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Abstract
Nearest neighbor classifier is arguably the most simple and popular nonparametric

classifier available in the literature. However, due to the concentration of pairwise distances
and the violation of the neighborhood structure, this classifier often suffers in high-dimension,
low-sample size (HDLSS) situations, especially when the scale difference between the com-
peting classes dominates their location difference. Several attempts have been made in the
literature to take care of this problem. In this article, we discuss some of those existing
methods and propose some new ones. We carry out some theoretical investigations in this
regard and analyze several simulated and benchmark datasets to compare the empirical
performances of our proposed methods with some of the existing ones.
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1. Introduction

In supervised classification, we use a training set of labeled observations from different
competing classes to form a decision rule for classifying unlabeled test set observations as
accurately as possible. Starting from Fisher (1936), Rao (1948) and Fix and Hodges (1951),
several parametric as well as nonparametric classifiers have been developed for this purpose
(see, e.g., Duda et al., 2007; Hastie et al., 2009). Among them, the nearest neighbor classifier
(see, e.g., Cover and Hart, 1967) is perhaps the most popular one. The k-nearest neighbor
classifier (k-NN) classifies an observation x to the class having the maximum number of
representatives among the k nearest neighbors of x. This classifier works well if the training
sample size is large compared to the dimension of the data. For a suitable choice of k
(which increases with the training sample size at an appropriate rate), under some mild
regularity conditions, the misclassification rate of the k-NN classifier converges to the Bayes
risk (i.e., the misclassification rate of the Bayes classifier) as the training sample size grows to
infinity (see, e.g. Devroye et al., 2013; Hall et al., 2008). However, like other nonparametric
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methods, this classifier also suffers from the curse of dimensionality (see, e.g., Carrerira-
Perpinan, 2009), especially when the dimension of the data is much larger than the training
sample size. In such high-dimension, low-sample-size (HDLSS) situations, the concentration
of pairwise distances (see, e.g., Hall et al., 2005; François et al., 2007), presence of hubs and
the violation of the neighborhood structure (see, e.g., Radovanovic et al., 2010; Pal et al.,
2016) often have adverse effects on the performance of the nearest neighbor classifier.

To demonstrate this, we consider some simple examples involving two d-dimensional
normal distributions. Descriptions of these examples are given below.

Examples 1 - 3: In these three examples, the first class has a normal distribution with
the mean vector 0d = (0, 0, . . . , 0)⊤ and the dispersion matrix Id (the d× d identity matrix),
while the second class has the mean vector µ1d = µ(1, 1, . . . , 1)⊤ = (µ, µ, . . . , µ)⊤ and the
dispersion matrix σ2Id. In Example 1, we consider a location problem where we take µ = 1
and σ = 1. Example 2 deals with a location-scale problem with µ = 1 and σ = 2. As Example
3, we choose a scale problem, where µ and σ are taken as 0 and 2, respectively.

In each of these examples, we carry out our experiment for 7 different choices of d
ranging between 10 and 1000 (d= 10, 20, 50, 100, 200, 500 and 1000). In each case, taking
an equal number of observations from the two competing classes, we form the training and
test sets of size 50 and 500, respectively. This is done 100 times, and the average test set
misclassification rates of the 1-NN classifier over these 100 trials are reported in Figure 1.

Note that in each of these examples, the distribution of each measurement variable
differs in two competing classes. So, each of them contains information about class separa-
bility, and as a result, the separability between the two classes increases with the dimension.
One can check that in each of these examples, the Bayes risk converges to 0 as the dimen-
sion grows. Therefore, the misclassification rate of any good classifier is also expected to go
down as the dimension increases. We observed the same for the 1-NN classifier in Example
1 (location problem), but surprisingly, in the other two cases, its misclassification rates were
close to 0.5 in high dimensions.

A careful investigation explains the reasons for this diametrically opposite behavior.
Let {X1,X2, .....,Xn1} and {Y1,Y2, .....,Yn2} be the training samples from two competing
classes (here we have n1 = n2 = 25) N(0d, Id) and N(µ1d, σ2Id), respectively. Now, for a
test case Z from N(0d, Id), one can show that for each i = 1, 2, . . . , n1, 1

d
∥Z − Xi∥2, being

the average of independent and identically distributed (i.i.d.) random variables, converges
in probability to 2 as d increases to infinity. Similarly, it can be shown that for each i =
1, 2, . . . , n2, 1

d
∥Z − Yi∥2 P→ 1 + µ2 + σ2. So, Z is correctly classified by the 1-NN classifier

(or any k-NN classifier with k ≤ min{n1, n2}) if µ2 + σ2 > 1, Note that it was the case in
all three examples. So, all observations from N(0d, Id) were correctly classified. But for a
test case Z′ from N(µ1d, σ2Id), we have 1

d
∥Z′ − Xi∥2 P→ 1 + µ2 + σ2 for i = 1, 2, . . . , n1 and

1
d
∥Z′ − Yi∥2 P→ 2σ2 for i = 1, 2, . . . , n2. So, it is correctly classified if and only if σ2 < 1 +µ2.

This condition was satisfied in Example 1, but not in the other two cases. Because of this
violation of the neighborhood structure (where observations from one class have all neighbors
from other classes), in Examples 2 and 3, the 1-NN classifier misclassified all observations
from N(µ1d, σ2Id) and had misclassification rates close to 0.5.
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This phenomenon of distance concentration in high dimension was observed by Hall
et al. (2005) for Euclidean distances and François et al. (2007) for fractional distances. Hall
et al. (2005) also studied the high dimensional behavior of some popular classifiers and
observed this undesirable behavior of the nearest neighbor classifier. To take care of this
problem, Chan and Hall (2009b) proposed an adjustment for the scale difference between
the competing classes. They suggested to compute

ρ1(Z,Xi) = ∥Z − Xi∥2 − 1
2

(
n1

2

)−1∑
s<t

∥Xs − Xt∥2 for i = 1, 2, . . . , n1,

ρ2(Z,Yi) = ∥Z − Yi∥2 − 1
2

(
n2

2

)−1∑
s<t

∥Ys − Yt∥2 for i = 1, 2, . . . , n2

and classify Z to the first (respectively, second) class if min ρ1(Z,Xi) < min ρ2(Z, Yi) (re-
spectively, min ρ1(Z,Xi) > min ρ2(Z, Yi)). Note that without the scale adjustments (second
terms on the right-hand side of the equations), it turns out to be the usual 1-NN classifier.
Figure 1 also shows the performance of this classifier (we refer to it as the CH classifier) in
Examples 1-3. In Example 1, it performed like the 1-NN classifier. Interestingly, in Example
2, while the 1-NN classifier failed, this scale adjustment led to improved performance by the
CH classifier in high dimensions. But in Example 3, like the 1-NN classifier, it also misclas-
sified almost 50% observations. Note that for any Z from N(0d, Id), here ρ1(Z,Xi)/d P→ 1
(i = 1, 2, . . . , n1) and ρ2(Z,Yi)/d P→ 1 + µ2 (i = 1, 2, . . . , n2) as d increases. So, it is correctly
classified if µ2 > 0. Again, for any Z′ from N(µ1d, σ2Id), we have ρ1(Z′,Xi)/d P→ µ2 + σ2 for
i = 1, 2, . . . , n1 and ρ2(Z′,Yi)/d P→ σ2 for i = 1, 2, . . . , n2. So, here also, we need µ2 > 0 for
correct classification. In Examples 1 and 2, we had µ2 > 0. So, the CH classifier performed
well in those two examples for large values of d. But in Example 3, where we had µ2 = 0, it
misclassified almost 50% observations. This example shows that the CH classifier may fail
to discriminate between two high-dimensional distributions differing only in their scales.

