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Abstract
Panel count data refer to the data arising from studies concerning recurrent events

where study subjects are observed only at distinct time points. If these study subjects
are exposed to recurrent events of several types, we obtain panel count data with multiple
modes of recurrence. In the present paper, we propose a nonparametric test to compare
cause specific rate functions of panel count data with more than one mode of recurrence.
We carry out simulation studies to evaluate the performance of the test statistic in a finite
sample setup. The proposed test is illustrated using two real-life panel count data sets, one
arising from a medical follow-up study on skin cancer chemo prevention trial and the other
on a warranty database for a fleet of automobiles.
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1. Introduction

Panel count data arise from longitudinal studies on recurrent events where each sub-
ject is observed only at discrete time points. In many situations, continuous observation is
impossible due to cost, feasibility or other practical considerations. As a result, the num-
ber of occurrence of the events between consecutive observation times are only available;
the exact recurrence times remain unknown (Kalbfleisch and Lawless (1985); Sun and Tong
(2009); Zhao et al. (2011)). Panel count data is also termed interval count data or interval
censored recurrent event data (Lawless and Zhan (1998); Thall and Lachin (1988)). In panel
count data, the number of observation times and observation time points may vary for each
subject. If each subject is observed only once, the number of recurrences of the event up to
the observation time is only available. This special case of panel count data is commonly
known as current status data.

The standard methods in the analysis of panel count data are focused on the rate
function or the mean function of the underlying recurrent event process. Thall and Lachin
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(1988) and Lawless and Zhan (1998) considered the analysis of panel count data using rate
functions. An estimator for the mean function based on isotonic regression theory was devel-
oped by Sun and Kalbfleisch (1995). Wellner and Zhang (2000) discussed likelihood based
nonparametric estimation methods for the mean function and proposed a nonparametric
maximum likelihood estimator (NPMLE) and a nonparametric maximum pseudo-likelihood
estimator (NPMPLE) for the same. They also showed that NPMPLE is exactly the one
studied in Sun and Kalbfleisch (1995). Some recent research works in this area include Zhou
et al. (2017), Xu et al. (2018), Wang et al. (2019), Jiang et al. (2020) and Wang and Lin
(2020) among others.

When an individual (subject) in the study is exposed to the risk of recurrence due to
several types of events at each point of observation, we obtain panel count data with multiple
modes of recurrence. Such data naturally arise from survival and reliability studies where
the interest is focused on the recurrence of competing events which can be observed only at
discrete time points. For example, consider the data on skin cancer chemo prevention trial
discussed in Sun and Zhao (2013). The cancer recurrences of 290 patients with a history of
non-melanoma skin cancers are observed at different monitoring times. The types of cancers
are classified into basal cell carcinoma and squamous cell carcinoma and the recurrences due
to both types of cancers at each monitoring time are observed for each individual. Covariate
information on age, gender, number of prior tumours and DFMO status is also observed for
each individual. As a result, we obtain panel count data with multiple modes of recurrence.
A detailed analysis of the data is given in Section 4.

Even though recurrent event data exposed to multiple modes of recurrence is studied
by many authors in literature (Cook and Lawless, 2007), panel count data with multiple
modes of recurrence is less explored in literature. Sreedevi and Sankaran (2021) derived
an expression for the cause specific mean functions and developed a nonparametric test
for comparing the effect of different causes on recurrence times based on the developed
estimators. Sankaran et al. (2020) considered non parametric estimation of cause specific
rate functions and studied their properties. When study subjects are exposed to multiple
modes of recurrence, it is important to test whether the effect of different modes are identical
on the lifetime (Gray (1988)). Many authors including Aly et al. (1994) and Sankaran et al.
(2010) addressed the above testing problem for right censored data. When the current status
data is only available, Sreedevi et al. (2012) developed a test for independence of time to
failure and cause of failure. Comparison of cumulative incidence functions of current status
data with continuous and discrete observation times is studied by Sreedevi et al. (2014) and
Sreedevi et al. (2019) respectively. Even though current status data can be considered as a
special case of panel count data, the estimation procedures are different for both data types
and the aforementioned tests cannot be used in the present situation.

