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Abstract
The increasing complexity in the dimensionality of data throws new challenges in mod-

elling. Matrix variate data with underlying subpopulations need more sophisticated models
to make meaningful statistical inferences and clustering results. This work introduces the
finite mixtures of matrix variate log-normal distributions to model the right skewed multi-
modal matrix variate data, and its application to model-based clustering is discussed. In
addition, an extended K-means algorithm is developed as an alternative to the ordinary
K-means approach for clustering matrix variate data. Furthermore, it can also be a useful
initialization approach for matrix variate finite-mixture models, which received much atten-
tion lately for modelling this kind of data. Using the suggested initialization approach, the
Expectation-Maximization algorithm is employed to estimate the parameters. The ability
of the proposed methodology is illustrated through simulations and real data studies.
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1. Introduction

As the dimensionality of data increases, traditional modelling approaches often strug-
gle to capture the intricacies and variations present in complex data sets. One such challenge
is modelling three-way or matrix variate data (Viroli, 2011b) where each observation is rep-
resented as a matrix rather than a scalar or vector. The multivariate longitudinal data is an
example of three-way data. On the other hand, to model and cluster the multi-modal data,
the most used characterization is the finite mixture models which are a statistical approach
that combines multiple probability distributions to create a more flexible and versatile model.
These models are particularly useful when dealing with datasets containing distinct subpop-
ulations or clusters with different statistical characteristics. Vast literature can be seen in
finite mixture models. For example, see Everitt (2013), Peel and MacLahlan (2000), McNi-
cholas and Murphy (2008), Bouguila and ElGuebaly (2009), Melnykov and Maitra (2010),
McLachlan et al. (2019).
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In the recent past, high-dimensional multi-modal data was modelled using finite mix-
tures of matrix variate distributions. Some notable works are by (Viroli, 2011a), Doğru
et al. (2016), Gallaugher and McNicholas (2018), Tomarchio et al. (2022), Tomarchio et al.
(2020), and Silva et al. (2023). The matrix variate finite mixture models found in the litera-
ture mostly rely on symmetricity and heavy-tailed distributions. However, the observations
at the tails of the distribution may be regarded as outliers in the event of highly skewed
data, making it challenging to cluster these observations. Therefore, mixture models with
asymmetric distributions are required. Nevertheless, the data that is right-skewed can be
modelled by the log-normal distribution. Furthermore, the extreme observations—which
are typically considered outliers—are also explained by this distribution. The univariate
and multivariate finite mixtures of log-normal distributions are introduced by Deepana and
Kiruthika (2018, 2022). Moving forward, we employ matrix variate log-normal distributions
as a finite mixtures to model and cluster the matrix variate right-skewed data by utilizing
the properties of log-normal distribution, such as skewness and heavy tails.

The parameter estimation of finite mixtures involves identifying latent variable prob-
lem. The widely used family of Expectation-Maximization (EM) algorithms efficiently es-
timate parameters in finite mixtures (Dempster et al., 1977). However, the EM algorithm
does not guarantee the global maximum and is sensitive to initial values. Many initialization
techniques are discussed in the literature. For example, see Biernacki et al. (2003), Karlis
and Xekalaki (2003), Michael and Melnykov (2016), Panić et al. (2020), and Hu (2015).
However, all these techniques are restricted to univariate and multivariate finite mixture
models. In recent works of finite mixtures of matrix variate distributions, a random multi-
start initializations are employed in parameter estimation. On the other hand, to cluster
the matrix variate data, the conventional K-means developed for multivariate data cannot
be useful.

To overcome these challenges, the finite mixtures of matrix variate log-normal distri-
butions is introduced to model and cluster the skewed matrix variate data. In addition, an
extended K-means algorithm is proposed to cluster the matrix variate data and to obtain the
initial values of the parameters in finite mixtures of matrix variate distributions. The rest
of the paper is organized as follows: Section 2 introduces the extended K-means clustering
for matrix variate data. Section 3 consists of finite mixtures of matrix variate log-normal
distributions, its maximum likelihood estimation, and the EM algorithm. Section 4 pro-
vides detailed simulation studies and section 5 presents a real data study to validate the
proposed methodology. The paper concludes with section 6 by summarising the proposed
methodology, simulation and real data studies.

2. Extended K-means clustering

In the realm of data analysis, clustering methods are indispensable tools for uncover-
ing hidden patterns within datasets. Among these techniques, K-means clustering stands as
a cornerstone, renowned for its simplicity, efficiency, and effectiveness in partitioning data
into distinct and non-overlapping clusters. The essence of K-means lies in its ability to itera-
tively assign data points to clusters based on the similarity of their features while striving to
minimize the within-cluster sum of squares. Moreover, its computational efficiency renders it
suitable for large-scale data analysis, making it a preferred choice for real-world applications.
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Consider a sample of n matrix observations X1, X2, . . . , Xn that are to be segregated
into m (≤ n) clusters C1, C2, . . . , Cm. Let cj (j = 1, 2, . . . , m) be the centre matrix of the
cluster Cj. The essential part of the K-means is to calculate the distance between cluster
centres and observations. Rezaei and Ahmadi (2023) have given the distance between two
matrix observations X and Y which are observed from a matrix variate distribution is,

D(X, Y ) =
√

tr {Ψ−1(X − Y )T Σ−1(X − Y )}. (1)

where Ψ and Σ are the positive definite matrices. Here, tr(.) is the trace of a symmetric
matrix and (·)T denotes the transpose of matrix. Considering the above distance by keeping
Ψ = Σ = I, the distance between a matrix observation Xi and a cluster centre matrix cj is
given as,

D(Xi, cj) =
√

tr {(Xi − cj)T (Xi − cj)}. (2)

Once the initial centres are identified and the distance between each observation and
the centres is obtained, the observations are to be segregated into updated cluster centres.
For that, the updated cluster centres are which minimize the within-cluster sum of squares,
which is,

W =
m∑

j=1

∑
Xi∈Cj

tr
{
(Xi − cj)T (Xi − cj)

}
. (3)

On minimizing the within-cluster sum of squares, the least-squares estimates of the updated
cluster centres are obtained as,

cj = 1
nj

∑
Xi∈Cj

Xi (4)

where nj is the size of cluster Cj.