However, if we slightly modify Chan and Hall (2009b)’s proposal of scale adjustment,
we can take care of high dimensional scale problems as well. Our modified version (which

(a) Ex. 1: Location problem (b) Ex. 2: Location-scale (c) Ex. 3: Scale problem
(µ = 1, σ = 1) problem (µ = 1, σ = 2) (µ = 0, σ = 2)
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Figure 1: Misclassification rates of Bayes, NN, CH and MCH classifiers in Ex-
amples 1-3.
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we refer to as the Modified Chan and Hall classifier or the MCH classifier) had excellent
performance in all three examples (see Figure 1), especially for large values of d. In Section
2, we propose this modification and carry out some theoretical and numerical studies to
understand the high-dimensional behavior of the resulting classifier.

An alternative strategy to deal with any high-dimensional problem is to reduce the
dimension of the data and work on the reduced subspace. The simplest method of dimension
reduction is to consider some random linear projections (see, e.g., Fern and Brodley, 2003;
Fradkin and Madigan, 2003; Vempala, 2005, and the references therein), and we can adopt
that method for nearest neighbor classification as well. Another popular approach is to use
projections based on principal component analysis (see, e.g., Deegalla and Bostrom, 2006;
Maciończyk et al., 2023). But as pointed out in Dutta and Ghosh (2016), these methods often
lead to poor performance in high-dimensional classification problems. For instance, from our
description, it is quite clear that neither the principle component directions nor the random
projections are meaningful in Example 3. Also getting consistent estimates of the principal
components in high dimension is challenging (see, e.g., Jung and Marron, 2009). Other
approaches towards nearest neighbor classification of high-dimensional data include those
based on mean absolute difference of distances (see,e.g., Pal et al., 2016; Roy et al., 2022),
hubness-based fuzzy measures (see, e.g., Tomašev et al., 2014) and distance metrics learning
(see, e.g. Weinberger and Saul, 2009). Chan and Hall (2009a) proposed a robust version of the
nearest neighbor method for classifying high-dimensional data, but their method can be used
only for a specific type of two-class location problem. Instead of using random projections
or principal components, Dutta and Ghosh (2016) suggested extracting some distance-based
features from the data and performing nearest neighbor classification based on those features.
They proposed two such methods, one using transformation based on average distances
(TRAD) and the other using transformation based on inter-point distances (TRIPD). We
briefly discuss these two methods in Section 3 and also propose some other methods for
selecting distance-based features for nearest neighbor calssification of high dimensional data.
A comparative discussion of these methods is also given in this section based on our analysis
of some simulated data sets. Some benchmark data sets are analyzed in Section 4 to compare
the performances of these methods with two popular state-of-the-art classifiers, support
vector machines (see, e.g. Cristianini and Shawe-Taylor, 2003; Steinwart and Christmann,
2008; Scholkopf and Smola, 2018) and random forest (see, e.g., Breiman, 2001; Genuer and
Poggi, 2020), which are known to perform well for high dimensional data. Finally, a brief
summary of the work and some concluding remarks are given in Section 5. All proofs and
mathematical details are given in the Appendix.

2. Modified scale-adjusted nearest neighbor classifier

We have seen that while the 1-NN classifier failed in Examples 2 and 3, the scale-
adjusted CH classifier worked well in Example 2 when the dimension was large. But, in
Example 3, this scale adjustment could not improve the performance of the 1-NN classifier.
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This motivates us to look for a modified scale adjustment. We define

ρ∗
1(Z,Xi) = ∥Z − Xi∥ − 1

2

(
n1

2

)−1∑
s<t

∥Xs − Xt∥ for i = 1, 2, . . . , n1,

ρ∗
2(Z,Yi) = ∥Z − Yi∥ − 1

2

(
n2

2

)−1∑
s<t

∥Ys − Yt∥ for i = 1, 2, . . . , n2

and classify a test set observation Z to the first (respectively, second) class if min ρ∗
1(Z,Xi)

is smaller (respectively, larger) than min ρ∗
2(Z,Yi). Figure 1 shows that this modified scale

adjusted nearest neighbor classifier (henceforth referred to as the Modified Chan and Hall
classifier or the MCH classifier) had excellent performance in high dimensions in all three
examples. A small theoretical analysis explains the reasons for its superior performance.

Following our previous discussion on distance convergence, one can show that for a
test set observation Z from N(0d, Id), as d tends to infinity, we have ρ∗

1(Z,Xi)/
√
d

P→ 1/
√

2
for i = 1, 2, . . . , n1, while ρ∗

2(Z,Yi)/
√
d

P→
√

1 + µ2 + σ2 − σ/
√

2 for i = 1, 2, . . . , n2. So,
it is correctly classified if

√
1 + µ2 + σ2 > (σ + 1)/

√
2 ⇔ 1 + µ2 + σ2 > (σ + 1)2/2 ⇔

µ2 + 1
2(σ − 1)2 > 0. Again for an observation Z′ from N(µ1d, σ2Id), as d → ∞, we have

ρ∗
1(Z′,Xi)/

√
d

P→
√

1 + µ2 + σ2 − 1/
√

2 for i = 1, 2, . . . , n1 and ρ∗
2(Z′,Yi)/

√
d

P→ σ/
√

2 for
i = 1, 2, . . . , n2. So, here also, Z′ is correctly classified if µ2 + 1

2(σ − 1)2 > 0. This inequality
holds in all three examples considered in Section 1. This was the reason for the excellent
performance of the MCH classifier in high dimensions.

Like the usual nearest neighbor classifier, multi-class generalizations of CH and MCH
classifiers are quite straightforward. If there are J competing classes F1, F2, . . . , FJ with the
training samples {Xj1,Xj2, . . . ,Xjnj

} from the j-th class, (j = 1, 2, . . . , J), for classifying a
test case Z by the CH classifier, we can compute

ρj(Z,Xji) = ∥Z − Xji∥2 − 1
2

(
nj
2

)−1∑
s<t

∥Xjs − Xjt∥2 for j = 1, 2, . . . , J, i = 1, 2, . . . , nj

and assign Z to class j0 if min
1≤i≤nj0

ρj0(Z,Xj0i) < min
1≤i≤nj

ρj(Z,Xji) for all j ̸= j0. Similarly, for
the MCH classifier, one can compute

ρ∗
j(Z,Xji) = ∥Z − Xji∥ − 1

2

(
nj
2

)−1∑
s<t

∥Xjs − Xjt∥ for j = 1, 2, . . . , J, i = 1, 2, . . . , nj

and assign Z to class j0 if min
1≤i≤nj0

ρ∗
j0(Z,Xj0i) < min

1≤i≤nj

ρ∗
j(Z,Xji) for all j ̸= j0.

For the sake of simplicity, in Examples 1-3, we considered binary classification prob-
lems involving two normal distributions each having i.i.d. measurement variables. Now,
one may be curious to know how CH and MCH classifiers perform in high-dimensional
multi-class classification problems involving more general class distributions with possibly
dependent and non-identically distributed measurement variables. For this investigation, we
consider the following assumptions.
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(A1) In each of the J competing classes, the measurement variables have uniformly bounded
fourth moments.

(A2) If X = (X1, . . . , Xd)⊤ ∼ Fj and Y = (Y1, . . . , Yd)⊤ ∼ Fi (1 ≤ j, i ≤ J) are independent,
for U = X − Y, ∑r ̸=s |Corr(U2

r , U
2
s )| is of the order o(d2).

(A3) Let µj and Σj be the mean vector and the dispersion matrix of Fj (1 ≤ j ≤ J). For
each j = 1, . . . , J , there exists a constant σ2

j such that trace(ΣJ)/d → σ2
j as d → ∞.

Also, for each i ̸= j, there exists a constant ν2
ji such that ∥µj−µi∥2/d → ν2

ji as d → ∞.

