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Abstract 

  

In this paper we have attempted to build a seasonal model of monthly rainfall data of 

Mekele station of Tigray region (Ethiopia) using Univariate Box-Jenkins’s methodology. 

The method of estimation and diagnostic analysis results revealed that the model was 

adequately fitted to the historical data. In particular, the residual analysis, which is 

important for diagnostic checking confirmed that there is no violation of assumptions in 

relation to model adequacy. Further comparison on the forecasting accuracy of the model 

is performed by holding-out some rainfall values.  The point forecast results showed a 

very closer match with the pattern of the actual data and better forecasting accuracy in 

validation period.  
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1 Introduction 

Univariate time series analysis and forecasting has become a major tool in hydrology, 

environmental management, and climatic fields. Several time series methods have been 

used for modeling and forecasting rainfall data in literatures but according to Pankratz 

(1983) the Box and Jenkins method is the most general way of approaching to forecast 

unlike other models, there is no need to assume initially a fixed and specified pattern. The 

Univariate Box and Jenkins models are useful for analysis of single time series. 
 

Montgomery and Johnson (1976) considered Box and Jenkins methodology as 

probably the most accurate method for forecasting of time series data. According to 

Caldwell (2006), the Box-Jenkins methodology is particularly suited for development of 

model of process exhibiting strong seasonal behavior. There are other forecast techniques 

exploring the relation among observations yield better results; most of these forecast 

techniques are based on recent advances in time series analysis consolidated and 
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developed by Box and Jenkins (1976) and further discussed in other resources such as 

Chatfield (1996). 
  

Nail and Momani (2009) used Univariate Box-Jenkins approach and revealed that 

this approach possesses many appealing features such as the researcher who has a data 

for the past period, for example rainfall, to forecast future rainfall without having to 

search for other related time series data. 

 

In this paper we have also used Box- Jenkins approach to build a seasonal model of 

monthly rainfall data of Mekele station in Tigray region (Ethiopia). The estimation and 

diagnostic analysis results revealed that the model is well fitted to the historical data. The 

residual analysis revealed that there was no violation of assumptions in relation to model 

adequacy.  Further we compared the forecasting accuracy of the model by holding-out 

some rainfall values.  The point forecast results showed a very closer match with the 

pattern of the actual data and better forecasting accuracy in validation period. 

 

2  Material and Methods 
 

2.1 Material 
 

The National Meteorological Service Agency (NMSA), Ethiopia, is the responsible 

organization for the collection and publishing of meteorological data. The monthly 

rainfall data from the period January 1975 – December 2009 of Mekele station of Tigray 

region were taken from NMSA (Appendix). 

 

2.2 Methodology   
 

In this article we used Seasonal Autoregressive Integrated Moving Average (SARIMA) 

model, proposed by Box and Jenkins (1976), for model building and forecasting for 

rainfall data. The Box and Jenkins methodology is a powerful approach to the solution of 

many forecasting problems (Johnson and Montgomery, 1976) and it can provide 

extremely accurate forecasts of time series and offers a formal structured approach to 

model building and analysis. There are many quantitative methods of model building and 

forecasting which are being used in climatology and metrological studies. With the 

development of the statistical software packages and its availability, these techniques 

have become easier, faster and more accurate to use. In this study, we employ SAS and 

SPSS software packages for the statistical data analysis. 
 

The Box- Jenkins methodology assumes that the time series is stationary and serially 

correlated. Thus, before modeling process, it is important to check whether the data under 

study meets these assumptions or not. Let x 1, x 2, x 3, . . . , x t-1, x t, x t+1, . . . , x t be a 
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discrete time series measured at equal time intervals. A seasonal ARIMA model for x t is 

written as [Box and Jenkins, 1970] 
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where  

x t  is an observation at a time t; 

t      discrete time; 

s      seasonal length, equal to 12 ; 

µ       mean level of the process, usually taken as the average of the w t  series (if D + d > 0 

often  µ ≡ 0);  

at      normally independently distributed white noise residual with mean 0 and variance 
2
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21 φφφφ −−−−= nonseasonal autoregressive (AR) operator or 

polynomial of order p such that the roots of the characteristic equation 0)( =Bφ  lie 

outside the unit circle for nonseasonal stationarity and the iφ , i = 1, 2, . . . , p are the 

nonseasonal AR parameters; 

