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Abstract

In this paper we have attempted to build a seasonal model of monthly rainfall data of
Mekele station of Tigray region (Ethiopia) using Univariate Box-Jenkins’s methodology.
The method of estimation and diagnostic analysis results revealed that the model was
adequately fitted to the historical data. In particular, the residual analysis, which is
important for diagnostic checking confirmed that there is no violation of assumptions in
relation to model adequacy. Further comparison on the forecasting accuracy of the model
is performed by holding-out some rainfall values. The point forecast results showed a
very closer match with the pattern of the actual data and better forecasting accuracy in
validation period.
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1 Introduction

Univariate time series analysis and forecasting has become a major tool in hydrology,
environmental management, and climatic fields. Several time series methods have been
used for modeling and forecasting rainfall data in literatures but according to Pankratz
(1983) the Box and Jenkins method is the most general way of approaching to forecast
unlike other models, there is no need to assume initially a fixed and specified pattern. The
Univariate Box and Jenkins models are useful for analysis of single time series.

Montgomery and Johnson (1976) considered Box and Jenkins methodology as
probably the most accurate method for forecasting of time series data. According to
Caldwell (2006), the Box-Jenkins methodology is particularly suited for development of
model of process exhibiting strong seasonal behavior. There are other forecast techniques
exploring the relation among observations yield better results; most of these forecast
techniques are based on recent advances in time series analysis consolidated and
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developed by Box and Jenkins (1976) and further discussed in other resources such as
Chatfield (1996).

Nail and Momani (2009) used Univariate Box-Jenkins approach and revealed that
this approach possesses many appealing features such as the researcher who has a data
for the past period, for example rainfall, to forecast future rainfall without having to
search for other related time series data.

In this paper we have also used Box- Jenkins approach to build a seasonal model of
monthly rainfall data of Mekele station in Tigray region (Ethiopia). The estimation and
diagnostic analysis results revealed that the model is well fitted to the historical data. The
residual analysis revealed that there was no violation of assumptions in relation to model
adequacy. Further we compared the forecasting accuracy of the model by holding-out
some rainfall values. The point forecast results showed a very closer match with the
pattern of the actual data and better forecasting accuracy in validation period.

2 Material and Methods

2.1 Material

The National Meteorological Service Agency (NMSA), Ethiopia, is the responsible
organization for the collection and publishing of meteorological data. The monthly
rainfall data from the period January 1975 — December 2009 of Mekele station of Tigray
region were taken from NMSA (Appendix).

2.2 Methodology

In this article we used Seasonal Autoregressive Integrated Moving Average (SARIMA)
model, proposed by Box and Jenkins (1976), for model building and forecasting for
rainfall data. The Box and Jenkins methodology is a powerful approach to the solution of
many forecasting problems (Johnson and Montgomery, 1976) and it can provide
extremely accurate forecasts of time series and offers a formal structured approach to
model building and analysis. There are many quantitative methods of model building and
forecasting which are being used in climatology and metrological studies. With the
development of the statistical software packages and its availability, these techniques
have become easier, faster and more accurate to use. In this study, we employ SAS and
SPSS software packages for the statistical data analysis.

The Box- Jenkins methodology assumes that the time series is stationary and serially
correlated. Thus, before modeling process, it is important to check whether the data under
study meets these assumptions or not. Let x ;, X 2, X 3, . . . , X 11, X t, X 147, . . . , X D€ Q
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discrete time series measured at equal time intervals. A seasonal ARIMA model for x  is
written as [Box and Jenkins, 1970]

¢(B)® (B ){[(1-B)* (1-B*)” x, ]-p}=0(B)O(B*)a,

Or (1)
P(B)D(B*) (w, - 1) =6(B)O(B*)a,

where

X ; 1S an observation at a time ¢;

t  discrete time;

s seasonal length, equal to 12 ;

u  mean level of the process, usually taken as the average of the w  series (if D +d >0
often p =0);

a;  normally independently distributed white noise residual with mean O and variance
o (written as NID (0, o)

#B)=1-¢, B—p, B> —... — ¢, B’ nonseasonal  autoregressive  (AR)  operator or
polynomial of order p such that the roots of the characteristic equation @¢(B)=0 lie
outside the unit circle for nonseasonal stationarity and theg,, 1 =1, 2, . . ., p are the
nonseasonal AR parameters;