Since the results of the K-means depends on initial centres, the algorithm needs
multiple compilations with random initial centres, typically observations of the data. The
best clustering solution is the one that has the lowest within-cluster sum of squares. This
method provides the clustered observations, corresponding cluster centres, and sizes. The
step-by-step procedure is given in Algorithm 1. This clustering technique can be used for any
matrix variate data which is reasonably well separated. Furthermore, the location parameters
and mixing proportions of the finite mixtures of matrix variate distributions can be initialized
with these cluster centres and cluster sizes, respectively. In further studies, we focus on
alternative distance metrics and different initializations for the extended K-means technique.
In the next section, the proposed technique is used as an initialization to the finite mixtures
of matrix variate log-normal distributions.

3. Finite mixtures of matrix variate Log-normal distributions

For many practical reasons, it is obvious to observe data on multiple variables (say
columns) at different time points or situations (say rows). As a result, there are two covari-
ance structures, one along columns and the other along rows. Consider a random matrix Y of
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Algorithm 1 Extended K-means algorithm
1: procedure K-means(X, m)
2: for X = [xi]; i = 1, . . . , n & Cj; j = 1, . . . , m do ▷ Initialization
3: Random Initialize of cj (jth Cluster Centre) from X
4: end for
5: while c

(t)
j ̸= c

(t+1)
j do ▷ Core

6: for X = [xi]; i = 1, . . . , n & Cj; j = 1, . . . , m do
7: update I (xi ∈ Cj) ∀ j = arg minj d(Xi, cj) using (2)
8: update cj according to (4).
9: end for

10: end while
11: return cj, nj, I (Xi ∈ Cj)
12: end procedure

order (r × c), assumed to be distributed as matrix variate Log-normal (MVLN) distribution
(Rohde et al., 2012) with the mean matrix M of order (r × c), the row covariance matrix
Ω of order (r × r), and the column covariance matrix Σ of order (c × c). The probability
density function of Y is given by,

f(Y ; M, Ω, Σ) = 1
(2π) rc

2 |Σ|
r
2 |Ω|

c
2
∏r

p=1
∏c

q=1 ypq

×

exp
{

−1
2tr

[
Σ−1(log Y − M)Ω−1(log Y − M)T

]}
(5)

where ypq is the value of pth row and qth column of an observation matrix Y . Here, Ω and
Σ are positive definite matrices. One of the advantages of this distribution is that one can
obtain the closed-form expressions for the parameter estimates.

Let X be a random matrix that has finite mixtures of matrix variate log-normal
(FMMVLN) distributions, the pdf of X is given as,

g(X; Θ) =
k∑

j=1
πjf(X; Mj, Ωj, Σj)

=
k∑

j=1
πj

1
(2π) rc

2 |Σj|
r
2 |Ωj|

c
2
∏r

p=1
∏c

q=1 xpq

×

exp
{

−1
2tr

[
Σ−1

j (log X − Mj)Ω−1
j (log X − Mj)T

]}
(6)

where πj(0 < πj ≤ 1) is the mixing proportion of the jth component density f(X; Mj, Ωj, Σj).
The prior probability that an observed matrix belongs to each component density is πj

(j = 1, 2, . . . , k) and∑k
j=1 πj = 1. Here, Θ = (πj, Mj, Ωj, Σj; j = 1, 2, . . . , k) is the parametric

space of the mixture density.
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3.1. Maximum likelihood estimation

Consider a sample X1, X2, . . . , Xn (say X) of size n assumed to be drawn from (6),
the log-likelihood function is,

l(Θ|X) =
n∑

i=1
log


k∑

j=1
πjf(Xi; Mj, Ωj, Σj)

 . (7)

Since the summation is involved within the ‘log’ function, estimation of parameters through
(7) is difficult. The EM algorithm is employed to overcome this and estimate parameters
efficiently. Here, the observed data is incomplete as there is no information about the com-
ponent membership of observations. Let z be a multinomial random variable that denotes
from which component density each observation came. i.e.,

zij =
{

1 ; if Xi came from jth component density.
0 ; elsewhere.

Here, ∑k
j=1 zij = 1. From the definition of finite mixture density,

f(zij = 1) = πj and g(Xi|zij = 1) = f(Xi; Mj, Ωj, Σj). (8)

Further, using the marginal distribution of zij and the conditional distribution of
Xi|zij = 1, the joint density of the complete data (Xi, zi) can be written as,

f(X, z) = f(zij = 1)g(Xi|zij = 1)

=
k∏

j=1
{πjf(Xi; Mj, Ωj, Σj)}zij (9)

By utilizing the information about zij, the summation in the mixture density replaced
by the product, which makes the further parameter estimation easy. Using (9), for a random
sample of size n, the log-likelihood function of the complete-data becomes,

l(Θ|X, z) =
n∑

i=1

k∑
j=1

zij log {πjf(Xi; Mj, Ωj, Σj)}

=
n∑

i=1

k∑
j=1

zij log

πj
1

(2π) rc
2 |Σj|

r
2 |Ωj|

c
2
∏r

p=1
∏c

q=1 xpq

×

exp
{

−1
2tr

[
Σ−1

j (log Xi − Mj)Ω−1
j (log Xi − Mj)T

]} (10)

3.2. EM algorithm

The maximization of (10) can be done through EM-algorithm given in Algorithm 2.
Each iteration of E-step calculates Q(Θ, Θ(t)) which is the expected value of the log-likelihood
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Algorithm 2 EM algorithm: FMMVLN distributions
1: procedure FMMVLN(X, k)
2: for X = {Xi}n

i=1 & j = 1, . . . , k do ▷ Initialization
3: Initialize Mj & πj from Extended K-means.
4: Set Ωj & Σj as identity matrices.
5: end for
6: while M

(t+1)
j ̸= M

(t)
j do

7: for j = 1, . . . , k do
8: Update γij according to (11). ▷ E-step
9: Update (M̂j, Ω̂j, Σ̂j, π̂j) according to (12). ▷ M-step

10: end for
11: end while
12: Calculate AIC and BIC.
13: return Mj, Ωj, Σj, πj, γij, AIC, and BIC.
14: end procedure

of complete data w.r.t the conditional distribution of latent variable z, given the observed
data, at the current value of Θ as Θ(t).

