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Abstract  

It is well known that the occurrence of earthquake is likely to increase another earthquake 
or the number (or sequence) of aftershocks in the nearby space and time. Similarly, prior to the 
next major earthquake, pre-seismic foreshocks are expected to occur in the focal region. Thus, it 
may be of interest for seismologists to study the pattern of sequence of foreshocks and 
aftershocks for prediction of earthquake. To investigate this problem with the help of quantitative 
information like, magnitude of earthquake, latitude, longitude, time etc., it might be possible to 
develop statistical models for the definition and detection of the occurrence of earthquake and 
sequence of aftershocks. The point process models are most frequently used to model such time 
to event data. In the time to event data, because of their temporal context, the point process 
models are also referred to as temporal point process models. Some of the frequently used 
models are Self-Exciting point process models, Epidemic Type Aftershock-Sequences models, 
stress release model etc. In this paper, we review various other models specific to temporal 
events like earthquake and other situations.  

Key words: Ground intensity function; Trigger function; Self-exciting point process; Marked 
point process; ETAS models; Stress release model (SRM). 

1.  Introduction 

In variety of applications, like, occurrence of crime events, posts or likes or clicks on social 
media, occurrence of earthquakes and its aftershocks, trading in financial markets etc., we come 
across the sequence of events which are asynchronous in nature, unlike the time series in which 
the observations are taken at regular time intervals. The time points at which such events of 
interest occur are also known as temporal points and such data can carry some important relevant 
information other than the temporal points.  

 
Some examples are: 

1. In study of crime patterns, an act of violence by an individual or a group might provoke or 
stimulate counter attacks by another group of individuals; where the temporal events are 
the times when violence by one gang took place and relevant information may be the 
retaliatory attacks by rivalry gang, the locations, the race of victims etc.  

2. One post on social media is followed by number of related posts or one video is repeatedly 
watched by number of viewers; here the temporal events are time of post or video and 
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relevant information may be number of likes or number of times it is watched or tagged, 
number of positive or negative comments, the geographic location of the respondents etc. 

3. In market research, the sales of a product might get a jump following repeated 
advertisements; where the temporal events are the time of purchase of a pre specified 
consumer product and the relevant information may be the impact of television 
advertisements of the product, income, size of the household etc. 

4. In medical context, a targeted treatment like chemotherapy can impact the diseased cells; 
the temporal events in this case may be the time points at which the patient is given a dose 
of chemotherapy and relevant information may be the dose, the effects (or side effects) etc. 

5. In earthquake modeling, an earthquake of higher magnitude might induce more aftershocks 
as compared to that with a smaller magnitude; the temporal events in this case may be the 
time points at which earthquakes and major aftershocks (of magnitude beyond some 
predefined intensity) occur and the relevant information may be longitude and latitude of 
the location, magnitude of the aftershock etc.  

6. In financial markets, when the stock prices are very much volatile or fluctuating (ultra-high 
frequency); the time points at which the prices rise or decline by a predefined number may 
be considered to be temporal points and the relevant information may be the factors like 
international crude oil price, political situation or stability of the country, some event 
which has international relevance or concerns etc. 

 

In general, temporal events may be either statistically independent, following a Poisson 
process, or temporally correlated. The term “event dependence” captures the idea that an initial 
event can increase or decrease the likelihood of subsequent events in the future. Point processes 
are often found to be appropriate for modeling a series of asynchronous events occurring at 
points in time (Ascher and Feigngold, 1984) and are also useful for modeling some peculiar 
pattern of the events observed in time. Among the few examples cited above, we focused on the 
earthquake data from the perspective of statistical modeling and analysis.    

 
The behavior of the temporal point process may be described with the help of the 

conditional intensity function, conditional on the history of the process over time. The 
conditional intensity function proposes the probability of occurrence of the subsequent event in 
the upcoming instance of time given the history of the past events until the present event. Thus it 
represents the rate for the occurrence of a new event, conditioned on the history of the process up 
to time t, say, ℋ" =	 {𝑡' ∶ 	 𝑡' < 𝑡}, as 

𝜆(𝑡) = lim
12→4

5[7([","9	12])	|ℋ<]
12

                                   (1) 
                
where 𝑁[… ] is the number of events occurring in (𝑡, 𝑡 + 	Δt).  

