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Abstract
The field of verifiable secret sharing schemes was introduced by Verheul et al. and

has evolved over time, including well-known examples by Feldman and Pedersen. Stinson
made advancements in combinatorial design-based secret sharing schemes in 2004. Desmedt
et al. introduced the concept of frameproofness in 2021, while recent research by Sehrawat
et al. in 2021 focuses on LWE-based access structure hiding verifiable secret sharing with
malicious-majority settings. Furthermore, Roy et al. combined the concepts of reparable
threshold schemes by Stinson et al. and frameproofness by Desmedt et al. in 2023, to develop
extendable tensor designs built from balanced incomplete block designs, and also presented
a frameproof version of their design. This paper explores ramp-type verifiable secret sharing
schemes, and the application of hidden access structures in such cryptographic protocols.
Inspired by Sehrawat et al.’s access structure hiding scheme, we develop an ϵ-almost access
structure hiding scheme, which is verifiable as well as frameproof. We detail how the concept
ϵ-almost hiding is important for incorporating ramp schemes, thus making a fundamental
generalisation of this concept.

Key words: Combinatorial secret sharing; Tensor designs; Ramp schemes; Access structure
hiding; Verifiability; Frameproofness.

1. Introduction

A verifiable secret sharing scheme Verheul and van Tilborg (1997); Peng (2012);
Hofmeister et al. (2000); Pedersen (1991); Dehkordi et al. (2024) is a cryptographic protocol
that allows a dealer to distribute shares of a secret to a group of parties in such a way that
(i) the secret remains confidential and cannot be determined by any unauthorized collection
of parties, (ii) the secret can be reconstructed correctly by the authorized collection of
parties when they combine their shares, (iii) there is a mechanism for parties to verify the
correctness of the shares they receive and for the reconstruction process, and (iv) the scheme
can withstand malicious behavior from both the dealer and the parties, thus ensuring the
security and integrity of the secret sharing process.
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Repairable Threshold Schemes (RTSs) Stinson and Wei (2018); Laing and Stinson
(2018) are cryptographic schemes that allow for the reconstruction of lost or corrupted shares
in a threshold scheme without the need for the dealer who initially set up the scheme to be
involved in the repair process. In RTSs, a subset of authorized parties can collaboratively
reconstruct the lost share, ensuring the integrity and availability of the shared secret. Roy
and Roy (2023) explores the concept of repairable ramp schemes for secret sharing and var-
ious applications, including cloud storage, sensor-based IoTs, and electronic identification
cards. It proposes a protocol for extending schemes that allow for the retrieval of shares
through collaborative efforts in case of loss or corruption, thereby enhancing data security
and privacy. Roy and Roy (2023) also introduces the concept of tensor products of balanced
incomplete block designs (BIBDs), which help securely combine individual secrets from var-
ious systems, enabling multi-level or multi-system secret sharing schemes in a robust and
efficient manner. Desmedt et al. (2021) introduced the concept of frameproofness of secret
sharing schemes, which ensures the security and integrity of shared secrets and analyses the
resistance of a scheme to attempts of falsely implicating (framing) a (set of) player(s) in the
unauthorized disclosure of secret information. Roy and Roy (2023) establishes a theoretical
framework for frameproofness within its extension protocol, and ensures that its extended
scheme upholds the principles of frameproofness by leveraging concepts from combinatorial
design theory.

Sehrawat et al. (2021) provides a detailed discussion on how secret sharing can be
achieved with hidden access structures, allowing for a wide range of access policies to be
enforced in the secret sharing process. The scheme is designed to support verifiability even
when a majority of the parties are malicious, and its verification procedure does not incur any
communication overhead, making it “free” in terms of computational resources. The scheme
provides a maximum share size formula that allows for efficient sharing of secrets while main-
taining security guarantees. The share size is optimized to balance security and efficiency
considerations. It also includes mechanisms to detect and identify malicious behavior during
the secret sharing process.

1.1. Our contribution

This motivation clearly begs the question of verifiability of secret sharing schemes con-
structed as the extended tensor designs from Roy and Roy (2023), and how frameproofness
applies to the resulting composition. Our approach results in a fundamental generalisation
of the novel access structure hiding technique introduced by Sehrawat et al. (2021) to in-
corporate ramp schemes, thus allowing for a wider range of secret sharing schemes to use
this technique. We provide detailed explanations for how our generalised ϵ-almost access
structure hiding ramp-type tensor design satisfies all properties of an almost-verifiable se-
cret sharing scheme, as well as almost fully hides its access structure, and has a frameproof
version that does not lose any original information.

1.2. Organisation of the paper

Beginning with the introduction of various important types of secret sharing schemes
such as VSS schemes, RTSs, BIBDs and access structure hiding schemes in Section 1, we
define various notations, definitions and other preliminaries in Section 2. We introduce our
modified concept of ϵ-almost access structure hiding ramp-type tensor designs in section 3,
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where we provide a background of the existing theory of extending tensor designs by Roy
et al. Roy and Roy (2023), as well as demonstrate various secret sharing properties (such
as correctness, ϵ-correctness and computational secrecy for their tensor design schemes. We
also recall the concept of frameproof tensor designs through an example and show that it is
also applicable to our scheme, and detail an algorithm for access structure token generation
according to our requirements. In section 4, we state the mains results of this paper in the
form of Theorems 3, 4, 5 and 6. Sections 5 and 6 present detailed proofs of these theorems.
In Section 7, we enumerate a few applications of our results in the real world, and then
conclude in Section 8.