Using Bayes theorem, the posterior probability that an observed matrix belongs to
the jth component density can be written as,

E
[
zij|X ; Θ(t)

]
= f

(
zij = 1|Xi; Θ(t)

)
=

f (zij = 1) g
(
Xi; Θ(t)|zij = 1

)
g (Xi; Θ(t))

=
π

(t)
j f

(
Xi; M

(t)
j , Ω(t)

j , Σ(t)
j

)
∑k

j=1 π
(t)
j f

(
Xi; M

(t)
j , Ω(t)

j , Σ(t)
j

) = γ
(t)
ij (say).

(11)

Now, the expected value of the complete data log-likelihood, Q(Θ, Θ(t)) is given as,

Q(Θ, Θ(t)) = Ez|Xi;Θ(t)


n∑

i=1

k∑
j=1

zij log {πjf(Xi; Mj, Ωj, Σj)}


=

n∑
i=1

k∑
j=1

E[zij|Xi; Θ(t)] log {πjf(Xi; Mj, Ωj, Σj}

=
n∑

i=1

k∑
j=1

γ
(t)
ij

{
log πj − rc

2 log(2π) − c

2 log |Ωj| − r

2 log |Σj|

−
r∑

p=1

c∑
q=1

xpq − 1
2tr

[
Σ−1

j (log Xi − Mj)Ω−1
j (log Xi − Mj)T

] }

The M-step maximizes Q(Θ, Θ(t)) by obtaining derivatives with respect to the mixture
parameters and equating to zero. Here, the estimates of πj are obtained under the constraints
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0 < πj < 1 and ∑k
j=1 πj = 1. The maximum likelihood estimates are given below:

M̂
(t+1)
j =

∑n
i=1 γ

(t)
ij log Xi∑n

i=1 γ
(t)
ij

Ω̂(t+1)
j =

∑n
i=1 γ

(t)
ij (log Xi − M̂

(t+1)
j ) Σ̂(t)−1

j (log Xi − M̂
(t+1)
j )T

c
∑n

i=1 γ
(t)
ij

Σ̂(t+1)
j =

∑n
i=1 γ

(t)
ij (log Xi − M̂

(t+1)
j )T Ω̂(t+1)−1

j (log Xi − M̂
(t+1)
j )

r
∑n

i=1 γ
(t)
ij

π̂
(t+1)
j =

∑n
i=1 γ

(t)
ij

n

(12)

The E and M steps are iteratively repeated until the convergence is reached. The
step-by-step procedure of EM algorithm is given in Algorithm 2. In the context of finite
mixture models, initialization is the major challenge, as the estimates of the EM algorithm
are sensitive to the initialization of parameter values. Different starting values can provide
different local maxima and convergence rates of the EM algorithm. Consequently, the clus-
tering results also vary; hence, having a unique clustering solution is difficult. The next
section deals with the necessary illustrations of the proposed methodology with simulated
and real data studies.

4. Simulation studies

4.1. Extended K-means clustering

To evaluate the performance of the extended K-means clustering, we considered three
different sample sizes: 250, 500, and 750, with two and three clusters. The data dimension
for two clusters is considered as 2 × 2 and 3 × 4 for three clusters. A total of 100 datasets
were generated from matrix variate normal populations, with mean matrices chosen arbi-
trarily to maintain some degree of overlapping. The covariance matrices were set as identity
matrices. We then varied the proportion of cluster sizes to create different scenarios for each
combination. The extended K-means algorithm was applied to all 100 datasets ranging the
cluster size from 1 to 6, and the within sum of squares are evaluated. The average within
sum of squares of 100 datasets are plotted against the number of clusters.

The optimal number of clusters are chosen based on the ‘elbow’ of scree plot which
indicates that adding more clusters does not significantly decrease the within sum of squares.
The clustering performance is evaluated using Adjusted Rand Index (ARI) (Rand, 1971), a
widely used metric which provides a comprehensive assessment of the clustering quality. The
ARI value ranges from 0 to 1, where 0 indicates the poorest classification and 1 represents
perfect classification. From Figure 1, the scree plots in the first row shows that the optimal
clusters size is two while the second row reveals that there are three clusters. Hence, the
results with corresponding cluster sizes are given Table 1. From these results, the estimated
proportion of cluster sizes and centre matrices closely match the real parameter values, in-
dicating that the extended K-means is adequate for parameter estimation. Besides, for a
fixed overlapping between clusters, the ARI values of 2 × 2 data are increasing with sam-
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ple size. However, ARI values of 3 × 4 data are substantially closer to 1 across all sample
sizes, indicating that the performance of clustering improves as the sample size and data di-
mension increases. These outcomes demonstrate the suggested extended K-means method’s
effectiveness in clustering. Further, as the sample size grows, the standard deviation of every
estimate drops, showing the consistency of the estimates.

Figure 1: Scree plots for within-cluster sum of squares against number of clusters.
The first row represents two cluster data and the second row represents three
cluster data

4.2. Finite mixtures of MVLN distributions

In order to exhibit the behaviour of the MVLN mixture model, illustrations are given
with two and three-component mixture models and component densities are generated. All
the simulations under the two-component mixture model are done at 250, 500, and 750
sample sizes, whereas under the three-component mixture model, simulations are performed
with 500 and 750 sample sizes. Here, 100 samples generated from each of the parameter
combinations.