The Nonhomogeneous Poisson process (NHPP) models are the most frequently used 
models to represent the temporal events. The NHPP models are models for reliability growth due 
to the nature of their intensity function which is a compromise between ‘as good as new’ and ‘as 
bad as old’ models [Duane (1964), Bassin (1969, 1973), Cox and Lewis (1966), Lewis (1970, 
1972)]. At times we come across the temporal events with branching structure wherein the 
occurrence of an event of one type increases the chance of occurrence of similar kind of event in 
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future. For example, each earthquake gives rise to aftershock activity in the neighboring areas 
depending upon the magnitude of the earthquake. Hawkes (1971) proposed a process to model 
such a branching structure of temporal events which was named Self-Exciting Point Process 
(SEPP) which implemented the idea that an earthquake can trigger aftershocks. As it can be 
observed from historical data on earthquakes, it is obvious to observe that the earthquakes with 
high intensity induces more aftershocks as compared to those with low intensity, that is, the 
earthquake and its aftershock sequence shows an epidemic behavioral pattern. Ogata (1988) 
developed a point process model to model such an epidemic behavior of earthquakes and named 
it Epidemic Type Aftershock Sequences (ETAS) model which is an extension of SEPP model.  

                                                                                                                     
Another point process model that is specifically defined to model the earthquake 

occurrences is a ‘stress release model’ (SRM) proposed by Knopoff (1971) and Vere-Jones 
(1978). The SRM is considered to be a stochastic version of the so-called ‘elastic rebound 
theory’. It considers the increased pressure in an area and the pressure released during an 
earthquake over a period of time. It is possible to measure the probability of earthquake 
occurrence using the conditional intensity function of the SRM.  

 
 Also the historical data of various earthquakes demonstrates that the high intensity 

earthquakes are normally followed by high intensity earthquakes in surrounding area and this 
resists the aftershocks. The interactions among such affected areas have influence on time and 
intensity of earthquake occurrences in the presence of stress movement. Bebbington and Harte 
(2001) proposed Linked Stress Release Model (Linked SRM) to model temporal events which exhibits 
such a characteristic.  

 
Hawkes and Oakes (1974) defined cluster point process assuming that, at every point in 

temporal point process on (0, ∞), a cluster of activities starts. This point can be interpreted as the 
first arrival time of a point process which triggers a random stream of events of the similar types. 
This model exhibits chain ladder type of characteristic which may be used to forecast the total 
number of events and the time of occurrence of events in the future course of time. Vere-Jones 
and Davies (1966) and Vere-Jones (1970) proposed trigger models which assumes that a series 
of primary events (say, main shocks) is distributed completely randomly in time and each of 
these primary events are capable of generating a series of secondary events (say, aftershocks).  

 
Sometimes the temporal events might be just one of the components of the complex model 

which is carrying much more information apart from just the time of occurrence of events under 
study. This additional information may themselves have a stochastic structure and stochastic 
dependency.  Daley and Vere-Jones (2003) classified such temporal point processes as marked 
point processes (MPP) or marked temporal point processes (MTPP). The behavior of the MTPP 
may also be described with the help of the conditional intensity function, conditional on the 
history of the process over time, having two components: the ground intensity function and the 
mark distribution. The ground intensity function describes the rate of occurrence of events with 
respect to time and the mark distribution describes the behavior of other variables (referred to as 
marks), that are associated with the event, and will also be usually dependent on the history of 
the occurrence of events.  

The remaining part of this paper is organized this way: Section 2 offers various models and 
its technical descriptions. The likelihood estimation and related inferences are presented in 
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Section 3, followed by data analysis in Section 4. The Section 5 concludes with some useful 
discussion including the limitations. 

2.  Models and Descriptions  

In case of earthquake occurrences, it can be commonly observed that an earthquake with 
very high magnitude is usually followed by a sequence of aftershocks and some of the 
aftershocks themselves may also be of such a high magnitude that they might have aftershocks 
caused by them. Obviously, both the frequency and magnitude diminish over a period of time, or 
with respect to space (distance from epicenter) etc. Also prior to a major earthquake or 
aftershock, pre-seismic activities and foreshocks might take place. But foreshocks are not very 
easy to identify as compared to aftershocks. Some researchers made attempts to study pre-
seismic quiescence and the gaps between two major earthquakes of aftershocks. On the other 
hand, some researchers were of the opinion that the pre-seismic quiescence and the gaps are 
nothing but the result of decaying activity of aftershocks which were followed by the last major 
shock and so they are not of much importance to be studied. Thus, most of the studies focus on 
the main shocks and their aftershock sequences. In the context of earthquake studies, we consider 
the time points at which the main shock or major aftershocks occur as temporal points, or 
equivalently, the times of occurrence of main shocks or major aftershocks as temporal events.  
 