2. Preliminaries

Given a collection P = {P1, . . . , Pℓ} of (say) players in a secret sharing scheme, we
denote the power set of P, i.e. the set of all subsets of P, by 2P. The closure of a subset
A ∈ 2P is the set cl(A) := {C : C∗ ⊆ C ⊆ P for some C∗ ∈ A}. Given a security parameter
ω, a function δ(ω) is called negligible if for all c > 0, there exists an ω0 such that (ω) < 1/ωc

for all ω > ω0. Given a probability distribution X, the notation Pr[t ← X] denotes a
sampling of t by the distribution X.

Definition 1: Let X = {Xλ}λ∈N and Y = {Yλ}λ∈N be collections of probability distributions
(or ensembles) Xλ and Yλ over {0, 1}κ(λ) for some polynomial κ(λ). These two ensembles are
polynomially or computationally indistinguishable if for every (probabilistic) polynomial-time
algorithm D, for all λ ∈ N, and a negligible function δ,

|Pr[t← Xλ : D(t) = 1]− Pr[t← Yλ : D(t) = 1]| ≤ δ(λ).

Assume that there exist positive integers θ, Θ and ℓ, where θ < Θ ≤ ℓ. A (θ, Θ, ℓ)-
ramp scheme Paterson and Stinson (2013) involves a dealer selecting a secret and then
distributing a share to each of ℓ players in a manner that fulfills the following criteria:

Reconstruction: Any subset of Θ players has the ability to collectively determine the secret
using the shares they possess.

Secrecy: No subset of θ players is able to deduce any details regarding the secret.

The terms θ and Θ are referred to as the lower and upper thresholds of the scheme, respec-
tively. For the sake of convenience, we shall refer to collections of players C ∈ 2P such that
θ < |C| < Θ by the term ramp collection. In the event where Θ = θ + 1, the scheme is
recognized as a (Θ, ℓ)-threshold scheme. In the context of such a Θ-threshold scheme, the
problem of share repairability pertains to the identification of a secure protocol for restor-
ing the lost share of a specific player (Pi ∈ P). This process involves a certain subset of
d players (excluding Pi ∈ P) engaging in message exchange amongst themselves and with
Pi ∈ P, with the objective of successfully repairing its share. The smallest integer d required
to accomplish this task is known as the repairing degree of the scheme. If an honest-but-
curious coalition of no more than Θ − 1 players of a (Θ, ℓ)-threshold scheme combines all
the information it holds (this includes their shares, as well as all messages that they send or
receive during the protocol) and still obtains no information about the secret, then we say
that it is a (Θ, ℓ, d)-repairable threshold scheme, or a (Θ, ℓ, d)-RTS.
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Definition 2: Suppose 2 ≤ k < v. A (b, v, k, r, λ)-balanced incomplete block design or a
(b, v, k, r, λ)-BIBD is a design (X,B) such that:

1. |X| = v;

2. each block B ∈ B contains exactly k points;

3. every pair of distinct points from X is contained in exactly λ blocks.

Observe that if each point occurs in exactly r blocks, then the parameters b, v, k, r, λ of a
BIBD satisfy the following relations Stinson (2004):

(i) bk = vr;

(ii) λ(v − 1) = r(k − 1);

(iii) b ≥ v (and hence r > k).

We sometimes refer to a (b, v, k, r, λ)-BIBD as simply a (v, k, λ)-BIBD.

Definition 3: Let P = {P1, . . . , Pℓ} be a set of parties or players. A collection Γ ⊆ 2P is
monotone if A ∈ Γ and A ⊆ B imply that B ∈ Γ. An access structure Γ ⊆ 2P is a monotone
collection of non-empty subsets of P. Sets in γ are called authorized, and sets not in Γ are
called unauthorized.

Definition 4: For an access structure Γ, Γ0 = {A ∈ Γ : B ̸⊂ A for all B ∈ Γ \A} is the
family of minimal authorized subsets in Γ.

Definition 5: A computational secret sharing scheme with respect to an access structure
Γ, security parameter ω, a set of ℓ polynomial-time parties or players P = {P1, . . . , Pℓ}, and
a set of secrets K, consists of a pair of polynomial-time algorithms (Share, Recon), where:

• Share is a randomized algorithm that gets a secret k ∈ K and access structure Γ as
inputs, and outputs ℓ shares, {s(k)

1 , . . . , s
(k)
ℓ }, of k, and

• Recon is a deterministic algorithm that gets as input the shares of a subset A ⊆ P,
denoted by

{
s

(k)
i

}
i∈A

, and outputs a string in K,

such that the following two requirements are satisfied:

1. (Perfect Correctness) for all secrets k ∈ K and every authorized collection A ∈ Γ, it
holds that: Pr

[
Recon

({
s

(k)
i

}
i∈A

, A
)

= k
]

= 1,

2. (Computational Secrecy) for every unauthorized collection B ̸∈ Γ and all distinct se-
crets k1, k2 ∈ K, it holds that the distributions

{
s

(k1)
i

}
i∈A

and
{
s

(k2)
i

}
i∈A
∈ B are

computationally indistinguishable (with respect to ω).
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Traditionally, secret sharing relies on honest participants. However, a verifiable secret
sharing (VSS) scheme is also required to withstand active attacks, specifically:

• a dealer sending inconsistent or incorrect shares to some of the participants during the
distribution protocol, and

• participants submitting incorrect shares during the reconstruction protocol.

VSS schemes were first introduced by Verheul and van Tilborg (1997). Clearly, Shamir’s
threshold scheme is not a VSS scheme, since it does not exclude either of these attacks.
Well-known examples of VSS schemes are Feldman’s VSS scheme Hofmeister et al. (2000)
and Pedersen’s VSS scheme Pedersen (1991).