A two-component FMMVLN model with data dimension of (2 × 3) is considered and
different combination of parameters are used to generate the samples for each sample size
given in Table 2. The mean matrices of all models are chosen arbitrarily to maintain some
degree of overlapping. For the sample size of 250, the covariance matrices within clusters
considered as homogenous. For the sample size of 500, the row and column covariance
matrices between clusters are kept homogenous. For the sample size of 750, the row and
column covariance matrices within and between clusters considered heterogeneous. For the
case of three-component FMMVLN model, two sample sizes 500 and 750 with the data
dimension of (3 × 3) is considered. A similar approach to the two-component model is
considered to generate mean and covariance matrices.
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Table 1: Results of extended K-means clustering for simulated data

k n C λ c
λ̂

(sd) ĉ (sd) ARI
(sd)

2 250 1 0.5 022
0.499

(0.013)

[
−0.011 0.004
−0.007 −0.007

]([
0.093 0.103
0.092 0.102

])
0.904

(0.038)
2 0.5 2 J22

0.501
(0.013)

[
2.002 2.004
1.992 2.007

]([
0.095 0.094
0.093 0.102

])

500 1 0.45 022
0.453

(0.007)

[
−0.004 0.005
−0.004 0.001

]([
0.073 0.078
0.073 0.074

])
0.911

(0.026)
2 0.55 2 J22

0.547
(0.007)

[
2.020 2.021
2.002 2.015

]([
0.063 0.067
0.064 0.061

])

750 1 0.4 022
0.406

(0.006)

[
0.006 0.008
0.002 0.007

]([
0.061 0.069
0.063 0.067

])
0.911

(0.020)
2 0.6 2 J22

0.594
(0.006)

[
2.022 2.014
2.010 2.020

]([
0.052 0.050
0.048 0.051

])

3 250 1 0.33 034
0.329

(0.001)

0.001 −0.009 −0.008 −0.013
0.004 −0.006 0.011 0.007
0.022 −0.013 −0.007 0.005



0.112 0.108 0.116 0.111
0.109 0.112 0.103 0.121
0.118 0.122 0.109 0.110




1
(0.002)2 0.33 2 J34

0.330
(0.001)

1.982 1.984 2.009 1.994
1.982 2.029 1.998 2.008
2.009 2.000 2.009 2.017



0.112 0.123 0.116 0.110
0.104 0.110 0.108 0.107
0.111 0.117 0.123 0.094




3 0.34 4 J34
0.341

(0.001)

3.992 4.001 3.974 4.012
3.985 4.014 4.002 3.988
3.984 3.993 4.006 4.007



0.115 0.110 0.102 0.098
0.126 0.100 0.104 0.097
0.107 0.109 0.109 0.104




500 1 0.4 034
0.4

(0.000)

−0.011 −0.007 −0.001 −0.004
−0.006 0.015 0.003 0.002
0.006 −0.011 0.002 0.012



0.070 0.075 0.073 0.071
0.068 0.069 0.066 0.068
0.079 0.077 0.073 0.070




0.999
(0.002)2 0.3 2 J34

0.3
(0.001)

2.007 2.009 1.993 2.010
2.001 1.997 1.994 1.996
2.002 2.000 2.008 2.004



0.081 0.087 0.074 0.079
0.072 0.085 0.083 0.076
0.075 0.071 0.082 0.076




3 0.3 4 J34
0.3

(0.001)

4.003 3.995 3.998 4.011
4.014 4.007 3.997 3.985
4.006 4.005 3.996 3.997



0.077 0.076 0.084 0.083
0.086 0.078 0.079 0.076
0.086 0.077 0.084 0.085




750 1 0.50 034
0.499

(0.001)

−0.002 −0.001 −0.004 0.001
−0.001 0.005 0.000 −0.003
0.003 −0.006 0.004 0.008



0.052 0.059 0.046 0.055
0.050 0.056 0.051 0.045
0.054 0.053 0.054 0.048




0.999
(0.002)2 0.25 2 J34

0.251
(0.001)

1.996 1.996 1.994 2.018
2.009 2.010 1.996 1.995
2.001 2.003 1.994 1.995



0.072 0.067 0.069 0.075
0.075 0.077 0.073 0.072
0.076 0.074 0.077 0.074




3 0.25 4 J34
0.250

(0.000)

3.988 3.996 3.994 4.005
4.013 3.987 3.999 3.997
3.989 3.996 4.000 3.993



0.068 0.070 0.072 0.076
0.071 0.074 0.070 0.071
0.070 0.068 0.079 0.072




Here, 0ij and Jij are the null matrix and matrix of ones of order (i × j), respectively.

To assess the model fit and identify the number of components in model, we use
Akaike Information Criterion (AIC) (Akaike, 1974) and Bayesian Information Criterion
(BIC) (Schwarz, 1978), the effective and widely used metrics. We consider AIC and BIC
formulations where higher values indicate better model fit. From (12), the estimates of lo-
cation parameters of the model are the functions of ‘log X’. Hence, the proposed K-means
is fitted to ‘log X’, and the initial values are obtained for each sample generated. From the
results of extended K-means, the cluster centres and the proportion of cluster sizes are used
to initialize the mean matrices and mixing proportions, respectively. The initialization for
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both row and column covariance matrices is considered identity matrices of the correspond-
ing order. Then, the FMMVLN model is fitted through the EM algorithm, varying number
of components from 1 to 6. We calculated the ARI to evaluate the model’s clustering perfor-
mance and misclassification rate (MCR) to measure the proportion of incorrectly classified
observations.

Table 2: Parameters used to simulate data from two and three-component FM-
MVLN models