(1 - B) Y = V“ nonseasonal differencing operator of order d to produce nonseasonal
staionarity of the d th difference, usually d =0, 1, or 2;

®(B*)=1-®, B -, B” —...—® , B” seasonal AR operator or order p such that the
roots of ®(B°)=0 lie outside the unit circle for seasonal stationarity and ®,,i=1, 2, ..
., p are the seasonal AR parameters;

(1-B)P= V? seasonal differencing operator of order D to produce seasonal stationarity
of the Dth differenced data, usually D =0, 1, or 2;

wy= V?V? x stationary series formed by differencing x  series (n = N —d —s D is the
number of terms in the w ; series);

6(B)=1-6, B—6, B’ —...—6, B’nonseasonal moving average (MA) operator or
polynomial of order g such that roots of @(B)=0 lie outside the unit circle for
mvertibility and @,,1=1,2, .. ., g;

©(B*)=1-0, B -0, B* —..-©_ B seasonal MA operator of order Q such that the

roots of ®(B’)=0lie outside the unit circle for invertibility and®,,i=1, 2, ..., Q are
the seasonal MA parameters.
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The notation (p, d, g) X (P, D Q) s is used to represent the SARIMA model (1). The
first set of brackets contains the order of the nonseasonal operators and second pair of
brackets has the orders of the seasonal operators. For example, a stochastic seasonal noise
model of the form (1, 1, 2) x (0, 1, 1)y is written as

(1-¢,B{[1-B’)x,]1-u}=(1-6,B-6,B*)(1-0, B*)q, (2)
If the model is non seasonal, only the notation ( p, d, g) is needed because the seasonal
operators are not present.

When a seasonal model is stationary and requires no differencing (i.e. D =0 and d =
0), it is often referred to simply as an ARMA (autoregressive moving average) process.
The notation (p, g) X (P, Q) is used to represent this type of model. If an ARMA model
is nonseasonal, the notation (p, g) is used to indicate orders of the AR and MA operators,
respectively. A pure nonseasonal AR process of order p with no differencing is often
denoted by AR (p). Likewise, a nonseasonal MA process of order g is sometimes written
as MA (g). Of course an AR (p) model can be represented equivalently by the notation
(p, 0) or ( p, 0, 0), while MA (g) process can also be denoted by (0, g) or (0, 0, g).

2.3  Tests for Stationary

Graphic Inspection: The pattern of the time series plot (Fig.1) does not show
any apparent systematic change about the mean. The periodic peaks in the plot,
however, reflect the yearly regular seasonality (with seasonality interval s=12)
of the rainfall values. The series is, therefore, seasonal due to a large rainfall
values during rainy season and a relatively lesser peak due to small values of
rainfall in the other months. This indicates that the rainfall data have seasonal
unit root (i.e., seasonally not stationary).

The Figure 2 exhibits the autocorrelation function plot of untransformed
data in which the presence of seasonality behavior as well as seasonally non
stationary of the rainfall series is clear. Because there is a sinusoidal wave
pattern at the multiple of seasonal intervals and declining slowly while non
seasonal lags are relatively decaying quite slowly. It is, thus, necessary to
remove the non seasonal component of the time series corresponding to the
sinusoidal periodic component of the autocorrelation function to make series
seasonally stationary.

Dickey-Fuller Test: The most widely used test for stationary is Dickey-Fuller
test. This test is based on the estimate of the following regression equation with
no deterministic trend.

Vx,=¢x +yVx_+.+7,Vx_, +q, 3)



2011] MODELING AND FORECASTING OF RAINFALL DATA 35

whereV is the difference operator defined Vx, =x,—x,_, and x, is a variable of

interest. This model can be estimated and tested for a wunit root. That is

equivalent to testing ¢ equal to zero, yi, ..., yp are p regression coefficients and
p is the number of autoregressive terms.

To test the hypothesis that the series x; is stationary, we formulate the
following hypothesis

Ho: The series is non-stationary i.e ¢ =0
Hi: The series is stationary i.e ¢ < 0 at a=0.05.
There is a need of seasonal differencing not simple differencing.
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Figure 1: Plot of monthly rainfall data

The patterns of monthly rainfall series plot and autocorrelation function
suggest the need of seasonal differencing but not simple differencing.
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Figure 2: Autocorrelation plot for the untransformed monthly rainfall series.