(1 – B)
 d

 = d∇  nonseasonal differencing operator of order d to produce nonseasonal 

staionarity of the d th difference, usually d = 0, 1, or 2; 
ps

p

sss BBBB Φ−−Φ−Φ−=Φ ...1)( 2

21 seasonal AR operator or order p such that the 

roots of 0)( =Φ sB  lie outside the unit circle for seasonal stationarity and  iΦ , i = 1, 2, . . 

. , p are the seasonal AR parameters; 

(1 – B)
 D 

= D

s∇  seasonal differencing operator of order D to produce seasonal stationarity 

of the Dth differenced data, usually D = 0, 1, or 2; 

wt = t

D

s

d x∇∇  stationary series formed by differencing x t series ( n = N – d –s D is the 

number of terms in the w t series); 
q

q BBBB θθθθ −−−−= ...1)( 2

21 nonseasonal moving average (MA) operator or 

polynomial of order q such that roots of 0)( =Bθ  lie outside the unit circle for 

invertibility and iθ , i = 1, 2, . . ., q; 

sQ

q

sss BBBB Θ−−Θ−Θ−=Θ ...1)( 2

21  seasonal MA operator of order Q such that the 

roots of 0)( =Θ sB lie outside the unit circle for invertibility and iΘ , i = 1, 2, . . . , Q are 

the  seasonal MA parameters. 
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The notation (p, d, q) × (P, D Q) s is used to represent the SARIMA model (1). The 

first set of brackets contains the order of the nonseasonal operators and second pair of 

brackets has the orders of the seasonal operators. For example, a stochastic seasonal noise 

model of the form (1, 1, 2) × (0, 1, 1)s  is written as 

(1 - t

s

t

s aBBBxBB )1()1(}])1){[( 1

2

211 Θ−−−=−− θθµφ                                              (2) 

If the model is non seasonal, only the notation ( p, d, q) is needed because the seasonal 

operators are not present. 
 

When a seasonal model is stationary and requires no differencing (i.e. D = 0 and d = 

0), it is often referred to simply as   an ARMA (autoregressive moving average) process. 

The notation (p, q) × (P, Q) s is used to represent this type of model. If an ARMA model 

is nonseasonal, the notation (p, q) is used to indicate orders of the AR and MA operators, 

respectively. A pure nonseasonal AR process of order p with no differencing is often 

denoted by AR (p). Likewise, a nonseasonal MA process of order q is sometimes written 

as MA (q). Of course an AR (p) model can be represented equivalently by the notation 

(p, 0) or ( p, 0, 0), while MA (q) process can also be denoted by (0, q) or (0, 0, q).       

              

2.3 Tests for Stationary 
 
Graphic Inspection: The pattern of the time series plot (Fig.1) does not show 

any apparent systematic change about the mean. The periodic peaks in the plot, 

however, reflect the yearly regular seasonality (with seasonality interval s=12) 

of the rainfall values. The series is, therefore, seasonal due to a large rainfall 

values during rainy season and a relatively lesser peak due to small values of 

rainfall in the other months. This indicates that the rainfall data have seasonal 

unit root (i.e., seasonally not stationary). 
 

The Figure 2 exhibits the autocorrelation function plot of untransformed 

data in which   the presence of seasonality behavior as well as seasonally non 

stationary of the rainfall series is clear. Because there is a sinusoidal wave 

pattern at the multiple of seasonal intervals and declining slowly while non 

seasonal lags are relatively decaying quite slowly. It is, thus, necessary to 

remove the non seasonal component of the time series corresponding to the 

sinusoidal periodic component of the autocorrelation function to make series 

seasonally stationary. 

 

Dickey-Fuller Test: The most widely used test for stationary is Dickey-Fuller 

test. This test is based on the estimate of the following regression equation with 

no deterministic trend. 

tptpttt axxxx +∇++∇+=∇ −−− γγφ ...111                                                                        (3) 
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where∇  is the difference operator defined 1−−=∇ ttt xxx  and tx  is a variable of 

interest. This model can be estimated and tested for a unit root. That is 

equivalent to testing φ  equal to zero, γ1, …, γp are p regression coefficients and 

p is the number of autoregressive terms. 