K n ka π M Ω Σ

2 250 1 0.35
[
0 0 0
0 0 0

] [
0.5 0
0 0.5

] 0.5 0 0
0 0.5 0
0 0 0.5


2 0.65

[
0.6 0.6 0.6
0.6 0.6 0.6

] [
0.75 0

0 0.75

] 0.75 0 0
0 0.75 0
0 0 0.75



500 1 0.4
[
0.5 0.5 0.5
0.5 0.5 0.5

] [
0.75 0.25
0.25 0.75

]  1 0 0.5
0 1 0.25

0.5 0.25 1


2 0.6

[
1.8 1.8 1.8
1.8 1.8 1.8

] [
0.75 0.25
0.25 0.75

]  1 0 0.5
0 1 0.25

0.5 0.25 1



750 1 0.5
[
1 1 1
1 1 1

] [
1 0.4

0.4 0.75

]  1 0.25 0
0.25 1 0.25

0 0.25 1


2 0.5

[
2.5 2.5 2.5
2.5 2.5 2.5

] [
1.25 0.25
0.25 1

] 0.75 0 0.25
0 1 0.5

0.25 0.5 1.25



3 500 1 0.33

0 0 0
0 0 0
0 0 0

 0.5 0 0
0 0.5 0
0 0 0.5

 0.75 0 0
0 0.75 0
0 0 0.75


2 0.33

0.7 0.7 0.7
0.7 0.7 0.7
0.7 0.7 0.7

 0.5 0 0
0 0.5 0
0 0 0.5

 0.75 0 0
0 0.75 0
0 0 0.75


3 0.34

1.4 1.4 1.4
1.4 1.4 1.4
1.4 1.4 1.4

 0.5 0 0
0 0.5 0
0 0 0.5

 0.75 0 0
0 0.75 0
0 0 0.75



750 1 0.30

0.5 0.5 0.5
0.5 0.5 0.5
0.5 0.5 0.5

 1 0 0
0 1 0
0 0 1

 1 0 0
0 1 0
0 0 1


2 0.30

1.2 1.2 1.2
1.2 1.2 1.2
1.2 1.2 1.2

 0.75 0 0
0 0.75 0
0 0 0.75

 0.75 0 0
0 0.75 0
0 0 0.75


3 0.40

2 2 2
2 2 2
2 2 2

 0.5 0 0
0 0.5 0
0 0 0.5

 0.5 0 0
0 0.5 0
0 0 0.5


a represents the component label in mixture model.
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Table 3: Number of samples with best AIC and BIC values out of 100 samples
for different combinations of K, n, and g

K 2 3
n 250 500 750 500 750

g AIC BIC AIC BIC AIC BIC AIC BIC AIC BIC

1 0 11 0 5 0 0 0 0 0 0
2 52 89 50 95 49 100 0 0 0 0
3 24 0 18 0 16 0 54 100 55 100
4 12 0 11 0 14 0 19 0 26 0
5 8 0 10 0 12 0 13 0 11 0
6 4 0 11 0 9 0 14 0 8 0

Table 4: Estimation results of two-component FMMVLN model

n ka π̂ M̂ Ω̂ Σ̂
(sd) (sd) (sd) (sd)

250 1 0.349
[

−0.001 −0.004 −0.002
0.001 0.003 0.001

] [
0.238 −0.001

−0.001 0.248

] [
1.007 −0.017 −0.014

−0.017 1.000 −0.001
−0.014 −0.001 1.009

]
(0.038)

([
0.064 0.073 0.065
0.075 0.071 0.075

]) ([
0.031 0.023
0.023 0.030

]) ([
0.111 0.099 0.104
0.099 0.120 0.109
0.104 0.109 0.111

])

2 0.651
[

0.594 0.598 0.599
0.599 0.598 0.604

] [
0.563 0.000
0.000 0.558

] [
0.999 −0.009 0.011

−0.009 0.991 −0.006
0.011 −0.006 1.001

]
(0.038)

([
0.068 0.060 0.067
0.067 0.069 0.067

]) ([
0.041 0.031
0.031 0.043

]) ([
0.077 0.061 0.059
0.061 0.069 0.071
0.059 0.071 0.073

])

500 1 0.403
[

0.508 0.510 0.505
0.502 0.504 0.496

] [
0.735 0.247
0.247 0.734

] [
1.020 −0.005 0.509

−0.005 1.024 0.248
0.509 0.248 1.013

]
(0.040)

([
0.095 0.086 0.089
0.097 0.087 0.088

]) ([
0.059 0.047
0.047 0.052

]) ([
0.073 0.070 0.066
0.070 0.071 0.065
0.066 0.065 0.060

])

2 0.597
[

1.802 1.808 1.804
1.806 1.814 1.809

] [
0.731 0.239
0.239 0.727

] [
1.021 0.006 0.502
0.006 1.026 0.251
0.502 0.251 1.012

]
(0.040)

([
0.073 0.066 0.070
0.071 0.076 0.073

]) ([
0.043 0.030
0.030 0.046

]) ([
0.048 0.043 0.045
0.043 0.055 0.043
0.045 0.043 0.050

])

750 1 0.500
[

1.007 0.997 0.995
1.006 0.993 0.998

] [
0.992 0.395
0.395 0.740

] [
1.008 0.250 0.004
0.250 1.003 0.254
0.004 0.254 1.013

]
(0.020)

([
0.067 0.061 0.059
0.058 0.051 0.048

]) ([
0.045 0.028
0.028 0.035

]) ([
0.050 0.043 0.039
0.043 0.049 0.041
0.039 0.041 0.044

])

2 0.500
[

2.498 2.498 2.497
2.496 2.491 2.500

] [
1.203 0.240
0.240 0.959

] [
0.779 0.000 0.262
0.000 1.042 0.513
0.262 0.513 1.291

]
(0.020)

([
0.067 0.057 0.076
0.053 0.070 0.073

]) ([
0.052 0.041
0.041 0.045

]) ([
0.039 0.042 0.039
0.042 0.043 0.044
0.039 0.044 0.057

])
a represents the component label in mixture model.
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Table 5: Estimation results of three-component FMMVLN model

n ka π̂ M̂ Ω̂ Σ̂
(sd) (sd) (sd) (sd)

500 1 0.330

0.000 0.003 0.005
0.006 0.006 −0.002
0.008 −0.001 0.003


 0.373 −0.002 0.002
−0.002 0.375 0.001
0.002 0.001 0.373


 1.005 −0.003 −0.002
−0.003 0.991 0.000
−0.002 0.000 0.992


(0.015)


0.048 0.047 0.049
0.052 0.055 0.047
0.051 0.052 0.047





0.028 0.021 0.018
0.021 0.027 0.016
0.018 0.016 0.023





0.050 0.045 0.054
0.045 0.056 0.052
0.054 0.052 0.057




2 0.332

0.704 0.700 0.707
0.703 0.701 0.695
0.707 0.712 0.706


 0.379 −0.001 0.003
−0.001 0.380 0.005
0.003 0.005 0.383


0.996 0.000 0.003
0.000 0.990 −0.002
0.003 −0.002 0.969


(0.018)


0.058 0.057 0.056
0.061 0.061 0.052
0.060 0.057 0.053





0.028 0.019 0.019
0.019 0.027 0.022
0.019 0.022 0.028





0.055 0.055 0.056
0.055 0.059 0.048
0.056 0.048 0.062




3 0.338

1.404 1.399 1.407
1.402 1.395 1.406
1.400 1.397 1.407


 0.372 0.001 −0.003

0.001 0.374 0.001
−0.003 0.001 0.376


 0.992 −0.002 0.001
−0.002 1.001 0.001
0.001 0.001 0.994


(0.014)