Under (A1) and (A2), we have the weak law of large numbers (WLLN) (see, e.g.,
Feller, 1991) for the sequence of possibly dependent and non-identically distributed ran-
dom variables {U2

q : q ≥ 1},i.e.,
∣∣∣1
d
∥U∥2 − E

(
1
d
∥U∥2

)∣∣∣ P→ 0 as d → ∞ (note that if the
measurement variables are i.i.d., as they were in Examples 1-3, the WLLN holds under the
second moment assumption, (A1) and (A2) are not needed there). Assumption (A3) gives
the limiting value of E

(
1
d
∥U∥2

)
and hence that of 1

d
∥U∥2 = 1

d
∥X − Y∥2 for X ∼ Fj and

Y ∼ Fi (1 ≤ j, i ≤ J). So, under (A1)-(A3), we have high-dimensional convergence of all
pairwise distances and their limiting values (see Lemma 1 in Appendix). These assumptions
are quite standard in the HDLSS literature. Hall et al. (2005) considered the d-dimensional
observations as time series truncated at time d, and in addition to (A1) and (A3), they
assumed the ρ-mixing property of the time series to study the high dimensional behavior of
some popular classifier as d increases. Note that (A2) holds under that ρ-mixing condition.
François et al. (2007) observed that for high-dimensional data with highly correlated or de-
pendent measurement variables, pairwise distances are less concentrated than if all variables
are independent. They claimed that the distance concentration phenomenon depends on
the intrinsic dimension (see, e.g., Levina and Bickel, 2004; Camastra and Staiano, 2016) of
the data, instead of the dimension of the embedding space. So, in order to have distance
concentration in high dimensions, one needs high intrinsic dimensionality of the data or weak
dependence among the measurement variables. The assumption (A2) ensures that weak de-
pendence. Some other similar relevant conditions for the convergence of pairwise distances
can be found in (Ahn et al., 2007; Jung and Marron, 2009; Sarkar and Ghosh, 2019; Yata
and Aoshima, 2020; Banerjee and Ghosh, 2025). Under (A1)-(A3), we have the following
theorem on the misclassification rates of the usual nearest neighbor, CH and MCH classifiers.

Theorem 1: If J competing classes satisfy assumptions (A1)-(A3), and there are at least
two observations from each of them (i.e, nj ≥ 2 for all j = 1, 2, . . . , J), then we have the
following results.

(a) If ν2
ji > |σ2

j −σ2
i | for all j ̸= i, the misclassification probability of the k-nearest neighbor

classifier with k < min{n1, . . . , nJ} converges to 0 as the dimension d grows to infinity.
However, if ν2

ji < |σ2
j − σ2

i | for some j ̸= i, all observations from at least one class is
misclassified with probability tending to 1 as d diverges to infinity.

(b) If ν2
ji > 0 for j ̸= i, the misclassification probability of the CH classifier converges to 0

as d grows to infinity.

(c) Suppose that for all j ̸= i, either ν2
ji > 0 or σ2

j ̸= σ2
i . Then, the misclassification

probability of the MCH classifier converges to 0 as d grows to infinity.
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Note that in Examples 1-3, we had ν2
12 = µ2, σ2

1 = 1 and σ2
2 = σ2. The condition

ν2
12 > |σ2

1 − σ2
2| was violated in Examples 2 and 3, whereas the condition ν2

12 > 0 was
also violated in Example 3. We had poor performance of NN and CH classifiers in these
respective cases. But the condition ν2

12 > 0 or σ2
1 ̸= σ2

2 was satisfied in all three examples.
Consequently, the MCH classifier had good high-dimensional performance.

(a) Ex. 4: Two mixture (b) Ex. 5: Uniform vs. (c) Ex. 6: Normal(0d, 3Id) vs.
normal distributions mixture of uniforms standard t with 3 d.f.
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Figure 2: Misclassification rates of Bayes, NN, CH, and MCH classifiers in
Examples 4-6.

Now, we consider three more examples (Examples 4-6) to investigate how the MCH
classifier performs when at least one of the assumptions of Theorem 1 is violated.

Example 4: Each of the two classes is an equal mixture of two normal distributions. While
one class is a mixture of N(0d, Id) and N(1d, 2Id), the other one is a mixture of N(αd, Id)
and N((1d − αd), 2Id), where αd is a d-dimensional vector with entries 0 and 1 at even and
odd places, respectively.

Example 5: Here the two classes are Ud(1, 1.5) and an equal mixture of Ud(0.5, 1) and
Ud(1.5, 2), where Ud(a, b) denotes the d-dimensional uniform distribution over the region
{x ∈ Rd : a ≤ ∥S1/2x∥ ≤ b} for S = 0.5Id + 0.51d1⊤

d .

Examples 4 and 5 are dealing with mixture distributions. Here, (A1)-(A3) hold for each of
the four sub-classes, but (A2) is violated for both competing classes. We also consider the
following example:

Example 6: In this example, the two competing classes are N(0d, 3Id) and the standard
multivariate t-distribution with 3 degrees of freedom.

In Example 6, (A2) is violated for the t-distribution. Moreover, since the two classes
have the same mean vector and the same dispersion matrix, we have ν2

12 = 0 and σ2
1 = σ2

2.
For each example, we consider different values of d ranging between 10 and 1000, and in
each case, we form training and test samples of size 50 and 500, respectively, taking an equal
number of observations from each class. Each experiment is repeated 100 times to compute
the average test set misclassification rates of different classifiers, and they are reported in
Figure 2. In these examples, NN, CH and MCH classifiers, all had poor performance, and
they had misclassification rates close to 0.5 in high dimensions. These examples clearly
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show the necessity to develop some new methods for high dimensional nearest neighbor
classification, particularly for the examples involving mixture distributions. In the next
section, we propose and discuss some methods for this purpose.

3. Nearest neighbor classification using distance-based features

In the previous sections, we have seen that for high dimensional classification based
on nearest neighbors, the scale adjustment methods (CH and MCH) may not always be
helpful. To take care of this problem, we suggest extracting some distance-based features
from the data and constructing a suitable classifier on that feature space.

3.1. Classification based on minimum distances

Note that in a binary classification problem with training samples {X11,X12, . . . ,X1n1}
and {X21,X22, . . . ,X2n2} from the two competing classes, for classification of a test case
Z, the 1-NN classifier computes its minimum distances d1(Z) = min1≤i≤n1 ∥Z − X1i∥ and
d2(Z) = min1≤i≤n2 ∥Z − X2i∥ from Class-1 and Class-2, respectively. Then it classifies Z to
the first class if d2(Z) > d1(Z) or d2

2(Z) > d2
1(Z). Like the 1-NN classifier, the CH classifier

(a) NN and CH classifiers (b) NN and MCH classifiers (c) MDist classifier
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Figure 3: Scatter plots of training (top row) and test (bottom row) samples along
with the class boundaries estimated by NN, CH, MCH, and MDist classifiers in
Example 4.
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(a) NN and CH classifiers (b) NN and MCH classifiers (c) MDist classifier
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Figure 4: Scatter plots of the test samples and the class boundaries estimated
by NN, CH, MCH and MDist classifiers in Example 5.

also leads to linear classification in the d2
1−d2

2 space and classifies Z to the first class if d2
2(Z) >

d2
1(Z) +C1, where C1 = 1

2

[(
n2
2

)−1∑
s<t ∥X2s − X2t∥2 −

(
n1
2

)−1∑
s<t ∥X1s − X1t∥2

]
. Similarly,

the MCH classifier leads to linear classification in the d1−d2 space and classifies Z to the first
class if d2(Z) > d1(Z)+C2, where C2 = 1

2

[(
n2
2

)−1∑
s<t ∥X2s−X2t∥−

(
n1
2

)−1∑
s<t ∥X1s−X1t∥

]
.