2.1.  NHPP models 

In general, temporal events may be statistically independent or temporally correlated. Let 
𝑁B𝑡', 𝑡CD represents the number of events occurring between time 𝑡' and	𝑡C and let 
(𝑡E, 𝑡F), (𝑡G, 𝑡H),… , (𝑡IJE, 𝑡I) be the disjoint sets where 𝑡E < 	 𝑡F 	≤ 	… 	≤ 	 𝑡IJE < 	 𝑡I  are times of 
occurrence of temporal events, then 𝑁 will be a Poisson process, if each of  
𝑁(𝑡E, 𝑡F), 𝑁(𝑡G, 𝑡H),… , 𝑁(𝑡IJE, 𝑡I) have a Poisson distribution and are independent, that is, 
𝐶𝑜𝑣[𝑁(𝑡E, 𝑡F),𝑁(𝑡F, 𝑡G)] = 0	for	any	𝑡E < 	 𝑡F < 	 𝑡G. A Poisson process always has a 
deterministic conditional intensity 𝜆(𝑡). If it is stationary, then 𝜆(𝑡) is constant and the process is 
known as homogeneous Poisson process (HPP); otherwise the process is known as NHPP. 

 
NHPP with a power-law intensity function is a frequently used model for temporal point 

process. According to the magnitude of the power law, one can ascertain whether the rate of 
occurrence of an event is decreasing, constant or increasing function of time. Crow (1974) 
proposed a model for which system failure times are assumed to occur according to a time 
dependent Poisson process with a Weibull intensity function of the form, 

  𝜆(𝑡) = 	 V
W
	X"
W
Y
VJE

, where 𝜃 > 0	𝑎𝑛𝑑	𝛽 > 0.                                  (2) 

Such a model is referred to as the Weibull Process or Power Law Process (PLP) and is used to 
model reliability growth. Another useful NHPP model was proposed was proposed by Cox and 
Lewis (1966) with intensity function of the form 𝜆(𝑡) = 	 𝑒a9	V	",		which is referred to as Log-
Linear Process (LLP). This kind of models work well for any temporal event data exhibiting 
stationary characteristics in the long run.   
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2.2.  Self-exciting point process models 

When the temporal events are correlated, an initial event can increase or decrease the 
chances of occurrence of similar events in future.  Hawkes (1971) introduced the self-exciting 
process as a point process for which 𝐶𝑜𝑣[𝑁(𝑡E, 𝑡F),𝑁(𝑡F, 𝑡G)] > 0	for	any	𝑡E < 	 𝑡F < 	 𝑡G.	 This 
means that if an event occurs, another event becomes more likely to occur in time and space 
(Hawkes and Oakes (1974), Daley and Vere-Jones (2003)). Hawkes (1971) defined the self-
exciting process with an intensity function has the form: 

  𝜆(𝑡) = 	𝜈 +	∫ 𝑔(𝑡 − 𝑠)"
4 	𝑑𝑁(𝑠) = 	𝜈 + 𝑘4 ∑ 	𝑔(𝑡 − 𝑡I)"jk"                                        (3) 

 
where 𝜈 > 0 is a baseline intensity or the background rate of events which is assumed to be 
constant in time and the second term describes the self-exciting part of the process having two 
components 𝑘4 and 𝑔; 𝑘4 reflects the magnitude of self-excitation and the function 𝑔 measures 
the influence of an event on the intensity process or density at which self-excitation is triggered. 
For the earthquake study, the pre-seismic activities may be considered as the baseline intensity 𝜈;  
intensity of the main shock which triggers the aftershocks may be considered as the magnitude of 
self-exciting part, that is 𝑘4 and 𝑔 is the density function at which self-excitation is triggered. It 
is assumed that 𝑔(𝑥) 	≥ 0	for	all	𝑥	 ≥ 0, 𝑔(𝑥) = 0	for	𝑥 < 0, and ∫ 𝑔(𝑢)"

4 	𝑑𝑢 < 1, where 𝑡 is 
the time up to which the events are observed. Many forms of 𝑔(𝑡) have been proposed and 
studied in literature, and in most of the cases, the choices and importance of the density depends 
on the situations and contexts. Egesdal et. al. (2010) considered 𝑔 as an exponential distribution 
in their study, and they considered the intensity function having the form 

  𝜆(𝑡) = 	𝜇 + 𝑘4 ∑ 	𝑤	𝑒r	("sJ")"sk"                                       (4)  

This intensity function describes the rate at which events occur over time, and is not only 
influenced by the current time, but also by the events that have occurred before the current time. 
The current events subsequently decrease over time exponentially. While studying earthquake 
and its aftershocks, similar pattern is likely to be observed and therefore it might be reasonable to 
consider the above form of intensity function while using SEPP to model earthquake 
occurrences.  