0.048 0.045 0.050
0.053 0.042 0.049
0.058 0.050 0.049





0.024 0.018 0.016
0.018 0.028 0.019
0.016 0.019 0.025





0.049 0.044 0.050
0.044 0.052 0.050
0.050 0.050 0.051




750 1 0.299

0.504 0.500 0.499
0.502 0.503 0.507
0.484 0.496 0.502


 0.999 −0.005 −0.001
−0.005 0.993 −0.003
−0.001 −0.003 0.994


 0.998 −0.001 0.001
−0.001 1.000 0.001
0.001 0.001 1.002


(0.018)


0.065 0.077 0.067
0.078 0.086 0.074
0.090 0.078 0.081





0.060 0.049 0.046
0.049 0.063 0.041
0.046 0.041 0.058





0.048 0.041 0.045
0.041 0.047 0.042
0.045 0.042 0.047




2 0.301

1.199 1.198 1.190
1.198 1.204 1.194
1.192 1.203 1.203


 0.559 0.004 −0.005

0.004 0.560 −0.001
−0.005 −0.001 0.558


1.003 0.008 0.005
0.008 0.996 −0.002
0.005 −0.002 0.998


(0.018)


0.067 0.058 0.060
0.067 0.062 0.062
0.061 0.063 0.063





0.041 0.026 0.029
0.026 0.037 0.027
0.029 0.027 0.040





0.057 0.047 0.051
0.047 0.057 0.047
0.051 0.047 0.056




3 0.400

1.993 1.998 2.002
2.002 2.000 2.001
1.998 2.003 1.998


0.253 0.001 0.001
0.001 0.250 0.000
0.001 0.000 0.253


 0.993 0.002 −0.002

0.002 0.996 0.000
−0.002 0.000 0.992


(0.005)


0.030 0.027 0.029
0.033 0.030 0.030
0.031 0.028 0.030





0.012 0.009 0.008
0.009 0.013 0.009
0.008 0.009 0.012





0.045 0.029 0.039
0.029 0.041 0.033
0.039 0.033 0.042




a represents the component label in mixture model.

The results in Table 3 presents the count of samples (out of 100) where different
numbers of components (g) results the best AIC and BIC values. From the results, the
highest number of samples achieving optimal AIC and BIC values for the two-component
model occurs at g = 2, and for the three-component model, at g = 3. This indicates that the
proposed FMMVLN model effectively identifies the correct number of components according
to both AIC and BIC criteria. Further, the extended K-means algorithm with two and three
clusters are performed. Using the results of extended K-means as initial values, two and
three-component FMMVLN models are fitted and the results are presented in Tables 4 and
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5, respectively. The results shows that the estimates are close to the actual parameter
values. Here, the covariance matrices can only be estimated up to a multiplicative constant
as they depend on each other within the component. The standard deviation of all estimates
decrease as the sample sizes increase, confirming the estimates’ consistency property.

Table 6: The average MCR and ARI values with standard deviations for two
and three-component FMMVLN models

Model n MCR (sd) ARI (sd)
2-component 250 0.100 (0.021) 0.637 (0.067)

500 0.097 (0.017) 0.650 (0.055)
750 0.077 (0.010) 0.717 (0.035)

3-component 500 0.065 (0.011) 0.818 (0.028)
750 0.073 (0.009) 0.819 (0.022)

Table 7: Comparison of convergence speed (number of iterations) for random
and extended K-means initialization techniques

Model n
Random initialization K-means initialization

Median (IQR) Median (IQR)

2-component 250 60.5 (32.50) 43.0 (23.25)
500 83.0 (38.25) 44.0 (24.25)
750 46.0 (13.00) 28.0 (8.00)

3-component 500 67.5 (44.50) 22.5 (7.00)
750 50.0 (37.75) 38.0 (12.00)

The model-based clustering using FMMVLN is performed for each dataset of each
sample size, and observations are segregated into clusters corresponding to the maximum
posterior probabilities of component densities obtained from the EM algorithm. The MCR
and ARI values with their standard deviations are reported in Table 6. From these results,
as the sample size increases, the MCR values decrease, and the ARI values increase. The
standard deviations of MCR and ARI also decrease as the sample size increases. These
results indicate that clustering is more reliable for larger sample sizes.

In order to assess the effectiveness of extended K-means as an initialization method in
terms of convergence speed, we also fitted the FMMVLN models using the existing random
initialization for each of the simulated datasets, noting the number of iterations required
to reach convergence. The average (median) number of iterations with inter-quartile range
(IQR) for random initialization and the extended K-means initialization are compared in
Table 7. From these results, in all cases, the extended K-means initialization technique
outperformed the random initialization by achieving convergence with considerably fewer
iterations.

5. Landsat data

To assess the performance of the proposed model, we utilize the Landsat satellite
data (Srinivasan, 1993), which is well-known and extensively used in image classification

http://archive.ics.uci.edu/dataset/146/statlog+landsat+satellite
http://archive.ics.uci.edu/dataset/146/statlog+landsat+satellite
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tasks. This data set is available through the UCI Machine Learning Repository and was
originally described by Ashwin Srinivasan in 1993. For this analysis, we focus on a test
dataset consisting of 2000 samples. The dataset captures multi-spectral pixel values within
a 3×3 neighbourship in satellite images. Each neighbourhood is represented by 36 variables,
corresponding to four spectral bands, with each band containing nine pixels. Hence, the
dimension of the data is of 4 × 9. The pixel classes are numerically coded in the range of
0 and 255 with 0 corresponding to black and 255 to white. The data is categorized into
seven distinct classes: red soil, cotton crop, grey soil, damp grey soil, soil with vegetation
stubble, a mixture class, and very damp grey soil. However, in this particular dataset, only
six classes are present, as there are no observations for the mixture class. The objective of
the model is to accurately classify these pixels into their respective categories based on the
spectral information provided.

