13 β0 = 6, β1 = 14 β0 = 6, β1 = 15
x
w

(
−0.5000 −0.4997
0.1058 0.8942

) (
−0.4615 −0.4615
0.1378 0.8622

) (
−0.4285 −0.4285
0.1702 0.8298

) (
−0.3999 −0.4000
0.2226 0.7774

)
β β0 = 6, β1 = 16 β0 = 6, β1 = 17 β0 = 6, β1 = 18 β0 = 6, β1 = 19
x
w

(
−0.3750 −0.3749
0.2920 0.7080

) (
−0.3529 −0.3528
0.2523 0.7477

) (
−0.3333 −0.3333
0.3043 0.6957

) (
−0.3158 −0.3157
0.3279 0.6721

)
β β0 = 6, β1 = 20 β0 = 7, β1 = 12 β0 = 7, β1 = 13 β0 = 7, β1 = 14
x
w

(
−0.3000 −0.2999
0.3204 0.6796

) (
−0.5833 −0.5820
0.0341 0.9659

) (
−0.5384 −0.5384
0.0428 0.9572

) (
−0.5000 −0.4997
0.1058 0.8942

)
β β0 = 7, β1 = 16 β0 = 7, β1 = 17 β0 = 7, β1 = 18 β0 = 7, β1 = 19
x
w

(
−0.4375 −0.4374
0.2406 0.7594

) (
−0.4117 −0.4117
0.2248 0.7752

) (
−0.3888 −0.3888
0.2329 0.7671

) (
−0.3684 −0.3684
0.2640 0.7360

)
β β0 = 7, β1 = 20 β0 = 8, β1 = 14 β0 = 8, β1 = 15 β0 = 8, β1 = 16
x
w

(
−0.3499 −0.3500
0.3458 0.6542

) (
−0.5714 −0.5715
0.0837 0.9163

) (
−0.5333 −0.5332
0.0423 0.9577

) (
−0.4999 −0.5000
0.1061 0.8939

)
β β0 = 8, β1 = 19 β0 = 8, β1 = 20 β0 = 9, β1 = 16 β0 = 9, β1 = 17
x
w

(
−0.4210 −0.4211
0.1934 0.8066

) (
−0.4000 −0.3999
0.2226 0.7774

) (
−0.5625 −0.5624
0.1161 0.8839

) (
−0.5294 −0.5294
0.0694 0.9306

)
β β0 = 9, β1 = 18 β0 = 9, β1 = 19 β0 = 9, β1 = 20 β0 = 10, β1 = 19
x
w

(
−0.5000 −0.4997
0.1058 0.8942

) (
−0.4737 −0.4733
0.1565 0.8435

) (
−0.4497 −0.4525
0.8914 0.1086

) (
−0.5263 −0.5261
0.0598 0.9402

)
β β0 = 10, β1 = 20 - - -
x
w

(
−0.5000 −0.4997
0.1058 0.8942

)
- - -



46 M.K. PANDA, T.K. BISWAL AND V.K. GUPTA [Vol. 23, No. 1

Table 2: R-optimal design for Gamma regression model with two parameters
(Three support points)