 

To test the hypothesis that the series xt is stationary, we formulate the 

following hypothesis 

 HO:  The series is non-stationary i.e φ  =0 

 H1: The series is stationary i.e φ  < 0 at α=0.05. 

There is a need of seasonal differencing not simple differencing. 
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Figure 1: Plot of monthly rainfall data 

 

The patterns of monthly rainfall series plot and autocorrelation function 

suggest the need of seasonal differencing but not simple differencing. 
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Figure 2: Autocorrelation plot for the untransformed monthly rainfall series. 

 

Usually the order of p in the regression equation is set to three. Then if the 

estimate of φ  is nearly zero in the fitted regression equation (2), the original 

series x t needs first differencing and if the estimate of φ < 0 then the original 

series is already stationary (Makridakis et al., 1998). It was found that the 

estimated value for φ  = -0.41 which confirm that original time series plot is 

without obvious trend at 5% significance level. The autocorrelation function in 

Fig.2 exhibits non - seasonally rapidly decaying trend. As a result, both tests 

appear to agree to avoid first non seasonal simple differencing. 

 

Variance Comparison: The behavior of variance associated with different 

orders of differencing can provide a useful means of deciding the appropriate 

order of differencing (Mills, 1999). The rule is that the when the sample 

variance does not decrease further then a stationary series is found. If the 

increase in the differencing order increases the variance, it is an indication of 

over differencing. To examine our series that whether it is a candidate of non-

differencing, simple differencing, seasonal differencing or double seasonal 

differencing for non seasonally and seasonally stationarity, we computed the 

sample variance for each of xt, ,   series, respectively.  We 

got the following results: 



2011] MODELING AND FORECASTING OF RAINFALL  DATA 37 

• Var( )=8064.1, Var(xt)=7106.5, Var( )=2745.8, and  )

2

12 ( tx∇ =7850  

values;   

•    Var( ) > Var(xt);  

•  Var (  > Var (xt) > Var ( ). 
  

These results suggest that non-seasonal first differencing ( ) has been over-

differenced and hence the original series is non-seasonally stationary .The first seasonal 

differencing would rather be important, because the Var ( )   is greater than 

Var( ). 
 

These tests for stationarity seem to agree and suggest that the first seasonal 

differencing in the series can achieve stationarity around a constant mean, which 

is   approximately zero and its standard deviation is 52.4 mm (Figure 3). 

Moreover, the ACF and PACF (Figures 4(a) and 4(b)) also tell that the monthly 

rainfall series is stationary in both mean and variance after first seasonal 

difference. 

 

 
Figure 3: Plot for First seasonal differenced monthly rainfall series 
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(a) 

 
(b)  

Figure 4:   (a): Autocorrelation Function (ACF) (b): Partial Autocorrelation Function 

(PACF) for the first seasonal differenced monthly rainfall. 

 

2.4 Tests for randomness 
 

According to Harvey (1993) the simplest time series is a random model, in 

which the observations vary around a constant mean, have a constant variance, 

and are probabilistically independent. In other words, a random time series does 

not have time series pattern, meaning that there is no point in attempting to fit a 

time series model to such type of data. Therefore, it is important to perform tests 

of randomness before any attempt to modeling process to our series. Therefore 

we check our time series through the following tests to investigate the 

hypothesis that the first-seasonally differenced monthly rainfall series are 

serially uncorrelated. 
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Graphic Inspection: The visual inspection of the autocorrelation function plot   provides 

useful information to identify the type of time series (Chatfield, 1996). For example, if a 

time series is a completely random series, then for large n, rk  0 for every k. This can be 

examined   after the array of autocorrelation coefficients rk, plotted with k as abscissa and 

rk   as ordinate. 
 

Figure 4(a) exhibits the graph of sample autocorrelations against different lags from 

which we can observe visually that the autocorrelations are not all insignificant. This 

indicates that there is some sort of dependence between values of xt series. 