The first and the second columns in Figure 3 show the class boundaries estimated by these
classifiers (the back line in the first and the second column shows the class boundary esti-
mated by the 1-NN classifier) in Example 4 for dimension 500. They also show the scatter
plots of (d1(·), d2(·))

(
or
(
d2

1(·), d2
2(·)

))
for all training (top row) and test (bottom row) sam-

ple observations. For the training data points, the leave-one-out method (see, e.g., Wong,
2015) is used to compute its minimum distances from the two classes. From this figure, it is
quite evident that minimum distances (or squared minimum distances) from the two classes
contain substantial information about class separability, but the resulting data clouds from
the two classes are not linearly separable in that space. As a result, NN, CH, and MCH
classifiers, all had poor performance. But we can overcome this problem if we use a suitable
nonlinear classifier in that space. For instance one can use the 1-NN classifier in the d1 − d2
space. This classifier, which is referred to as the MDist classifier, performed well in this
example. The last column in Figure 3 shows the class boundary estimated by the MDist
classifier. Note that it correctly classified almost all observations.

We observed a similar phenomenon in Example 5 as well (see Figure 4). Like Example
4, here also the observations from different sub-classes form distinct clusters in the d1 −
d2 space (or the d2

1 − d2
2 space). So, this feature space contains useful information about

class separability, but the feature vectors from the two classes are not linearly separable.
Therefore, while NN, CH and MCH classifiers had misclassification rates close to 50%, the
MDist classifier had an excellent performance.

In Example 6, we have the convergence of pairwise distances for observations from
the normal distribution, but not for observations from the multivariate t distribution. In
this example, NN, CH and MCH classifiers classified almost all observations into a single
class (see Figure 5), but the MDist classifier had much superior performance.
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(a) NN and CH classifiers (b) NN and MCH classifiers (c) MDist classifier
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Figure 5: Scatter plots of the test samples and the class boundaries estimated
by NN, CH, MCH and MDist classifiers in Example 6.

A similar idea of projecting the observations into a distance-based feature space and
using the nearest neighbor classifier on that space was also considered in Dutta and Ghosh
(2016), where the authors suggested using average distances d̄1(Z) = avgi∥Z − X1i∥ and
d̄2(Z) = avgi∥Z−X2i∥ from the competing classes as features. Figure 6 shows these features
for the test sample observations in Examples 4-6 and also the class boundaries estimated by
the resulting classifier, called the TRAD classifier (see Dutta and Ghosh, 2016). Here also,
for computing the feature vectors for the training sample observations, the leave-one-out
method is used. Figure 6(a) shows that in Example 4, we have reasonable separability in
the feature space, but the four distinct clusters are not as prominent as they were in Figure
3. Here we have some overlaps between the clusters corresponding to two competing classes.
As a result, TRAD performed better than NN, CH and MCH classifiers, but not as good as
the MDist classifier. This is also evident from Figure 7(a), which shows the average (over
100 replications) test set misclassification rates of these classifiers for various choices of d. In

(a) Ex. 4: Two mixture (b) Ex. 5: Uniform vs. (c) Ex. 6: Normal(0d, 3Id) vs.
normal distributions mixture of uniforms standard t with 3 d.f.
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Figure 6: Scatter plots of the test samples and the class boundaries estimated
by the TRAD classifier in Examples 4-6.
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(a) Ex. 4: Two mixture (b) Ex. 5: Uniform vs. (c) Ex. 6: Normal(0d, 3Id) vs.
normal distributions mixture of uniforms standard t with 3 d.f.
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Figure 7: Misclassification rates of Bayes, CH, MCH, TRAD and MDist classi-
fiers in Examples 4-6.

Example 5, the features based on average distances do not provide much separation between
the two classes (see Figure 6(b)). So, as expected, TRAD had much higher misclassification
rates (see 7(b). However, in Example 6, the d̄1 − d̄2 space shows almost the same degree of
separation as in the d1−d2 space (see Figure 6). So, the class boundaries estimated by TRAD
and MDist classifiers were almost similar, and they had almost similar misclassification rates.
(see Figures 7(c)).

The success of the MDist classifier motivates us to carry out some theoretical anal-
ysis to understand its high-dimensional behavior. For this investigation, we again consider
assumptions (A1)-(A3), and prove the perfect classification property of the MDist classifier
in high dimensions.

Theorem 2: Suppose that J competing classes satisfy assumptions (A1)-(A3), and from
each of them, there are at least two observations (i.e, nj ≥ 2 for all j = 1, 2, . . . , J). If for
all j ̸= i, ν2

ji > 0 or σ2
j ̸= σ2

i , the misclassification rate of the MDist classifier converges to 0
as d grows to infinity.

However, as we have discussed before, if the competing classes are mixtures of several
sub-classes, the assumptions (A1)-(A3) may hold for each of the sub-classes but none of
the competing classes (as in Examples 4). We have seen that in such situations, CH and
MCH classifiers often have poor performance in high dimensions. However, from the proof
of Theorem 2 (see Appendix), it is clear that in such cases, for each of the sub-classes,
the feature vectors of minimum distances converge to a point as the dimension increases.
If these points are distinct for each sub-class, we get some distinct clusters in the feature
space, and the MDist classifier leads to perfect classification. We have already seen that in
Example 4. A theorem similar to Theorem 2 can be stated for these mixture distributions as
well, but the conditions for perfect classification by the MDist classifier (i.e., the conditions
needed to ensure that for any two sub-classes from two competing classes, the feature vectors
converge to two distinct points, one for each sub-class) becomes mathematically complicated
to interpret. That is why we choose not to state that theorem here.
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Now we consider two interesting examples (Example 7 and 8) involving binary clas-
sification, where each of the two competing classes satisfies assumptions (A1)-(A3), but we
have ν2

12 = 0 and σ2
1 = σ2

2. So, in this case, the feature vectors (d1(·), d2(·)) corresponding
to two competing classes converge to the same limiting value as d increases. One may be
curious to know how the MDist classifier performs in such situations, and we investigate it
here. Here also, we consider different values of d ranging between 10 and 1000, form the
training and the test sets of size 50 and 500 by taking an equal number of observations
from the two classes and repeat the experiment 100 times to compute the average test set
misclassification rates of different classifiers.

Example 7: We consider two normal distributions having the same mean vector 0d but
different dispersion matrices Λ1=diag(λ11, . . . , λ1d) and Λ2=diag(λ21, . . . , λ2d). Here λ1i =
1/2 and λ2i = 2 for i ≤ d/2, whereas λ1i = 2 and λ2i = 1/2 for i > d/2.

Figure 8(a) show the scatter plots of the test set observations in the d1 − d2 space
and the class boundary estimated by the MDist classifier for d = 500. It is clear that
unlike previous examples, here the features based on minimum distances fail to discrimi-
nate between the two classes. As a result, the MDist classifier had much higher misclas-

(a) MDist classifier (Ex. 7) (b) TRAD classifier (Ex. 7) (c) MDist1 classifier (Ex. 7)
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Figure 8: Scatter plots of the test samples and the class boundaries estimated by
the MDist, TRAD and MDist1 classifiers in Example 7 (top row) and Example
8 (bottom row).
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(a) Ex. 7: Two normals with different (b) Ex. 8: Product of N(0, 3) vs
dispersion matrices having same trace product of univariate t3
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Figure 9: Misclassification rates of Bayes, NN, TRAD, MDist and MDist1 clas-
sifiers in Examples 7 and 8.

sification rates (see Figure 9(a)). The features based on average ℓ2 distances also fail to
provide any discriminatory information (see Figure 8(b)) in this case. The performance of
the TRAD classifier was even worse. It misclassified almost half of the test set observa-
tions (see Figure 9(a)). Surprisingly, in this example, we get a good result if instead of
ℓ2 distance (Euclidean distance), we use ℓ1 distance (Manhattan distance) for finding the
neighbors. If {X11,X12, . . . ,X1n1} and {X21,X22, . . . ,X2n2} are training sample observa-
tions from two competing classes (here we have n1 = n2 = 25), for any Z, we can use
d∗

1(Z) = min1≤i≤n1 ∥Z − X1i∥1 and d∗
2(Z) = min1≤i≤n2 ∥Z − X2i∥1 as features and perform

usual nearest neighbor classification on that feature space. Here also for computing d∗
1 and d∗

2
at the training data points, we use the leave-one-out method. Figure 8(c) shows the scatter
plot of these features for all test set observations and the class boundary estimated by the
1-NN classifier on this feature space (we call it the MDist1 classifier). Here we have two
distinct clusters in the feature space, one for each class. As a result, the MDist1 classifier
had an excellent performance and correctly classified almost all observations. The average
test set misclassification rate of this classifier (reported in Figure 9(a)) also tells us the same
story. Now, let us consider the following example.