 
2.3.  ETAS model  

The models with intensity function as proposed in SEPP were considered by Ogata (1988) 
for modeling the data regarding earthquake and its aftershocks, where it was assumed that the 
earthquake aftershock sequences can be modeled like an epidemic, that is, the earthquakes with 
larger magnitudes might have a sequence of more aftershocks in a given interval of time and also 
it may continue for a longer time after the main shock. He named such models as Epidemic Type 
Aftershock-Sequences (ETAS) models. Ogata (1988) studied various statistical models for the 
standard activity of sequence of earthquakes and compared them using likelihood methods. He 
proposed Epidemic-Type models with reference to the age-dependent birth and death process 
introduced by Kendall (1949), in which only the births or events are allowed to occur at a 
constant rate per unit time according to Poisson process and with each birth or event (with 
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reference to earthquake study, main shock) there is associated a cluster of subsidiary events (say, 
aftershocks) formed by the births of all of the descendants of all generations of the immigrant 
(Hawkes and Oakes, 1974). Thus one of the differences between the epidemic-type model and 
the trigger model is that the trigger model assumes only the first generation offspring whereas 
the epidemic-type model assumes that each event has the possibility of possessing offspring. 
Ogata (1988) in his study proved that the epidemic-type models that include the effect of 
magnitude of earthquake give a better fit to the data than any of the trigger models (considered in 
a restricted form).  

 
These models can be constructed by assuming two activities associated with each 

occurrence of an earthquake, background events and aftershock events. It is assumed that the 
background events occur independently according to a stationary Poisson process 𝜇(𝑥, 𝑦), with 
magnitudes distributed independently of 𝜇 and each occurrence of an earthquake increases the 
risk of aftershocks. Also, it is reasonable to assume that the increased risk of aftershocks also 
spreads in the neighboring locations in space and time according to the kernel  𝑔(𝑡).  

Ogata (1988) considered the model (4) with (𝑡) = 	 u
("9v)w

 , as defined by the modified 
Omori formula (Utsu, 1961), where 𝐾, 𝑐 and 𝑝 are parameters, 𝑡 is the time since occurrence of 
shock. The number 𝐾 depends on the lower bound of the magnitude of aftershocks counted in 
𝑁(𝑡), whereas 𝑐 and 𝑝 are known to be independent of the choice of lower bound. The epidemic-
type model is defined in terms of the conditional intensity rate, or seismic risk as a  function of 
time, based on the following assumptions: (a) the background seismic activity is generated 
according to a stationary Poisson process with a constant hazard rate (b) each shock has a risk of 
stimulating aftershocks in proportion of the quantity 𝑒V{, where M is the magnitude of the main 
shock, and (c) the hazard rate of aftershocks decreases with time according to the modified 
Omori law, u

("9v)w
. 

Ogata (1985, 1988, 1989) demonstrated that the ordinary seismic activity of a wide region 
can be described in terms of the conditional intensity by the superposition of a constant rate for 
background seismicity and the modified Omori functions of any shocks i which occurred at time 
𝑡', in such a way that 

  𝜆(𝑡	|	ℋ") = 	𝜇 +	∑ us
("J"s9	v	)w"sk"                                                             (5) 

 

where 𝜇 is the rate of occurrence of the background seismic activity. The sum ∑ 	"sk" is taken for 
all shocks i which occurred before time t, and the parameter 𝐾' for each shock i contributes to the 
size of the corresponding aftershock. More importantly the parameter 𝐾' is dependent on the 
magnitude 𝑀' of the aftershock as well as the cut-off or threshold magnitude 𝑀4 of the data set 
according to the exponential function form 

  𝐾' = 𝐴	𝑒a({sJ{~	)                                                                       (6) 
 

Above form is based on the empirical formula obtained by Utsu and Seki (1955) regarding 
the linear relation between the logarithms of aftershock areas and the magnitudes M of the main 
shock. It suggests that the number N of aftershocks with magnitudes over a threshold 𝑀4 for a 
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fixed time span can be roughly estimated as proportional to 𝑒𝑥𝑝B𝛼	(𝑀 −	𝑀4)D for a constant 𝛼. 
Model (5) with (6) for the ordinary seismicity in terms of the rate of occurrence of aftershocks is 
an ETAS model with ℋ" = 	 {(𝑡', 𝑀');	𝑡' < 𝑡} as the history of occurrence times {𝑡'} up to time 𝑡 
and their corresponding magnitudes	{𝑀'}, with intensity function 

 
  𝜆(𝑡	|	ℋ") = 	𝜇 + 	𝐴∑ 𝑒a({sJ{~)"sk" X v

"J"s9	v
Y
�
                             (7)  

 
The ETAS model assumes that the aftershocks are generated as events occurring according 

to Poisson process with rate µ. The parameters (𝜇, A, 𝛼, c, p) are all positive, 𝑡' is the time of 
occurrence of the ith event with magnitude 𝑀' and 𝑀4 is a threshold magnitude of aftershocks 
considered in the study. The term 𝑒a({sJ{~) conveys the meaning that the main shock or 
aftershock with larger magnitude raise the intensity of occurrence of aftershocks more, and the 
term X v

"J"s9	v
Y
�
 determines the length (time) till which the aftershock sequence will continue to 

occur. There will have to be put certain constraints on parameters, otherwise the aftershock 
sequence (epidemic) could explode and never die out. The parameters 𝛼 and p characterizes the 
temporal pattern of seismicity. The parameter p represents the rate at which the aftershock 
sequence decays, and the parameter 𝛼 represents the vulnerability of magnitude of an earthquake 
in generating the aftershocks. Ogata (1987) also proved that the swarm-type activity has a 
smaller value of 𝛼, that is, a small 𝛼 value indicates the presence of main shock and aftershock 
activity whereas the larger value of 𝛼 indicates that there are only few large aftershocks or 
magnitude of main shock is much larger than the maximum magnitude of aftershocks. Thus it 
can be said that 𝛼JE represents the average time until a next aftershock occurs. 