The access structure hiding verifiable (computational) secret sharing scheme of Sehrawat
et al. (2021) defined below guarantees a relaxed definition of verifiability of shares of autho-
rised collections of players even when a majority of the parties are malicious. Their scheme
supports all monotone access structures, and its security — in particular, verifiability —
relies on the hardness of the LWE problem.

Definition 6: An access structure hiding verifiable (computational) secret sharing scheme
with respect to an access structure Γ, security parameter ω, a set of ℓ polynomial-time parties
or players P = {P1, . . . , Pℓ}, and a set of secrets K, consists of two sets of polynomial-time
algorithms, (HsGen, HsVer) and (VerShr, Recon, Ver), which are defined as follows:

• VerShr is a randomized algorithm that gets a secret k ∈ K and access structure Γ as
inputs, and outputs ℓ shares, {s(k)

1 , . . . , s
(k)
ℓ }, of k,

• Recon is a deterministic algorithm that gets as input the shares of a subset A ⊆ P,
denoted by

{
s

(k)
i

}
i∈A

, and outputs a string in K, and

• Ver is a deterministic Boolean algorithm that gets
{
s

(k)
i

}
i∈A

and a secret k′ in K as
inputs, and outputs b ∈ {0, 1},

such that the following three requirements are satisfied:

1. (Perfect Correctness) for all secrets k ∈ K and every authorized collection A ∈ Γ, it
holds that: Pr

[
Recon

({
s

(k)
i

}
i∈A

, A
)

= k
]

= 1.

2. (Computational Secrecy) for every unauthorized collection B ̸∈ Γ and all distinct se-
crets k1, k2 ∈ K, it holds that the distributions

{
s

(k1)
i

}
i∈A

and
{
s

(k2)
i

}
i∈A
∈ B are

computationally indistinguishable (with respect to ω).

3. (Computational Verifiability) Every authorized collection A ∈ Γ can use Ver to verify
whether its set of shares

{
s

(k)
i

}
i∈A

is consistent with a given secret k ∈ K. Formally,
for a negligible function δ, it holds that:
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- If all shares s
(k)
i ∈

{
s

(k)
i

}
i∈A

are consistent with the secret k, then

Pr
[
Ver

(
k,
{
s

(k)
i

}
i∈A

)
= 1

]
= 1− δ(ω)

- If any share s
(k)
i ∈

{
s

(k)
i

}
i∈A

is inconsistent with the secret k, then

Pr
[
Ver

(
k,
{
s

(k)
i

}
i∈A

)
= 0

]
= 1− δ(ω).

• HsGen is a randomized algorithm that gets P and Γ as inputs, and outputs ℓ access
structure tokens

{
0

(Γ)
1 , . . . ,0

(Γ)
ℓ

}
, and

• HsVer is a deterministic algorithm that gets as input the access structure tokens of a
subset A ⊆ P

(
denoted

{
0

(Γ)
i

}
i∈A

)
, and outputs b ∈ {0, 1},

such that the following three requirements are satisfied:

1. (Perfect completeness) Every authorized collection of parties A ∈ Γ can identify itself
as a member of the access structure Γ, i.e. Pr

[
HsVer

({
0

(Γ)
i

}
i∈A

)
= 1

]
= 1.

2. (Perfect soundness) Every unauthorized collection of parties B ̸∈ Γ can identify itself
to be outside of the access structure Γ, i.e. Pr

[
HsVer

({
0

(Γ)
i

}
i∈B

)
= 0

]
= 1.

3. (Statistical hiding) For all access structures Γ, Γ′ ⊆ 2P where Γ ̸= Γ′, and for all
unauthorised collections B ̸∈ Γ, Γ′,∣∣∣∣Pr

[
Γ |

{
0

(Γ)
i

}
i∈B

,
{
s

(k)
i

}
i∈B

]
− Pr

[
Γ′ |

{
0

(Γ)
i

}
i∈B

,
{
s

(k)
i

}
i∈B

]∣∣∣∣ = 2−ω.

3. ϵ-Almost access structure hiding ramp-type tensor designs

We incorporate the novel access structure hiding technique of Sehrawat et al. (2021)
in the tensor design obtained by extending BIBDs as introduced in the work of Roy and
Roy (2023). Since the scheme of Roy and Roy (2023) is a ramp scheme for both variants
(non-frameproof and frameproof, defined below) of the tensor design, we introduce the new
concept of an ϵ-almost access structure hiding ramp scheme.

Definition 7: Consider a (θ, Θ, ℓ)-ramp scheme, so that its access structure Γ is charac-
terised by the ramp bounds (θ, Θ). For ϵ = (ϵCorr, ϵ1, ϵ2, ϵ3), an ϵ-almost access structure
hiding (θ, Θ, ℓ)-ramp scheme with respect to a security parameter ω, a set of ℓ polynomial-
time parties or players P = {P1, . . . , Pℓ}, and a set of secrets K, consists of two sets of
polynomial-time algorithms, (HsGen, HsVer) and (VerShr, Recon, Ver), which are defined as
follows:
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• VerShr is a randomized algorithm that gets a secret k ∈ K and the bounds θ, Θ as
inputs, and outputs ℓ shares, {s(k)

1 , . . . , s
(k)
ℓ }, of k,

• Recon is a deterministic algorithm that gets as input the shares of a subset A ⊆ P,
denoted by

{
s

(k)
i

}
i∈A

, and outputs a string in K, and

• Ver is a deterministic Boolean algorithm that gets
{
s

(k)
i

}
i∈A

and a secret k′ ∈ K as
inputs, and outputs b ∈ {0, 1},

such that the following four requirements are satisfied:

1. (Perfect Correctness) for all secrets k ∈ K and every authorized collection A such that
|A| ≥ Θ, it holds that: Pr

[
Recon

({
s

(k)
i

}
i∈A

, A
)

= k
]

= 1.