Example 8: Here each of the two classes has i.i.d. measurement variables. In Class-1, they
follow the N(0, 3) distribution, while in Class-2, they follow the standard t distribution with
3 degrees of freedom.

Note that this is different from the multivariate t distribution considered in Example
6. In this example also, the features based on minimum ℓ2 distances and those based on
average ℓ2 distances do not provide much separability between the two classes (see Figure
8(d) and (e)), but the features based on minimum ℓ1 distances make the data clouds better
separated (see Figure 8(f)). As a result, the MDist1 classifier outperformed TRAD and
MDist classifiers (see Figure 9(b)).

To understand the high-dimensional behavior of the MDist1 classifier, we carry out
some theoretical investigations under the following assumptions, which are similar to (A1)-
(A3) stated before.
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(A1◦) In each of the J competing classes, the measurement variables have uniformly bounded
second moments.

(A2◦) If X = (X1, . . . , Xd)⊤ ∼ Fj and Y = (Y1, . . . , Yd)⊤ ∼ Fi (1 ≤ j, i ≤ J) are independent,
for U = X − Y, ∑r ̸=s |Corr(|Ur|, |Us|)| is of the order o(d2).

(A3◦) For independent random vectors X ∼ Fj and Y ∼ Fi (1 ≤ j, i ≤ J), E
(

1
d
∥X − Y∥1

)
=

1
d

∑d
q=1 E|Xq − Yq| converges to a constant τji as d → ∞.

Under (A1◦) and (A2◦), we have the convergence of pairwise ℓ1 distances. Following
similar steps as used in the proof of Lemma 1, one can show that for X ∼ Fj and Y ∼ Fi

(1 ≤ j, i ≤ J),
∣∣∣1
d
∥X − Y∥1 − E

(
1
d
∥X − Y∥1

)∣∣∣ P→ 0 as d → ∞.

For any q = 1, 2, . . . d, define e(q)
ji = 2E|Xq − Yq| − E|Xq − X ′

q| − E|Yq − Y ′
q |, where

X,X′ ∼ Fj and Y,Y′ ∼ Fi (j ̸= i) are independent random vectors. This quantity e
(q)
ji

can be viewed as the energy distance (see, e.g., Székely and Rizzo, 2023) between the q-th
marginals of Fj and Fi (F (q)

j and F (q)
i , say). Following Baringhaus and Franz (2004), one can

show that e(q)
ji is non-negative, and it takes the value 0 if and only if F (q)

j = F
(q)
i . So, for any

fixed dimension d, we have 1
d

[
2E∥X − Y∥1 − E∥X − X′∥1 − E∥Y − Y′∥1

]
= 1

d

∑d
q=1 e

(q)
ji =

ēji(d) ≥ 0, where the equality holds if and only if F (q)
j = F

(q)
i for q = 1, 2, . . . , d. Therefore,

it is somewhat reasonable to assume that Eji = limd→∞ ēji(d) > 0, which essentially says
that the average coordinate-wise energy distance is asymptotically non-negligible. Under
this assumption, we have the perfect separation property of the MDist1 classifier, which is
asserted by the following theorem.

Theorem 3: Suppose that J competing classes satisfy assumptions (A1◦)-(A3◦), and from
each of them, there are at least two observations (i.e, nj ≥ 2 for all j = 1, 2, . . . , J). If
the limiting value of the average coordinate-wise energy distance Eji > 0 for all j ̸= i, the
misclassification rate of the MDist1 classifier converges to 0 as d grows to infinity.

Note that while TRAD and MDist classifiers fail to discriminate between two distribu-
tions differing outside the first two moments, the MDist1 classifier can discriminate between
them as long as they differ in their one-dimensional marginals. That is why it outperformed
TRAD and MDist classifiers in Examples 7 and 8.

This classifier enjoys the perfect separation property in high dimensions even when the
competing classes are mixtures of several sub-classes, and these sub-class distributions satisfy
assumptions (A1◦)-(A3◦). It becomes clear from the proof of Theorem 3 (see Appendix) that
in such cases, for each of the sub-classes, the feature vectors of minimum ℓ1 distances (after
appropriate scaling) converge to a point as the dimension increases. If these points are
distinct for each sub-class, the MDist1 classifier leads to perfect classification. But here
also writing the conditions for perfect classification becomes mathematically complicated to
interpret. So, we decide not to state another theorem in this regard. However, our analysis
of simulated data sets clearly demonstrates this. Figure 10 shows the misclassification rates
of TRAD, MDist and MDist1 classifiers in Examples 1-6 along with those of 1-NN and Bayes
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classifiers. In all these examples including Example 4 and 5, where we deal with mixture
distributions, MDist and MDist1 classifiers had similar performance.

This figure shows another interesting phenomenon. In Examples 1-3, when the un-
derlying distributions are unimodal, the TRAD classifier, which considers the average of
distances from all observations, performed better than MDist and MDist1 classifiers, which
consider the distance of one nearest neighbor only. In Example 6 also, TRAD had an edge
over the other two classifiers. But, in the case of mixture distributions (see Examples 4 and
5), taking the average over all observations coming from different sub-classes does not seem
to be a meaningful option. In those cases, MDist and MDist1 classifiers outperformed the
TRAD classifier. These result shows that instead of always going for features based on a sin-
gle nearest neighbor from each class, sometimes it is more meaningful to consider distances
from multiple nearest neighbors. We can include these distances in the set of features and go
for classification in the extended feature space. We consider such methods in the following
subsection.

(a) Example 1 (b) Example 2 (c) Example 3
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Figure 10: Misclassification rates of Bayes, NN, TRAD, MDist and MDist1
classifiers in Examples 1-6.

3.2. Clssification based on multiple neighbors

Instead of considering only the distance of the first neighbor from each class, here
we consider the distances of the first r (r ≥ 1) neighbors from each class and use them
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as features. So, if there are J competing classes, we consider a total of Jr many features
and use the 1-NN classifier on that feature space. Here also, we can use ℓ2 distances or
ℓ1 distances as features, and the resulting classifier is referred to as rMDist and rMDist1
classifiers, respectively. One may also consider both ℓ1 and ℓ2 distances and deal with 2Jr
many features simultaneously. We refer to the resulting classifier as the rMDistC classifier.
In all these cases the value of r is chosen by minimizing the leave-one-out cross-validation

(a) Example 1 (b) Example 2 (c) Example 3
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Figure 11: Misclassification rates of different classifiers in Examples 1-8.
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estimate (see, e.g. Wong, 2015) of the misclassification rate. Figure 11 shows the average
test set misclassification rates of these classifiers in Examples 1-8. One can see that in most
of the examples, rMDist and rMDist1 classifiers performed better than MDist and MDist1
classifiers, respectively. The rMDistC classifier also performed well in almost all examples.
In Examples 7 and 8, it outperformed rMDist and rMDist1 classifiers.