The appropriate selection of parameter values is very crucial part of the modeling process. 
The distance in space and time over which the risk of main shocks or aftershocks spreads, the 
number of aftershocks, the dependence of the increased risk of aftershocks on magnitude size of 
main shock, etc. can have great impact on the power of a point process model in predicting the 
space and time of next major earthquake.  

 
2.4.  Stress release models 

The elastic rebound theory proposed by Reid (1910) is a classical model for earthquake 
mechanisms which postulates that elastic stress in a seismically active region accumulates due to 
movement of tectonic plates, and is released when the stress exceeds the strength of the medium. 
Thus this theory suggests that a large earthquake should be followed by a period of quiescence 
(passive period), whereas in reality a strong earthquake can be followed by a period of activation 
(another earthquake of comparable magnitude). This elastic stress within a region can be 
extracted by collecting various kinds of information but obtaining the information regarding the 
temporal variations of seismic activity might be the more suitable approach as it is expected to 
reflect directly the nature of earthquake generating stress. Vere-Jones (1978) proposed the stress 
release model as a stochastic version of the elastic rebound theory, incorporating the 
deterministic stress build-up within a region and its stochastic release through earthquakes, by 
developing the stochastic model for the occurrence of sequence of main shocks which was 
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proposed by Knopoff (1971). Many researchers applied stress release model to analyze several 
historical earthquakes, particularly to identify statistically distinct regions to which different 
stress models can be applied. One of the most interesting finding from these studies is that large 
earthquakes are often found to be followed by large earthquakes quite distant from the first. This 
seems consistent with a general consensus that the earthquakes taking place in the Earth’s crust 
forms a tightly linked, near-critical process that exhibits the self-similarity, long-range 
correlation and power-law distributions. Thus it can be considered that there exists a class of 
models exhibiting self-organized criticality due to competition between local strengthening and 
weakening through interactions.  
 

Suppose  𝜌 is the loading rate which describes stress accumulation caused by large-scale 
tectonic plate movement, which is assumed to be constant and positive and 𝑋(0) is the initial 
pressure, which is assumed to be positive. The stress is released when it exceeds the energy limit 
of plate strength in the form of earthquakes. Stress will increase linearly with the loading rate 𝜌 
at time 𝑡 with initial stress 𝑋(0) and thus the following equation can be obtained, 

 
  𝑋(𝑡) = 	𝑋(0) + 	𝜌𝑡                                                                                                      (8) 

 
Let 𝑡' and 𝑆' be the time and stress released, respectively, at the time of occurrence of 

event 𝑖; 𝑖 = 1, 2,… , 𝑛 where 𝑛 is the number of events occurred in the time interval (0, 𝑡) under 
consideration. The value of stress 𝑆' is correlated with the corresponding magnitude which is 
proportional to the seismic energy which is released during the occurrence of earthquake. Then 
the accumulated stress released by all events in the period (0, 𝑡) can be expressed as 𝑆(𝑡) =
		∑ 𝑆'';	"sk" . An important variable in the stress release model is the level of stress in a certain area 
which controls the occurrence of an earthquake. The stress level at time 𝑡 increases 
deterministically and decreases stochastically due to an earthquake. Therefore the stress released 
at time 𝑡, 𝑋(𝑡), is the difference between the accumulated stress that increases linearly with the 
loading rate 𝜌 and the accumulated stress that is released in the period (0, 𝑡), that is, 

 
  𝑋(𝑡) = 	𝑋(0) + 	𝜌	𝑡 − 𝑆(𝑡)                                                                                            (9) 

This is referred to as a Stress Release Model. 

