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Abstract

In this paper we have considered bivariate Weibull frailty (BWF) model. It has a
singularity along the line x = y. There is a positive probability that the two marginals
can be equal similar to the Marshall-Olkin bivariate exponential or Marshall-Olkin bivariate
Weibull models. The Marshall-Olkin bivariate exponential or Weibull distribution can be
obtained as a limiting case of the proposed model. It is a very flexible model. The joint prob-
ability density function can take variety of shapes. Different properties of the BWF model
have been studied. Different dependency measures have been investigated. The model has
five parameters. Computing the maximum likelihood estimators of the unknown parameters
involves solving a five dimensional optimization problem. An effective EM algorithm has
been proposed and it can be implemented quite conveniently in practice. Extensive simula-
tions have been performed to show the effectiveness of the proposed method. One diabetic
retinopathy data set has been analyzed. We have further proposed to analyze dependent
competing risks data, and one competing risks data set has been analyzed. The results are
quite satisfactory.

Key words: Marshall-Olkin bivariate exponential distribution; Marshall-Olkin bivariate
Weibull distribution; Bivariate singular distribution; Bivariate copula; Positive dependence,
Maximum likelihood estimators; EM algorithm.

AMS Subject Classifications: 62F10, 62F03, 62H12.

1. Introduction

The motivation of this work came when we were trying to analyze a diabetic retinopa-
thy data set. The diabetic retinopathy is a medical condition of the eyes. This particular
eye conditions may depend on various factors of the individual namely age, sex, blood sugar
level, cholesterol level etc. One major issue of this disease is that unless somebody goes for a
regular eye check-up this may not be detected at the early stage. The final outcome of this
disease is blindness. Till today we do not have any treatment available so that this disease
can be cured. The available treatment can only delay the onset of blindness. Due to this
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reason an extensive amount of work is going on to develop new treatment so that the onset
of the blindness can be delayed. One such treatment which has been recently introduce is
the laser treatment. Different experiments have been conducted to test whether the laser
treatment has any significant effect in delaying the onset of blindness or not, compared to
the traditional treatment.

We will be discussing two such data sets. One data set is of the form (X, Y ). Here X
and Y denote the time to blindness of the laser treated eye and the other eye, respectively,
of the same individual. Clearly, here both X > 0 and Y > 0. The other data set is of the
form (T,∆), here T = min{X, Y }, where X and Y are same as defined above, and ∆ = 1,
∆ = 2 or ∆ = 3, if T = X, T = Y or T = X = Y , respectively. One important feature of
these data sets is that there is a significant portion of the data points where X = Y , hence
it cannot be ignored. Due to this reason, several authors have analyzed these data sets
based on the assumptions that (X, Y ) follows Marshall-Olkin bivariate Weibull (MOBW)
distribution, see for example Feizjavadian and Hashemi (2015), Cai et al. (2017), Shen and
Xu (2018), Kundu (2022) and Samanta and Kundu (2023).

In the first data set few covariates (age, sex and blood sugar level) are available,
where as in the second data set no covariates is available. It is quite possible that many
other variables also influence these survival times. Such factors are usually unknown and thus
cannot be explicitly included in the analysis. Vaupel et al. (1979) suggested a mathematical
model for this. They have introduced a random variable, which is not observed, for each
individual to the associated survival function. Since it is not observed it is integrated out.
There is some identifiability issue but it can be sorted out.

The main aim of this paper is to introduce the frailty for the MOBW model in a very
natural way. We call this new model as the Bivariate Weibull Frailty (BWF) model. It may
be mentioned that the MOBW distribution has received a considerable amount of attention
in analyzing bivariate data with ties. Extensive work has been done in establishing different
properties and developing both the classical and Bayesian inference procedures for MOBW
model, see for example the review article by Kundu (2023) and the references cited there
in. The MOBW model can be obtained as a limiting case of the BWF mode. The MOBW
distribution has four parameters, where as the proposed BWF model has five parameters.
The BWF model is a very flexible model and it also has a singularity along the line x = y
similar to the MOBW model. Hence, this model also can be used quite effectively if there
are ties in the data set. The joint probability density function (JPDF) can be take variety of
shapes, and we have derived different properties of the BWF model. Different dependency
properties and dependency measures also have been established. The maximum likelihood
estimators of the unknown parameters cannot be obtained in explicit forms. It involves
solving five dimensional optimization process. Moreover, finding the five dimensional initial
guesses also is not a trivial issue. To avoid that we have proposed to use EM algorithm,
which can be implemented quite conveniently in practice. Extensive simulations have been
performed to show the effectiveness of the proposed method and one bivariate diabetic
retinopathy data set has been analyzed based on the proposed model. We have further
proposed a competing risks model based on the BWF model, and one diabetic retinopathy
competing risks data has been analyzed based on this model.

The rest of the paper is organized as follows. In Section 2 we have defined the BWF
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model and provided several of its properties. The maximum likelihood estimators based
on the EM algorithm has been proposed in Section 3. The analysis of a bivariate diabetic
retinopathy data set has been provided in Section 4. In Section 5 we have indicated how
the proposed BWF model can be used effectively to analyze competing risks data and the
analysis of a data set has also been presented. Finally we have concluded the paper in
Section 6.