Usually the order of p in the regression equation is set to three. Then if the
estimate of ¢ 1s nearly zero in the fitted regression equation (2), the original

series x ( needs first differencing and if the estimate of ¢< 0O then the original
series 1s already stationary (Makridakis er al., 1998). It was found that the
estimated value for ¢ = -0.41 which confirm that original time series plot is
without obvious trend at 5% significance level. The autocorrelation function in
Fig.2 exhibits non - seasonally rapidly decaying trend. As a result, both tests
appear to agree to avoid first non seasonal simple differencing.

Variance Comparison: The behavior of variance associated with different
orders of differencing can provide a useful means of deciding the appropriate
order of differencing (Mills, 1999). The rule is that the when the sample
variance does not decrease further then a stationary series is found. If the
increase in the differencing order increases the variance, it is an indication of
over differencing. To examine our series that whether it is a candidate of non-
differencing, simple differencing, seasonal differencing or double seasonal
differencing for non seasonally and seasonally stationarity, we computed the
sample variance for each of x, Vx. Vi.x, ,and Vi,x, series, respectively. We
got the following results:
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° Var(¥x,)=8064.1, Var(x;)=7106.5, Var(V,x.)=2745.8, and Vlzz(x,):7850
values;

] Var(Vx,) > Var(x;);

[ )

Var (F3x,) > Var (x,) > Var (Fzx).

These results suggest that non-seasonal first differencing (Vx,) has been over-
differenced and hence the original series is non-seasonally stationary .The first seasonal
differencing would rather be important, because the Var (Vi,x,) is greater than
Var(V,x,).

These tests for stationarity seem to agree and suggest that the first seasonal
differencing in the series can achieve stationarity around a constant mean, which
1s approximately zero and its standard deviation is 52.4 mm (Figure 3).
Moreover, the ACF and PACF (Figures 4(a) and 4(b)) also tell that the monthly

rainfall series 1is stationary in both mean and variance after first seasonal
difference.
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Figure 3: Plot for First seasonal differenced monthly rainfall series




38 AMAHA GERRETSADIKAN AND M.K.SHARMA [Vol. 9, Nos.1&2

ACF

Lag
[E Two Standard Errors |

T T T T T T T
o 10 peJul =20 40 S50 S0

(a)

0.5 -

0.0 -

PACF

T T T T T T
o 10 20 20 40 S0
Lag
[ Two Standard Errors |

T
[=u]

(b)
Figure 4: (a): Autocorrelation Function (ACF) (b): Partial Autocorrelation Function
(PACEF) for the first seasonal differenced monthly rainfall.

2.4 Tests for randomness

According to Harvey (1993) the simplest time series is a random model, in
which the observations vary around a constant mean, have a constant variance,
and are probabilistically independent. In other words, a random time series does
not have time series pattern, meaning that there is no point in attempting to fit a
time series model to such type of data. Therefore, it is important to perform tests
of randomness before any attempt to modeling process to our series. Therefore
we check our time series through the following tests to investigate the
hypothesis that the first-seasonally differenced monthly rainfall series are
serially uncorrelated.
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Graphic Inspection: The visual inspection of the autocorrelation function plot provides
useful information to identify the type of time series (Chatfield, 1996). For example, if a
time series is a completely random series, then for large n, ry * O for every k. This can be
examined after the array of autocorrelation coefficients ry, plotted with k as abscissa and
i as ordinate.

Figure 4(a) exhibits the graph of sample autocorrelations against different lags from
which we can observe visually that the autocorrelations are not all insignificant. This
indicates that there is some sort of dependence between values of ¥, X, series.

The randomness can also be checked using Bartlett’s Band Test and Box-Ljung Test
Statistic. Here we used Box-Ljung Test Statistic.

Box-Ljung Test Statistic: This statistic is used for collectively testing the
magnitude of the autocorrelation of stationary time series for significance. For
this test, we used the sample autocorrelation coefficients of the first seasonally
differenced monthly rainfall as well.
The hypothesis to be tested is

Ho. All autocorrelations up to lag J are zero

Versus

H;i: Not all up to lag J are zero at a=0.05.