The test proposed by Sreedevi and Sankaran (2021) can be used for comparing the
mean functions of panel count data with more than one recurrence mode. However, there are
several advantages in using the rate functions for the analysis of panel count data compared
to the mean functions. Often, we assume that the mean function follows a non-homogeneous
Poisson process, but this assumption is not required for analysing rate functions directly.
In addition, rate functions are not constrained by the non decreasing property as of mean
functions and hence it is easy to understand the changing recurrence patterns with rate
functions. This motivated us to propose a test to compare the cause specific rate functions
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proposed by Sankaran et al. (2020).

The paper is organized as follows. In Section 2, we discuss the estimation of the cause
specific rate functions and then propose a non parametric test to compare the rate functions
of panel count data with multiple modes of recurrence. We also discuss the asymptotic
properties of the proposed test statistic. In Section 3, we report the results of the simulation
study conducted to evaluate the performance of the proposed test in finite samples. We
illustrate the practical usefulness of the method by applying it to two real data sets in Section
4. Finally, Section 5 summarizes the major conclusions of the study with a discussion on
future works.

2. Inference procedures

We study cause specific rate functions and their properties in detail in this section.
Further, a non parametric test for comparing cause specific rate functions is presented.

2.1. Cause specific rate functions

Consider a study on n individuals from a homogeneous population who are exposed
to the recurrent events due to {1, 2, ..., J} possible causes. Assume that the event process is
observed only at a sequence of random monitoring times. Consequently, the counts of the
event recurrences due to each cause in between the observation times are only available; the
exact recurrence times remain unknown. As a result, we observe the cumulative number
of recurrences up to every observation time due to each cause. Define a counting process
Nj = {Nj(t); t ≥ 0} where Nj(t) denotes the number of recurrences of the event due to
cause j up to time t. Define µj(t) = E(Nj(t)) as the mean function of the recurrent event
process due to cause j which are termed as cause specific mean functions. Define rj(t)dt =
dµj(t) = EdNj(t) as the rate function of the recurrent event process due to cause j, for
j = 1, 2, ..., J . rj(t) is referred to as the cause specific rate function. By studying cause
specific rate functions, one can easily understand the difference in recurrence patterns due
to various causes (modes) of recurrence.

In panel count data, we can note that the number of observation times as well as
observation time points may be different for each individual. Let Mi be an integer-valued
random variable denoting the number of observation times for i = 1, 2, .., n. Also let Ti,p

denote the pth observation time for ith individual for p = 1, 2, ..Mi and i = 1, 2, .., n. As-
sume that the number of recurrences due to different causes is independent of the number
of observation times as well as observation time points. Let N j

i,p denote the number of
recurrences of the event observed for ith individual due to cause j , for p = 1, 2, ..., Mi,
i = 1, 2, ..., n and j = 1, 2, ..., J . Now we observe n independent and identically distributed
copies of {Mi, Ti,p, N1

i,p, ..., NJ
i,p}, p = 1, 2, ..., Mi. The observed data will be of the form

{mi, ti,p, n1
i,p, ..., nJ

i,p}, p = 1, 2, ..., mi and i = 1, 2, ..., n.

Sankaran et al. (2020) introduced various estimators for cause specific rate functions
and established their practical utility through numerical illustrations. The empirical estima-
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tors for the cause specific rate functions rj(t)’s are defined as

r̂j(t) =

∑n
i=1

[∑mi
p=1

(nj
i,p−nj

i,p−1)I(ti,p<t≤ti,p−1)
(ti,p−ti,p−1)

]
∑n

i=1 I(t ≤ ti,p) j = 1, 2, ..., J. (1)

In this definition, the numerator gives the average number of recurrences due to cause
j and the denominator is the number of individuals at risk at time t. Hence the estimators
r̂j(t)’s are the average of rate functions due to cause j, over all individuals. The cause specific
mean functions can be directly estimated from Equation (1). When J = 1, Equation (1)
reduces to the empirical estimator of the rate function given in Sun and Zhao (2013) and
the expression is given by

r̂(t) =
∑n

i=1

[∑mi
p=1

(ni,p−ni,p−1)I(ti,p<t≤ti,p−1)
(ti,p−ti,p−1)

]
∑n

i=1 I(t ≤ ti,p) (2)

where ni,p denotes the number of recurrences of the event observed for ith individual due to
all possible modes of recurrence up to time p, for p = 1, 2, ..., Mi, i = 1, 2, ..., n. By definition,
r̂(t) = ∑J

j=1 r̂j(t). In practice, the estimators of cause specific rate functions presented in
Equation (1) change only at the observed time points. Accordingly, Sankaran et al. (2020)
proposed a smoothed version of the estimators of cause specific rate functions using kernel
estimation techniques and also studied the asymptotic properties.