2. Bivariate Weibull frailty model

2.1. Notations and preliminaries

We will use the following notations for the rest of the paper. The two-parameter
Weibull distribution with the shape parameter α > 0 and λ > 0 has the following probability
density function (PDF);

fW E(x;α, λ) = αλxα−1e−λxα ; for x > 0, (1)

and zero, otherwise. The corresponding cumulative distribution function (CDF), survival
function (SF) and the hazard function (HF) will be denoted by FW E(x;α, λ), SW E(x;α, λ)
and hW E(x;α, λ), respectively, and for x > 0, they are as follows:

FW E(x;α, λ) = 1 − e−λxα

, SW E(x;α, λ) = e−λxα

, hW E(x;α, λ) = αλxα−1.

From now on a Weibull distribution with the shape parameter α and scale parameter λ will
be denoted by WE(α, λ). The two-parameter gamma distribution with the shape parameter
α > 0 and λ > 0 has the following probability density function (PDF);

fGA(x;α, λ) = λα

Γ(α)x
α−1e−λx; for x > 0, (2)

and zero, otherwise. It will be denoted by GA(α, λ).

Let U1 ∼ (follows) WE(α, λ1), U2 ∼ WE(α, λ2), U3 ∼ WE(α, λ3) and they are in-
dependently distributed, then (X, Y ), where X = min{U1, U3}, Y = min{U2, U3} follows
Marshall-Olkin bivariate Weibull (MOBW) distribution with parameters α, λ1, λ2, λ3. From
now on it will be denoted by MOBW(α, λ1, λ2, λ3). The joint PDF of (X, Y ) can be written
as

fMOBW (x, y) =


fW E(x;α, λ1)fW E(y;α, λ2 + λ3) if x < y
fW E(x;α, λ1 + λ3)fW E(y;α, λ2) if x > y

λ3
λ1+λ2+λ3

fW E(z;α, λ1 + λ2 + λ3) if x = y = z.
(3)

2.2. Model descriptions

Definition: Suppose U1 ∼ WE(α, λ1), U2 ∼ WE(α, λ2), U3 ∼ WE(α, λ3), V ∼ GA(β, β)
and they are all independently distributed. Let us define

X = min
{
U1

V 1/α
,
U3

V 1/α

}
and Y = min

{
U2

V 1/α
,
U3

V 1/α

}
. (4)

Then (X, Y ) is said to have BWF distribution with parameters α, λ1, λ2, λ3, β. It will be
denoted by BWF(α, λ1, λ2, λ3, β).
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The joint SF of (X, Y ) for x > 0 and y > 0 becomes

SBW F (x, y) = P (X > x, Y > y)

=
∫ ∞

0
P (U1 > v1/αx, U2 > v1/αy, U3 > v1/α max{x, y})fGA(v; β, β)dv

=
∫ ∞

0
P (U1 > v1/αx, U2 > v1/αy, U3 > v1/α max{x, y})fGA(v; β, β)dv

=
∫ ∞

0
e−vλ1xα

e−vλ2yα

e−vλ3 max{xα,yα}fGA(v; β, β)dv

= ββ

Γ(β)

∫ ∞

0
vβ−1e−v(β+λ1xα+λ2yα+λ3 max{xα,yα})dv

=
[
1 + λ1

β
xα + λ2

β
yα + λ3

β
max{xα, yα}

]−β

=
{

[1 + θ1x
α + (θ2 + θ3)yα]−β if x < y

[1 + (θ1 + θ3)xα + θ2y
α]−β if y ≤ x.

Here we have denoted θ1 = λ1/β, θ2 = λ2/β and θ3 = λ3/β. Hence, the marginal SFs of X
and Y become

P (X > x) = [1 + (θ1 + θ3)xα]−β and P (Y > y) = [1 + (θ2 + θ3)yα]−β .

The PDFs of X and Y for x > 0 and y > 0 become

fX(x) = αβ(θ1 + θ3)xα−1

[1 + (θ1 + θ3)xα]β+1 and fY (y) = αβ(θ2 + θ3)xα−1

[1 + (θ2 + θ3)yα]β+1 ,

respectively. We introduce the following notation. A random variable is said to have a
univariate Weibull frailty (UWF) distribution with parameters α, β, θ, if it has the following
PDF for x > 0

fW F (x;α, β, θ) = αβθxα−1

[1 + θxα]β+1 , (5)

and zero, otherwise. It will be denoted by UWF(α, β, θ). The generation of random sample
from a UWF model is quite simple by using the inverse transformation. Hence, the generation
of random sample from a BWF model can be performed very easily.

Following exactly the same procedure as in Kundu and Gupta (2009) the joint PDF
of (X, Y ) if (X, Y ) can be obtained from the joint SF of the BWF. Alternatively, it can be
obtained as follows. Observe that {(X, Y )|V = v} ∼ MOBW(α, λ1v, λ2v, λ3v). Hence, using
(3) we can write the joint PDF of (X, Y ) given V = v as follows;

f(X,Y )|V =v(x, y) =


fW E(x;α, λ1v)fW E(y;α, (λ2 + λ3)v) if x < y
fW E(x;α, (λ1 + λ3)v)fW E(y;α, λ2v) if y < x

λ3
λ1+λ2+λ3

fW E(z;α, (λ1 + λ2 + λ3)v) if x = y = z.
(6)

Hence, the joint PDF of (X, Y ) becomes

fBW F (x, y) =


α2β(β+1)θ1θ2xα−1yα−1

(1+θ1xα+(θ2+θ3)yα)β+2 if x < y
α2β(β+1)θ1θ2xα−1yα−1

(1+(θ1+θ3)xα+θ2yα)β+2 if y < x
αθ3βzα−1

(1+(θ1+θ2+θ3)zα)β+1 if x = y = z.