The statistic for this testing hypothesis is as

O=n(n+2) X, )

=1,

This statistics has a chi-square distribution with J degrees of distribution. Q-
Statistic is usually computed for J= 6, 12 24, 36 and 48 by most of the statistical
packages. However, J=12 or 24 will prove to be satisfactory (Patricia, E. G.,
1994). In this regard, we compute the test statistic above for the first J=12 lag
autocorrelation values and n=408 observations. The value of the calculated Q-
Statistic is found to be 43.72 and the tabulated value for chi-distribution with 12
degree of freedom at 0.05 significance level is 21.02. The decision to reject H, is

based on whether the value of Q-Statistic > ¥ E.GE’J" if that does not hold we do
not reject Ho. Since Q-statistic=43.7> XE:-?.GEZZLZ’ we reject H, we conclude

that the seasonally first differenced monthly rainfall series are serially
correlated.

Now we can say that the monthly rainfall data are stationary and serially
correlated.
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2.5  Model Identification

Having established that the monthly rainfall data are serially correlated and
stationary, the next step in the identification process is to find the initial values
for the order of non-seasonal and seasonal parameters p, ¢, P, and Q,,
respectively. The first step in this direction is to identify the significant
autocorrelations and partial autocorrelation from the ACF and PACF plots of the
underlying stationary series (Hipel et al, 1977). Hence for the (I-
B1)x, series, where B is the backward shift operator and is defined Bx, = X
and B? is the backward shift operator of order d, we find significant ACF at lag
k=1, 12 and k=48, see Figure 4(a). Hence, based on the ACF behavior, we guess
Seasonal Autoregressive Integrated Moving Average (SARIMA) model (0, 0, 1)
x (1, 1, 4)12 of the following form.

(1-® 4, B) (1-B%) x, = (1-6,B)(1-0,55 ) a, (5)

Another alternative models seem to be appropriate tentatively at this stage is
based on the principle that when the process is a purely SARIMA (p, d, 0) x (P,
D, 0)1, model, rix cut off and is not significantly from zero after lagp+SP. If r i«
damps out at lags that are multiple of s , this suggests the incorporation of a
seasonal moving average (MA) component into the model. The failure of the
PACF to truncate at other lags may suggest that a non-seasonal MA term is
required (Hipel et al., 1977). Accordingly, we guess SARIMA (1, 0, 0) x (4, 1,
1)1» model.

2.6 Model Estimation and Diagnostics checking

Non-linear Estimation of the parameters for Box-Jenkins models is a quite
complicated. Parameter estimates are usually obtained by maximum likelihood
method, which is asymptotically correct for time series (Brockwell and Davis,
1996). Applying maximum likelihood method of estimation, we got the
following estimated values of the parameters of SARIMA (0,0,1) x (1,1,4);2, and
(1,0,0) x (4,1,1);2 as given in Table 3.

Table 3: Parameter estimates for suggested SARIMA models.
():(1-@ 1, B)(1-B)x, = (1-8,B)(1-8,5B*F)a. or (0,0,1)x (1,14)12
(b):(1-¢, B) (1 — B¥)x=(1-6,4 B¥) (1-8,,B*}a, or 0,0)x(4,1,1)1

(©): (1-¢4B) (1 = B¥) x,=(1-60, B*) (1-0,,8 — 8,, B )a,
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Model  Parameter  Estimate  Standard t-value P-value Fit statistics
Error

) -0.19 0.05 -3.29 0.001 AIC=4019.04

6, 0.83 0.04 22.15 <0.0001 RMSE.=37.53
(a) b, -0.24 0.05 -4.80 <0.0001 2 =0.80

AIC=4018.80

@y 0.16 0.05 3.39 0.0007 RMSE.= 38.50

(b) 0, -0.24 0.05 -4.79 <0.0001 2 20.79
0, 0.93 0.04 21.92 <0.0001

@y 0.15 0.05 3.06 0.0022 AIC=4018.30

6, -0.23 0.05 -4.49 <0.0001 RMSE.= 38.24
(©) 0 0.87 0.07 12.80 <0.0001 2 0.81

. 0.09 0.06 1.68 0.09 '