Let K(t) be a non-negative kernel function symmetric about t = 0 with
� ∞

−∞ K(t)dt =
1. Also, let hn > 0 be the bandwidth parameter. Let b1 < b2 < ... < bl are the distinct
observed time points in the set {Ti,p, p = 1, 2, ..., Mi, i = 1, 2, ..., n}. Define r̂qj = r̂j(bq), for
q = 1, 2, ..., l, j = 1, 2, ..., J . Now, the kernel estimators of rj(t)’s are given as

r̂∗
j (t) =

l∑
q=1

wq(t)r̂qj j = 1, 2, ..., J. (3)

where
wq(t) =

w∗
q(t, hn)∑l

u=1 w∗
u(t, hn)

q = 1, 2, ..., l.

and
w∗

q(t, hn) = h−1
n K

(
t − bq

hn

)
with

K(t) = (2π)−1/2exp(−t2/2).

The smoothed estimators r̂∗
j (t) of the cause specific rate functions are weighted av-

erage of r̂j(t)’s. Smoothed estimators of overall rate functions can also be constructed in a
similar way (Sun and Zhao (2013)). Clearly, r̂∗(t) = ∑J

j=1 r̂∗
j (t), where r̂∗(t) is the kernel

estimator of the overall rate function. In practice, the bandwidth hn for which the MSE is
minimum is selected to employ smoothing.
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The asymptotic properties of the estimators r̂∗
j (t)’s are studied and derived in Sankaran

et al. (2020). Without loss of generality, assume that the kernel function K(x) satisfies the
following mild regularity conditions.
C1 : K(x) is bounded ie sup{K(x), x ∈ R} < ∞
C2 : |xK(x)| → 0 as |x| → ∞
C3 : K(x) is symmetric about 0, ie K(−x) = K(x), x ∈ R
Also suppose that, as n → ∞ the bandwidth parameter hn satisfies the conditions (i) hn → 0
(ii) nhn → ∞ and (iii) nh2

n → ∞.
Under the assumptions C1, C2 and C3, Sankaran et al. (2020) showed that for fixed t,
the estimators r̂∗

j (t)’s are asymptotically normal with mean λj(t) = E(r̂∗
j (t)) and standard

deviation σj(t) = s.d(r̂∗
j (t)) for j = 1, 2, ..., J .

2.2. Test statistic

In this study, we focus on comparing the cause specific rate functions due to various
recurrence modes. This may be helpful in selecting the appropriate treatment for a group of
patients in a clinical study or to evaluate a newly introduced system in reliability experiments.
To develop a test statistic, we now consider the hypothesis,

H0 : rj(t) = rj′(t) for all t > 0, j ̸= j′ = 1, 2, ..., J

against
H1 : rj(t) ̸= rj′(t) for some t > 0 and j ̸= j′ = 1, 2, ..., J. (4)

Since r(t) = ∑J
j=1 rj(t), the above hypothesis can also be written as

H0 : rj(t) = r(t)
J

for all t > 0, j ̸= j′ = 1, 2, ..., J

against
H1 : rj(t) ̸= r(t)

J
for some t > 0 and j ̸= j′ = 1, 2, ..., J. (5)

To test H0 against H1, we choose r̂∗
j (t) as the smoothed estimators for the cause

specific rate functions defined in Equation (3). A smoothed estimator for the overall rate
function r(t) specified in Equation (2) is constructed by omitting the information on the
mode of recurrence. Let r̂∗(t) denote smoothed estimator of the overall rate function. A
similar procedure of estimating the overall mean function by ignoring the cause of recurrence
information is used in Sreedevi and Sankaran (2021) for comparing cause specific mean
functions.