(7)
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The BWF distribution has an absolutely continuous part and a singular part. It is absolutely
continuous on 0 < x ̸= y < ∞ and it has a singular part on 0 < x = y < ∞. The joint PDF
(7) can be written as

fBW F (x, y) = θ1 + θ2

θ1 + θ2 + θ3
fac(x, y) + θ3

θ1 + θ2 + θ3
fsi(x, y), (8)

where

fac(x, y) = θ1 + θ2 + θ3

θ1 + θ2


α2β(β+1)θ1θ2xα−1yα−1

(1+θ1xα+(θ2+θ3)yα)β+2 if x < y
α2β(β+1)θ1θ2xα−1yα−1

(1+(θ1+θ3)xα+θ2yα)β+2 if y < x

and
fsi(x, y) =

{
αβ(θ1+θ2+θ3)zα−1

(1+(θ1+θ2+θ3)zα)β+1 if x = y = z

0 if x ̸= y.

It can be easily seen that

P (X < Y ) = θ1

θ1 + θ2 + θ3
, P (Y < X) = θ2

θ1 + θ2 + θ3
, P (X = Y ) = θ3

θ1 + θ2 + θ3
,

The correlation coefficient of X and Y varies from zero to one. X and Y are independent if
θ3 = 0 and the correlation tends to one as θ3 → ∞.

The following results will be used in the implementation of the EM algorithm and
they can be obtained after some calculations.

V |{(X, Y ) = (x, y)} ∼ Gamma(β + 2, (β + λ1x
α + (λ2 + λ3)yα) if x < y, (9)

V |{(X, Y ) = (x, y)} ∼ Gamma(β + 2, (β + (λ1 + λ3)xα + λ2y
α) if x > y, (10)

V |{(X, Y ) = (x, y)} ∼ Gamma(β + 1, (β + (λ1 + λ2 + λ3)zα) if x = y = z. (11)

Hence,

E(V |{(X, Y ) = (x, y)}) = β + 2
(β + λ1xα + (λ2 + λ3)yα) if x < y, (12)

E(V |{(X, Y ) = (x, y)}) = β + 2
(β + (λ1 + λ3)xα + λ2yα) if x > y, (13)

E(V |{(X, Y ) = (x, y)}) = β + 1
(β + (λ1 + λ2 + λ3)zα) if x = y = z (14)

and

E(ln V |{(X, Y ) = (x, y)}) = ψ(β + 2) − ψ(β + λ1x
α + (λ2 + λ3)yα)) if x < y, (15)

E(ln V |{(X, Y ) = (x, y)}) = ψ(β + 2) − ψ(β + (λ1 + λ3)xα + λ2y
α)) if x > y, (16)

E(ln V |{(X, Y ) = (x, y)}) = ψ(β + 1) − ψ(β + (λ1 + λ2 + λ3)zα)) if x = y = z.(17)

2.3. Properties

In this section we provide some properties of the UWF and BWF models. If X ∼
UWF(α, β, θ), then it can be easily seen that the PDF of X is a decreasing function for
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0 < α ≤ 1 and it is an unimodal function for all values of β > 0 and θ > 0. The hazard
function of X becomes

hW F (x) = αβxα−1

1 + θxα
; x > 0. (18)

It can be easily shown that if 0 < α ≤ 1, the hazard function is a decreasing function and
for α > 1, the hazard function is an unimodal function. It is clear that the shape (whether
it will be decreasing or unimodal) of the PDF or HF does not depend on β and θ, it depends
only on α. In Figure 1 we provide the plot of the PDF and HF for different values of α.
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Figure 1: The PDF and HF of WF(α, β, θ) for different values of α, when β = θ = 1:
(a) PDF and (b) HF

The following results are useful for data analysis purposes or it may have some inde-
pendent interests also.
Theorem 1: Suppose (X, Y ) ∼ BWF(α, β, θ1, θ2, θ3). Then we have the following results:

(a) X ∼ UWF(α, β, (θ1 + θ3)).

(b) Y ∼ UWF(α, β, (θ2 + θ3)).

(c) min{X, Y } ∼ UWF(α, β, (θ1 + θ2 + θ3))

Proof: The proof can be easily obtained from the joint survival function.

The following results provide the shapes of the joint PDF of the absolute continuous
part of the BWF.

Theorem 2: Suppose (X, Y ) ∼ BWF(α, β, θ1, θ2, θ3). Then we have the following results:

(a) The joint PDF of the absolute continuous part of (X, Y ) is continuous everywhere if
θ1 = θ2.
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(b) If θ1 ̸= θ2, the joint PDF of the absolute continuous part of (X, Y ) is continuous
everywhere except on the line x = y.

(c) If 0 < α ≤ 1, the joint PDF of the absolute continuous part of (X, Y ) is a decreasing
function for all values of β > 0, θ1 > 0, θ2 > 0 and θ3 > 0.

(d) If θ1 = θ2 = θ and α > 1 the joint PDF of the absolute continuous part of (X, Y ) has

a unique mode at
( α− 1

(2θ + θ3)(αβ + 1)

)1/α

,

(
α− 1

(2θ + θ3)(αβ + 1)

)1/α
.

(e) If θ1 > θ2 + θ3 and α > 1 the joint PDF of the absolute continuous part of (X, Y ) has

a unique mode at
( α− 1

θ1(αβ + 2)

)1/α

,

(
α− 1

(θ2 + θ3)(αβ + 2)

)1/α
.