β β0 = 1, β1 = 1 β0 = 1, β1 = 3 β0 = 1, β1 = 4
x
w

(
−0.9998 −0.9791 −1.0001
0.4588 0.0824 0.4588

) (
−0.2966 −0.3332 −0.3333
0.3704 0.2592 0.3704

) (
2.3673 −0.2498 −0.2500
0.1827 0.3646 0.1827

)
β β0 = 1, β1 = 5 β0 = 1, β1 = 6 β0 = 1, β1 = 7
x
w

(
−0.1997 −0.2000 −0.5475
0.4745 0.0510 0.4745

) (
−0.1664 −0.1667 −3.0330
0.4474 0.1052 0.4474

) (
−0.1427 −0.1428 −1.9328
0.4364 0.1272 0.4364

)
β β0 = 1, β1 = 14 β0 = 1, β1 = 15 β0 = 2, β1 = 1
x
w

(
−0.9991 −0.9072 −1.0008
0.3528 0.2944 0.3528

) (
−0.0666 −0.0666 −0.4346
0.3194 0.3403 0.3194

) (
4.1382 −1.9996 −2.0001
0.2301 0.5398 0.2301

)
β β0 = 2, β1 = 2 β0 = 2, β1 = 3 β0 = 2, β1 = 6
x
w

(
−0.9998 −0.9791 −1.0001
0.4588 0.0824 0.4588

) (
−0.3689 −0.6666 −0.6667
0.2737 0.4526 0.2737

) (
−0.3027 −0.3333 −0.3333
0.3641 0.2718 0.3641

)
β β0 = 2, β1 = 7 β0 = 2, β1 = 8 β0 = 2, β1 = 9
x
w

(
1.2836 −0.2857 −0.2857
0.2417 0.5166 0.2417

) (
2.3673 −0.2498 −0.2500
0.2827 0.4346 0.2827

) (
2.4172 −0.2221 −0.2222
0.1870 0.6260 0.1870

)
β β0 = 2, β1 = 10 β0 = 2, β1 = 12 β0 = 2, β1 = 14
x
w

(
−0.1999 −0.2000 −2.2390
0.4746 0.0508 0.4746

) (
−0.1666 −0.1666 −2.1437
0.4169 0.1662 0.4169

) (
−0.1428 −0.1428 −1.9329
0.4364 0.1272 0.4364

)
β β0 = 3, β1 = 1 β0 = 3, β1 = 2 β0 = 3, β1 = 3
x
w

(
−0.9973 −2.9995 −3.0002
0.2611 0.4778 0.2611

) (
−1.4997 −0.3850 −1.5002
0.1797 0.6406 0.1797

) (
−0.9991 −0.9073 −1.0008
0.3528 0.2944 0.3528

)
β β0 = 3, β1 = 4 β0 = 3, β1 = 5 β0 = 3, β1 = 8
x
w

(
−0.7501 −0.4096 −0.7498
0.4127 0.1746 0.4127

) (
−0.6063 −0.5995 −0.6004
0.3365 0.3270 0.3365

) (
3.8301 −0.3707 −0.3753
0.0732 0.8536 0.0732

)
β β0 = 3, β1 = 9 β0 = 3, β1 = 11 β0 = 3, β1 = 12
x
w

(
−0.2966 −0.3332 −0.3334
0.3704 0.2592 0.3704

) (
1.4888 −0.2727 −0.2727
0.2294 0.5412 0.2294

) (
2.3673 −0.2499 −0.2500
0.1827 0.6346 0.1827

)
β β0 = 3, β1 = 13 β0 = 3, β1 = 14 β0 = 3, β1 = 15
x
w

(
2.0636 −0.2306 −0.2308
0.2044 0.5912 0.2044

) (
2.4503 −0.2142 −0.2143
0.1891 0.6218 0.1891

) (
−0.1999 −0.2000 −2.239
0.4746 0.0508 0.4746

)
β β0 = 4, β1 = 1 β0 = 4, β1 = 2 β0 = 4, β1 = 3
x
w

(
−3.1435 −4.0012 −3.9995
0.2141 0.5718 0.2141