The randomness can also be checked using Bartlett’s Band Test and Box-Ljung Test 

Statistic. Here we used Box-Ljung Test Statistic. 
 

Box-Ljung Test Statistic: This statistic is used for collectively testing the 

magnitude of the autocorrelation of stationary time series for significance. For 

this test, we used the sample autocorrelation coefficients of the first seasonally 

differenced monthly rainfall as well.  

The hypothesis to be tested is  

                                      Ho: All autocorrelations up to lag J are zero 

                                                 Versus 

                                      H1: Not all up to lag J are zero       at   α= 0.05. 

The statistic for this testing hypothesis is as 

                                       Q=n(n+2                                                       (4)                                    

 

This statistics has a chi-square distribution with J degrees of distribution. Q-

Statistic is usually computed for J= 6, 12 24, 36 and 48 by most of the statistical 

packages. However, J=12 or 24 will prove to be satisfactory (Patricia, E. G., 

1994).  In this regard, we compute the test statistic above for the first J=12 lag 

autocorrelation values and n=408 observations. The value of the calculated Q-

Statistic is found to be 43.72 and the tabulated value for chi-distribution with 12 

degree of freedom at 0.05 significance level is 21.02. The decision to reject Ho is 

based on whether the value of Q-Statistic > ,J; if that does not hold we do 

not reject Ho. Since Q-statistic=43.7> =21.2, we reject Ho. we conclude 

that the seasonally first differenced monthly rainfall series are serially 

correlated. 
 

Now we can say that the monthly rainfall data are stationary and serially 

correlated. 
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2.5 Model Identification 
Having established that the monthly rainfall data are serially correlated and 

stationary, the next step in the identification process is to find the initial values 

for the order of non-seasonal and seasonal parameters p, q, P, and Q,, 

respectively. The first step in this direction is to identify the significant 

autocorrelations and partial autocorrelation from the ACF and PACF plots of the 

underlying stationary series (Hipel et al., 1977). Hence for the (1- 

) , where B is the backward shift operator and is defined Bxt = xt-1 

and B
d
 is the backward shift operator of order d, we find significant ACF at lag 

k=1, 12 and k=48, see Figure 4(a). Hence, based on the ACF behavior, we guess 

Seasonal Autoregressive Integrated Moving Average (SARIMA) model (0, 0, 1) 

× (1, 1, 4)12 of the following form. 

               (1-  ) (1- ) xt = (1- )(1-                                    (5) 
 

Another alternative models seem to be appropriate tentatively at this stage is 

based on the principle that when the process is a purely SARIMA (p, d, 0) × (P, 

D, 0)12 model, rkk cut off and is not significantly from zero after lagp+SP. If r kk 

damps out at lags that are multiple of s , this suggests the incorporation of a 

seasonal moving average (MA) component into the model. The failure of the 

PACF to truncate at other lags may suggest that a non-seasonal MA term is 

required (Hipel et al., 1977). Accordingly, we guess SARIMA (1, 0, 0) × (4, 1, 

1)12 model. 

 

2.6    Model Estimation and Diagnostics checking 
 

Non-linear Estimation of the parameters for Box-Jenkins models is a quite 

complicated. Parameter estimates are usually obtained by maximum likelihood 

method, which is asymptotically correct for time series (Brockwell and Davis, 

1996). Applying maximum likelihood method of estimation, we got the 

following estimated values of the parameters of SARIMA (0,0,1) × (1,1,4)12, and 

(1,0,0 ) × (4,1,1)12  as  given in Table 3. 

 

Table 3: Parameter estimates for suggested SARIMA models. 