(f) θ2 > θ1 + θ3 and α > 1 the joint PDF of the absolute continuous part of (X, Y ) has a

unique mode at
( α− 1

(θ1 + θ3)(αβ + 2)

)1/α

,

(
α− 1

θ2(αβ + 2)

)1/α
.

(g) If θ2 < θ1 < θ2 + θ3 or θ1 < θ2 < θ1 + θ3, the joint PDF of the absolute continuous part
of (X, Y ) does not have any mode on 0 < x ̸= y < ∞.

Proof: The Proof of Theorem 2 is not very difficult, hence it is avoided.

In Figure 2 we provide the contour plot of the joint PDF of the absolute continuous
part of BWF for different parameter values. It shows that when α > 1, the joint PDF is an
unimodal function Figures 2 (a),(c),(d), if α ≤ 1, the joint PDF is an decreasing function
Figure 2 (b), if θ1 = θ2, the mode of the joint PDF is on x = y, Figure 2 (a), if θ1 > θ2 + θ3,
the mode of the joint PDF is on x < y, Figure 2 (c) and if θ2 > θ1 + θ3, the mode of the
joint PDF is on x > y, Figure 2 (d).

The hazard gradient of BWF model according to Johnson and Kotz (1975) can be
defined as follows;

h1(x, y) = − ∂

∂x
lnSX,Y (x, y) and h2(x, y) = − ∂

∂y
lnSX,Y (x, y).

Hence, the hazard gradients of BWF are as follows’:

h1(x, y) = − ∂

∂x
lnSX,Y (x, y) =


βαθ1xα−1

1+θ1xα+(θ2+θ3)yα if x < y
βα(θ1+θ3)xα−1

1+(θ1+θ3)xα+θ2yα if x > y

h2(x, y) = − ∂

∂y
lnSX,Y (x, y) =


βα(θ2+θ3)yα−1

1+θ1xα+(θ2+θ3)yα if x < y
βαθ2yα−1

1+(θ1+θ3)xα+θ2yα if x > y

Now we will show that the survival function of BWF satisfies the total positivity of order
two (TP2) property, and also it satisfies some hazard rate ordering properties. Note that
a function g : R −→ R is said to have TP2 property, if for all x = (x1, x2) ∈ R2, y =
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Figure 2: The contour plot of the joint PDF of the absolute continuous part of
BWF(α, β, θ1, θ2, θ3) for different parameter values: (a) α = 2, β = 2, θ1 = θ2 = 1,
θ3 = 2, (b) α = 1, β = 0.5, θ1 = θ2 = 1, θ3 = 2, (c) α = 2.5, β = 0.5, θ1 = 3, θ2 = θ3
= 1, (d) α = 2.5, β = 0.5, θ1 = θ3 = 1, θ2 = 3
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(y1, y2) ∈ R2, g(x)g(x) ≤ g(x ∧ y)g(x ∨ y). Here x ∧ y = (min{x1, y1},min{x2, y2}) and
x ∨ y = (max{x1, y1},max{x2, y2}). Let U and V be two bivariate random vectors with
survival function SU and SV , respectively. We say that U is smaller that V in the bivariate
hazard rate order (denoted by U ≤hr V ) if

SU(x)SV (y) ≤ SU(x ∧ y)SV (x ∨ y); x,y ∈ R2.

We say that U is smaller that V in the bivariate weak hazard rate order (denoted by
U ≤whr V ) if

SU(x)SV (y) ≤ SU(x)SV (y); x,y ∈ R2. (19)
We have the following results.

Theorem 3:

(a) If (X, Y ) ∼ BWF(α, β, θ1, θ2, θ3), then the survival function of (X, Y ) has the TP2
property.

(b) If X = (X1, X2) ∼ BWF(α, β, θ1, θ2, θ3) and Y = (Y1, Y2) ∼ BWF(α, β, θ1, θ2, θ̃3). If
θ3 > θ̃3, then X ≤whr Y .

(c) If X = (X1, X2) ∼ BWF(α, β, θ1, θ2, θ3) and Y = (Y1, Y2) ∼ BWF(α, β, θ1, θ2, θ̃3). If
θ3 > θ̃3, then X ≤hr Y .

Proof:

(a) To prove this, we need to show that for all possible values of x = (x1, x2) ∈ R2 and
y = (y1, y2) ∈ R2

SX,Y (x1, x2)SX,Y (y1, y2) ≤ SX,Y (x1 ∧ y1, x2 ∧ y2)SX,Y (x1 ∨ y1, x2 ∨ y2). (20)
Now the above inequality (20) can be shown by considering all possible twenty four
cases namely x1 < x2 < y1 < y2, x1 < x2 < y2 < y1, and so on.

(b) To prove this, we need to show (19). It can be shown again by considering all possible
twenty four cases as above.

(c) Using (a), (b), and Theorem 2.1 of Hu et al. (2003), the result follows.