2. (ϵcorr-Correctness) for all secrets k ∈ K and every ramp collection C such that θ <

|C| < Θ, there exists ϵcorr > 0 such that: Pr
[
Recon

({
s

(k)
i

}
i∈A

, A
)

= k
]

= ϵcorr.

3. (Computational Secrecy) for every unauthorized collection B with |B| ≤ θ and all
distinct secrets k1, k2 ∈ K, it holds that the distributions

{
s

(k1)
i

}
i∈A

and
{
s

(k2)
i

}
i∈A
∈ B

are computationally indistinguishable (with respect to ω).

4. (Computational Verifiability) Every authorized collection A such that |A| ≥ Θ can use
Ver to verify whether its set of shares

{
s

(k)
i

}
i∈A

is consistent with a given secret k ∈ K.
Formally, for a negligible function δ, it holds that:

- If all shares s
(k)
i ∈

{
s

(k)
i

}
i∈A

are consistent with the secret k, then

Pr
[
Ver

(
k,
{
s

(k)
i

}
i∈A

)
= 1

]
= 1− δ(ω)

- If any share s
(k)
i ∈

{
s

(k)
i

}
i∈A

is inconsistent with the secret k, then

Pr
[
Ver

(
k,
{
s

(k)
i

}
i∈A

)
= 0

]
= 1− δ(ω).

• HsGen is a randomized algorithm that gets P, θ and Θ as inputs, and outputs ℓ access
structure tokens

{
0

(Γ)
1 , . . . ,0

(Γ)
ℓ

}
, and

• HsVer is a deterministic algorithm that gets as input the access structure tokens of a
subset A ⊆ P

(
denoted

{
0

(Γ)
i

}
i∈A

)
, and outputs b ∈ {0, 1},

such that the following six requirements are satisfied:
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1. (Perfect completeness) Every authorized collection of parties A such that |A| ≥ Θ can
identify itself as a member of the access structure Γ, i.e. Pr

[
HsVer

({
0

(Γ)
i

}
i∈A

)
= 1

]
=

1.

2. (ϵ1-Completeness) Every ramp collection of parties C (where θ < |C| < Θ) can almost
always identify itself as a member of the access structure Γ),
i.e. Pr

[
HsVer

({
0

(Γ)
i

}
i∈A

)
= 1

]
= 1− ϵ1.

3. (Perfect soundness) Every unauthorized collection of parties B with |B| ≤ θ can iden-
tify itself to be outside of the access structure Γ, i.e. Pr

[
HsVer

({
0

(Γ)
i

}
i∈B

)
= 0

]
= 1.

4. (ϵ2-Soundness) Every ramp collection of parties C (where θ < |C| < Θ) can almost
always identify itself to be outside of the access structure Γ, i.e.
Pr
[
HsVer

({
0

(Γ)
i

}
i∈B

)
= 0

]
= 1− ϵ2.

5. (Statistical hiding) For all ramp access structures Γ ̸= Γ′ and for all unauthorised
collections B with |B| ≤ θ, θ′,∣∣∣∣Pr

[
Γ |

{
0

(Γ)
i

}
i∈B

,
{
s

(k)
i

}
i∈B

]
− Pr

[
Γ′ |

{
0

(Γ)
i

}
i∈B

,
{
s

(k)
i

}
i∈B

]∣∣∣∣ = 2−ω.

6. (ϵ3-Statistical Hiding) For all ramp access structures Γ, Γ′ ⊆ 2P where Γ ̸= Γ′, and for
all ramp collections C such that θ < |C| < Θ,∣∣∣∣Pr

[
Γ |

{
0

(Γ)
i

}
i∈C

,
{
s

(k)
i

}
i∈C

]
− Pr

[
Γ′ |

{
0

(Γ)
i

}
i∈C

,
{
s

(k)
i

}
i∈C

]∣∣∣∣ ≤ ϵ3(ω).

3.1. Tensor design

Let A and B be the share matrices generated by ramp schemes with respectively b1
and b2 blocks having shares of sizes k1 and k2. Suppose A and B also denote the b1 × k1
and b2 × k2 matrices corresponding to the two schemes. The Krönecker product of A⊗B is
therefore

M =


a11B a12B . . . a1k1B
a21B a22B . . . a2k1B...
ab11B ab12B . . . ab1k1B

 . (1)

If the share matrix A is defined over the field Fp1 and B over the field Fp2 for some primes
p1 and p2, then we define the scalar multiplication as the simple integer multiplication:

Fp1 × Fp2 → Z
such that (x1, x2) 7→ x1 · x2.

The reason behind taking such a multiplication is that the product elements are not distin-
guishable from integers. Therefore, M is a matrix over the integer ring Z.
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Theorem 1 (Reconstruction from Tensor Designs, Roy and Roy (2023)): Consider a
(v1, k1, λ1, b1, r1)-BIBD A and a (v2, k2, λ2, b2, r2)-BIBD B.

1. The matrix A ⊗ Bd produces a tensor design (over the integer ring Z) for a (public)
integer d such that there are no multiplicative collisions of the type xi(yj + d) =
xk(yl + d) for (i, j) ̸= (k, l).

2. • If gcd(x1, x2, . . . , xv1) = 1;
• if gcd(y1, y2, . . . , yv2) = 1;

then A and B can be reproduced from a collection of players in the new scheme A⊗Bd,
hence enabling share repair and secret reconstruction.

