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Abstract
This paper presents improved population mean estimators using auxiliary variable in

Stratified Ranked Set Sampling. We have derived the expressions for bias and mean square
errors up to the first order of approximation and shown that the proposed estimators under
optimum conditions are more efficient than other estimators taken in this paper. In an
attempt to verify the efficiencies of proposed estimators, theoretical results are supported by
empirical study and simulation study for which we have considered two populations.
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1. Introduction

In theory of sampling it is evident that suitable use of auxiliary information improves
the efficiency of the estimator. These auxiliary information may be used either at the design
phase or the estimation phase or at both phases. Cochran (1940) was the first to introduce a
ratio estimator of Population Mean using auxiliary information. Shabbir and Gupta (2007),
Koyuncu and Kadilar (2009) and Chaudhary et al. (2009) have considered the problem of
estimating population mean taking into consideration information on auxiliary variable.

When population is heterogenous stratified random sampling (SSRS) is used for better
accuracy. Several authors like Kadilar and Cingi (2003), Shabbir and Gupta (2006) and Haq
and Shabbir (2013) have proposed estimators in stratified random sampling using information
on a single auxiliary variable. Singh and Kumar (2012) have proposed improved estimators
of population mean using two auxiliary variables in stratified random sampling. Recently,
Muneer et al. (2020) have proposed family of chain exponential estimators in SSRS.

Ranked set sampling (RSS) is an improved sampling method over Simple Random Set
Sampling (SRS). McIntyre (1952) was the first to explain RSS for estimating the population
means. Takahasi and Wakimoto (1968) gave the necessary mathematical theory of RSS.
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Samawi and Muttlak (1996) suggested ratio estimators of population mean in RSS and
showed that the RSS estimators gave improved results over their SRS counterparts. Shiva
(2006) compared RSS with SRS for estimation of the unknown mean of study variable and the
ratio of study variable to auxiliary variable. He concluded that RSS gives a better estimate
for both the mean and the ratio. Singh et al. (2014) suggested a general procedure for
estimating the population mean using RSS. Bouza (2014) and Bouza et al. (2018) provided
a review of RSS, its modification, and its application.

Stratified ranked set sampling (SRSS) was first introduced by Samawi (1996) for
increasing the efficiency of estimator of population mean. Samawi and Siam (2003) have
proposed the combined and the separate ratio estimators in SRSS.

2. Sampling methodology

In ranked set sampling (RSS), we rank randomly selected units from the population
merely by observation or prior experience after which only a few of these sampled units
are measured. In RSS, k independent random sets each of size k are selected from the
population and each unit in the set is being selected with equal probability. The members
of each random set are ranked with respect to the characteristic of the auxiliary variable.
Then the smallest unit is selected from the first ordered set and the second smallest unit
is selected from the second ordered set. By this way, this procedure is continued until the
largest rank is chosen from the kth set. This cycle may be repeated r times, so rk (=n) units
have been measured during this process.

SRSS takes the following steps.

• Step 1: Select k2
h bivariate sample units randomly from the hth stratum of the popula-

tion.

• Step 2: Arrange these selected units randomly into kh sets, each of size kh.

• Step 3: The procedure of ranked set sampling (RSS) is then applied, on each of the
sets to obtain the kh sets of ranked set sample units. Here ranking is done with respect
to the auxiliary variable Xh.

• Step 4: Repeat the above steps r times for each stratum to get the desired sample of
size nh = khr.

Consider a finite population U = (U1, U2, ..., UN) based on N identifiable units with
a study variable Y and auxiliary variables X associated with each unit Ui, i = 1,2,...,N of
the population. Let the population be divided into L disjoint strata with stratum h based
on Nh, h = 1,2,...,L units.

Let (Yh[1]j, Xh(1)j), (Yh[2]j, Xh(2)j), ..., (Yh[kh]j, Xh(kh)j) be the stratified ranked set sam-
ple for jth, j=1,2,...,r cycle in hth stratum.

Let y[SRSS] = ∑L
h=1 Whyh[rss] and x[SRSS] = ∑L

h=1 Whxh[rss]

respectively be the stratified ranked set sample means corresponding to the population
means
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Y = ∑L
h=1 WhY h and X = ∑L

h=1 WhXh

of variables Y and X, where Wh = Nh

N
is the weight in stratum h.