The BWF has the following survival copula

C(u, v) =


(

θ1
θ1+θ3

(u−1/β − 1) + v−1/β
)−β

if (θ2 + θ3)(u−1/β − 1) < (θ1 + θ3)(v−1/β − 1)(
u−1/β + θ2

θ2+θ3
(v−1/β − 1)

)−β
if (θ2 + θ3)(u−1/β − 1) > (θ1 + θ3)(v−1/β − 1)

(21)
If θ1 = θ2 and if we denote δ = θ1

θ1 + θ3
= θ2

θ2 + θ3
, then (21) becomes

C(u, v) =


(
δ(u−1/β − 1) + v−1/β

)−β
if u > v(

u−1/β + δ(v−1/β − 1)
)−β

if u < v
(22)

Hence, different dependency properties of BWF may be explored through copula function.
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3. Inference

3.1. Modified EM algorithm

In this section we provide the maximum likelihood estimators of the unknown param-
eters based on the observations D = {(xi, yi); i = 1, . . . , n}. Let us denote D = D1 ∪D2 ∪D3,
where D1 = {(xi, yi) : xi < yi},D2 = {(xi, yi) : xi > yi}, D3 = {(xi, yi) : xi = yi = zi} and
the number of elements in the set Dj is nj for j = 1, 2, 3. The log-likelihood function of the
observed data D becomes

l(Θ|D) = (2n1 + 2n2 + n3) lnα + n ln β + (n1 + n2)(ln(β + 1) + ln θ1 + ln θ2) + n3 ln θ3 +

(α− 1)
 ∑

i∈D1∪D2

(ln xi + ln yi) +
∑

i∈D3

ln zi

− (β + 1) ln(1 + (θ1 + θ2 + θ3)zα
i ) −

(β + 2)
∑

i∈D1

ln(1 + θ1x
α
i + (θ2 + θ3)yα

i ) +
∑

i∈D1

ln(1 + (θ1 + θ3)xα
i + θ2y

α
i )
 , (23)

where Θ = (α, β, θ1, θ2, θ3). It may be mentioned that to avoid introducing another notation,
we sometime denote Θ = (α, β, λ1, λ2, λ3) and it should be clear from the context. Hence,
the MLEs of the unknown parameters can be obtained by maximizing (23) with respect to
unknown parameters. It involves a 5-dimensional optimization problem. To avoid that we
treat this as a missing value problem. First observe that {(X, Y )|V } has MOBW distribution,
and there is a very effective EM algorithm has been proposed by Kundu and Dey (2009).
It is assumed that the complete observations are coming from the following random vector
(X, Y,∆1,∆2, V ). Here V is the frailty random variable, and (∆1,∆2) are defined as follows:

∆1 =
{

0 if X = U3
V 1/α

1 if X = U1
V 1/α

∆2 =
{

0 if Y = U3
V 1/α

2 if Y = U2
V 1/α

Here U1, U2, U3 are same as defined before. Note that

P (∆ = 1,∆2 = 0|X < Y ) = θ3

θ2 + θ3
, P (∆ = 1,∆2 = 2|X < Y ) = θ2

θ2 + θ3
,

P (∆ = 0,∆2 = 2|X > Y ) = θ3

θ1 + θ3
, P (∆ = 1,∆2 = 2|X > Y ) = θ1

θ1 + θ3
.

It can be easily seen that if we have a complete observations Dc = {(xi, y,δ1i, δ2i, vi); i =
1, . . . , n}, the MLEs of the unknown parameters can be obtained by solving two one dimen-
sional optimization problems. We use the following notations for further development. At
the k − th stage of the EM algorithm, the parameter vector the estimate of the parameter
vector Θ will be denoted by Θ(k) = (α(k), β(k), θ

(k)
1 , θ

(k)
2 , θ

(k)
3 ) and

a
(k)
1 = θ

(k)
3

θ
(k)
2 + θ

(k)
3
, a2 = θ

(k)
2

θ
(k)
2 + θ

(k)
3
, b1 = θ

(k)
3

θ
(k)
1 + θ

(k)
3
, b2 = θ

(k)
1

θ
(k)
1 + θ

(k)
3
,

c
(k)
1i = E(Vi|xi = X < Y = yi), c

(k)
2i = E(Vi|xi = X > Y = yi), c(k)

3i = E(Vi|X = Y = zi,Θ(k))

d
(k)
1i = E(ln Vi|xi = X < Y = yi), d

(k)
2i = E(ln Vi|xi = X > Y = yi),
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d
(k)
3i = E(ln Vi|X = Y = zi).

At the k-th stage of the EM algorithm, the pseudo log-likelihood contribution of (xi, yi) with
out the constant for different cases are as follow;
Case 1: xi < y1

2 lnα + ln λ1 + a
(k)
1 ln λ3 + a

(k)
2 ln λ2 + α(ln xi + ln yi) − λ1c

(k)
1i x

α
i − (λ2 + λ3)c(k)

1i y
α
i +

β ln β − ln(Γ(β)) + β(d(k)
1i − c

(k)
1i )

Case 2: xi < y1

2 lnα + ln λ2 + b
(k)
1 ln λ3 + b

(k)
2 ln λ1 + α(ln xi + ln yi) − (λ1 + λ3)c(k)

2i x
α
i − λ2c

(k)
2i y

α
i +

β ln β − ln(Γ(β)) + β(d(k)
2i − c

(k)
2i )

Case 3: xi = y1 = zi

lnα + ln λ3 + α ln zi − (λ1 + λ2 + λ3)c(k)
3i z

α
i + β ln β − ln(Γ(β)) + β(d(k)

3i − c
(k)
3i ).