 

Further, the conditional intensity function of the above model can be obtained through its 
hazard function, say Ψ(𝑥), which denotes the probability of occurrence of an earthquake in the 
time interval (𝑡, 𝑡 + 	Δ𝑡). Assuming that the hazard function is having an exponential form   

                                                        
  Ψ(𝑥) = exp(𝛼 + 	𝛽𝑥) ; 	𝛼	 ∈ 𝑅, 𝛽	 ≥ 0                                                                          (10)      

where the parameter 𝛼 describes the initial stress value and parameter 𝛽 describes the 
combination of strength and heterogeneity of the earth’s crust in the area. Using equation (10), 
the conditional intensity function of the stress release model with the history ℋ" =
	{(𝑡',𝑀');	𝑡' < 𝑡} is defined as  

 

   𝜆(𝑡	|	ℋ") = 	ΨBX(t)D = 	 𝑒𝑥𝑝B𝛼 + 	𝛽	(𝑋(0) + 	𝜌	𝑡 − 𝑆(𝑡)	)D                                              (11) 
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Taking  𝛼 + 	𝛽	𝑋(0) = 𝑎, 𝛽	𝜌 = 𝑏 and 1 𝜌� = 𝑐, equation (11) reduces to  

   𝜆(𝑡	|	ℋ") = 	 𝑒𝑥𝑝B𝑎 + 	𝑏	(	𝑡 − 𝑐	𝑆(𝑡)	)D                                                                                (12)                        
 

2.5. Linked stress release model  

Apart from aftershocks, large events are often followed by large events quite distant from 
the first. On the other hand, very large events can resist occurrence of subsequent events or 
aftershocks on the same or other fault lines. Thus, interaction among areas can influence the time 
and magnitude of earthquake occurrence. Also, the regional stress itself evolves over centuries in 
the area which might be the result of the cumulative effects of all previous earthquakes and 
changes in tectonic loading. But the presence of stress movement and interaction among areas 
has not been incorporated in stress release model. The omission of this interaction between areas 
might underestimate the activity by the time and magnitude-predictable stress release model. 
These shortcomings of stress release model motivated its extension to include interactions among 
areas, by means of stress transfer and reduction and were named as Linked stress release model 
[Lu et al. (1999), Bebbington and Harte (2001)].  

 
Zheng and Vere-Jones (1994) found that large geographical regions give better fits to the 

stress release model when broken down into subunits, and further noted some hints of clustering 
relating to some form of action at a distance, i.e. stress transfer and interaction. Thus, the 
multivariate extension to the stress release model was proposed as a linked stress release model 
by defining the evolution of stress 𝑋'(𝑡) in the ith region as 

 

  𝑋'(𝑡) 	= 	𝑋'(0) +	𝜌'	𝑡 −	∑ 𝜃'CC 	𝑆(C)(𝑡)                        (13) 

	
where 𝑆(C)(𝑡) is the accumulated stress release in region j over the period (0, 𝑡), and the 
coefficient 𝜃'C  measures the fixed proportion of stress drop, initiated in region j, which is 
transferred to region i. Here, 𝜃'C  may be positive or negative, resulting in damping or excitation 
respectively. It is convenient to set 𝜃'' = 1 for all 𝑖 while ignoring aftershocks. If 𝜃'C = 0 for all 
𝑖	 ≠ 𝑗, the model is reduced to an independent combination of simple forms as that of stress 
release model. Then the point process conditional intensity function of the linked stress release 
model will be of the form 
 
  𝜆'(𝑡) = 	Ψ	B𝑋'(𝑡)D = 𝑒𝑥𝑝 X𝛼' +	𝛽'	B𝑋'(0) +	𝜌'𝑡	 − 	∑ 𝜃'CC 	𝑆(C)(𝑡)DY             (14) 

 
for each region 𝑖, where 𝛼', 𝛽', 𝜌' and 𝜃'C  are the parameters to be estimated. The above form of 
intensity function can be re-parameterized as  
 
  𝜆'(𝑡) = 	𝑒𝑥𝑝B𝑎' +	𝑏'B𝑡 −	∑ 𝑐'CC 	𝑆(C)(𝑡)D	D                                                                 (15) 

 

with 𝑎' = 	𝛼' +	𝛽'	𝑋'(0), 𝑏' = 	𝛽'	𝜌' and 𝑐'C = 	
𝜃'C

𝜌'�  . 
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2.6.  Marked point processes 

The conditional intensity function of a point process, conditional on the past history of the 
temporal events, describes the instantaneous Poisson rate. Suppose we consider the events that 
are occurring in two-dimensional space, for example longitude and latitude in case of study 
regarding earthquakes, according to time. Then the history up to but not including time 𝑡 of 
events may be denoted by ℋ" and may be defined as ℋ" = 	 {(𝑡', 𝑥', 𝑦')	for	all	i	for	which	𝑡' <
𝑡}. Here 𝑡' is the time of occurrence of the ith event and (𝑥', 𝑦') is its spatial location, that is, 
longitude and latitude of the location of main shock or aftershock. Then the conditional intensity 
function as described in (1) may be written as                                        