Let yh[rss] = ∑kh
i=1

∑r
j=1

Yh[i]j
khr

and xh[rss] = ∑kh
i=1

∑r
j=1

Xh(i)j

khr

be the stratified ranked set sample means corresponding to the population means

Y h = ∑Nh
j=1

Yh[i]j
Nh

and Xh = ∑Nh
j=1

Xh(i)j

Nh

of variables Y and X in stratum h.

Let s2
yh = 1

nh−1
∑L

h=1 (Yh[i] − yh[rss])
2, s2

xh = 1
nh−1

∑L
h=1 (Xh(i) − xh[rss])2 and

sxyh = 1
nh−1

∑L
h=1 (Yh[i] − yh[rss])(Xh(i) − xh[rss])

respectively be the sample variances and covariances corresponding to the population
variances and covariances.

S2
yh = 1

Nh−1
∑L

h=1 (Yh[i] − Y h)2, S2
xh = 1

Nh−1
∑L

h=1 (Xh(i) − Xh)2

and Sxyh = 1
Nh−1

∑L
h=1 (Yh[i] − Y h)(Xh(i) − Xh) in the stratum h.

Let Cyh and Cxh respectively be the population coefficient of variation of variables Y
and X.

3. Existing estimators

The conventional separate estimator of the population mean Y under SRSS is given
by

ts =
L∑

h=1
Whyh[rss] (1)

The variance of the estimator ts is given by

V ar(ts) =
L∑

h=1
W 2

h Y
2
hU20h (2)

The classical separate ratio estimator of the population mean Y under SRSS is defined
as

ts
r =

L∑
h=1

Whyh[rss]
X

xh[rss]
(3)

The Mean Squared Error (MSE) of the estimator tc
r is given by

MSE(ts
r) =

L∑
h=1

W 2
h Y

2
h[U20h + U02h − 2U11h] (4)

The classical separate regression estimator of the population mean Y under SRSS is
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given as

ts
lr =

L∑
h=1

Whyh[rss] + β(X − xh[rss]) (5)

The Mean Squared Error (MSE) of the estimator tc
lr is given by

MSE(ts
lr) =

L∑
h=1

W 2
h [Y 2

hU20h + β2
hX

2
hU02h − 2βhY hXhU11h] (6)

where βh is the regression coefficient of Yh on Xh.

4. Proposed estimators

Motivated by Bhushan et al. (2020), we suggest some estimators of the population
mean Y using SRSS as

ts
p1 =

L∑
h=1

Whyh[rss] exp
(

α1h

(
xh[rss]

Xh

− 1
))

(7)

ts
p2 =

L∑
h=1

Whyh[rss] exp
(

α2h log xh[rss]

Xh

)
(8)

where α1h and α2h are constants such that MSE of the estimators is minimum.

The biases of the proposed estimators are

Bias(ts
p1) =

L∑
h=1

WhY h

(
α2

1h

2 U02h + α1hU11h

)
(9)

Bias(ts
p2) =

L∑
h=1

WhY h

(
(α2

2h − α2h)
2 U02h + α2hU11h

)
(10)

The mean square errors of the proposed estimators are

MSE(ts
p1) =

L∑
h=1

W 2
h Y

2
h

(
U20h + α2

1hU02h + 2α1hU11h

)
(11)

MSE(ts
p2) =

L∑
h=1

W 2
h Y

2
h

(
U20h + α2

2hU02h + 2α2hU11h

)
(12)

The minimum mean square errors at the optimum values are

MinMSE(ts
p1) =

L∑
h=1

W 2
h Y

2
h

(
U20h − U2

11h

U02h

)
(13)

MinMSE(ts
p2) =

L∑
h=1

W 2
h Y

2
h

(
U20h − U2

11h

U02h

)
(14)

Outline of the derivations are given in Appendix
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5. Some other proposed estimators

We propose modified estimators of population mean by Y under SRSS as

ts
p3 =

L∑
h=1

Wh[(1 + w1h)yh[rss] + w2h(Xh − xh[rss])]
Xh

xh[rss]
(15)

ts
p4 =

L∑
h=1

Wh[(1 + w3h)yh[rss] + w4h(Xh − xh[rss])] exp
(

Xh − xh[rss]