To develop a test statistic for comparing cause specific rate functions, consider the
function

vj(t) =
� t

0
w(u)

r̂∗
j (u) − r̂∗(u)

J

 du for all j = 1, 2, . . . , J (6)

where w(.) is an appropriate data dependent weight function which is used to compensate
the effect of censoring. The weight functions are also employed to increase the efficiency of
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the test statistic and to set it asymptotically distribution free (Pepe and Mori (1993)). The
function vj(.) is similar to the one proposed by Sreedevi and Sankaran (2021) to compare
the cause specific mean functions of panel count data. Now to test the null hypothesis given
in Equation (4), we propose the test statistic

Z(τ) = v′(τ)
∑̂

(τ)−1v(τ) (7)

where τ is the largest monitoring time in the study and v(τ) = (v1(τ), . . . , vk(τ))′ ;∑ (τ)−1

is the generalized inverse ∑̂(τ), where ∑̂(τ) is a consistent estimator of ∑(τ), the variance-
covariance matrix of v(τ). The matrix ∑(τ) involves variances of r̂∗

j (τ) and r̂(τ) and co-
variances between r̂∗

j (τ) and r̂∗
j′(τ) for j ̸= j′ = 1, 2, . . . , J and that between r̂∗

j (τ) and r̂(τ).
The bootstrap procedure is used to find the estimate of the variance-covariance matrix, since
the expression for ∑(τ) is complex. To find the asymptotic distribution of Z(τ) given in
Equation(7), consider the quantity

vj(t) =
� t

0
w(u)

r̂∗
j (u) − r̂∗(u)

J

 du for all j = 1, 2, . . . , J

which can be written as

vj(t) =
� t

0
w(u)

[
r̂∗

j (u) − rj(u)
]

d(u) +
� t

0
w(u)

[
rj(u) − r(u)

J

]
du

+
� t

0
w(u)

r(u)
J

− r̂∗(u)
J

 du, j = 1, 2, . . . J

Now under H0, rj(t) = r(t)/J for all t, we get

vj(t) =
� t

0
w(u)

[
r̂∗

j (u) − rj(u)
]

du +
� t

0
w(u)

r(u)
J

− r̂∗(u)
J

 du, j = 1, 2, . . . , J

Now from the asymptotic properties of the kernel estimators of cause specific rate
functions discussed in Sankaran et al. (2020) it follows that, under H0 for any τ > 0, the
limiting distribution of v(τ) = (v1(τ), . . . , vJ(τ))′ is a J− variate normal with mean zero
vector and variance-covariance matrix ∑(τ), where τ is the largest monitoring time in the
study. Accordingly, under the regularity conditions stated in Section 2.1, the quadratic form
Z(τ) follows a χ2 distribution with (J−1) degrees of freedom. We reject H0, if Z(t) ≥ χ2

α,(J−1)
where χ2

α,(J−1) is the ordinate value of chi-square distribution with (J −1) degrees of freedom
at α level.

3. Simulation studies

We conduct simulation studies to evaluate the performance of the proposed test statis-
tic in finite samples. The situation with two modes of recurrence is considered here. We
generate panel count data of the form {mi, ti,p, n1

i,p, n2
i,p} for p = 1, 2, ..., mi and i = 1, 2, ..., n

to carry out simulation. The number of observation times mi for each individual is generated
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Table 1: Empirical Type I error and power of the test in percentage for
the weight functions w(.) = 1, w(.) = n and w(.) = ̂r∗(t)

n n

( θ1, θ2, θ3) α 100 200 500 (θ1, θ2, θ3 ) α 100 200 500
w(t) = 1

(1,1,1) 5 5.8 5.4 5.1 (1,1,2) 5 5.6 5.2 4.9
1 2 1.7 1.3 1 1.7 1.4 1.1

(1,2,1) 5 65.8 71.4 79.5 (1,2,2) 5 66.8 74.8 80.7
1 63.7 67.2 73.1 1 65.2 73.1 75.2

(1,3,1) 5 74.5 81.9 86.4 (1,3,2) 5 81.5 87.7 92.4
1 73.0 78.6 83.1 1 79.4 85.6 91.6

(1,4,1) 5 90.3 92.1 97.2 (1,4,2) 5 96.5 98.2 99.9
1 87.4 91.8 94.5 1 96.8 98.2 99.1