624

After we have derived models and we should allow for additional parameters in the
fitted model, and determine whether or not their estimates are statistically significantly
different from zero. If they are, then there is cause for concern that we have not
identified the model correctly. For example, we start with over fitting by including
one more seasonal moving average parameter (which measures the error
dependency effect at lag 24 and denoted by &,., ) to the SARIMA model (b) to
examine whether this model with more parameters would adequately be fitted to
the seasonally first differenced monthly rainfall data. The inclusion of this
parameter can be determined by testing its significance and the improvement in
the measures of goodness of fit of the model. All substantial parameters in all
the models in Table 4 showed statistically significance except the SARIMA
model (c) in which we have added one more parameter. One estimated
parameter in (¢) (&-,.= 0.06, P-value=0.09 >0.05) which is insignificant. As a
result, inclusion of this parameter (€., )has no visible contribution in the model
(c). It means models (a) and (b) have correctly identified.
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Table 4: Correlations of Parameter Estimates for the two models

Model (a): SARIMA (0,0,1) x (1,1,4)12 Model b:SARIMA (1,0,0) x (4,1,1)12
Paramete 84 0, P, Paramete ®y 0, O,
r r
8, 1.00 0.10 -0.06 @y 1.0 -0.08 0.22
0 1.00 0.21 0 1.00 0.04
48 48
& 1.00 0, 1.00

Outliers, level shifts, and variance changes are common place in applied time
series. The presence of these could easily misled the conventional time series
analysis procedure resulting erroneous conclusion. In the estimation procedure,
two types of outliers (5 additive and 1 shift outliers) were detected and adjusted
in the fitted models by SAS software. AIC values have been calculated by the
following formula.

AIC=-2 In (maximum likelihood) +2m (6)
Where m is the number of seasonal and non-seasonal autoregressive and moving
average parameters to be estimated.

Now we proceed to check the adequacy of these two models using residual
analysis. The residual analysis is a part of diagnostic checking and test for white
noise and normality of residuals. In this checking the Autocorrelations Functions
(ACF) and Partial Autocorrelations Functions (PACF) of the residuals resulted
from the fitted models should not show any pattern (trend or seasonality
pattern). And also for a correctly fitted model the residuals correlation
coefficients should not lie outside the two standard error at a given significant
level.

It is clear, from Figures 5 (a and b) and Figure 6(a and b) that there is no
pattern in residuals ACF and PACF plot for model (a) and (b), respectively. No
ACF or PACF coefficients lie outside the two standard errors at 5% level of
significance for both fitted models. The graphical analysis also shows that the
residuals in the model appeared to fluctuate randomly around zero with no
apparent pattern (Figure 7). The figure 5(c) exhibits the residual histogram
(normal curve) and we find that there is no violation of the models’ assumption
re. the residuals should normally distributed with mean =zero and constant
variance.
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From plots in Figure 5(d) and Figure.6(c), it is obvious that the set of
autocorrelation for residuals are not significant and we cannot reject the
hypothesis that the autocorrelations of the residuals are zero.

These results are in agreement with the hypothesis that the residuals
resulted from each of the suggested models do not show any correlation or
pattern and these are normally distributed, we conclude that the two SARIMA
O, 0, 1) x (1, 1, 4) and (1, O, 0) x (4, 1, 1) models are found to be adequately
fitted to the seasonally first differenced monthly rainfall series.
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Figure 5:

(a): Autocorrelation (ACF) (b): Partial Autocorrelation (PACF)

(¢): Normality distributions Diagnostics plot (d): White noise test p-values Plot
for Residuals resulted from SARIMA (0, 0, 1) x (1, 1, 4);, model.
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Figure 6: (a): Autocorrelation (ACF) (b): Partial Autocorrelation (PACF) (c¢):
White noise Test P-values Plot for Residuals resulted from SARIMA (1, 0, 0) x
(4, 1, 1)12 model.
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Figure 7: Scatter plot of residuals from the fitted model.

After the diagnostic, there are further tests which are necessary to select the
better of the two models in relation to better forecasting accuracy. Therefore,



2011] MODELING AND FORECASTING OF RAINFALL DATA 47

further tests should be done based on the forecasting reliability of the two
competing models that are adequately fitted.

3 Forecasting

3.1 forecasting Accuracy Assessment of the models

We have selected two models after diagnostic checking. Now we proceed to
compare their forecasting performance using the various accuracy measures. For
this purpose we did not use observations from (Oct. 2008 to Dec. 2009) of
monthly rainfall data for calculation of forecasting errors using following
equation.