Xh + xh[rss]

)
(16)

ts
p5 =

L∑
h=1

Wh

[
w5hyh[rss] + w6h exp

(
Xh − xh[rss]

Xh + xh[rss]

)(
1 + log

xh[rss]

Xh

)]
(17)

ts
p6 =

L∑
h=1

Wh

[
w7hyh[rss] + w8h

(
Xh

xh[rss]

)
exp

(
Xh − xh[rss]

Xh + xh[rss]

)]
(18)

The biases of the proposed estimators are

bias(ts
p3) =

L∑
h=1

Wh[Y hw1h + Y h(U02h + w1hU02h + w2hδU02h − U11 − w1hU11h)] (19)

bias(ts
p4) =

L∑
h=1

Wh

[
Y hw3h + Y h

(3
8U02h + 3

8w3hU02h + 1
2w4hδhU02h − 1

2U11h − 1
2w3hU11h

)]
(20)

Bias(ts
p5) =

L∑
h=1

Wh

[
(w5h − 1)Y h + w6h

(
1 − 5

8U02h

)]
(21)

Bias(ts
p6) =

L∑
h=1

Wh

[
(w7h − 1)Y h + w8h

(
1 + 15

8 U02h

)]
(22)

The mean square errors of the proposed estimators are

MSE(ts
p3) =

L∑
h=1

W 2
h Y

2
h(A1h + w2

1hB1h + w2
2hC1h + 2w1hD1h − 2w2hE1h − 2w1hw2hF1h) (23)

MSE(ts
p4) =

L∑
h=1

W 2
h Y

2
h(A2h + w2

3hB2h + w2
4hC2h + 2w3hD2h − 2w4hE2h − 2w3hw4hF2h) (24)

The minimum mean square errors at the optimum values are

MinMSE(ts
p3) =

L∑
h=1

W 2
h Y

2
h

(
A1h + C1hD2

1h + B1hE2
1h − 2D1hE1hF1h

F 2
1h − B1hC1h

)
(25)

MinMSE(ts
p4) =

L∑
h=1

W 2
h Y

2
h

(
A2h + C2hD2

2h + B2hE2
2h − 2D2hE2hF2h

F 2
2h − B2hC2h

)
(26)

Outline of the derivations are given in Appendix
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5.1. Case 1: Sum of weights is unity (w5 + w6 = 1 and w7 + w8 = 1)

The mean square errors of the proposed estimators are

MSE(ts
p5) =

L∑
h=1

W 2
h Y

2
h(U20h + w2

6hU02h − 2w6hV11h) (27)

MSE(tc
p6) =

L∑
h=1

W 2
h Y

2
h(U20h + w2

8hU02h − 2w8hU11h) (28)

The minimum mean square errors at the optimum values are

MinMSE(ts
p5) =

L∑
h=1

W 2
h Y

2
h

(
U20h − U2

11h

U02h

)
(29)

MinMSE(ts
p6) =

L∑
h=1

W 2
h Y

2
h

(
U20h − U2

11h

U02h

)
(30)

Outline of the derivations are given in Appendix

5.2. Case 2: Sum of weights is flexible (w5 + w6 ̸= 1 and w7 + w8 ̸= 1)

The mean square errors of the proposed estimators are

MSE(ts
p5) =

L∑
h=1

W 2
h [C3h + w2

5hA3h + w2
6hB3h − 2w5hC3h − 2w6hD3h + 2w5hw6hE3h] (31)

MSE(ts
p6) =

L∑
h=1

W 2
h [C4h + w2

7hA4h + w2
8hB4h − 2w7hC4h − 2w8hD4h + 2w7hw8hE4h] (32)

The minimum mean square errors at the optimum values are

MinMSE(ts
p5) =

L∑
h=1

W 2
h

[
C3h + B3hC2

3h + A3hD2
3h − 2C3hD3hE3h

E2
3h − A3hB3h

]
(33)

MinMSE(ts
p6) =

L∑
h=1

W 2
h

[
C4h + B4hC2

4h + A4hD2
4h − 2C4hD4hE4h

E2
4h − A4hB4h

]
(34)