) (
13.4070 −1.9995 −2.0001
0.2284 0.5432 0.2284

) (
−1.3334 −0.2232 −1.3332
0.2226 0.5480 0.2226

)
β β0 = 4, β1 = 4 β0 = 4, β1 = 5 β0 = 4, β1 = 6
x
w

(
−0.9986 −0.9514 −1.0013
0.3523 0.2954 0.3523

) (
−0.7998 −0.1396 −0.8001
0.3622 0.2756 0.3622

) (
−0.3687 −0.6669 −0.6664
0.2770 0.4460 0.2770

)
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Table 2: Continued

β β0 = 4, β1 = 10 β0 = 4, β1 = 11 β0 = 4, β1 = 12
x
w

(
1.4528 −0.3996 −0.4002
0.2719 0.4562 0.2719

) (
1.1967 −0.3632 −0.3639
0.3046 0.3908 0.3046

) (
−0.2966 −0.3328 −0.3339
0.3704 0.2592 0.3704

)
β β0 = 4, β1 = 13 β0 = 4, β1 = 14 β0 = 4, β1 = 15
x
w

(
1.2290 −0.3076 −0.3077
0.2352 0.5296 0.2352

) (
1.2836 −0.2857 −0.2857
0.2917 0.5166 0.2917

) (
1.1672 −0.2662 −0.2668
0.2263 0.5474 0.2263

)
β β0 = 5, β1 = 1 β0 = 5, β1 = 2 β0 = 5, β1 = 3
x
w

(
−4.9990 8.9742 −5.0010
0.4527 0.0946 0.4527

) (
4.3431 −2.5042 −2.4998
0.0265 0.9470 0.0265

) (
−1.6668 0.4464 −1.6664
0.2989 0.4022 0.2989

)
β β0 = 5, β1 = 4 β0 = 5, β1 = 5 β0 = 5, β1 = 6
x
w

(
−1.2500 −1.2498 −2.2318
0.1785 0.6430 0.1785

) (
−0.9985 −0.9465 −1.0001
0.3517 0.2966 0.3517

) (
−0.7045 −0.8334 −0.8332
0.3373 0.3254 0.3373

)
β β0 = 5, β1 = 7 β0 = 5, β1 = 8 β0 = 5, β1 = 13
x
w

(
−0.7141 0.3424 −0.7141
0.4088 0.1824 0.4088

) (
0.3565 −0.6072 −0.6256
0.0349 0.9301 0.0349

) (
1.3649 −0.3770 −0.3848
0.0288 0.9423 0.02888

)
β β0 = 5, β1 = 14 β0 = 5, β1 = 15 β0 = 6, β1 = 1
x
w

(
1.3238 −0.3570 −0.3571
0.2666 0.4668 0.2666

) (
−0.3030 −0.3332 −0.3334
0.3660 0.3680 0.3660

) (
−5.9967 8.2075 −6.0032
0.4825 0.0350 0.4825

)
β β0 = 6, β1 = 2 β0 = 6, β1 = 3 β0 = 6, β1 = 4
x
w

(
−0.9973 −2.9996 −3.0001
0.2611 0.4778 0.2611

) (
4.1383 −1.9994 −2.0002
0.2289 0.5422 0.2289

) (
−1.4997 −0.3850 −1.5002
0.1796 0.6408 0.1796

)
β β0 = 6, β1 = 6 β0 = 6, β1 = 7 β0 = 6, β1 = 8
x
w

(
−0.9994 −0.9073 −1.0005
0.3528 0.2944 0.3528

) (
−0.8572 −0.8570 −1.7236
0.3553 0.2894 0.3553

) (
−0.7501 0.4096 −0.7498
0.4127 0.1746 0.4127

)
β β0 = 6, β1 = 9 β0 = 6, β1 = 10 β0 = 6, β1 = 13
x
w

(
−0.3687 −0.6664 −0.6668
0.2770 0.4460 0.2770

) (
0.6068 −0.5995 −0.6004