& = (x)- (%) (7
Table S: Results of Accuracy for the two models
Model(SARIMA) MAE MAPE ME MSE THIEL’S
(1,0,0) x (4, 1, 1) 12.43 315.7 -0.07 331.21 0.17
0,0, )x1,1,4) 12.49 309.53  0.05 323.88 0.13

To measure the forecasting ability of the two models, we have estimated
within-sample and out-of-sample forecasts. If the magnitude of the difference
between the forecasted and actual values is low then the model has good
forecasting performances. In this case, the seasonal ARIMA (0, 0, 1) x (1, 1, 4)12
model has shown better results which is evident from the Table 5 except for the
MAE values. The values of Thiele’s U-Statistic are 0.17 and 0.13, respectively,
for SARIMA (1, 0, 0) x (4, 1, 1) and (0, 0, 1) x (1, 1, 4);2 models. Both results
indicate that the two models are reasonably better than the naive forecasting
model. However, since the value of the Thiele’s U-Statistics is 0.13 for the
SARIMA (0, 0, 1) x (1, 1, 4) which is less than the value 0.17 of SARIMA (1, 0,
0) x (4, 1, 1);2 model which indicates that the SARIMA (0, 0, 1) x (1, 1, 4)12
model perform  better in forecasting accuracy than the SARIMA (1, 0, 0) x (4,
L, Dup.

It can be concluded that the forecasting ability of the SARIMA (0, 0, 1) x
(1, 1, 4);, model is better for the purpose future monthly rainfall data
forecasting. Graphical analysis also exhibits closeness of the forecasted values
with the holding out data.

Figure 8(a and b) represents the forecasts for the validation period and
future forecasts of monthly rainfall data using SARIMA (0, 0, 1) x (1, 1, 42
model. It is noteworthy that the forecasts in the validation period are reasonably
close to the actual series and captured the turning points patterns as well.
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We are giving below the month-wise forecast and its interval of monthly rainfall
series at Mekele station in Tigray region by using the selected model Table (6).

3.2 Forecasting Monthly Rainfall values

Now the final model for forecasting of historical monthly rainfall series of
Mekele station is as given below. The SARIMA model (0, 0, 1) x (1, 1, 4);2 can
be written as:

(1-®,,B*?)(1-B*?)x,=(1-8,B)(1-0,, B*%)q, (8)
This equation (8) can also be written as given below..
Xt =x0-12+ P12 (- 12-X024) 40 O gras- 0100+ 81 Oy 50,40 )
After substituting the estimated parameter values to Eq. (8) above, we obtain the

following difference equation which can be used for forecasting purpose.
Xt =Xr-12 -0.24 X;_jz-xt_24) + s -0. 83at_48+0. ]9at_1—0. ]861;_49 (10)
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Table 6: Forecast of the Rainfall series from the period January 2010-September 2011.

MODELING AND FORECASTING OF RAINFALL DATA

Months Forecasts (95 % Lower Limit) (95 %  Upper
Limit)
Jan 2010 4.44 -0.01 13.34
Feb 1200 6.63 -0.77 21.03
Mar 2010 0.17 -3.84 5.94
Apr 2010 14.91 6.49 27.51
May 2010 37.87 21.53 49.03
Jun 2010 52.93 22.45 97.10
Jul 2010 178.85 103.45 254.23
Aug 2010 235.03 159.63 310.42
Sep 2010 21.71 10.90 28.73
Oct 2010 5.84 -0.56 9.25
Nov 2010 7.31 0.09 11.00
Dec 2010 1.33 0.01 7.85
Jan 2011 2.45 0.51 17.72
Feb 2011 6.06 3.89 13.76
Mar 2011 23.19 14.94 29.20
Apr 2011 21.63 12.05 37.74
May 2011 31.89 9.89 53.26
Jun 2011 38.63 23.94 67.98
Jul 2011 189.46 157.82 255.03
Aug2011 240.36 203.87 314.96
Sep2011 23.82 19.41 51.07
Mean 54.50
Standard 79.91
Deviation(S.

D)
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Figure 8: (a) Plot of the model estimation from (Jan1975- Sep2008) periods and
(Jan2010-Sep2011); (b) Plot of the model validation periods (Oct2008-
Dec2009) and forecasted monthly  rainfall series for the periods from (Jan2010-
Sep2011).