(1,5,1) 5 98.9 100 100 (1,5,2) 5 100 100 100
1 98.4 99.7 100 1 99.8 100 100

w(t) = n

(1,1,1) 5 4.5 4.7 5.2 (1,1,2) 5 4.4 4.8 5.1
1 2 1.7 1.3 1 1.4 1.3 0.9

(1,2,1) 5 67.1 73.2 78.4 (1,2,2) 5 70.4 79.5 84.7
1 66.7 69.2 74.1 1 68.1 74 79

(1,3,1) 5 79.6 83.9 86.4 (1,3,2) 5 85.2 89.3 94.7
1 73.0 78.6 83.1 1 80.5 87.2 93.7

(1,4,1) 5 94.3 98.1 99.9 (1,4,2) 5 99.9 100 100
1 87.4 96.8 97.2 1 99.8 99.9 100

(1,5,1) 5 100 100 100 (1,5,2) 5 100 100 100
1 100 100 100 1 99.8 100 100

w(t) = r̂∗(t)
(1,1,1) 5 4.7 5.2 5 (1,1,2) 5 5.5 4.8 5.1

1 0.7 1.2 0.9 1 1.3 1.2 1
(1,2,1) 5 73.2 81.0 85.7 (1,2,2) 5 76.9 84.1 85.4

1 71.1 78.9 84.3 1 71.0 77.2 84.2
(1,3,1) 5 89.5 92.5 98.4 (1,3,2) 5 88.8 91.4 97.5

1 83.2 88.6 96.9 1 85.0 87.3 96.0
(1,4,1) 5 99.9 100 100 (1,4,2) 5 100 100 100

1 99.7 100 100 1 99.8 99.8 100
(1,5,1) 5 100 100 100 (1,5,2) 5 100 100 100

1 100 100 100 1 100 100 100
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from a discrete uniform distribution U(1, 10) for i = 1, 2, ..., n. Thus the maximum num-
ber of observations for each individual is restricted up to 10. Then we generate gap times
between each observation from uniform distribution U(0, 5). The discrete observation time
points ti,p for p = 1, 2, ..., mi and i = 1, 2, ..., n are generated using the above-mentioned time
gaps. A bivariate Poisson distribution with parameters (θ1, θ2, θ3) is employed to generate
recurrent processes n1

i,p and n2
i,p.

The joint mass function of the bivariate Poisson distribution with parameters (θ1, θ2, θ3)
is given by

f(x, y) = exp{−(θ1 + θ2 + θ3)}
θ1

x

x!
θ2

y

y!

min(x,y)∑
k=0

(
x

k

)(
y

k

)
k!
(

θ3

θ1θ2

)k

. (8)

The marginal distribution of X and Y is Poisson distribution with E(X) = θ1 + θ3, E(Y ) =
θ2 + θ3 and cov(X, Y ) = θ3 gives a measure of dependence between random variables X
and Y . Sankaran et al. (2020) used a similar procedure to generate panel count data with
multiple modes of recurrence.

In the above simulation framework, if we set θ1 = θ2 and assign a non-zero value
for θ3, it corresponds to a situation where the cause specific rate functions are identical.
Accordingly, the null hypothesis H0 will be true. When the difference between θ1 and θ2
increases, the difference between the two rate functions also increases which results in a
situation where the null hypothesis is false. Hence the parameter combination with θ1 = θ2
gives the type I error of the test and all other choices of parameter combinations give the
power of the proposed test. We carry out simulation studies for different combinations of
(θ1, θ2, θ3) to calculate the empirical type I error and power of the test. For this purpose,
observations of different sample sizes n = 100 or n = 200 or n = 500 are simulated and
the process is repeated 1000 times. We employ three different choices of weight functions
similar to Sreedevi and Sankaran (2021) which are (i) w(t) = 1, (ii) w(t) = n, the number
of individuals in the study and (iii) w(t) = r̂∗(t), the smoothed estimator of overall rate
function.

Table 1 gives the type I error and the power of the proposed test statistic in percentage
for significance level α = 0.05 and α = 0.01. From Table 1, we can see that type I error of
the test approaches the chosen significance level. The test is efficient in terms of power also.
Also, as the difference between θ1 and θ2 increases, the power of the test also increases.