0.3365 0.3270 0.3365

) (
1.9172 −0.4613 −0.4615
0.1120 0.7760 0.1120

)
β β0 = 6, β1 = 15 β0 = 7, β1 = 1 β0 = 7, β1 = 2
x
w

(
1.4524 −0.3994 −0.4003
0.2719 0.4562 0.2719

) (
−6.9988 0.7763 −7.0011
0.4372 0.1256 0.4372

) (
0.9603 −3.5000 −3.5000
0.3192 0.3616 0.3192

)
β β0 = 7, β1 = 3 β0 = 7, β1 = 4 β0 = 7, β1 = 5
x
w

(
4.2596 −2.3290 −2.3333
0.0538 0.8924 0.0538

) (
−0.2754 −1.6012 −1.7518
0.0119 0.9762 0.0119

) (
−1.3999 1.2023 −1.4000
0.4997 0.0006 0.4997

)
β β0 = 7, β1 = 6 β0 = 7, β1 = 7 β0 = 7, β1 = 8
x
w

(
−0.2672 −1.1666 −1.1666
0.1937 0.6126 0.1937

) (
−0.9993 −0.9072 −1.0006
0.3528 0.2944 0.3528

) (
−0.8048 −0.8752 −1.3642
0.2562 0.4848 0.2562

)
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Table 2: Continued

β β0 = 7, β1 = 9 β0 = 7, β1 = 10 β0 = 7, β1 = 11
x
w

(
−0.7778 −0.1762 −0.7776
0.3684 0.2632 0.3684

) (
−0.6997 0.1970 −0.7002
0.3791 0.2418 0.3791

) (
1.0681 −0.6361 −0.6364
0.1999 0.6002 0.1999

)
β β0 = 7, β1 = 13 β0 = 7, β1 = 15 β0 = 8, β1 = 1
x
w

(
1.8182 −0.2227 −0.5385
0.0001 0.9998 0.0001

) (
−0.4666 −0.3031 −0.4666
0.3535 0.2930 0.3535

) (
−7.9959 4.9336 −8.0040
0.2500 0.5000 0.2500

)
β β0 = 8, β1 = 2 β0 = 8, β1 = 3 β0 = 8, β1 = 4
x
w

(
−3.1435 −3.9975 −4.0009
0.2142 0.5716 0.2142

) (
−2.6585 −1.2272 −2.6747
0.1341 0.7318 0.1341

) (
4.1382 −2.0003 −1.9998
0.2289 0.5422 0.2289

)
β β0 = 8, β1 = 5 β0 = 8, β1 = 6 β0 = 8, β1 = 8
x
w

(
−1.5998 −1.0041 −1.6001
0.2402 0.5196 0.2402

) (
−1.3334 −0.2232 −1.3332
0.2260 0.5480 0.2260

) (
−0.9983 −0.9380 −1.0016
0.3460 0.3080 0.3460

)
β β0 = 8, β1 = 9 β0 = 8, β1 = 10 β0 = 8, β1 = 11
x
w

(
−0.8892 −0.8883 −1.7513
0.2902 0.4196 0.2902

) (
−0.7998 0.1396 −0.8001
0.3621 0.2758 0.3621

) (
−0.7271 0.1861 −0.7274
0.3672 0.2256 0.3672

)
β β0 = 8, β1 = 12 β0 = 8, β1 = 13 β0 = 9, β1 = 1
x
w

(
−0.3687 −0.6669 −0.6664
0.2770 0.4460 0.2770

) (
1.3602 −0.6118 −0.6158
0.1059 0.7882 0.1059

) (
−9.0008 3.9228 −8.9991
0.4933 0.0135 0.4933

)
β β0 = 9, β1 = 2 β0 = 9, β1 = 3 β0 = 9, β1 = 4
x
w

(
−0.6459 −4.4982 −4.5003
0.1327 0.7346 0.1327

) (
−0.9973 −2.9958 −3.0022
0.2617 0.4766 0.2617