A somewhat similar classification method was considered in Dutta and Ghosh (2016),
where the authors transformed each observation into an n-dimensional vector containing its
distances from all training sample observations. They also considered ℓ1 and ℓ2 distances
for transformation and called the resulting classifiers as TRIPD1 and TRIPD2. respectively.
Misclassification rates of those two methods are also reported in Figure 11. In Examples
1-3 and 6, their misclassification rates were similar to our proposed methods. In Example
4, they had the lowest misclassification rates, but in Example 5, they were outperformed by
our proposed classifiers. In Examples 7 and 8, the TRIPD2 classifier, which is based on ℓ2
distances, had higher misclassification rates. In Example 7, the performance of the TRIPD1
classifier was comparable to rMDist1 and rMDistC classifiers, but in Example 8, the rMdistC
classifier had a clear edge.

4. Results from the analysis of benchmark datasets

We analyze 10 benchmark datasets for further evaluation of the performance of the
proposed and existing methods discussed in the previous two sections. For these benchmark
datasets, since the true class distributions are not known, it is not possible to compute the
Bayes risks. Therefore, to facilitate comparison, we report the misclassification rates of two
popular classifiers, support vector machines (SVM) (see, e.g. Cristianini and Shawe-Taylor,
2003; Scholkopf and Smola, 2018) and random forest (RF) (see, e.g. Breiman, 2001; Genuer
and Poggi, 2020), which are known to perform well for high dimensional data. Since the
nearest neighbor classifiers are nonlinear, to make it fair, here we use the nonlinear SVM
for comparison. For our numerical study, we use the radial basis function kernel, where
all tuning parameters are chosen using the 5-fold cross-validation method (see, e.g., Wong,
2015). We use the R package caret for this purpose. The same package is used for the
random forest classifier as well, where we use default tuning parameters.

Out of these 10 datasets, Chowdary and Nutt datasets are taken from CompCancer
dataset-Schliep lab. The rest of the datasets are taken from the UCR Time Series Clas-
sification Archive. Detailed descriptions of these datasets are available at these respective
sources. The datasets taken from the UCR archive have specific training and test sets. We
merge these two sets and divide the pooled dataset randomly into two parts to form the
training and the test samples. Except for the Synthetic Control Chart data, in all other
cases, the sizes of training and test samples are taken to be the same as they are in the
data archive. Note that in all these cases, the size of the training sample is smaller than
the dimension. In the case of Synthetic Control Chart data, instead of an equal partition
(as in UCR achieve), we use training and test samples of size 60 and 540, respectively, so
that the training sample size does not become larger than the dimension. The datasets from
the CompCancer database do not have specific training and test samples. In these cases, we
divide the data sets into equal halves to form the training and the test samples. Brief de-
scriptions of these datasets are given in Table 1. In all these cases, we form the training and
the test samples in such a way that the proportions of different classes in the two samples are

https://schlieplab.org/Static/Supplements/CompCancer/datasets.htm
https://schlieplab.org/Static/Supplements/CompCancer/datasets.htm
http://www.cs.ucr.edu/~eamonn/time_series_data/
http://www.cs.ucr.edu/~eamonn/time_series_data/
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Table 1: Brief descriptions of the benchmark datasets.

dataset d J Sample size dataset d J Sample size
Train Test Train Test

Synthetic Control 60 6 60 540 Lightning7 319 7 70 73
Chowdary 182 2 52 52 Herring 512 2 64 64

Trace 275 4 100 100 Nutt 1070 2 14 14
Toe Segmentation1 277 2 40 228 Gordon 1628 2 90 91

Coffee 286 2 28 28 Colon Cancer 2000 2 31 31

Table 2: Average misclassification rates (in %) of different classifiers and their
standard errors (reported inside the bracket) in benchmark datasets.

Dataset Synth. Chowdary Trace Toe Seg- Coffee Lightning7 Herring Nutt Gordon Colon
Control ment.1 Cancer

NN 18.78 4.83 20.33 38.62 2.00 37.97 51.33 34.00 2.96 26.10
(0.28) (0.29) (0.37) (0.36) (0.31) (0.43) (0.59) (0.92) (0.16) (0.65)

MDist 10.02 7.98 13.51 42.80 2.61 39.29 45.53 14.14 1.92 32.42
(0.26) (0.45) (0.46) (0.45) (0.34) (0.47) (0.52) (0.74) (0.17) (0.95)

MDist1 12.29 7.04 18.88 37.30 4.43 35.72 47.20 15.71 1.19 34.74
(0.30) (0.46) (0.46) (0.45) (0.39) (0.52) (0.57) (0.70) (0.10) (0.94)

rMDist 10.06 6.56 14.90 40.92 2.93 38.16 46.86 15.14 1.73 22.06
(0.28) (0.37) (0.48) (0.38) (0.32) (0.42) (0.54) (0.86) (0.14) (0.92)

rMDist1 10.12 5.35 19.61 35.64 4.50 36.00 46.06 15.93 1.27 27.03
(0.27) (0.35) (0.44) (0.47) (0.39) (0.44) (0.63) (0.68) (0.10) (1.03)

rMDistC 9.25 5.90 15.01 35.61 3.07 34.67 46.88 14.21 1.64 24.65
(0.27) (0.32) (0.49) (0.47) (0.34) (0.47) (0.54) (0.80) (0.15) (0.96)

TRAD 14.78 7.31 24.48 49.93 4.11 37.28 48.08 12.07 6.52 18.06
(0.30) (0.34) (0.37) (0.41) (0.43) (0.39) (0.56) (0.72) (0.19) (0.72)

TRIPD1 7.67 4.42 23.25 33.92 6.14 31.47 47.36 17.57 1.21 25.77
(0.19) (0.25) (0.43) (0.32) (0.40) (0.39) (0.53) (0.95) (0.10) (0.66)

TRIPD2 6.42 5.38 21.08 38.15 3.79 32.27 50.50 8.93 3.38 21.58
(0.19) (0.30) (0.39) (0.34) (0.39) (0.40) (0.56) (0.86) (0.20) (0.62)

Random 13.07 5.00 14.23 38.21 3.21 28.29 40.30 21.07 0.93 29.55
Forest (0.24) (0.26) (0.48) (0.41) (0.45) (0.47) (0.47) (1.09) (0.11) (0.64)
Nonlin. 9.50 7.63 10.48 45.02 4.25 35.77 39.11 11.21 2.53 20.90
SVM (0.32) (0.50) (0.36) (0.37) (0.46) (0.47) (0.41) (0.75) (0.22) (0.75)

as close as possible. In each case, this partitioning is carried out 100 times, and the average
test set misclassification rates of different classifiers are reported in Table 2 along with their
corresponding standard errors. Overall performances of CH and MCH classifiers (especially,
that of the former one) were much inferior compared to all other classifiers considered here.
Therefore, we do not report them in this section.

Though the 1-NN classifier had the lowest misclassification rate in the Coffee dataset
and the second lowest misclassification rate in the Chowdary dataset, in many cases, its
performance was far from the best one (see Table 2). For instance, in Nutt and Synthetic
Control Chart datasets, its misclassification rates were much higher compared to all other
classifiers considered here. Furthermore, it had the highest misclassification rate in the Her-
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Figure 12: Boxplots showing the robustness of different classifiers in benchmark
datasets.

ring data set. TRAD also had relatively higher misclassification rates in many examples
(e.g., Synthetic Control Chart, Trace, Toe Segmentation, and Gordon datasets). Only in
the case of Colon Cancer data, it outperformed others. Our proposed classifiers had good
performance in most of these examples. While the classifiers based on multiple neighbors
(rMDist, rMDist1 and rMDistC) outperformed those based on single neighbors (MDist and
MDist1) in Chowdary, Toe Segmentation, and Colon Cancer data sets, in all other cases,
they had comparable performance. In Trace and Herring data sets, these classifiers per-
formed better than TRAD, TRIPD1 and TRIPD2 classifiers. Table 2 clearly shows that
the performances of our proposed classifiers, particularly for classifiers based on multiple
neighbors, were comparable to nonlinear SVM and random forest.