4. Data analysis

The proposed inference procedures are illustrated using two real-life data sets in this
section.

4.1. Skin cancer chemo prevention trial data

We consider the data arising from the skin cancer chemo prevention trial given in Sun
and Zhao (2013) for demonstration. The study was conducted to test the effectiveness of
the DFMO (DIfluromethylornithire) drug in reducing new skin cancers in a population with
a history of non-melanoma skin cancers, basal cell carcinoma and squamous cell carcinoma.
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The data consists of 290 patients with a history of non-melanoma skin cancers. The obser-
vation and follow-up times differ for each patient. The data has the counts of two types of
recurring events basal cell carcinoma and squamous cell carcinoma which we treat here as
two modes of recurrence (Sreedevi and Sankaran (2021)).

Table 2: Test statistic values of the proposed test
for different weight functions

Weight function Test statistic p -value
1 26.97 < .0005
n 31.92 < .0005
r̂∗(.) 37.74 < .0005

Figure 1: Kernel estimates of cause specific rate functions due to basal cell
carcinoma and squamous cell carcinoma for hn = 1.76

In the data set, the number of observations on an individual varies from 1 to 17
and the time of observation varies from 12 to 1766 days. The cause specific rate functions
due to basal cell carcinoma and squamous cell carcinoma are estimated using Equation (3).
Further, the proposed procedures are applied to evaluate the test statistic. Table 2 gives the
chi-square test statistic values of the proposed test for different weight functions. From the
value of the test statistic, it is clear that we reject the null hypothesis and conclude that
the rate functions due to basal cell carcinoma and squamous cell carcinoma are significantly
different.

The plots of the kernel estimators with bandwidth parameter value hn = 1.76 is given
in Figure 1. The bandwidth value hn = 1.76 is chosen, which minimizes the MSE of the
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estimates, r̂∗
j (t) for j = 1, 2.

From Figure 1, it can be noted that the recurrence rate of basal cell carcinoma is
greater than the recurrence rate of squamous cell carcinoma at all time points, which clearly
indicates the rejection of H0. Since the rate functions are not monotonic, the change points
of recurrence patterns can also be easily identified from the graph.

4.2. Automobile warranty claims data

We apply the proposed methods to the automobile warranty claims data studied in
Somboonsavatdee and Sen (2015). The data set comprises the recurrent failure history of a
fleet of automobiles. The outcome of interest is the repeated mileages at failure for multiple
vehicles of a certain model and make, obtained from the warranty claim database which also
includes the labour code associated with the failure. In the data, the source and specifics
are masked for de-identification purposes.

Table 3: Test statistic values of the proposed test
for different weight functions

Weight function Test statistic p -value
1 49.15 < .0005
n 68.96 < .0005
r̂∗(.) 79.55 < .0005

Figure 2: Kernel estimates of cause specific rate functions due to three modes
of recurrences for hn = 1.67
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The database consists of the recurrent failure history of 456 vehicles subjected to
type I censoring at 3000 miles. Fourteen different labor codes of the warranty claims of each
vehicle were recorded with mileage at filing. Due to the absence of a specific description
of the component associated with labor code, the grouping was determined on the basis of
the rate of failures. The fourteen individual labor codes were combined into three broad
groups of failure modes FM1, FM2 and FM3, where FM1 comprises labor codes with shape
parameters ranging between 0.2 and 0.36, FM2 covers labor codes with shape parameter
estimates between 0.4 and 0.55, whereas FM3 combines the remaining codes that have the
slowest rate of growth with shape parameter estimates varying between 0.7 and 0.93. Table
IV in Somboonsavatdee and Sen (2015) presents the data on 172 vehicles that have at least
one documented record of warranty claim for repair.

We observed the recurrent failure history data at 1000, 2000 and 3000 mileages at
which the number of failures due to each mode is noted, thereby making the recurrent event
data as a panel count data with multiple modes of recurrence. The complete data set used
in our study is given in Table 4 in Appendix.

Table 3 gives the chi-square test statistic values of the proposed test for different
weight functions for automobile warranty data. For all choices of weight functions, we reject
the null hypothesis and conclude that the rate functions due to the three modes of failure are
significantly different. The plots of the kernel estimators with bandwidth parameter value
hn = 1.67 is given in Figure 2. The bandwidth value hn = 1.67 is chosen as it minimizes
the MSE of the estimates. From Figure 2, it can be noted that the recurrence rates of each
mode of recurrence (FM1, FM2 and FM3) are distinct at all observed miles, which clearly
indicates the rejection of H0.