) (
4.6884 −2.2488 −2.2501
0.1033 0.7934 0.1033

)
β β0 = 9, β1 = 5 β0 = 9, β1 = 6 β0 = 9, β1 = 7
x
w

(
−0.5318 −1.7996 −1.8001
0.2556 0.4888 0.2556

) (
−1.4998 −1.4731 −1.5001
0.1908 0.6184 0.1908

) (
−0.8256 −1.2855 −1.2858
0.2492 0.5016 0.2492

)
β β0 = 9, β1 = 8 β0 = 9, β1 = 9 β0 = 9, β1 = 10
x
w

(
−0.9108 −1.1170 −1.1263
0.1460 0.7080 0.1460

) (
−0.9988 −0.9072 −1.0011
0.3528 0.2944 0.3528

) (
−0.9000 −0.8999 −1.1354
0.2253 0.5494 0.2253

)
β β0 = 9, β1 = 11 β0 = 9, β1 = 12 β0 = 9, β1 = 13
x
w

(
−0.8180 1.3889 −0.8183
0.3722 0.2552 0.3722

) (
−0.7501 0.4096 −0.7498
0.4127 0.1746 0.4127

) (
−0.6116 −0.6921 −0.6924
0.3537 0.2926 0.3537

)
β β0 = 9, β1 = 15 β0 = 10, β1 = 1 β0 = 10, β1 = 2
x
w

(
0.6063 −0.5999 −0.6000
0.3364 0.3272 0.3364

) (
−9.9992 −0.8220 −10.0002
0.2986 0.4028 0.2986

) (−4.9990 8.9742 −5.0009
0.4528 0.0944 0.4528

)
β β0 = 10, β1 = 3 β0 = 10, β1 = 4 β0 = 10, β1 = 5
x
w

(
−3.3219 −4.5466 −3.3447
0.4872 0.0256 0.4872

) (
3.8099 −2.4494 −2.5000
0.0001 0.9998 0.0001

) (
4.1382 −1.9993 −2.0002
0.2296 0.5408 0.2296

)
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Table 2: Continued

β β0 = 10, β1 = 6 β0 = 10, β1 = 7 β0 = 10, β1 = 8
x
w

(
−1.6668 −0.4464 −1.6665
0.2989 0.4022 0.2989

) (
−1.1727 −1.4280 −1.4296
0.3997 0.2006 0.3997

) (
−1.2500 −1.2498 −2.2318
0.1785 0.6430 0.1785

)
β β0 = 10, β1 = 9 β0 = 10, β1 = 10 β0 = 10, β1 = 11
x
w

(
−0.6269 −1.1046 −1.1122
0.1294 0.7412 0.1294

) (
−0.9985 −0.9561 −1.0013
0.3678 0.2644 0.3678

) (
−0.4497 −0.9093 −0.9080
0.2630 0.4740 0.2630

)
β β0 = 10, β1 = 12 β0 = 10, β1 = 13 β0 = 10, β1 = 14
x
w

(
−0.7045 −0.8334 −0.8332
0.3373 0.3254 0.3373

) (
−0.7690 0.2041 −0.7693
0.3732 0.2536 0.3732

) (
−0.7141 0.3424 −0.7144
0.4088 0.1824 0.4088

)
β β0 = 10, β1 = 15 β0 = 10, β1 = 16 β0 = 10, β1 = 17
x
w

(
−0.3687 −0.6665 −0.6667
0.2759 0.4482 0.2759

) (
−0.9998 −0.9791 −1.0001
0.4588 0.0824 0.4588

) (
−0.9998 −0.9791 −1.0001
0.4588 0.0824 0.4588

)
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Table 3: R-optimal design for Gamma regression model with two parameters
(Four support points)