Hence, the pseudo log-likelihood function at the (k + 1) − th stage can be written as

lpseudo(Θ|Θ(k)) = (n1 + n2b
(k)
2 ) lnλ1 − λ1

∑
i∈D1

c
(k)
1i x

α
i +

∑
i∈D2

c
(k)
2i x

α
i +

∑
i∈D3

c
(k)
3i z

α
i

+

(n2 + n1a
(k)
2 ) lnλ2 − λ2

∑
i∈D1

c
(k)
1i y

α
i +

∑
i∈D2

c
(k)
2i y

α
i +

∑
i∈D3

c
(k)
3i z

α
i

+

(n1a
(k)
1 + n2b

(k)
1 + n3) lnλ3 − λ3

∑
i∈D1

c
(k)
1i y

α
i +

∑
i∈D2

c
(k)
2i x

α
i +

∑
i∈D3

c
(k)
3i z

α
i

+

(2n1 + 2n2 + n3) lnα + α

 ∑
i∈D1∪D2

(ln xi + ln yi) +
∑

i∈D3

ln zi

+

nβ ln β − n ln(Γ(β)) + β

∑
i∈D1

(d(k)
1i − c

(k)
1i ) +

∑
i∈D2

(d(k)
2i − c

(k)
2i )

+
∑

i∈D3

(d(k)
3i − c

(k)
3i )

 . (24)

Now Θ(k+1) can be obtained by maximizing (24) with respect Θ, and they are as follows. If
we denote

λ
(k+1)
1 (α) = (n1 + n2b

(k)
2 )∑

i∈D1 c
(k)
1i x

α
i +∑

i∈D2 c
(k)
2i x

α
i +∑

i∈D3 c
(k)
3i z

α
i

λ
(k+1)
2 (α) = (n2 + n1a

(k)
2 )∑

i∈D1 c
(k)
1i y

α
i +∑

i∈D2 c
(k)
2i y

α
i +∑

i∈D3 c
(k)
3i z

α
i

λ
(k+1)
3 (α) = (n1a

(k)
1 + n2b

(k)
1 + n3)∑

i∈D1 c
(k)
1i y

α
i +∑

i∈D2 c
(k)
2i x

α
i +∑

i∈D3 c
(k)
3i z

α
i

,
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then first obtain α(k+1) by maximizing g(α) with respect to α, where

g(α) = (2n1 + 2n2 + n3) lnα + α

 ∑
i∈D1∪D2

(ln xi + ln yi) +
∑

i∈D3

ln zi

+ (n1 + n2b
(k)
2 ) (25)

ln λ(k+1)
1 (α) + (n2 + n1a

(k)
2 ) lnλ(k+1)

2 (α) + (n1a
(k)
1 + n2b

(k)
1 + n3) lnλ(k+1)

3 (α).

Once α(k+1) is obtained, then obtain λ
(k+1)
1 , λ(k+1)

2 , λ(k+1)
3 as λ(k+1)

1 (α(k+1)), λ(k+1)
2

(α(k+1)) and λ
(k+1)
3 (α(k+1)), respectively. Obtain β(k+1) by maximizing h(β) with respect to

β, where

h(β) = nβ ln β − n ln(Γ(β)) + β

∑
i∈D1

(d(k)
1i − c

(k)
1i ) +

∑
i∈D2

(d(k)
2i − c

(k)
2i ) +

∑
i∈D3

(d(k)
3i − c

(k)
3i )

 .
(26)

The following algorithm can be used for that purpose.

Algorithm:

Step 1: Take some initial values of Θ = (α, β, λ1, λ2, λ3), say Θ(0) = (α(0), β(0), λ
(0)
1 , λ

(0)
2 , λ

(0)
3 ).

Step 2: Based on Θ(0), compute a(0)
1 , a

(0)
2 ,b(0)

1 , b
(0)
2 , {(c(0)

1i , c
(0)
2i , c

(0)
3i , d

(0)
1i , d

(0)
2i , d

(0)
3i ); i = 1, . . . , n}.

Step 3: Obtain α(1) by maximizing (??), obtain λ(1)
1 , λ

(1)
2 , λ

(1)
3 and obtain β(1) by maximizing

(26).

Step 4: Go back to Step 1 and replace ‘0’ by ‘1’ and continue the process until convergence
takes place.

3.2. Testing of hypothesis

In this section we want to discuss the following testing of hypothesis problem which
has some practical importance. We want to test the following hypothesis

H0 : λ1 = λ2 vs. H1 : λ1 ̸= λ2. (27)

It manly tests the equality of the two marginals. To test the hypothesis (27), we propose
to use the likelihood ratio test. Hence, we need to maximize the log-likelihood function
(23) under H0. In this case also the modified EM algorithm can be used quite effectively
with the necessary changes. If we denote the estimate without restriction of the unknown
parameter vector Θ as Θ̂ and by Θ̂0 with restriction, then we reject the null hypothesis if
−2(l0(Θ̂0|D) − l(Θ̂|D)) is greater than the appropriate upper percentage of χ2

1 value.

4. Data analysis

In this section we analyze one bivariate data set to show how the proposed model
and the method can be used in practice. The proposed model has been used on a diabetic
retinopathy data set. Diabetic retinopathy is a physical disorder of the eye, and it is ob-
served mainly among the diabetic patients. This particular disease leads to blindness. An
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extensive amount of work has been done in developing different treatment for this disease.
Among different methods one recent treatment is the laser treatment. The main aim of this
experiment is to test whether the laser treatment has significant different effect compared
to the traditional treatment in delaying the onset of blindness. The experiment has been
conducted as follows. For each patient one eye has been chosen at random and the laser
treatment has been given where in the other eye the traditional treatment has been admin-
istered. For each patient the time to onset of blindness of both the eyes have been recorded.
Here X and Y denote the times for the laser treated eye and the traditionally treated eye,
respectively. The data set has been presented in Table 1.