5. Conclusion

In the present paper, we developed non parametric inference procedures for the anal-
ysis of panel count data with multiple modes of recurrence based on cause specific rate
functions. We proposed a test statistic to test the equality of cause specific rate functions.
A simulation study was carried out by generating the data from a bivariate Poisson process
to assess the performance of the proposed test in finite samples. Two real-life data sets, one
from skin cancer chemo prevention trial (Sun and Zhao (2013)) and the other from automo-
bile warranty claims (Somboonsavatdee and Sen (2015)) were analysed to demonstrate the
practical utility of the procedures.

The nature of dependence between time to failure and cause of failure is important for
modelling competing risks data. Even though the problem is studied under right censoring,
it is unexplored for panel count data. We can use either cause specific mean functions or
cause specific rate functions to tackle this problem. Works in this direction will be done
separately. Regression analysis of panel count data with multiple modes of recurrence using
rate functions is also under investigation.
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ANNEXURE
Table 4: Automobile warranty data

ID MIL FM1 FM2 FM3 TOTAL ID MIL FM1 FM2 FM3 TOTAL
1 1000 1 1 0 2 45 1000 2 0 0 2
1 3000 1 0 0 1 46 1000 0 1 0 1
2 1000 0 0 2 2 47 1000 1 0 0 1
3 3000 0 0 1 1 47 3000 0 1 0 1
4 2000 0 0 1 1 48 1000 1 1 0 2
5 1000 1 1 1 3 49 1000 0 1 0 1
5 2000 1 0 0 1 50 1000 0 0 1 1
6 1000 0 0 1 1 51 3000 0 0 1 1
7 1000 1 0 0 1 52 1000 0 0 1 1
8 1000 1 0 0 1 53 2000 1 0 0 1
9 1000 0 1 0 1 54 1000 0 1 0 1

10 2000 0 0 2 2 55 1000 1 0 0 1
11 1000 1 0 0 1 56 1000 0 1 0 1
12 1000 1 0 0 1 57 1000 0 2 0 2
13 3000 0 0 1 1 57 2000 1 0 1 2
14 1000 0 1 1 2 58 1000 0 0 1 1
15 1000 0 1 0 1 59 1000 0 1 0 1
15 2000 0 1 0 1 60 1000 0 1 0 1
16 2000 0 1 1 2 61 2000 1 0 0 1
16 3000 0 1 0 1 62 1000 0 1 0 1
17 1000 1 2 1 4 63 2000 0 0 1 1
17 2000 1 0 0 1 64 1000 0 0 1 1
18 3000 0 0 1 1 65 1000 1 0 0 1
19 1000 0 1 0 1 66 1000 2 1 0 3
20 1000 1 0 0 1 67 1000 1 0 0 1
21 1000 0 1 0 1 67 3000 0 0 1 1
22 3000 0 1 0 1 68 1000 0 1 0 1
23 1000 1 0 0 1 69 2000 0 1 0 1
24 3000 1 0 0 1 70 1000 1 0 0 1
25 1000 0 1 0 1 71 1000 1 0 0 1
26 1000 1 0 1 2 72 2000 0 0 2 2
26 2000 1 2 0 3 73 1000 1 0 0 1
26 3000 0 2 0 2 73 2000 0 0 1 1
27 3000 0 1 0 1 74 1000 1 0 1 2
28 2000 0 0 1 1 74 2000 0 0 1 1
29 1000 1 0 1 2 75 1000 1 0 0 1
30 3000 0 2 0 2 76 1000 0 0 1 1
31 2000 0 1 0 1 77 1000 0 1 1 2
32 2000 0 1 0 1 78 1000 0 1 0 1
33 3000 0 0 1 1 79 3000 0 0 1 1
34 1000 0 1 0 1 80 1000 1 0 0 1
35 1000 0 0 1 1 81 1000 0 0 1 1
35 2000 1 0 0 1 82 1000 1 0 0 1
36 1000 0 1 0 1 83 1000 0 0 1 1
37 1000 1 0 0 1 84 2000 0 0 1 1
37 2000 0 0 1 1 85 1000 0 2 0 2
38 1000 1 1 0 2 86 1000 0 0 1 1
39 1000 0 2 0 2 86 2000 0 2 0 2
40 1000 0 2 0 2 87 1000 1 0 0 1
41 3000 0 0 1 1 88 2000 0 0 1 1
42 1000 0 0 1 1 88 3000 0 0 1 1
43 1000 0 0 1 1 89 3000 1 0 0 1
44 3000 0 1 0 1 90 1000 0 0 2 2
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ID MIL FM1 FM2 FM3 TOTAL ID MIL FM1 FM2 FM3 TOTAL
90 3000 0 0 1 1 135 1000 0 0 1 1
91 1000 0 1 0 1 136 1000 0 0 1 1
92 1000 0 1 0 1 137 1000 0 0 1 1
93 1000 0 0 1 1 138 1000 0 0 1 1
94 1000 1 1 0 2 138 3000 1 0 0 1
95 1000 1 0 0 1 139 1000 1 0 0 1
96 2000 0 0 1 1 140 1000 1 0 0 1
97 2000 0 0 1 1 141 3000 0 1 0 1
98 1000 0 1 0 1 142 1000 0 1 1 2
98 2000 1 1 1 3 143 1000 1 0 0 1
99 1000 1 0 0 1 143 3000 0 0 1 1