Given that the number of classes is predefined in this scenario, the extended K-
means algorithm is initially applied, specifying six clusters to correspond with the six classes.
The resulting cluster centers from this K-means analysis are then used to initialize the
FMMVLN distributions. Following this, a six-component FMMVLN model is fitted to the
data. The parameter estimates obtained from both the extended K-means and the FMMVLN
distributions are summarized in Tables 10 and 11, respectively. These results reveal that
the center matrices produced by the extended K-means closely align with the mean matrices
derived from the FMMVLN distributions, indicating that the K-means initialization provides
a solid foundation for the subsequent model fitting.

Figure 2: Parallel coordinate plot for the estimated clusters of FMMVLN dis-
tributions for Landsat data

However, it is important to note that, as previously discussed, the covariance struc-
tures within each component of the mixture model can only be estimated up to a multi-
plicative constant. As a result, the row covariance matrices Ωj are estimated to have values
close to zero, while the column covariance matrices Σj are found to be significantly different
from zero. This suggests that while the K-means algorithm effectively initializes the model,
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the estimation of covariance matrices requires careful interpretation, particularly given the
inherent dependency structures within the model components.

Table 8: Model fit and clustering results of FMMVN, FMMVST, and FMMVLN
models

Model AIC BIC ARI
FMMVN −401435 −404521 0.617
FMMVST −417662 −421958 0.419
FMMVLN −400145 −403231 0.638

Table 9: Cluster assignments of (a) FMMVN, (b) FMMVST, and (c) FMMVLN
models

(a) FMMVN Estimated class
True class 1 2 3 4 5 6

Red soil 442 6 0 12 1 0
Cotton crop 0 222 0 2 0 0
Grey soil 5 3 337 52 0 0
Damp grey soil 1 17 68 29 1 95
Soil with vegetation stubble 9 44 0 62 122 0
Very damp grey soil 0 9 19 106 17 319

(b) FMMVST Estimated class
True class 1 2 3 4 5 6

Red soil 433 0 13 14 1 0
Cotton crop 0 197 0 26 1 0
Grey soil 6 0 368 18 5 0
Damp grey soil 1 6 186 16 2 0
Soil with vegetation stubble 22 48 26 63 71 7
Very damp grey soil 2 12 374 17 10 55

(c) FMMVLN Estimated class
True class 1 2 3 4 5 6

Red soil 442 0 0 5 14 0
Cotton crop 0 106 0 116 2 0
Grey soil 10 0 354 3 27 3
Damp grey soil 1 0 72 13 15 110
Soil with vegetation stubble 8 0 0 31 197 1
Very damp grey soil 1 0 18 9 78 364
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To visually inspect the separability of the estimated clusters, we constructed a parallel
coordinate plot presented in Figure 2. In this plot, each observation rows are represented as
a line connecting points on parallel axes, with the position of each point corresponding to
the value in the columns. We observed substantial overlap between clusters 1, 4, and 5 with
clusters 3 and 6, indicating potential similarity or ambiguity in their feature distributions.
In contrast, cluster 2 exhibited a distinct pattern with data points occupying two separate
value ranges, resulting in a visible gap within the plot.

Additionally, we conducted a comparative analysis by fitting two well-known finite
mixture models: the finite mixtures of matrix variate normal (FMMVN) distributions and
the finite mixtures of matrix variate Skew-t (FMMVST) distributions. The results of this
analysis are presented in Table 8. For this comparison, model-based clustering was performed
using the posterior probabilities obtained from each of these finite mixture models, and the
ARI values were calculated to evaluate the accuracy of the clustering. The AIC and BIC
values were also computed for each model to assess their fit to the data.

The results in Table 8 shows that the proposed model outperformed the FMMVN
and FMMVST models, as indicated by its higher AIC and BIC values. This suggests that
the proposed model provides a better fit to the data compared to the other two models.
Furthermore, the ARI values confirm that the proposed model is more effective in correctly
classifying a greater number of pixels into their respective categories, demonstrating its
superior performance in this clustering task. Despite the low increment in the ARI value,
likely due to substantial overlap between clusters as visualized in the parallel coordinate
plot, the proposed model demonstrates superior performance in fitting and clustering skewed
matrix variate data overall. We obtained the cluster assignment tables for the three finite
mixtures and presented in Table 9. Since the clusters don’t follow a specific sequence, the
cluster assignment table can only show which observations are assigned to each cluster.
However, these tables offer information on how the observations in estimated clusters are
distributed among the true classes.

6. Results and discussion

In this paper, we made an attempt to model and cluster the skewed three-way data
with underlying sub-populations using FMMVLN distributions. To initialize the FMMVLN
models, we introduced an extended K-means algorithm. The subsequent parameter esti-
mation was achieved through the EM algorithm. We employed AIC and BIC to determine
the optimal number of components and the model fit in the mixture models. The results
demonstrated that BIC exhibited superior performance in accurately identifying the correct
number of components compared to AIC. Furthermore, the clustering performance, evalu-
ated using the MCR and ARI values. The computations of simulation and real data studies
are carried out in R.

The simulation study findings revealed that the FMMVLN models effectively esti-
mated the true parameter values, with estimation accuracy improving as sample size in-
creased. This confirms the consistency property of the estimators. Furthermore, the clus-
tering performance, evaluated using MCR and ARI demonstrated significant improvements
with increasing sample size. This indicates that the proposed FMMVLN-based clustering
approach is more reliable for larger datasets. In addition, a comparative analysis of initial-



2025] FMMVLN DISTRIBUTIONS FOR CLUSTERING SKEWED THREE-WAY DATA 53

ization methods highlighted the efficiency of the extended K-means algorithm in terms of
convergence speed. The proposed initialization consistently outperformed random initial-
ization, leading to a substantial reduction in the number of iterations required for the EM
algorithm to converge.

The real data study reveals that the resulting parameter estimates from extended
K-means and FMMVLN model exhibited strong alignment, indicating the effectiveness of
the K-means initialization. The comparative analysis with FMMVN and FMMVST models
demonstrated the superior performance of the proposed FMMVLN model in terms of model
fit and clustering accuracy, as evidenced by higher AIC, BIC, and ARI values. Despite some
overlap between clusters, the FMMVLN model effectively handled the skewed matrix variate
data, outperforming the alternative models.