Table 1: Bivariate diabetic retinopathy data set. Here Y1 denotes the time to
blindness of the laser treated eye and Y2 denotes the same for the other eye

Sl. X Y Sl. X Y Sl. X Y Sl. X Y
No. No. No. No.

1. 20.17 6.90 2. 10.27 1.63 3. 5.67 13.83 4. 5.77 1.33
5. 5.90 35.53 6. 25.63 21.90 7. 33.90 14.80 8. 1.73 6.20
9. 30.20 22.00 10. 25.80 13.87 11. 5.73 48.30 12. 9.90 9.90

13. 1.73 1.73 14. 1.77 43.03 15. 8.30 8.30 16. 18.70 6.53
17. 42.17 42.17 18. 14.30 48.43 19. 13.33 9.60 20. 14.27 7.60
21. 34.57 1.80 22. 4.10 12.20 23. 21.57 9.90 24. 13.77 13.77
25. 33.63 33.63 26. 63.33 27.60 27. 38.47 1.63 28. 10.33 0.83
29. 13.83 1.57 30. 11.07 1.97 31. 2.10 11.30 32. 12.93 4.97
33. 24.43 9.87 34. 13.97 30.40 35. 6.30 56.97 36. 13.80 19.00
37. 13.57 5.43 38. 42.77 42.77 39. 42.43 46.63 40. 2.70 2.70

For this data set n = 38, and 12, 20 and 6 observations for which X < Y , X > Y
and X = Y , respectively. Based on this data set we want to test whether laser treatment
has any significant different effect compared to the traditional treatment or not. Before
progressing further we provide some of the basic statistics of the data set. We have provided
the median, Q1 (first quartile) and Q3 (third quartile) of X, Y and min{X, Y }. We have also
fitted UWF models to X, Y and min{X, Y }, their fitted parameter values, the Kolmogorv-
Smirnov distances (KSD) and the associated p-values have been presented in Table 2. Based
on the KSD and the associated p-values, it is clear that UWF model fitsX, Y and min{X, Y }.
We have plotted the empirical survival curves of the time to blindness of both the eyes in
Figure 3. We have also plotted the best fitted UWF models to the marginals in Figure 4.
They fit loots quite quite well in both the cases. Hence, it is reasonable to try to fit BWF
model to the bivariate data set (X, Y ).

We would like to compute the MLEs of the fitted BWF model using the EM algo-
rithm as proposed in Section 3. Based on the fitted UWF models to the marginals and the
minimum, we have obtained the following initial guesses; α(0) = 1.2597, β(0) = 4.8359, λ(0)

1
= 0.0016, λ(0)

2 = 0.0089 and λ
(0)
3 = 0.0110. We have stopped the EM algorithm when the

relative difference between to consecutive log-likelihood functions is less than ϵ = 10−6. The
iteration stops after 12 steps. The MLEs of the unknown parameters and the associated 95%
confidence intervals are also obtained from the las t step of the EM algorithm based on the
method of Louis (1982). They are as follows: α̂ = 1.2077(∓0.3765), β̂ = 11.4772(∓2.6754),
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Table 2: Some basic statistics of the bivariate retinopathy data set. The median,
Q1 and Q3 of the marginals and their minimum. The estimated parameters
of the UWF models, their respective K-S distances and the associated p-values
have been presented

Variable Median Q1 Q3 α β θ KSD p-Value

X 13.82 13.35 25.03 1.4698 5.3205 0.0026 0.1278 0.5640
Y 10.60 5.20 21.95 1.1516 4.5085 0.0099 0.1186 0.6581

min{X, Y } 7.25 1.88 13.83 1.1577 4.6788 0.0115 0.1365 0.4787
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Figure 3: Empirical survival functions of the time to blindness of the two eyes

λ̂1 = 0.00220(∓00034), λ̂2 = 0.00245(∓0.00037), λ̂3 = 0.00031(∓0.00001). The correspond-
ing log-likelihood value is -292.9115.

One natural question is whether the proposed BWF distribution provides a good fit
to the above bivariate data. For that purpose we consider the following statistic

D = sup
x,y

|Sn(x, y) − ŜBW F (x, y)|.

Here Sn(x, y) denotes the empirical survival function, i.e. Sn(x, y) = #{i;xi ≥ x, yi ≥ y}
n

and ŜBW F (x, y) denotes the estimated value of SBW F (x, y) based on MLEs. We obtain the
D = 0.1134 and based on simulation we obtain the associated p value as 0.681. Hence, it
shows that the proposed BWF provides a good fit to the bivariate Retinopathy data set.