         (a):(1- )(1- )xt = (1- )(1-    or  (0,0,1)× (1,1,4)12 

        (b):(1- ) )xt= )1( 48

48 Bθ− (1- or 0,0)×(4,1,1)12         

         (c):  (1- ) ) xt = )1( 48

48 Bθ−  (1-  
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Model Parameter Estimate Standard 

Error 

t-value P-value Fit statistics 

 

 

 (a) 

1φ  

48θ  

 
 

-0.19 

0.83 

-0.24 

0.05 

0.04 

0.05 

-3.29 

22.15 

-4.80 

0.001 

<0.0001 

<0.0001 

AIC=4019.04                                                

RMSE.=37.53 

 =0.80 

 

 

(b) 

 

 

 

 

84θ  

 

 

0.16 

-0.24 

0.93 

 

0.05 

0.05 

0.04 

 

3.39 

-4.79 

21.92 

 

0.0007 

<0.0001 

<0.0001 

AIC=4018.80                                                

RMSE.= 38.50 

 =0.79 

 

 

(c) 

 

 

48θ  

12θ  

24θ  

0.15 

-0.23 

0.87 

0.09 

0.05 

0.05 

0.07 

0.06 

3.06 

-4.49 

12.80 

1.68 

  0.0022 

<0.0001 

<0.0001 

   0.09 

AIC=4018.30                                                

RMSE.= 38.24 

 =0.81 

 

After we have derived models and we should allow for additional parameters in the 

fitted model, and determine whether or not their estimates are statistically significantly 

different from zero. If they are, then there is cause for concern that we have not 

identified the model correctly. For example, we start with over fitting by including 

one more seasonal moving average parameter (which measures the error 

dependency effect at  lag 24 and denoted by  ) to the SARIMA model (b) to 

examine whether this model with more parameters would adequately be fitted to 

the seasonally first differenced monthly rainfall data. The inclusion of this 

parameter can be determined by testing its significance and the improvement in 

the measures of goodness of fit of the model. All substantial parameters in all 

the models in Table 4 showed statistically significance except the SARIMA 

model (c) in which we have added one more parameter. One estimated 

parameter in (c) ( = 0.06, P-value=0.09 >0.05) which is insignificant. As a 

result, inclusion of this parameter ( has no visible contribution in the model 

(c).  It means models (a) and (b) have correctly identified. 
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Table 4: Correlations of Parameter Estimates for the two models 
 

Model (a): SARIMA (0,0,1) × (1,1,4)12        Model b:SARIMA (1,0,0) × (4,1,1)12 

  

Paramete

r 
            

48θ                    Paramete

r  
                        48θ                     Θ12 

    

 

48θ  

  

 

1.00       0.10                  -0.06 

               1.00                  0.21                     

                                        1.00                 

 

 

48θ  

 

   1.0              -0.08             0.22 

                       1.00              0.04 

                                           1.00 

    

Outliers, level shifts, and variance changes are common place in applied time 

series. The presence of these could easily misled the conventional time series 

analysis procedure resulting erroneous conclusion. In the estimation procedure, 

two types of outliers (5 additive and 1 shift outliers) were detected and adjusted 

in the fitted models by SAS software. AIC values have been calculated by the 

following formula. 

AIC=-2 ln (maximum likelihood) +2m                                                                        (6) 

Where m is the number of seasonal and non-seasonal autoregressive and moving 

average parameters to be estimated. 
 

Now we proceed to check the adequacy of these two models using residual 

analysis.  The residual analysis is a part of diagnostic checking and test for white 

noise and normality of residuals. In this checking the Autocorrelations Functions 

(ACF) and Partial Autocorrelations Functions (PACF) of the residuals resulted 

from the fitted models should not show any pattern (trend or seasonality 

pattern). And also for a correctly fitted model the residuals correlation 

coefficients should not lie outside the two standard error at a given significant 

level. 
  

It is clear, from Figures 5 (a and b) and Figure 6(a and b) that there is no 

pattern in residuals ACF and PACF plot for model (a) and (b), respectively. No 

ACF or PACF coefficients lie outside the two standard errors at 5% level of 

significance for both fitted models. The graphical analysis also shows that the 

residuals in the model appeared to fluctuate randomly around zero with no 

apparent pattern (Figure 7). The figure 5(c) exhibits the residual histogram 

(normal curve) and we find that there is no violation of the models’ assumption 

i.e. the residuals should normally distributed with mean zero and constant 

variance. 
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From plots in Figure 5(d) and Figure.6(c), it is obvious that the set of 

autocorrelation for residuals are not significant and we cannot reject the 

hypothesis that the autocorrelations of the residuals are zero. 
  