For the purpose of real-world implementation, we consider a prime power q, which
is computed from p1, p2 and d such that it is sufficiently greater than all the elements in
A⊗ Bd.

3.2. Secret sharing properties of A⊗ Bd

Since A⊗Bd is a (θ, Θ, ℓ)-ramp scheme, it clearly satisfies the following properties of
Definition 7:

Perfect Correctness: From Lemmas 4–9 of Roy and Roy (2023), it is clear thatA⊗Bd is a
(θ, Θ, ℓ)-ramp scheme, for θ = (τ1−1)(τ2−1)+1 and Θ = min {(τ1 − 1)b2 + 1, (τ2 − 1)b1
+1}. Hence, any A with |A| ≥ Θ can reconstruct the secret with probability 1,
i.e. Pr

[
Recon

({
s

(k)
i

}
i∈A

, A
)

= k
]

= 1.

ϵcorr-Correctness: Suppose θ < |C| < Θ and C gets partial information about A ⊗
Bd, i.e. it can reconstruct exactly one of A and Bd, say A (respectively Bd). Then
it must guess the secret of the other factor, i.e. Bd (respectively A) uniformly at
random at best, ie. with probability 1

p2
(respectively 1

p1
). Therefore, for all secrets

k ∈ K and such a ramp collection C, we denote ϵcorr := max
{

1
p1

, 1
p2

}
. Therefore,

Pr
[
Recon

({
s

(k)
i

}
i∈A

, A
)

= k
]
≤ ϵcorr.

Computational Secrecy: Consider an unauthorised collection B, with |B| ≤ θ or θ <
|B| < Θ. Thus, B gets no information about the secret, which means it must guess (at
best) uniformly at random, the secrets of both the factors A and Bd of A⊗Bd. Hence,
given the access structure Γ, it holds for every unauthorised collection B ̸∈ Γ and every
pair of different secrets k1 ̸= k2 in K that the distributions

{
s

(k1)
i

}
i∈B

and
{
s

(k2)
i

}
i∈B

are computationally indistinguishable w.r.t. the parameter δ := 1
p1p2

, according to
Definition 1.

3.3. Frameproofness

The concept of framing a player (or a collection of players), and subsequently the
property of frameproofness of a secret sharing scheme was introduced by Desmedt et al. in
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Desmedt et al. (2021). Sehrawat et al. (2021) proposes an access structure hiding verifiable
secret sharing scheme, where it establishes indistinguishability of authorisation of any col-
lection of players by use of access structure tokens. For the collection P of all players in the
scheme, they make the following claim regarding its frameproofness:

“...the share of each party Pi is sealed as a PRIM-LWE instance such that the lattice
basis, Ai, used to generate it is known only to Pi. Since Ai is required to generate Pi’s share,
it is infeasible for any coalition of polynomial-time parties A ⊂ P to compute the share of
Pi ∈ P \A without solving the LWE problem.”

Furthermore, Roy and Roy (2023) shows that for the tensor design in Equation (1),
only two players — one from the r1 − 1 players possessing a11b11 and one from the b2 − 1
players possessing a12

a11
,
a13

a11
, . . . — can reconstruct the entire share of player P1, and hence,

frame this player. They address this problem by reducing the repetitive nature of shares of
the participants — by decreasing the size of each share, while retaining all the information
that a player had in the previous construction. In fact, the secret reconstruction for the
modified scheme is then shown to require at τ1 + τ2 players. Additionally, Theorem 2 below
ensures that F (A,B) is simply a Θ-threshold scheme for Θ = τ1 +τ2 (and not a ramp scheme
like (AoB).

Example

Consider an example, where matrix A represents a 2-(4, 3, 2)-BIBD and B a 2-(5, 4, 3)-
BIBD over the points {1, 2, 3, 4} and {1, 2, 3, 4, 5}, respectively (note that r1 = 3, r2 = 4),
and d = 21. The Krönecker product tensor design obtained from these two matrices is
represented by the matrix A⊗ Bd as defined in Roy and Roy (2023):



22 23 24 25 44 46 48 50 66 69 72 75
23 24 25 26 46 48 50 52 69 72 75 78
24 25 26 22 48 50 52 44 72 75 78 66
25 26 22 23 50 52 44 46 75 78 66 69
26 22 23 24 52 44 46 48 78 66 69 72
44 46 48 50 66 69 72 75 88 92 96 100
46 48 50 52 69 72 75 78 92 96 100 104
48 50 52 44 72 75 78 66 96 100 104 88
50 52 44 46 75 78 66 69 100 104 88 92
52 44 46 48 78 66 69 72 104 88 92 96
66 69 72 75 88 92 96 100 22 23 24 25
69 72 75 78 92 96 100 104 23 24 25 26
72 75 78 66 96 100 104 88 24 25 26 22
75 78 66 69 100 104 88 92 25 26 22 23
78 66 69 72 104 88 92 96 26 22 23 24
88 92 96 100 22 23 24 25 44 46 48 50
92 96 100 104 23 24 25 26 46 48 50 52
96 100 104 88 25 26 22 23 48 50 52 44
100 104 88 92 25 26 22 23 50 52 44 46
104 88 92 96 26 22 23 24 52 44 46 48
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On applying certain permutations on each block of A ⊗ Bd (and removing zeroes),
we obtain a scheme that extends the BIBDs A and B, where it is no longer possible to
reconstruct the secret from just two players. The full algorithm may be found in Roy and
Roy (2023). The shares of players in this version, which we shall denote here by F (A,B),
are: 

22 50 72
23 46 78
25 48 72
22 52 75
24 46 66
50 72 88
46 78 92
48 72 100
52 75 88
46 66 96
72 88 25
78 92 23
72 100 24
75 104 26
66 92 23
88 25 48
92 23 52
100 25 48
88 26 50
96 23 44


3.4. Secret sharing properties of F (A,B)

From Theorem 2 stated below, it is clear that F (A,B) is a (θ, Θ, ℓ)-ramp scheme,
for θ = τ1 + τ2 and Θ = min {(τ1 − 1)b2 + 1, (τ2 − 1)b1 + 1}. Therefore, it clearly satisfies
the following properties of perfect correctness for all authorised collections of players of size
greater than Θ, ϵcorr-correctness for ramp collections of players that are authorised, and
computational secrecy for all unauthorised collections of players (irrespective of size), from
Definition 7.