Now we want to test whether the laser treatment has any significant effect in de-
laying the blindness or not. It is equivalent in testing (27). We have obtained the MLEs
and the associated 95% confidence intervals of the unknown parameters under the null hy-
pothesis as follows: α̂0 = 1.2041(∓0.3668), β̂0 = 13.2188(∓2.5753), λ̂10 = 0.00202(∓00032),
λ̂20 = 0.00202(∓0.00032), λ̂30 = 0.00027(∓0.00001). The corresponding log-likelihood value
is -292.9893. Hence, based on −2(l0(Θ̂0|D) − l(Θ̂|D)), we cannot reject the null hypothesis.
Therefore, the present data indicates that there is no significant difference between the laser
treatment and the traditional treatment.
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Figure 4: Empirical and fitted survival functions of the time to blindness of the
two eyes (a) laser treated eye and (b) traditionally treated eye

5. Application: Competing risks

In many life testing experiment the failure might occur due to different causes. In
this type of experiment one observes the failure time as well as the cause of failure. It is
important to study the effect of one cause in presence of other causes. In the statistical
literature it is known as the competing risks problem. There are mainly two approaches
to analyze competing risks data; one is latent failure type approach of Cox (1959) and the
other one is cause specific hazard function approach by Prentice et al. (1978). In case of
exponential or Weibull failure time distributions it has been shown by Kundu (2004) that
both the methods provide the same likelihood function, although their interpretations are
different. An extensive amount of work has been done in the area of competing risks both in
the parametric and non-parametric set up. One is referred to the book by Crowder (2001)
for a comprehensive treatment on this topic.

A typical competing risk data is of the form (T,∆), here T denotes the observed
failure time and ∆ denotes the cause of failure. The failure time T is usually assumed to be
continuous, where as ∆ is a discrete random variable. In this paper we have assumed Cox’s
latent failure approach to analyze the competing risks data. In this case it is assumed that
there are total K causes of failures, i.e. ∆ can take values 1, . . . , K. Further, there are K
lifetimes say T1, . . . , TK due to K different causes, where T = min{T1, . . . , TK} and ∆ = j if
Tj < {T1, . . . , Tj−1, Tj+1, . . . , TK}.

We have another data set from a diabetic retinopathy study has been obtained as
before. The experiment was same as before, but here the minimum time to blindness (T )
and the indicator specifying whether the laser treated eye (∆ = 1), the traditionally treated
eye (∆ = 2) or both the eyes (∆ = 3) have failed simultaneously have been recorded. The
data set has been presented in Table 3.
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Table 3: Competing risks diabetic retinopathy data set. Here T denotes the
minimum time to blindness in days and ∆ denotes its causes

T ∆ T ∆ T ∆ T ∆ T ∆ T ∆
266 1 272 3 203 3 91 2 1137 3 84 1
154 2 1484 1 392 1 285 3 315 1 1140 2
583 1 287 2 901 1 547 2 1252 1 1247 3
79 1 717 2 448 2 622 3 642 1 904 2

707 2 141 2 276 1 469 2 407 1 520 1
93 1 356 1 485 2 1313 2 1653 3 248 2

805 1 427 2 503 1 344 1 699 1 423 2
790 2 36 2 285 2 125 2 667 1 315 2
777 2 588 2 727 2 306 1 471 3 210 2
415 1 126 1 409 2 307 2 350 2 584 1
637 2 350 1 355 1 577 2 663 3 1302 1
178 1 567 2 227 2 517 2 966 3

The problem is same as before, i.e. we want to test whether there is any significant
between the laser treatment and the traditional treatment in delaying the onset of blindness
of the affected eyes. We treat this data as a competing risks data where the two treatments
can be considered as the two different causes of failures. Here T = min{T1, T2}, where T1
(T2) denotes the lifetime of the laser (traditionally) treated eye, and ∆ = 1, if T1 < T2,
∆ = 2, if T1 > T2 and ∆ = 3 if T1 = T2. Here both T1 and T2 are continuous random
variables, but there is a positive probability that T1 = T2. We have assumed that (T1, T2) ∼
BWF(α, β, λ1, λ2, λ3). Now based on the observations D = {(ti, δi); i = 1, . . . , n}, the log-
likelihood function can be written as

l(Θ|D) = n log β + n lnα + n1 ln θ1 + n2 ln θ2 + n3 ln θ3 + (α− 1)
n∑

i=1
ln ti −

(β + 1)
n∑

i=1
ln(1 + (θ1 + θ2 + θ3)tαi ). (28)

Here n1, n2 and n3 denote the number of δi = 1, δi = 2 and δi = 3, respectively. The
MLEs of the unknown parameters can be obtained by maximizing (28) with respect to the
unknown parameters. The MLEs of the unknown parameters and the associated 95% con-
fidence intervals are: α̂ = 6.6043(∓1.1967), β̂ = 0.0242(∓0.0061), θ̂1 = 0.5984(∓0.1534),
θ̂2 = 0.8245(∓0.2278) and θ̂3 = 3.0644(∓1.0014). The corresponding log-likelihood value
is -5191.931. We want to test whether there is any significant difference between the
laser treatment and the traditional treatment and it is equivalent to test (27). Under
the null hypothesis the estimates and the associated 95% confidence intervals are: α̂0 =
6.6113(∓1.1913), β̂0 = 0.0239(∓0.0058), θ̂10 = 0.8154(∓0.2256), θ̂20 = 0.8154(∓0.2256) and
θ̂30 = 3.0657(∓0.9976). The corresponding log-likelihood value is -5203.363. Based on the
test statistic −2(l0(Θ̂0|D) − l(Θ̂|D)) we reject the null hypothesis. Hence, in this case the
laser treatment has a significant different effect than the traditional treatment.

6. Conclusions

In this paper we have proposed a bivariate Weibull frailty model which is a singular
distribution. The proposed model has five parameters and the joint PDF can take variety
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of shapes. We have derived different properties and developed the classical inference of
the unknown parameters. We have used this model to analyze a dependent competing
risks data. Although we have developed the classical inference, we have not developed any
Bayesian inference of the unknown parameters. It will be interesting to develop the Bayesian
inference of the unknown parameters for this model. More work is needed in that direction.
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