These results are in agreement with the hypothesis that the residuals 

resulted from each of the suggested models do not show any correlation or 

pattern and these are normally distributed, we conclude that the two SARIMA 

(0, 0, 1) × (1, 1, 4) and (1, 0, 0) × (4, 1, 1) models are found to be adequately 

fitted to the seasonally first differenced monthly rainfall series. 

 

 
(a) 

 

 
(b) 
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(c) 

 

 

 
(d) 

 

Figure 5: (a): Autocorrelation (ACF)   (b): Partial Autocorrelation (PACF)   

(c): Normality distributions Diagnostics plot (d): White noise test p-values Plot 

for Residuals resulted from SARIMA (0, 0, 1) × (1, 1, 4)12 model. 
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(a) 

 

 
(b) 
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    (c) 

Figure 6: (a): Autocorrelation (ACF)   (b): Partial Autocorrelation (PACF) (c):  

White noise Test P-values Plot for Residuals resulted from SARIMA (1, 0, 0) × 

(4, 1, 1)12 model. 

 

 
Figure 7: Scatter plot of residuals from the fitted model. 

 

After the diagnostic, there are further tests which are necessary to select the 

better of the two models in relation to better forecasting accuracy. Therefore, 
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further tests should be done based on the forecasting reliability of   the two 

competing models that are adequately fitted. 

3 Forecasting  
 

3.1 forecasting Accuracy Assessment of the models 
  

We have selected two models after diagnostic checking. Now we proceed to 

compare their forecasting performance using the various accuracy measures. For 

this purpose we did not use observations from (Oct. 2008 to Dec. 2009) of 

monthly rainfall data for calculation of forecasting errors using following 

equation. 

 = -                                                                                                                     (7) 

 
Table 5: Results of Accuracy for the two models 

 

Model(SARIMA) MAE MAPE ME MSE THIEL’S 

(1, 0,0) × (4, 1, 1) 12.43 315.7 -0.07 331.21 0.17 

(0, 0, 1) × 1, 1, 4) 12.49 309.53 0.05 323.88 0.13 
 

To measure the forecasting ability of the two models, we have estimated 

within-sample and out-of-sample forecasts. If the magnitude of the difference 

between the forecasted and actual values is low then the model has good 

forecasting performances. In this case, the seasonal ARIMA (0, 0, 1) × (1, 1, 4)12 

model has shown better results which   is evident from the Table 5 except for the 

MAE values. The values of Thiele’s U-Statistic are 0.17 and 0.13, respectively, 

for SARIMA (1, 0, 0) × (4, 1, 1) and (0, 0, 1) × (1, 1, 4)12 models. Both results 

indicate that the two models are reasonably better than the naïve forecasting 

model. However, since the value of the Thiele’s U-Statistics is 0.13 for the 

SARIMA (0, 0, 1) × (1, 1, 4) which is less than the value 0.17 of SARIMA (1, 0, 

0) × (4, 1, 1)12 model which indicates that the SARIMA (0, 0, 1) × (1, 1, 4)12 

model perform   better in forecasting accuracy than the SARIMA (1,  0,  0) × (4,  

1,  1)12. 
 

It can be concluded that the forecasting ability of the SARIMA (0, 0, 1) × 

(1, 1, 4)12 model is better for the purpose future monthly rainfall data 

forecasting. Graphical analysis also exhibits closeness of the forecasted values 

with the holding out data.  
 

Figure 8(a and b) represents the forecasts for the validation period and 

future forecasts of monthly rainfall data using SARIMA (0, 0, 1) × (1, 1, 4)12 

model. It is noteworthy that the forecasts in the validation period are reasonably 

close to the actual series and captured the   turning points patterns as well.
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We are giving below the month-wise forecast and its interval of monthly rainfall 

series at Mekele station in Tigray region by using the selected model Table (6). 