100 1000 1 0 1 2 144 1000 0 1 0 1
101 1000 0 0 1 1 144 2000 0 0 2 2
102 1000 1 0 0 1 145 1000 0 1 0 1
103 1000 1 0 0 1 146 1000 1 0 1 2
104 2000 0 0 1 1 146 3000 0 0 1 1
105 1000 1 0 0 1 147 1000 0 1 0 1
106 1000 0 0 2 2 148 3000 0 0 1 1
107 3000 0 1 0 1 149 1000 1 0 0 1
108 1000 1 0 0 1 150 1000 1 0 0 1
108 3000 0 0 1 1 151 1000 0 0 1 1
109 2000 0 0 1 1 152 1000 1 0 0 1
109 3000 0 1 0 1 153 1000 0 1 0 1
110 1000 1 0 1 2 154 3000 1 0 0 1
111 1000 1 0 0 1 155 1000 0 1 0 1
112 1000 0 1 0 1 156 3000 0 1 0 1
113 1000 0 0 1 1 157 2000 0 0 1 1
114 1000 1 0 0 1 158 3000 0 0 1 1
115 1000 0 1 1 2 159 1000 0 0 1 1
116 1000 1 0 0 1 160 3000 0 0 1 1
117 2000 0 1 1 2 161 1000 0 1 2 3
118 2000 0 0 1 1 161 2000 0 1 2 3
119 2000 1 0 0 1 161 3000 1 0 2 3
120 1000 1 0 1 2 162 2000 1 0 0 1
121 1000 0 0 1 1 163 1000 0 1 0 1
121 3000 0 0 1 1 164 3000 0 0 1 1
122 1000 1 0 1 2 165 1000 0 2 2 4
123 2000 0 1 0 1 165 2000 0 1 1 2
124 1000 1 0 0 1 165 3000 0 1 1 2
125 2000 0 0 1 1 166 1000 1 0 1 2
126 1000 2 0 1 3 167 1000 0 1 0 1
126 3000 0 0 2 2 167 3000 0 1 0 1
127 2000 0 0 1 1 168 1000 0 1 0 1
128 2000 0 1 0 1 169 1000 1 0 0 1
129 1000 2 3 1 6 169 2000 0 0 4 4
129 2000 0 0 1 1 169 3000 0 1 0 1
130 1000 0 1 0 1 170 1000 0 1 0 1
131 1000 1 0 0 1 170 2000 0 0 1 1
132 3000 0 0 1 1 171 1000 0 0 1 1
133 2000 1 0 1 2 172 2000 0 0 1 1
134 2000 0 1 1 2


	Introduction
	Inference procedures
	Cause specific rate functions
	Test statistic

	Simulation studies
	Data analysis
	Skin cancer chemo prevention trial data
	Automobile warranty claims data

	Conclusion