A complete explanation is very similar to that for A⊗ Bd given in Section 3.2.

3.5. Graphical representation

Definition 8: A bipartite graph G = (V , E) is said to induce a tensor design B if

• the vertex set V = P⊔V the disjoint union of the set of players P = {P1, . . . , Pb} and
the set of points V = {x1, . . . , xv} of B, and

• the edge set is the collection ⋃ i∈[b]
j∈[v]
{(Pi, xj) : xj ∈ share of Pi}.

Theorem 2: Given a bipartite graph G inducing a tensor design B, and given subsets
δ(Pi) ⊆ N(Pi) of size s,
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(i) If ⋃i∈[b] δ(Pi) = V, then reconstruction of the modified scheme F (A,B) is possible.

(ii) If s ≥ 1, then (i) holds.

3.6. Defining access structure tokens

Consider first, the Krönecker product tensor design A⊗Bd as defined in Equation (1).

Let a1, . . . , av1 ∈ Fp1 be the elements in A and b1, . . . , bv2 ∈ Fp2 be the elements in
B. The access structure tokens for the share of each player are elements of ∈ Zv1

2 × ∈ Zv1
2 ,

computed according to Algorithm 1.

Algorithm 1 HsGen: Access structure tokens for the tensor designs A⊗ Bd and F (A,B)

γ
$←− Perm ({0, 1}v1 × {0, 1}v2).

for 1 ≤ i ≤ b1b2 do: //player Pi

for 1 ≤ j ≤ v1 do: //element aj

0̂
(1,Γ)
i ← (ω1, . . . , ωv1) such that ωj = 1 if and only if element aj of A occurs

as a product ajbl in the share of Pi.
end for
for 1 ≤ l ≤ v2 do: //element bl

0̂
(2,Γ)
i ← (ω1, . . . , ωv2) such that ωl = 1 if and only if element bl of B occurs as

a product ajbl in the share of Pi.
end for(
0

(Γ)
1 , . . . ,0

(Γ)
b1b2

)
← γ

(
0̂

(1,Γ)
1 ∥0̂(2,Γ)

1 , . . . , 0̂
(1,Γ)
b1 ∥0̂

(2,Γ)
b2

)
. //permutation

end for

Logical condition

From Algorithm 1, it is clear that the authorisation of a collection of players B can
be determined directly from the intermediate vectors 0̂(1,Γ)

i and 0̂(2,Γ)
i used to compute their

access structure tokens. Consider the two logical statements P and Q:

P : B ∈ Γ (2)

Q :
(∨

i∈B
0̂

(1,Γ)
i has Hamming weight ≥ τ1

)
∧
(∨

i∈B
0̂

(2,Γ)
i has Hamming weight ≥ τ2

)
.

Then from the definition of 0̂(1,Γ)
i and 0̂(2,Γ)

i , it is clear that P ↔ Q. The proceeding lemma
easily follows from this observation:

Lemma 1: Let Γ denote the access structure for the tensor design A⊗Bd. Then there exist
parameters θ and Θ such that Γ is fully characterised by the following three conditions on
any collection of players B ∈ 2P:

1. If |B| < θ, then B ̸∈ Γ.

2. If θ ≤ |B| < Θ, then B may or may not belong to Γ, i.e. it may or may not be
authorised.
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3. If |B| ≥ Θ, then B ∈ Γ.

Proof: The proof follows by checking which collections of players satisfy the condition Q.
If τ1 and τ2 are the reconstruction numbers of A and B, respectively. Then from Lemmas 4
and 7 of Roy and Roy (2023), θ = (τ1 − 1)(τ2 − 1) + 1. Also, from Lemmas 5, 6, 8 and 9
of Roy and Roy (2023), Θ = min {(τ1 − 1)b2 + 1, (τ2 − 1)b1 + 1}.

Further observe that the permutation γ in Algorithm 1 ensures that a collection of
players B of size t < Θ cannot simply examine their tokens and conclude (with probability
1) whether or not it is authorised.

4. Main results

Theorem 3: Given a positive integer d that satisfies Theorem 1, consider the tensor designs
A⊗ Bd with ramp structure (θ, Θ, ℓ), for a secret k, and shares s

(k)
i for each player Pi ∈ P.

Then there exists an access structure token generation algorithm that makes A ⊗ Bd an
ϵ-almost access structure hiding (θ, Θ, ℓ)-ramp tensor design.

Theorem 4: Given a positive integer d that satisfies Theorem 1, consider the tensor designs
F (A,B) with ramp structure (θ, Θ, ℓ), for a secret k, and shares s

(k)
i for each player Pi ∈ P.

Then there exists an access structure token generation algorithm that makes F (A,B) an
ϵ-almost access structure hiding (θ, Θ, ℓ)-ramp tensor design.

Theorem 5: The access structure hiding tensor design A⊗ Bd is verifiable.