 

3.2 Forecasting Monthly Rainfall values 
 

Now the final model for forecasting of historical monthly rainfall series of 

Mekele station is as given below.  The SARIMA model (0, 0, 1) × (1, 1, 4)12 can 

be written as: 

   (1- )(1- )xt=(1- )(1-                                             (8) 

This equation (8) can also be written as given below.. 

 xt =xt-12+ xt-12-xt-24)+at- at-48- at-1+ at-49                                  (9) 

After substituting the estimated parameter values to Eq. (8) above, we obtain the 

following difference equation which can be used for forecasting purpose. 

 xt =xt-12 -0.24 xt-12-xt-24 ) + at -0.83at-48+0.19at-1–0.18at-49                                         (10) 
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Table 6: Forecast of the Rainfall series from the period January 2010-September 2011.  
 

 

 
 

Months Forecasts (95 % Lower Limit) (95 % Upper 

Limit) 

Jan 2010 

Feb 1200 

Mar 2010 

Apr 2010 

May 2010 

Jun 2010 

Jul 2010 

Aug 2010 

Sep 2010 

Oct 2010 

Nov 2010 

Dec 2010 

Jan 2011 

Feb 2011 

Mar 2011 

Apr 2011 

May 2011 

Jun 2011 

Jul 2011 

Aug2011 

Sep2011 

4.44 

6.63 

0.17 

14.91 

37.87 

52.93 

178.85 

235.03 

21.71 

5.84 

7.31 

1.33 

2.45 

6.06 

23.19 

21.63 

31.89 

38.63 

189.46 

240.36 

23.82 

-0.01 

-0.77 

-3.84 

6.49 

21.53 

22.45 

103.45 

159.63 

10.90 

-0.56 

0.09 

0.01 

0.51 

3.89 

14.94 

12.05 

9.89 

23.94 

157.82 

203.87 

19.41 

13.34 

21.03 

5.94 

27.51 

49.03 

97.10 

254.23 

310.42 

28.73 

9.25 

11.00 

7.85 

17.72 

13.76 

29.20 

37.74 

53.26 

67.98 

255.03 

314.96 

51.07 

Mean 

Standard 

Deviation(S.

D) 

54.50 

79.91 
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Figure 8: (a) Plot of the model estimation from (Jan1975- Sep2008) periods and 

(Jan2010-Sep2011); (b) Plot of the model validation periods (Oct2008-

Dec2009) and forecasted monthly   rainfall series for the periods from (Jan2010-

Sep2011). 

 

4 Conclusion 
 

In this paper the use of Univariate Box- Jenkin methodology has been shown in historical 

rainfall data. The estimation and diagnostic analysis results revealed that models’ are 

adequately fitted to the historical data. In particular, the residual analysis, which is 

important   for diagnostic checking confirmed that there is no violation of assumptions in 

relation to model adequacy.  Further comparison based on the forecasting accuracy of the 

models is performed with the hold-out some rainfall values.  The point forecast results 

showed a very closer match with the pattern of the actual data and better forecasting 

accuracy in validation period. 
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APPENDIX(1) . Monthly rainfall data at Mekele station 
 

Source: National meteorological Agency, Addis Ababa, Ethiopia. 
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Year   Jan    Feb      Mar      Apr      May     Jun      Jul       Aug       Sep      Oct     Nov    Dec Total 

1975 

1976 

1977 

1978 

1979 

1980 

1981 

1982 

1983 
1984 

1985 

1986 

1987 

1988 

1989 

1990 

1991 

1992 

1993 

1994 

1995 
1996 

1997 

1998 

1999 

2000 

2001 

2002 

2003 

2004 

2005 

2006 
2007 

2008 

2009 

 1.4     20.8     18.0     21.5     10.6   100.0     185.1    293.1   120.7     0.0      0.0      0.0 

 3.4       6.0       0.0     41.7     28.1     17.5     180.1    243.2     49.6     2.1      3.2     0.0  

 0.0       0.0     19.3       5.4     77.0     56.5     204.6    251.2     62.9     1.1      0.0     0.0 

 0.0       0.0     22.3       0.0       0.6     32.6     180.8    203.6       5.6     0.0      0.0     0.5 

 0.0       0.0       2.5     40.9   103.8     38.8       63.3      98.4     28.5     0.0      0.0     0.0 

  0.0      83.1       0.0   112.3     43.5     42.1     206.2    413.2     17.7     0.0     0.0     0.0 