One major challenge in finite mixture models for matrix variate data is the initializa-
tion of the EM algorithm. To address this, we proposed the extended K-means algorithm to
cluster the matrix variate data. Additionally, estimating covariance matrices is complex due
to inherent dependencies within the model components. Furthermore, these models often
require large sample sizes as the number of parameters increases with data dimensionality
and the number of mixture components. We aim to explore these issues further in future
research.
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Doğru, F. Z., Bulut, Y. M., and Arslan, O. (2016). Finite mixtures of matrix variate t
distributions. Gazi University Journal of Science, 29, 335–341.

Everitt, B. (2013). Finite Mixture Distributions. Springer Science & Business Media.
Gallaugher, M. P. and McNicholas, P. D. (2018). Finite mixtures of skewed matrix variate

distributions. Pattern Recognition, 80, 83–93.
Hu, Z. (2015). Initializing the EM Algorithm for Data Clustering and Sub-population Detec-

tion. PhD thesis, The Ohio State University.
Karlis, D. and Xekalaki, E. (2003). Choosing initial values for the em algorithm for finite

mixtures. Computational Statistics & Data Analysis, 41, 577–590.
McLachlan, G. J., Lee, S. X., and Rathnayake, S. I. (2019). Finite mixture models. Annual

Review of Statistics and Its Application, 6, 355–378.
McNicholas, P. D. and Murphy, T. B. (2008). Parsimonious Gaussian mixture models.

Statistics and Computing, 18, 285–296.
Melnykov, V. and Maitra, R. (2010). Finite mixture models and model-based clustering.

Statistics Surveys, 4, 80–116.
Michael, S. and Melnykov, V. (2016). An effective strategy for initializing the em algorithm

in finite mixture models. Advances in Data Analysis and Classification, 10, 563–583.
Panić, B., Klemenc, J., and Nagode, M. (2020). Improved initialization of the em algorithm

for mixture model parameter estimation. Mathematics, 8, 373.
Peel, D. and MacLahlan, G. (2000). Finite Mixture Models. John Wiley & Sons.
Rand, W. M. (1971). Objective criteria for the evaluation of clustering methods. Journal of

the American Statistical Association, 66, 846–850.
Rezaei, A. and Ahmadi, K. (2023). Generalized Mahalanobis distance and its application in

detecting matrix outliers. Filomat, 37, 7993–8011.
Rohde, D., Corcoran, J., White, G., and Huang, R. (2012). Visualization of predictive dis-

tributions for discrete spatial-temporal log cox processes approximated with mcmc.
In Intelligent Data Engineering and Automated Learning-IDEAL 2012: 13th Interna-
tional Conference, Natal, Brazil, August 29-31, 2012. Proceedings 13, pages 286–293.
Springer.

Schwarz, G. (1978). Estimating the dimension of a model. The Annals of Statistics, 6,
461–464.

Silva, A., Qin, X., Rothstein, S. J., McNicholas, P. D., and Subedi, S. (2023). Finite mix-
tures of matrix variate poisson-log normal distributions for three-way count data.
Bioinformatics, 39, 1–8.

Srinivasan, A. (1993). Statlog (landsat satellite). UCI Machine Learning Repository.
Tomarchio, S. D., Gallaugher, M. P., Punzo, A., and McNicholas, P. D. (2022). Mixtures

of matrix-variate contaminated normal distributions. Journal of Computational and
Graphical Statistics, 31, 413–421.

Tomarchio, S. D., Punzo, A., and Bagnato, L. (2020). Two new matrix-variate distributions
with application in model-based clustering. Computational Statistics & Data Analysis,
152, 107050.

Viroli, C. (2011a). Finite mixtures of matrix normal distributions for classifying three-way
data. Statistics and Computing, 21, 511–522.



2025] FMMVLN DISTRIBUTIONS FOR CLUSTERING SKEWED THREE-WAY DATA 55

Viroli, C. (2011b). Model based clustering for three-way data structures. Bayesian Anal., 6,
573–602.

ANNEXURE
Table 10: Estimates of cluster centres and cluster sizes of extended K-means for
Landsat data

C a λ̂ b ĉ

1 0.17


4.13 4.13 4.13 4.13 4.12 4.12 4.13 4.12 4.12
4.18 4.18 4.19 4.18 4.17 4.18 4.18 4.17 4.17
4.33 4.32 4.33 4.32 4.30 4.32 4.33 4.32 4.32
4.09 4.08 4.09 4.08 4.07 4.08 4.10 4.09 4.10



2 0.10


3.83 3.83 3.84 3.83 3.82 3.82 3.85 3.84 3.84
3.54 3.54 3.57 3.53 3.51 3.53 3.57 3.56 3.56
4.75 4.76 4.75 4.76 4.76 4.76 4.74 4.74 4.74
4.81 4.81 4.79 4.82 4.83 4.82 4.80 4.80 4.79



3 0.12


4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05
4.29 4.28 4.28 4.28 4.28 4.27 4.28 4.27 4.27
4.56 4.55 4.55 4.55 4.55 4.56 4.55 4.56 4.56
4.40 4.40 4.41 4.39 4.40 4.41 4.40 4.41 4.41



4 0.21


4.29 4.28 4.27 4.28 4.28 4.27 4.28 4.28 4.27
4.43 4.41 4.40 4.42 4.42 4.41 4.42 4.41 4.41
4.49 4.48 4.48 4.49 4.48 4.47 4.48 4.48 4.47
4.25 4.25 4.25 4.25 4.24 4.24 4.25 4.24 4.24



5 0.16


4.21 4.21 4.20 4.21 4.20 4.19 4.19 4.19 4.19
4.62 4.63 4.61 4.62 4.63 4.62 4.61 4.62 4.61
4.73 4.74 4.73 4.74 4.74 4.73 4.73 4.74 4.73
4.53 4.53 4.52 4.53 4.53 4.53 4.53 4.53 4.52



6 0.24


4.45 4.46 4.45 4.46 4.46 4.46 4.45 4.46 4.45
4.64 4.64 4.63 4.64 4.65 4.64 4.63 4.64 4.63
4.69 4.69 4.68 4.69 4.69 4.69 4.68 4.69 4.68
4.45 4.45 4.45 4.46 4.46 4.45 4.45 4.46 4.45


a represents the cluster label and b represents the proportion of cluster
size.
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