β β0 = 1, β1 = 8 β0 = 1, β1 = 10
x
w

(
−0.1251 1.4191 −0.1249 0.4328
0.1328 0.3672 0.3672 0.1328

) (
−0.1000 0.6989 −0.0999 0.4254
0.3494 0.1506 0.1506 0.3494

)
β β0 = 1, β1 = 11 β0 = 2, β1 = 3
x
w

(
0.1024 1.2526 −0.0909 −0.0909
0.2028 0.2972 0.2972 0.2028

) (
−0.6668 1.5448 −0.6663 1.0896
0.1767 0.3233 0.3233 0.1767

)
β β0 = 2, β1 = 9 β0 = 2, β1 = 15
x
w

(
0.3407 1.3105 −0.2221 −0.2222
0.2319 0.2681 0.2681 0.2319

) (
−0.1333 0.9882 −0.1333 0.0713
0.1449 0.3551 0.3551 0.1449

)
β β0 = 2, β1 = 16 β0 = 2, β1 = 17
x
w

(
−0.1250 1.4191 −0.1249 0.4328
0.1327 0.3673 0.3673 0.1327

) (
−0.1176 1.0332 −0.1176 0.3824
0.2506 0.2494 0.2494 0.2506

)
β β0 = 2, β1 = 20 β0 = 3, β1 = 18
x
w

(
−0.1000 0.6989 −0.0999 0.4254
0.3494 0.1506 0.1506 0.3494

) (
−0.1450 0.7336 −0.1576 −0.1669
0.0159 0.4841 0.4841 0.0159

)
β β0 = 3, β1 = 26 β0 = 3, β1 = 30
x
w

(
−0.1154 0.8000 −0.1153 0.3216
0.2307 0.2693 0.2693 0.2307

) (
−0.0999 0.6989 −0.1000 0.4254
0.3495 0.1505 0.1505 0.3495

)
β β0 = 3, β1 = 32 β0 = 4, β1 = 6
x
w

(
−0.0937 1.0108 −0.0937 0.6547
0.4206 0.0794 0.0794 0.4206

) (
−0.6668 1.5449 −0.6663 1.0897
0.1767 0.3233 0.3233 0.1767

)
β β0 = 4, β1 = 15 β0 = 4, β1 = 20
x
w

(
−0.2664 0.8092 −0.2668 0.4288
0.2419 0.2581 0.2581 0.2419

) (
0.0882 0.5674 −0.1999 −0.2001
0.0008 0.4992 0.4992 0.0008

)
β β0 = 4, β1 = 22 β0 = 4, β1 = 30
x
w

(
0.1844 0.6942 −0.1817 −0.1818
0.1322 0.3678 0.3678 0.1322

) (
−0.1333 0.9608 −0.1333 0.4805
0.1575 0.3425 0.3425 0.1575

)
β β0 = 4, β1 = 31 β0 = 4, β1 = 32
x
w

(
−0.1283 1.4199 −0.1317 0.5303
0.1067 0.3933 0.3933 0.1067

) (
−0.1250 1.4191 −0.1249 0.4328
0.1327 0.3673 0.3673 0.1327

)
β β0 = 4, β1 = 33 β0 = 4, β1 = 34
x
w

(
−0.1212 1.5383 −0.1211 0.4779
0.1514 0.3486 0.3486 0.1514

) (
−0.1176 1.0332 −0.1176 0.3824
0.2506 0.2494 0.2494 0.2506

)
β β0 = 4, β1 = 35 β0 = 5, β1 = 19
x
w

(
−0.1143 0.8657 −0.1142 0.4394
0.3047 0.1953 0.1953 0.3047

) (
−0.2630 1.0310 −0.2632 0.4691
0.2334 0.2666 0.2666 0.2334

)
β β0 = 5, β1 = 26 β0 = 5, β1 = 27
x
w

(
0.2964 0.6382 −0.1922 −0.1923
0.1173 0.3827 0.3827 0.1173

) (
0.1441 0.6884 −0.1848 −0.1851
0.0072 0.4928 0.4928 0.0072

)
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Table 3: Continued

β β0 = 5, β1 = 28 β0 = 5, β1 = 29
x
w

(
0.0525 0.5365 −0.1770 −0.1785
0.0011 0.4988 0.4988 0.0011

) (
0.2664 0.5590 −0.1723 0.1724
0.0871 0.4129 0.4129 0.0871

)
β β0 = 5, β1 = 30 β0 = 5, β1 = 31
x
w

(
0.1447 0.7737 −0.1664 −0.1666
0.0450 0.4550 0.4550 0.0450

) (
−0.1612 0.7699 −0.1613 0.1804
0.0968 0.4032 0.4032 0.0968

)
β β0 = 5, β1 = 34 β0 = 5, β1 = 38