 0.0       0.0     24.0       5.6     11.3       0.0     349.0    205.3     22.9     0.0      0.0     0.0 

 0.0     24.4     45.2     70.8       9.3       8.0     192.6    207.1     31.2     0.0      0.0     0.0 

 0.0     11.0       4.6     27.5   106.3       1.8     244.3    255.1     35.0     1.6    17.4     0.0 
 0.0       0.0     14.2       2.2       0.0       9.7     117.6      78.9     44.7     0.0    25.9     0.0 

 1.8       1.0     24.7   126.8     37.4     14.6     129.4    180.8      20.6     0.0      0.0     0.0 

 3.5       2.7     42.0     68.1     61.2      42.2    199.2    176.0    130.3   32.0     0.0      0.0 

0.0        2.0     79.6     37.2   126.7      56.6    177.2    220.2     36.3     1.9      0.0       0.0 

 0.0      29.3       0.0     10.1     37.6        6.7    380.3    394.9     59.0     0.0     0.0      0.0 

 0.0       0.0     14.9       2.9       9.8      81.7    273.6    430.7     40.5   16.5     0.0      0.0 

 0.0       1.5     17.3     10.8       0.9      51.7    132.3    236.9     80.8     5.7     0.0      1.2 

 4.4     15.7     27.7       5.9     15.8      29.0    197.5    216.3     28.2   53.1     0.0       0.0 

 8.7       2.1     38.3       1.0     30.7        6.2    140.7    233.1       1.3     2.1    54.4      8.3 

11.7      7.7     63.9   135.0     74.7      69.0    217.2    106.5     15.2   20.0      0.0       0.0 

  0.0      5.3       0.4     43.8       0.8      67.6    147.9    317.8     70.1     0.0      1.8      2.0 

  0.0      5.9     31.2     29.2     27.1        6.8    268.2    237.7     51.4     3.0       0.0      2.7 
  1.4      0.0     59.5     12.5     92.2      47.9    109.2    224.0       7.1     0.0     31.4      1.1 

  0.0     0.0     20.4     32.4     32.6      29.8      32.4    243.1   100.5   16.3      59.9    15.7 

 10.0     1.2       0.0     10.6     22.0      48.0    289.0    318.8     31.8    22.0      0.0      0.0 

 22.0     0.3     10.9       0.0       0.0        7.4    293.6    359.2     22.8      0.9      0.0      0.0 

   0.0     0.0       0.0     10.4     24.6        5.4    201.4    182.0     15.8      2.2    10.3      3.5 

   0.0    0.0     38.1     18.7       8.7      65.5    267.9    226.3       9.2      2.9      0.0       0.0 

 12.9      0.0     35.5       4.2     23.0      60.8      95.5    208.6     28.0      0.0     0.0      0.3 

   0.0    25.9     18.2       8.4     35.2      87.5    125.6    201.8     23.4      0.7     0.0      0.1 

   7.4      3.7     35.2     20.5       7.1      25.4      64.3    221.1       1.4      3.1     0.8      0.2 

   0.0      1.4     15.6     48.9     55.3      18.2    110.5    314.0     34.3      0.0     1.3      0.0 

   0.0      0.0     31.3   117.6     46.3      38.1    187.1    298.9     23.6    12.0     0.0      0.7 
   0.1      2.3     34.5     90.1     71.6      95.0    184.6    271.2     25.8      3.7     2.5      0.0 

 13.2      0.0     47.0     62.6     97.0    151.0    182.0    243.5     28.0      2.4     4.5      1.6 

   0.2      0.0     13.5       3.1     46.2    104.0    296.7    226.8     78.6    17.5     0.0      0.0 

771.2 

570.9 

678.0 

445.8 

376.2 

918.1 

618.1 

588.6 

704.6 
293.2 

537.1 

757.2 

737.7 

917.9 

870.6 

539.1 

593.6 

526.9 

720.9 

859.5 

663.2 
586.3 

583.1 

753.4 

717.1 

455.4 

635.3 

443.6 

526.8 

390.2 

599.5 

755.6 
781.4 

832.8 

  783.5 

 