To compare the overall performances of different classifiers concisely and compre-
hensively, we used the notion of robustness introduced in Friedman (1994). If there are T
classifiers who have misclassification rates e1, e2, . . . , eT in a particular data set, the robust-
ness of the t-th classifier is computed as R(t) = et/e0, where e0 = min1≤t≤T et. So, in an
example, the best classifier has R(t) = 1, while higher values of R(t) indicate the lack of
robustness of the t-th classifier. For each of these benchmark data sets, we computed these
ratios for all classifiers, and they are graphically represented using box plots in Figure 12.
This figure clearly shows that the overall performances of all other classifiers were somewhat
better than the usual nearest neighbor classifier. It also shows that among our proposed clas-
sifiers, those based on multiple neighbors performed better than the corresponding classifiers
based on a single nearest neighbor. While the rMDist classifier exhibited better robust-
ness properties than TRIPD2, the rMDist1 classifier turned out to be more robust than the
TRIPD1 classifier. The rMDistC classifier, which considers both ℓ1 and ℓ2 distances of the
nearest neighbors, also had an excellent overall performance. If not better, the performances
of our proposed classifiers were comparable to the popular classifiers like nonlinear SVM and
random forest.

5. Concluding remarks

In this article, we have proposed some possible modifications to the nearest neighbor
classifier for the classification of high-dimensional data. We have seen that if the location
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difference among the competing classes gets masked by their scale difference, the usual
nearest neighbor classifier performs poorly in high dimensions. The adjustment proposed
by Chan and Hall (2009b) takes care of this problem, but the resulting classifier fails when
the competing classes differ outside their first moments. The MCH classifier overcomes
this limitation, and it can discriminate between two high-dimensional distributions differing
either in their locations or in their scales. However, this method may not work well in many
situations, especially when the class distributions are mixtures of several widely varying sub-
classes. The proposed classifiers based on minimum distances are helpful in such situations.
The MDist1 classifier can even discriminate among competing classes differing outside the
first two moments. Instead of considering only one neighbor from each class, sometimes it
is helpful to consider the distances of the first r neighbors and perform nearest neighbor
classification in that feature space. Analyzing several simulated and benchmark datasets,
we have amply demonstrated that if not better, our proposed classifiers yield competitive
performance in high dimensions.

In this article, we have used nearest neighbor classification on the feature space of ℓ1 or
ℓ2 distances. Though we have seen some theoretical advantages of using the ℓ1 distance, our
analysis of benchmark datasets clearly shows that in practice, there is no clear winner. So,
a user may wonder which of the two feature spaces to use in a given problem. One may also
like to use ℓp-distances for other choices of p or features based on other generalized distance
functions of the form φh,ψ(x,y) = h

{
1
d

∑d
i=1 ψ

(
|x(i) − y(i)|2

)}
where h : R+ → R+ and ψ :

R+ → R+ are continuous, strictly increasing functions with h(0) = ψ(0) = 0 as introduced
in Sarkar and Ghosh (2018). For suitable choices of h and ψ (e.g., when h(t) = t and ψ(t)
has non-constant completely monotone derivatives), it ensures the positivity of the energy
distance (as discussed in the paragraph before Theorem 3) in any finite dimension. Moreover,
if ψ is bounded, it also makes the resulting classifier robust against outliers. However, the
choice of the optimal features is a challenging problem, and it would be helpful if a data-
driven method can be developed for this purpose. Throughout this article, for our proposed
methods, we have always used the 1-NN classifier in the feature space. This is mainly for a fair
comparison with other competing nearest neighbor methods (e.g., CH, TRAD, TRIPD1, and
TRIPD2), where 1-NN classification is considered. However, in practice, one may use the k-
NN classifier for other values of k as well. For constructing the rMDistC classifier, though we
have considered the same number of ℓ1 and ℓ2 distances as features, it is possible to include r1
many ℓ1 distances and r2 many ℓ2 distance in the set of features. We avoid choosing different
values of r1 and r2 to reduce the computing cost at the cross-validation step. In practice,
distances from all of the first r neighbors may not always be important for classification.
In such cases, a suitable feature selection criterion would be helpful. Instead of feature
selection, one can also think about constructing an ensemble classifier (see, e.g. Dietterich,
2000; Zhang and Zhang, 2009; Kiziloz, 2021) like random forest, where we construct different
classifiers based on different sets of features and judiciously aggregate them. These problems
can be investigated in a separate work in future.
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APPENDIX

Lemma 1: If J competing classes satisfy (A1)-(A3), for two independent random vectors
X ∼ Fj and Y ∼ Fi (1 ≤ j, i ≤ J), ∥X − Y∥2/d

P→ σ2
j + σ2

i + ν2
ji, where ν2

ji = 0 for j = i.

Proof: Note that using Chebyshev’s inequality, for any ϵ > 0, we get

P
(∣∣∣∣1d∥X − Y∥2 − E

(1
d

∥X − Y∥2
)∣∣∣∣ ≥ ϵ

)
≤ 1
ϵ2V ar

(1
d

∥X − Y∥2
)
.

Now, V ar
(

1
d
∥X − Y∥2

)
= 1

d2

 d∑
s=1

V ar((Xs − Ys)2) +
d∑
s=1

d∑
t=1,t̸=s

Cov
(

(Xs − Ys)2, (Xt − Yt)2
)

Since the measurement variables from all classes have uniformly bounded fourth moments

(see (A1)), we have
d∑
s=1

V ar((Xs−Ys)2) = O(d). Also, one can show that under assumptions

(A1) and (A2),
d∑
s=1

d∑
t=1,t̸=s

Cov
(

(Xs − Ys)2, (Xt − Yt)2
)

= o(d2). So, V ar
(

1
d
∥X − Y∥2

)
→ 0

and hence
∣∣∣∣1d∥X − Y∥2 − E

(
1
d
∥X − Y∥2

)∣∣∣∣ P→ 0 as d → ∞.

Now, E
(

1
d
∥X − Y∥2

)
= E

(
1
d

∥∥∥(X − E(X)
)

−
(
Y − E(Y)

)
+
(
E(X) − E(Y)

)∥∥∥2
)

=
1
d
trace(Σj)+ 1

d
trace(Σi)+ 1

d
∥µj−µi∥2 → σ2

j+σ2
i +ν2

ji as d → ∞. So, 1
d
∥X−Y∥2 P→ σ2

j+σ2
i +ν2

ji.
Note that if X and Y follow the same distribution (i.e. j = i), we have ν2

ji = 0. 2

Proof of Theorem 1: (a) From Lemma 1, it is clear that for any test case Z from the j-th
class (j = 1, 2, . . . , J), 1

d
∥Z − Xiℓ∥2 P→ σ2

j + σ2
i + ν2

ji for i = 1, 2, . . . , J and ℓ = 1, 2, . . . , ni.
Therefore, for k < min{n1, n2, . . . , nJ}, the k-nearest neighbor classifier correctly classifies
Z if 2σ2

j < σ2
j + σ2

i + ν2
ji for all i ̸= j or equivalently, ν2

ji > σ2
j − σ2

i for all i ̸= j. Similarly, for
correct classification for a test case from the i-th class, we need ν2

ij > σ2
i − σ2

j for all j ̸= i.
Combining these, we get ν2

ji > |σ2
j − σ2

i | for all j ̸= i.