x
w

(
−0.1471 0.7057 −0.1469 0.1660
0.1272 0.3728 0.3728 0.1272

) (
−0.1315 0.5356 −0.1126 −0.0003
0.0002 0.4997 0.4997 0.0002

)
β β0 = 5, β1 = 39 β0 = 5, β1 = 40
x
w

(
−0.1282 1.6957 −0.1282 −0.4058
0.0359 0.4641 0.4641 0.0359

) (
−0.1250 1.4191 −0.1249 −0.4328
0.1327 0.3670 0.3670 0.1327

)
β β0 = 5, β1 = 41 β0 = 5, β1 = 42
x
w

(
−0.1219 1.5634 −0.1218 0.4439
0.1339 0.3661 0.3661 0.1339

) (
−0.1190 1.5748 −0.1190 0.4092
0.0836 0.4164 0.4164 0.0836

)
β β0 = 5, β1 = 43 β0 = 5, β1 = 44
x
w

(
−0.1162 1.0502 −0.1162 0.4671
0.2928 0.2072 0.2072 0.2928

) (
−0.1136 0.9680 −0.1136 0.3829
0.2390 0.2610 0.2610 0.2390

)
β β0 = 6, β1 = 9 β0 = 6, β1 = 23
x
w

(
−0.6668 1.5449 −0.6663 1.0897
0.1767 0.3233 0.3233 0.1767

) (
−0.2608 0.9196 −0.2608 0.3851
0.2032 0.2968 0.2968 0.2032

)
β β0 = 6, β1 = 27 β0 = 6, β1 = 30
x
w

(
0.2864 1.4903 −0.2222 −0.2221
0.3334 0.1666 0.1666 0.3334

) (
−0.0270 0.3240 −0.1986 −0.2000
0.0007 0.4992 0.4992 0.0007

)
β β0 = 6, β1 = 37 β0 = 6, β1 = 45
x
w

(
−0.1622 0.6520 −0.1619 −0.2367
0.1578 0.3422 0.3422 0.1578

) (
−0.1333 1.0400 −0.1332 0.0001
0.1556 0.3444 0.3444 0.1556

)
β β0 = 6, β1 = 48 β0 = 6, β1 = 51
x
w

(
−0.1249 1.4193 −0.1250 0.4328
0.1327 0.3673 0.3673 0.1327

) (
−0.1176 1.0332 −0.1176 0.3824
0.2506 0.2494 0.2494 0.2506

)
β β0 = 6, β1 = 60 β0 = 7, β1 = 39
x
w

(
−0.0999 0.6989 −0.1000 0.4254
0.3495 0.1505 0.1505 0.3495

) (
−0.0421 0.3061 −0.1764 −0.1794
0.0002 0.4997 0.4997 0.0002

)
β β0 = 7, β1 = 40 β0 = 7, β1 = 50
x
w

(
0.3548 0.6450 −0.1749 −0.1750
0.1389 0.3611 0.3611 0.1389

) (
−0.1400 0.9105 −0.1399 0.1282
0.0461 0.4539 0.4539 0.0461

)
β β0 = 7, β1 = 51 β0 = 7, β1 = 52
x
w

(
−0.1376 0.9959 −0.1267 0.1245
0.0174 0.4826 0.4826 0.0174

) (
−0.1346 1.2422 −0.1345 0.2680
0.0185 0.4815 0.4815 0.0185

)
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Table 3: Continued

β β0 = 7, β1 = 56 β0 = 7, β1 = 70
x
w

(
−0.1250 1.4203 −0.1249 0.4340
0.1310 0.3690 0.3690 0.1310

) (
−0.1000 0.6989 −0.0999 0.4254
0.3493 0.1506 0.1506 0.3493

)
β β0 = 8, β1 = 12 β0 = 8, β1 = 30
x
w

(
−0.6668 1.5449 −0.6663 1.0897
0.1767 0.3233 0.3233 0.1767

) (
−0.2664 0.8092 −0.2668 0.4228
0.2419 0.2581 0.2581 0.2419

)
β β0 = 8, β1 = 36 β0 = 8, β1 = 40
x
w

(
0.3996 1.4467 −0.2221 −0.2221
0.3056 0.1944 0.1944 0.3056

) (
0.0882 0.5674 −0.1993 −0.2000
0.0007 0.4992 0.4992 0.0007

)
β β0 = 8, β1 = 44 β0 = 8, β1 = 60
x
w

(
−0.0286 0.2663 −0.1811 0.1818
0.0003 0.4996 0.4996 0.0003

) (
−0.1333 1.0420 −0.1332 0.1441
0.1554 0.3446 0.3446 0.1554

)
β β0 = 8, β1 = 63 β0 = 8, β1 = 64
x
w

(