 
  𝜆(𝑡, 𝑥, 𝑦	|	ℋ") = lim

�,�,�→4

E
���

		𝑃�N���(𝑡, 𝑥, 𝑦) > 0	|	ℋ"�                                                        (16) 

 
where N���(𝑡, 𝑥, 𝑦) is the number of aftershocks occurring in the space [𝑡, 𝑡 + 	𝛿) × [𝑥, 𝑥 + 	ξ) × 
[𝑦, 𝑦 + 	η). As stated in section 1, the conditional intensity function of the marked point process 
should have two components, the ground intensity function which describes the rate at which the 
aftershocks occur over time and the history of main shock or aftershocks which occurred before 
the current time and mark distribution. Let N�(𝑡)	be the number of aftershocks in time interval 
[𝑡, 𝑡 + 	𝛿), then the ground intensity function for the marked point process can be defined as 

  𝜆 B𝑡, 𝜃	|	ℋ"D = lim
¡→4

E
¡
	𝑃[N�(𝑡) > 0	|	ℋ"]                                                          (17) 

 
where 𝜃 = (𝜃E, 𝜃F, … , 𝜃¢) ∈ Θ¤ are the parameters. 𝜆 B𝑡, 𝜃	|	ℋ"D can also be simply denoted as 
𝜆 (𝑡	|	ℋ"). Suppose the mark distribution of the variables 𝑥 (univariate or multivariate) 
considered as marks may be denoted as 𝑓(𝑥	|	ℋ"). Then the conditional intensity function of the 
marked point process may be considered to have form 

  𝜆(𝑡, 𝑥|	ℋ") = 	 𝜆 (𝑡	|	ℋ")	𝑓(𝑥	|	ℋ")                                                                                      (18) 

In the next section, we consider the estimation of model parameters in a couple of models 
described above. 

 
3.  Likelihood Functions and Parameter Estimation 

The likelihood function for the temporal point process models where the conditional 
intensity function is a function of time only, can be derived in the following manner: Let 𝜏 be the 
time of the occurrence of the last event before time t, 𝐹(𝑡	|ℋ¨	) = 𝑃{𝑇	 ≥ 𝑡	|	ℋ¨} denote the 
conditional distribution of the time of occurrence of the next event after time t and 𝑓(𝑡	|ℋ¨	) be 
the corresponding conditional density function. Then 

𝜆(𝑡	|	ℋ¨) = 	
𝑓(𝑡	|ℋ¨	)

1 − 𝐹(𝑡	|ℋ¨	)	
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Solving the differential equation,  

𝐹(𝑡	|ℋ¨	) = 1 − 𝑒𝑥𝑝ª−	«𝜆(𝑢	|	ℋ¨)	𝑑𝑢
"

¨

¬, 

hence  

𝑓(𝑡	|ℋ¨	) = 𝜆(𝑡	|	ℋ¨)	𝑒𝑥𝑝ª−	« 𝜆(𝑢	|	ℋ¨)	𝑑𝑢
"

¨

¬ 

 

Let … < 𝑡JF < 	 𝑡JE	 < 𝑡4	 < 	𝑇E	 < 	 𝑡E	 < 	 𝑡F	 < ⋯ < 	 𝑡® < 	𝑇F	 < 	 𝑡®9E < 	 𝑡®9F	 < ⋯, 
where 𝑡'	; 𝑖 ∈ ℤ are times of occurrence of main shock or aftershocks, and those main shock or 
aftershock events which occurs within the time interval  [𝑇E	, 𝑇F	] are explicitly included in the 
likelihood. The events which occurred before time 𝑇E	, if any, are included in the history of the 
process. Then the log likelihood function of such models will be 

log𝐿 = 	 ² 𝑙𝑜𝑔
':µ¶	·"s	·µ̧ 		

𝜆B𝑡'	|	ℋ"sD 	− « 𝜆(𝑡	|	ℋ")	𝑑𝑡

µ̧ 	

µ¶	

 

The likelihood function for the marked point process models for which the conditional 
intensity function is as defined in (18), can be derived similarly as above and will be of the form 
 

log𝐿 = 	 ² 𝑙𝑜𝑔
':	"s	∈	𝒯	

𝜆B𝑡', 𝑥', 𝑦'	|	ℋ"sD 	− 	« « «𝜆(𝑡, 𝑥, 𝑦	|ℋ")
	

𝒳

	

𝒴

	

𝒯

	𝑑𝑥	𝑑𝑦	𝑑𝑡 

where 𝒯 ⊆	ℝ9 is a time interval and 𝒳 and 𝒴 are the domains of 𝑥	and 𝑦, respectively which 
represents the mark variables (for example, longitudes and latitudes in the earthquake study). 
This process can also be extended to have more than two mark variables and in that case the log 
likelihood function can be considered as 

log𝐿 = 	 ² 𝑙𝑜𝑔
':	"s	∈	𝒯	

𝜆B𝑡', 𝑥'	|	ℋ"sD 	− 	« «𝜆B𝑡, 𝑥	|ℋ"D
	

𝒳

	