4 Conclusion

In this paper the use of Univariate Box- Jenkin methodology has been shown in historical
rainfall data. The estimation and diagnostic analysis results revealed that models’ are
adequately fitted to the historical data. In particular, the residual analysis, which is
important for diagnostic checking confirmed that there is no violation of assumptions in
relation to model adequacy. Further comparison based on the forecasting accuracy of the
models is performed with the hold-out some rainfall values. The point forecast results
showed a very closer match with the pattern of the actual data and better forecasting
accuracy in validation period.
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APPENDIX(1) . Monthly rainfall data at Mekele station

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Total
1975 1.4 208 180 21.5 106 100.0 185.1 293.1 120.7 00 0.0 0.0 771.2
1976 34 6.0 0.0 41.7 28.1 175 180.1 2432 496 2.1 32 00 570.9
1977 0.0 0.0 193 54 77.0 565 204.6 2512 629 1.1 00 0.0 678.0
1978 0.0 0.0 223 0.0 0.6 32.6 180.8 203.6 56 00 00 0.5 445.8
1979 0.0 0.0 2.5 409 103.8 38.8 633 984 285 00 0.0 0.0 376.2
1980 0.0 83.1 0.0 1123 435 421 2062 4132 177 00 0.0 0.0 918.1
1981 0.0 0.0 240 56 113 0.0 349.0 2053 229 00 00 0.0 618.1
1982 0.0 244 452 70.8 9.3 80 1926 207.1 312 0.0 00 0.0 588.6
1983 0.0 11.0 4.6 27.5 106.3 1.8 2443 2551 350 1.6 174 0.0 704.6
1984 0.0 0.0 142 2.2 0.0 9.7 117.6 789 447 00 259 0.0 293.2
1985 1.8 1.0 247 1268 374 146 1294 180.8 206 00 0.0 0.0 537.1
1986 3.5 27 420 68.1 612 422 199.2 176.0 1303 32.0 0.0 0.0 757.2
1987 0.0 20 79.6 372 12677 56.6 177.2 2202 363 19 0.0 0.0 737.7
1988 0.0 293 0.0 10.1 37.6 6.7 3803 3949 590 00 00 0.0 917.9
1989 0.0 0.0 149 29 9.8 81.7 273.6 430.7 405 165 0.0 0.0 870.6
1990 0.0 1.5 17.3 10.8 09 51.7 1323 2369 808 57 00 1.2 539.1
1991 44 157 277 59 158 290 1975 2163 282 53.1 0.0 0.0 593.6
1992 8.7 2.1 383 1.0 30.7 6.2 140.7 233.1 1.3 2.1 544 83 526.9
1993 1.7 7.7 639 1350 747 69.0 2172 106.5 152 20.0 0.0 0.0 720.9
1994 0.0 53 0.4 438 08 676 1479 3178 70.1 0.0 1.8 2.0 859.5
1995 0.0 59 312 292 271 6.8 2682 237.7 514 3.0 0.0 27 663.2
1996 1.4 0.0 595 125 922 479 1092 224.0 7.1 0.0 314 1.1 586.3
1997 0.0 00 204 324 326 29.8 324 243.1 100.5 163 59.9 15.7 583.1
1998 100 1.2 0.0 10.6 220 48.0 289.0 3188 31.8 220 0.0 0.0 753.4
1999 220 03 109 0.0 0.0 74 2936 3592 228 09 00 00 717.1
2000 0.0 0.0 0.0 104 246 54 2014 1820 158 22 103 35 455.4
2001 0.0 0.0 38.1 187 87 655 2679 2263 92 29 00 0.0 635.3
2002 129 0.0 355 42 230 608 955 208.6 280 0.0 0.0 03 443.6
2003 0.0 259 182 84 352 875 1256 201.8 234 07 0.0 0.1 526.8
2004 7.4 37 352 205 7.1 254 643 221.1 1.4 31 08 02 390.2
2005 00 14 156 489 553 182 1105 3140 343 00 13 00 599.5
2006 0.0 00 313 117.6 463 381 187.1 2989 236 120 0.0 0.7 755.6
2007 0.1 23 345 90.1 71.6 950 1846 2712 258 37 25 0.0 781.4
2008 132 00 470 626 97.0 151.0 182.0 2435 280 24 45 1.6 832.8
2009 02 0.0 135 3.1 462 104.0 296.7 2268 78.6 17.5 0.0 0.0 783.5

Source: National meteorological Agency, Addis Ababa, Ethiopia.
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