If ν2
ji < |σ2

j − σ2
i | for any pair (j, i), we have either ν2

ji < σ2
j − σ2

i or ν2
ji < σ2

i −
σ2
j . Without loss of generality, let us assume the first one. In that case, for any class-j

observation, the distances of its neighbors from the i-th class turn out to be smaller than
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those from j-th class with probability tending to 1 as d increases. So, all observations from
the j-th class are misclassified with probability tending to 1.

(b) From Lemma 1, it is clear that for any test case Z from the j-th class, 1
d
ρj(Z,Xjℓ) P→ σ2

j

for ℓ = 1, 2, . . . , nj whereas for any i ̸= j, 1
d
ρi(Z,Xiℓ) P→ σ2

j + ν2
ji for ℓ = 1, 2, . . . , ni. So, Z

is correctly classified if ν2
ji > 0 for all i ̸= j. Repeating this argument for j = 1, 2, . . . , J , we

get the result.

(c) Lemma 1 shows that for any test case Z from the j-th class, 1√
d
ρ∗
j(Z,Xjℓ) P→ σj/

√
2 for ℓ =

1, 2, . . . , nj whereas for any i ̸= j, 1√
d
ρ∗
i (Z,Xiℓ) P→

√
σ2
j + σ2

i + ν2
ji−σi/

√
2 for ℓ = 1, 2, . . . , ni.

So, Z is correctly classified if
√
σ2
j + σ2

i + ν2
ji > (σj + σi)/

√
2 or σ2

j + σ2
i + ν2

ji > (σj + σi)2/2
for all i ̸= j. Note that σ2

j + σ2
i + ν2

ji − (σj + σi)2/2 = ν2
ji + (σj − σi)2/2, which is positive

under the given condition. Now, the proof follows by the repetition of the same argument
for j = 1, 2, . . . , J . 2

Proof of Theorem 2: For the sake of simplicity, let us prove it for J = 2. For J > 2, it can
be proved similarly. From Lemma 1, for any training sample observation X1i (i = 1, 2, . . . , n1)
from the first class, as d grows to infinity, we have(

1√
d

min
1≤ℓ(̸=i)≤n1

∥X1i − X1ℓ∥,
1√
d

min
1≤ℓ≤n2

∥X1i − X2ℓ∥
)

P→ (σ1
√

2,
√
σ2

1 + σ2
2 + ν2

12) = a1, say.

Similarly, for a training sample observation X2i (i = 1, 2, . . . , n2) from the second class, as d
tends to infinity, we have(

1√
d

min
1≤ℓ≤n1

∥X2i − X1ℓ∥,
1√
d

min
1≤ℓ(̸=i)≤n2

∥X2i − X2ℓ∥
)

P→ (
√
σ2

1 + σ2
2 + ν2

12, σ2
√

2) = a2, say.

So, if a1 ̸= a2, the feature vectors obtained from two sets of training sample observations
converge to two distinct points a1 and a2, respectively. Now, for any test case Z, using Lemma
1, it can be shown that as d grows to infinity, ( 1√

d
min

1≤i≤n1
∥Z − X1i∥, 1√

d
min

1≤i≤n2
∥Z − X2i∥)

converges in probability to a1 and a2 for Z ∼ F1 and Z ∼ F2, respectively.

Therefore, for any Z ∼ F1 (respectively, F2), in the d1 − d2 space, while the scaled
versions of its distances from the feature vectors from Class-1 (respectively, Class-2) converge
to 0, those from the feature vectors from Class-2 (respectively, Class-1) converge to ∥a1 −a2∥
as d tends to infinity. So, it is correctly classified with probability tending to 1. Therefore,
for perfect classification by the MDist classifier, we need a1 and a2 to be distinct,i.e., 2σ2

1,
2σ2

2 and σ2
1 + σ2

2 + ν2
12 cannot be all equal. Note that these three quantities are equal if and

only if ν2
12 = 0 and σ2

1 = σ2
2, which cannot happen under the assumptions of Theorem 2. 2

Lemma 2: Suppose that X,X′ ∼ F1 and Y,Y′ ∼ F2 are four independent d-dimensional
random vectors with finite first moments. Then, we have

2E∥X − Y∥1 − E∥X − X′∥1 − E∥Y − Y′∥1 ≥ 0

where the equality holds if and only if F1 and F2 have identical one-dimensional marginals.
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Proof: First note that

2E∥X1 −Y1∥1 −E∥X1 −X2∥1 −E∥Y1 −Y2∥1 =
d∑
q=1

[
2E|Xq−Yq|−E|Xq−X ′

q|−E|Yq−Y ′
q |
]
.

Now, from Baringhaus and Franz (2004), we get

2E|Xq − Yq| − E|Xq −X ′
q| − E|Yq − Y ′

q | = 2
∞�

−∞

(
F

(q)
1 (t) − F

(q)
2 (t)

)2
dt,

where F (q)
1 and F

(q)
2 are the distribution functions of Xq and Yq, respectively. Clearly, it is

non-negative, and it takes the value 0 if and only if F (q)
1 = F

(q)
2 ,i.e., Xq and Yq have the same

distribution. This shows that 2E∥X1 − Y1∥1 −E∥X1 − X2∥1 −E∥Y1 − Y2∥1 ≥ 0, where the
equality holds if and only if Xq and Yq have the same distribution for all q = 1, , 2 . . . , d. 2

Proof of Theorem 3: As in the proof of Theorem 2, here also, for the sake of simplicity,
we prove the result for J = 2. For J > 2, it can be proved similarly.

Consider two random vectors X ∼ Fj and Y ∼ Fi (1 ≤ j, i ≤ 2). Under (A1◦) and
(A2◦), we have

∣∣∣1
d
∥X − Y∥1 − E

(
1
d
∥X − Y∥1

)∣∣∣ P→ 0 as d → ∞, and under (A3◦), we have
limd→∞ E

(
1
d
∥X − Y∥1

)
= τji. Lemma 2 shows that 2τ12 − τ11 − τ22 ≥ 0 and under the

assumption E12 > 0, the equality is ruled out. So, here we have 2τ12 − τ11 − τ22 > 0, which
implies that τ11, τ12 and τ22 cannot be equal.

Now note that for any training sample observation X1i (i = 1, 2, . . . , n1) from the
first class, as d grows to infinity,(

1
d

min
1≤ℓ( ̸=i)≤n1

∥X1i − X1ℓ∥1,
1
d

min
1≤ℓ≤n2

∥X1i − X2ℓ∥1

)
P→ (τ11, τ12) = a◦

1, say.

Similarly, for a training sample observation X2i (i = 1, 2, . . . , n2) from the second class, as d
tends to infinity,(

1
d

min
1≤ℓ≤n1

∥X2i − X1ℓ∥1,
1
d

min
1≤ℓ(̸=i)≤n2

∥X2i − X2ℓ∥1

)
P→ (τ12, τ22),= a◦

2, say..

Since τ11, τ12 and τ22 are not equal, we have a◦
1 ̸= a◦

2. So, the feature vectors obtained
from two sets of training sample observations converge to two distinct points a◦

1 and a◦
2,

respectively. For a test case Z, as d grows to infinity, (1
d

min
1≤i≤n1

∥Z−X1i∥1,
1
d

min
1≤i≤n2

∥Z−X2i∥1)
converges in probability to a◦

1 and a◦
2 for Z ∼ F1 and Z ∼ F2, respectively.

Therefore, for any Z ∼ F1 (respectively, F2), in the d∗
1 − d∗

2 space, while the scaled
versions of its distances from the feature vectors from Class-1 (respectively, Class-2) converge
to 0, those from the feature vectors from Class-2 (respectively, Class-1) converge to ∥a◦

1 −a◦
2∥.

So, it is correctly classified with probability tending to 1. 2
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