−0.1269 1.1873 −0.1275 0.3266
0.0005 0.4994 0.4994 0.0005

) (
−0.1250 1.4191 −0.1249 0.4328
0.1327 0.3673 0.3673 0.1327

)
β β0 = 8, β1 = 65 β0 = 8, β1 = 66
x
w

(
−0.1232 1.4500 −0.1221 0.3714
0.0731 0.4269 0.4269 0.0731

) (
−0.1212 1.5383 −0.1211 0.4779
0.1514 0.3486 0.3486 0.1514

)
β β0 = 8, β1 = 68 β0 = 8, β1 = 70
x
w

(
−0.1176 1.0332 −0.1176 0.3824
0.2506 0.2494 0.2494 0.2506

) (
−0.1143 0.8657 −0.1142 0.4394
0.3047 0.1953 0.1953 0.3047

)
β β0 = 8, β1 = 80 β0 = 8, β1 = 88
x
w

(
−0.1000 0.6989 −0.0999 0.4254
0.3494 0.1506 0.1506 0.3494

) (
−0.1043 0.2520 −0.0908 −0.0909
0.1951 0.3049 0.3049 0.1951

)
β β0 = 9, β1 = 54 β0 = 9, β1 = 72
x
w

(
0.1447 0.7737 −0.1663 −0.1666
0.0450 0.4550 0.4550 0.0450

) (
−0.1250 1.4191 −0.1249 0.4328
0.1327 0.3673 0.3673 0.1327

)
β β0 = 9, β1 = 78 β0 = 9, β1 = 90
x
w

(
−0.1153 0.8000 −0.1153 0.3216
0.2359 0.2641 0.2641 0.2359

) (
−0.1000 0.6989 −0.0999 0.4254
0.3493 0.1507 0.1507 0.3493

)
β β0 = 9, β1 = 96 β0 = 10, β1 = 15
x
w

(
−0.0939 1.0108 −0.0937 0.6547
0.4199 0.0801 0.0801 0.4199

) (
−0.6666 1.3241 −0.6666 0.9085
0.1786 0.3214 0.3214 0.1786

)
β β0 = 10, β1 = 38 β0 = 10, β1 = 52
x
w

(
−0.2630 1.0310 −0.2632 0.4691
0.2334 0.2666 0.2666 0.2334

) (
0.1965 0.6549 −0.1922 −0.1923
0.1199 0.3801 0.3801 0.1199

)
β β0 = 10, β1 = 58 β0 = 10, β1 = 68
x
w

(
0.2664 0.5590 −0.1724 −0.1724
0.0871 0.4129 0.4129 0.0871

) (
−0.1471 0.7057 −0.1468 −0.1660
0.3494 0.1506 0.1506 0.3494

)
β β0 = 10, β1 = 75 β0 = 10, β1 = 78
x
w

(
−0.1333 0.9059 −0.1332 −0.0098
0.1466 0.3534 0.3534 0.1466

) (
−0.1282 1.6985 −0.1280 0.4065
0.0290 0.4710 0.4710 0.0290

)
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Table 3: Continued

β β0 = 10, β1 = 81 β0 = 10, β1 = 82
x
w

(
−0.1234 1.7453 −0.1233 −0.5493
0.1206 0.3794 0.3794 0.1206

) (
−0.1219 1.5634 −0.1219 0.4439
0.1339 0.3661 0.3661 0.1339

)
β β0 = 10, β1 = 85 β0 = 10, β1 = 86
x
w

(
−0.1176 1.0332 −0.1176 0.3824
0.2506 0.2494 0.2494 0.2506

) (
−0.1162 0.8101 −0.1162 0.3439
0.2934 0.2066 0.2066 0.2934

)
β β0 = 10, β1 = 88 β0 = 10, β1 = 92
x
w

(
−0.1136 0.9680 −0.1136 0.3829
0.2346 0.2654 0.2654 0.2346

) (
−0.1087 0.5971 −0.1086 0.4081
0.3679 0.1321 0.1321 0.3679

)
β β0 = 10, β1 = 93 β0 = 10, β1 = 96
x
w

(
−0.1074 0.6330 −0.1075 0.4220
0.3676 0.1324 0.1324 0.3676

) (
−0.1041 0.7818 −0.1041 0.4055
0.3092 0.1908 0.1908 0.3092

)
β β0 = 10, β1 = 98 β0 = 10, β1 = 100
x
w

(
−0.1020 0.5326 −0.1020 0.4335
0.4111 0.0889 0.0889 0.4111

) (
−1.0000 0.6989 −0.0999 0.4254
0.3487 0.1513 0.1513 0.3487

)
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