Theorem 6: The access structure hiding tensor design F (A,B) is verifiable.

5. Proof of Theorems 3 and 4

Proof: [Proof of Theorem 3.] This is easily seen as the scheme A ⊗ Bd satisfies the six
properties enumerated in Definition 7.

Completeness and ϵ1-completeness:

Case 1: |A| ≥ Θ. Since the access structure tokens of any collection of size at least Θ
always satisfy the logical condition (2), A can simply check this condition and output
1. Therefore,

Pr
[
HsVer

({
0

(Γ)
i

}
i∈A

)
= 1

]
= 1.

Case 2: θ < |C| < Θ, and C is authorised. Let |C| = T , such that θ < T < Θ and C is
an authorised collection of players.

Number of permutations that fix the access structure tokens of C = (ℓ− T )!
Total number of permutations on all ℓ access structure tokens = ℓ!

As there is a uniformly random distribution on the access structure tokens, C can
make a uniformly random guess from {0, 1} about its authorisation status. Therefore,
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the probability that any collection of size T can identify itself as authorised can be
bounded above by the summation

∑
C∈Γ

with |C|=T

(ℓ− T )!
ℓ! ≤ 1(

ℓ
T

) ,

and thus, Pr
[
HsVer

({
0

(Γ)
i

}
i∈C

)
= 1

]
≤

∑
θ<T <Θ

1(
ℓ
T

) . (3)

Denoting ϵ1 := ∑
θ<T <Θ

1(
ℓ
T

) , we then have

Pr
[
HsVer

({
0

(Γ)
i

}
i∈C

)
= 1

]
≥ 1− ϵ1.

Soundness and ϵ2-soundness:

Case 1: |B| ≤ θ. Since the access structure tokens of any collection of size at most θ never
satisfy the logical condition (2), B can simply check this condition and output 0.
Therefore,

Pr
[
HsVer

({
0

(Γ)
i

}
i∈B

)
= 0

]
= 1.

Case 2: θ < |C| < θ, and C is unauthorised. Let |C| = T , such that θ < T < Θ and C
is an unauthorised collection of players. We arrive at the upper bound ϵ2 := ∑

θ<T <Θ

1(
ℓ
T

)
as in Equation (3), by the same argument as for ϵ1-completeness above. Hence,

Pr
[
HsVer

({
0

(Γ)
i

}
i∈C

)
= 0

]
≥ 1− ϵ2.

Statistical hiding and ϵ3-statistical hiding: As A⊗ Bd is a (θ, Θ, ℓ)-ramp scheme, any
non-ramp collection of parties can simply count the access structure tokens of all its players
and determine its authorisation.

Case 1: |B| ≤ θ. By definition of the access structure tokens, ∨
i∈B

0̂
(1,Γ)
i < τ1 and ∨

i∈B
0̂

(2,Γ)
i <

τ2.
Thus, for any such collection and for any access structure Γ′ ⊆ 2P characterised by the
ramp bounds (θ, Θ) such that B ̸∈ Γ′, Γ′ |

{
0

(Γ)
i

}
i∈B

follows the uniform distribution.
Hence,

Pr
[
Γ′ |

{
0

(Γ)
i

}
i∈B

]
= 2

ℓ(ℓ− 3) = 2
2b1b2(2b1b2 − 3) .

And therefore,
∣∣∣∣Pr

[
Γ |

{
0

(Γ)
i

}
i∈B

,
{
s

(k)
i

}
i∈B

]
− Pr

[
Γ′ |

{
0

(Γ)
i

}
i∈B

,
{
s

(k)
i

}
i∈B

]∣∣∣∣ = 0.
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If Γ′ is any other type of access structure (which does not characterise a ramp scheme),
then Pr

[
Γ′ |

{
0

(Γ)
i

}
i∈B

,
{
s

(k)
i

}
i∈B

]
= 0.

And therefore,
∣∣∣∣Pr

[
Γ |

{
0

(Γ)
i

}
i∈B

,
{
s

(k)
i

}
i∈B

]
− Pr

[
Γ′ |

{
0

(Γ)
i

}
i∈B

,
{
s

(k)
i

}
i∈B

]∣∣∣∣
= 2

2b1b2(2b1b2 − 3).

Case 2(a): θ < |C| < Θ and C is unauthorised. Since C is an unauthorised collection
of parties, it knows no information about either factor, A, Bd, of A ⊗ Bd. Therefore,
by the same arguments as for Case 1,∣∣∣∣Pr

[
Γ |

{
0

(Γ)
i

}
i∈B

,
{
s

(k)
i

}
i∈B

]
− Pr

[
Γ′ |

{
0

(Γ)
i

}
i∈B

,
{
s

(k)
i

}
i∈B

]∣∣∣∣ = 2
2b1b2(2b1b2 − 3) .

Case 2(b): θ < |C| < Θ and C has partial information about the secret. Let us as-
sume C knows the secret of the factor A of A ⊗ Bd. Then it must guess the shares
of players of Bd at best uniformly at random. So, a similar computation as in Case 1
allows us to arrive at the bound∣∣∣∣Pr

[
Γ |

{
0

(Γ)
i

}
i∈B

,
{
s

(k)
i

}
i∈B

]
− Pr

[
Γ′ |

{
0

(Γ)
i

}
i∈B

,
{
s

(k)
i

}
i∈B

]∣∣∣∣ ≤ 2
2b2(2b2 − 3) .