𝒯

	𝑑𝑥	𝑑𝑡 

 
where 𝑥 is a multivariate variable referring the mark variables. The general form of the log 
likelihood function of a marked point process can be expressed as 

log𝐿 = 	 ² 𝑙𝑜𝑔
':	"s	∈	𝒯	

𝜆 B𝑡'	|	ℋ"sD 	− 	« 𝜆 (𝑡	|ℋ"	)
	

𝒯

𝑑𝑡 +	 ² log 𝑓B𝑥'	|	ℋ"sD
':	"s	∈	𝒯	

 

 

In different studies the mark density 𝑓B𝑥	|	ℋ2D is taken as exponential or gamma or 
Weibull etc. The model parameters can be estimated using the method of maximum likelihood 
(MLE), by obtaining the system of likelihood equations simultaneously by differentiating the log 
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likelihood function with respect to the parameters to be estimated and equating those equations 
to zero. The system of likelihood equations for the models discussed in this study does not 
possess the explicit solution and therefore a suitable iterative method for nonlinear optimization 
may have to be adopted for solving them.  

4.  Data Analysis 

As an illustration, we consider the data of Kathmandu earthquake happened in the year 
2015. The deadly earthquake of magnitude 7.9 measured on Richter scale, shook Nepal and sent 
tremors through Indian subcontinent, on April 25, 2015 at 11:56 (Nepalese time). The Complete 
description about the data, data set, and many inference-based studies on this data are available 
in Shah et al. (2019). The model check and validation were carried out using information 
functions like: Akaike’s Information Criterion (AIC) and Bayesian Information Criterion (BIC). 
Goodness-of-fit tests based on power law intensity and exponential intensity failed to fit the data. 
Therefore, we have fitted marked temporal process models with ETAS and SEP models as the 
ground intensity functions, considering marks as the magnitudes of earthquakes or aftershocks 
with intensity more than 5. In both the cases, the underlying distribution is assumed as Gamma. 
The summary of estimates is presented in Table 1.  

Table 1. Parameter Estimates for Gamma model 

Ground intensity function 

ETAS SEP 

Parameters Estimates Parameters Estimates 

𝜇 0.001 𝜇 0.028 

𝐴 0.048 𝑘4 2.800 

𝛼 1.963 𝑤 0.067 

𝑐 0.769 𝜃 0.400 

𝑝 1.305 𝛽 2.700 

𝜃 2.519 log 𝐿 -339.770 

𝛽 0.169 AIC 689.540 

log 𝐿 -193.860 BIC 699.570 

AIC 401.720   

BIC 415.769   
  

5.  Conclusions and Future Directions 

Temporal data are very sensitive to the assumptions underlying the situation. So one has to 
attempt to fit different models satisfying the history of events and the event occurrence 
mechanism, and then choose the best one. Among various competing models it might be possible 
that some other model still exists which provides the better fit to the data than the models which 
have already considered. Thus, it is logical to check whether the major features of the given data 
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are captured and reproduced by the assumed models. Graphical procedures are developed for 
intensifying the features of the data that deviate from the model, if any, as follows: If  𝜆¾ (𝑡	|	ℋ¨) 
is the estimated ground intensity function which is fitted on the given data, after obtaining the 
MLEs of parameters of the temporal point process, then the transformed time points may be 
assumed to follow a stationary Poisson process with rate one. Thus if 𝑡'; 𝑖 = 1, 2,… , 𝑛 are the 
event times, then the sequence of transformed times 𝜏' will be 𝜏' = 	∫ 𝜆¾ (𝑡	|	ℋ¨)	dt

"s
4 . A 

deviation from a property of {𝜏'} from that which is expected from a stationary Poisson process 
implies the existence of a corresponding feature of the data {𝑡'} that is not captured by the 
underlying model. The intensity 𝜆¾ (𝑡	|	ℋ¨) represents a model for prediction, whereas the 
transformed data {𝜏'} may be regarded as "noise" or "residuals" of the point process data {𝑡'}. 
This sequence of {𝜏'} is referred to as the residual process by Ogata (1988). This is under 
investigation.  

To check the goodness of fit of the model, the event number  𝑖 can be plotted versus the 
transformed time 𝜏'. The plotted points should approximately follow a straight line. Significant 
departure from the straight line indicates a weakness in the model. Moreover, the slope of the 
line less than one implies that the transformed times 𝜏' are too small indicating that the fitted 
ground intensity function 𝜆¾ (𝑡	|	ℋ¨) is too small, and the slope of the line greater than one 
implies that  𝜆¾ (𝑡	|	ℋ¨) is too large. The changing pattern of ground intensity function is also an 
eye opener for understanding the seismological fluctuations of the occurrence. This is also under 
investigation. Although challenges are many, with the computing power of complex models, this 
issue can be resolved. 
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