On the other hand, if C knows the secret of the factor Bd of A⊗ Bd, then the bound
becomes∣∣∣∣Pr

[
Γ |

{
0

(Γ)
i

}
i∈B

,
{
s

(k)
i

}
i∈B

]
− Pr

[
Γ′ |

{
0

(Γ)
i

}
i∈B

,
{
s

(k)
i

}
i∈B

]∣∣∣∣ ≤ 2
2b1(2b1 − 3) .

The equality in the two previous inequalities can be achieved when Γ′ is not a ramp
type scheme even when C has information about one threshold scheme. To sum it up,
the required value for the parameter ϵ3 is therefore the maximum of these two bounds.
Without loss of generality, we have assumed that b1 ≤ b2 and hence among the three
expressions on the right side, the last one is the largest.
Thus,∣∣∣∣Pr

[
Γ |

{
0

(Γ)
i

}
i∈B

,
{
s

(k)
i

}
i∈B

]
− Pr

[
Γ′ |

{
0

(Γ)
i

}
i∈B

,
{
s

(k)
i

}
i∈B

]∣∣∣∣ ≤ 2
2b1(2b1 − 3).

The proof of Theorem 4 is exactly similar to the proof above.

6. Proof of theorems 5 and 6

Proof: If A is an authorised collection of parties (irrespective of its size), then clearly,

Pr
[
Ver

(
k,
{
s

(k)
i

}
i∈A

)
= 1

]
= 1
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as A can reconstruct the secret perfectly.

Recall the definition of the prime power q from Section 3.1. For an unauthorised
collection of parties A such that A cannot compute all elements of even one of A or Bd,

Pr
[
Ver

(
k,
{
s

(k)
i

}
i∈A

)
= 1

]
≤ 1

q

and therefore, Pr
[
Ver

(
k,
{
s

(k)
i

}
i∈A

)
= 0

]
≥ 1− 1

q
. (4)

For a ramp collection of parties A such that θ < |A| < Θ, i.e. A can compute all
elements of exactly one of A or Bd,

Pr
[
Ver

(
k,
{
s

(k)
i

}
i∈A

)
= 1

]
≤ max

{
1
p1

,
1
p2

}

and therefore, Pr
[
Ver

(
k,
{
s

(k)
i

}
i∈A

)
= 0

]
≥ 1−max

{
1
p1

,
1
p2

}
. (5)

The bounds in Equations (4) and (5) are simply because A and Bd are τ1- and τ2-
threshold schemes based on Shamir schemes Shamir (1979), which means any collection of
players that cannot reconstruct the entire secret cannot obtain any information about the
secret.

The proof of Theorem 6 is exactly similar to the proof above.

7. Applications

Our technique has real-world applications in a very wide range of domains, includ-
ing secure multiparty computation Chaum (1989); Andrychowicz et al. (2016); Smart et al.
(2024), secure distributed storage Garay et al. (1997); Rajasekaran and Duraipandian (2024),
attribute-based encryption Nali et al. (2005); Ibraimi et al. (2009); Saidi et al. (2024);
Asaithambi et al. (2024), access control mechanisms Eland (1978); di Vimercati (2011);
Gondara (2011); Nour et al. (2022), secure cloud computing Xu et al. (2009); Cui and Yi
(2024), e-voting systems Rabia et al. (2023), secure data sharing in blockchain technol-
ogy Zhang and Lin (2018); Alshehri et al. (2023); Wang et al. (2023), and privacy-preserving
machine learning algorithms Çatak (2015); Xu et al. (2015); Qin et al. (2024); Mestari et al.
(2024), to name a few.

For example in cloud storage systems Shin et al. (2017), our technique can enhance
data integrity and availability by enabling authorized parties to reconstruct lost or corrupted
shares without involving the initial dealer, avoiding framing of various parties, and compu-
tationally easy verification of shares against malicious adversary interactions.

Within sensor-based IoT systems Sikder et al. (2018), repairable ramp schemes safe-
guard the confidentiality and integrity of sensitive information exchanged among devices.
The ability to repair lost or corrupted shares while maintaining frameproofness, and veri-
fiability of these shares, along with the ability to ensure their completeness and soundness
without the need to actually access the shares ensures uninterrupted operation and security,
critical for IoT applications.
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Furthermore, repairable ramp schemes are instrumental in multi-level security sys-
tems Gao and Xiao (2011); Wagner (1997), such as those employed by government agencies
and financial institutions. Our techniques would only improve their guarantees of security,
while maintaining accessibility of critical information. They would also enable secure col-
laborative data sharing in environments where multiple parties require access to confidential
data.

8. Conclusion and future work

In this paper, we discuss verifiability and frameproofness of access structure hiding
ramp-type tensor designs. We do this through the introduction of a new type of secret
sharing scheme, called an ϵ-almost access structure hiding (θ, Θ, ℓ)-ramp tensor design, thus
making an essential generalisation of the existing novel design introduced by Sehrawat et al..
We explore ways of enhancing data security and privacy, especially Roy et al.’s concept of
extending repairable threshold schemes, using tensor products of balanced incomplete block
designs. This concept provides a fundamental generalization of existing designs, and thus
plays an important role in enhancing the security and verifiability of secret sharing schemes
by providing a mechanism for parties to verify the correctness of the shares they receive and
ensuring that the reconstruction process is accurate. By incorporating ramp schemes, the
construction becomes more robust against malicious behavior and unauthorized access, thus
strengthening the overall security and integrity of the secret sharing process. We also list a
few real-world applications where our techniques could be utilised for improved security.

While we demonstrate our concept of ϵ-almost access structure hiding for only extend-
able combinatorial tensor designs, it opens up a wide range of possibilities for any ramp-type
scheme to incorporate this technique for further improvement of confidentiality, secrecy and
verifiability.
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