Outline of the derivations are given in Appendix

6. Empirical study

In this section, we compare the performance of the proposed estimators with the
other estimators considered in this paper. For comparison, we have taken a stratified pop-
ulation with 3 strata of sizes 20, 30, 17 respectively from the Singh (2003) (page no. 1119
(Appendix)). Where y is production (study variable) in metric tons and x is area (auxiliary
variable) in hectares. For the above population, the parameters are given as below: For total
population, N=67, Y =72247.6, X=26438
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Table 1

Stratum 1 Stratum 2 Stratum 3
N1=20 N2=30 N3=17
n1=12 n2=18 n3=9

W1=0.29851 W2=0.44776 W3=0.25373
X1=6801.25 X2=11025.3 X3=82464.1
Y 1=17511.7 Y 2=18937.4 Y 3=377960.5

S2
x1=175539558 S2

x2=595679198.4 S2
x3=20255478994

S2
y1=1366895911 S2

y2=2421559069 S2
y3=687956456787

Sy1x1=489224338 Sy2x2=1174423304 Sy3x3=46735680920
Cx1=1.94804 Cx2=2.21368 Cx3=1.72586

D2
yh1[i]=0.322701311 D2

yh2[i]= 0.284750439 D2
yh3[i]= 0.352112122

D2
xh1[i]=0.277106302 D2

xh2[i]= 0.191404888 D2
xh3[i]= 0.201142044

Dyxh1[i]=0.298636371 Dyxh2[i]= 0.227030958 Dyxh3[i]= 0.01248969
R1=2.57477 R2=1.71763 R3=4.58333

From this population we took ranked set samples of sizes k1=4 , k2=6 and k3=3 from
the stratum 1st , 2nd and 3rd respectively. Further each ranked set sample from each stratum
were repeated with number of cycles r=3. Hence sample size of stratifird ranked set sample
is equivalent to nh = khr.

Table 2: The MSE and PRE of the estimators

Estimators MSE Bias PRE
ts 1759632517 0.0000 100.0000
ts
r 1204001473 17677.2090 146.1400

ts
lr 11702271788 0.0000 150.3600

ts
p1 11702271788 -2020.0767 150.3600

ts
p2 11702271788 321.8933 150.3600

ts
p3 811711525 -18442.3400 216.7800

ts
p4 545563651 -27933.6290 281.5500

ts
p5 425689034 11761.6920 413.3600

ts
p6 315596791 -8835.3558 557.5500

The formula for Percent Relative Efficiency (PRE) is
PRE (estimators) = MSE(ts)

MSE(estimator) × 100

From Table 2, it is observed that

• The estimators ts
p1 and ts

p2 are almost equally efficient estimators as separate linear
regression estimators under SRSS as these estimators show the MSE almost equal to
the MSE of the combined linear regression estimator (ts

lr). These two estimators ts
p1

and ts
p2 are more efficient estimators than that the other competitive estimators.

• ts
p3 ,ts

p4 , ts
p5 and ts

p6 are more efficient than other estimators used in this paper. It is
observed that ts

p3 ,ts
p4 , ts

p5 and ts
p6 are more efficient than convention, ratio estimator

and linear regression estimator under SRSS.
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• From Table 2, we can conclude that the proposed estimators perform better than
existing estimators as our proposed estimators have greater PRE.

7. Simulation study

To generalize the results of the numerical study, we have conducted simulation study
over two hypothetically generated normal populations. The simulation procedure is ex-
plained in the following points:

• We generated bivariate random observations of size N=600 units from a bivariate
normal distribution with parameters µy =20, σy =15, and µx=15, σx=10 and possibly
chosen values of ρyx= 0.6, 0.7, 0.8, 0.9.

• Similarly, generate the population-2 with the parameters µy =120, σy =25, and µx=100,
σx=20 .

• The population generated above is divided into 3 equal strata and a stratified ranked
set sample of size 12 units with number of cycles 4 and set size 3 is drawn from each
stratum.

• Compute the required statistics.

• Iterate the above steps 10,000 times to calculate the MSE and PRE of various combined
estimators using the following expression.

MSE(T ) = 1
10000

10000∑
i=1

(Ti − Y )2 (35)

PRE = V ar(tc)
MSE(T ) × 100 (36)

The MSE and PRE of the separate estimators are calculated using (35) and (36) and
the results are reported for various values of correlation coefficients in Table 3.

Table 3 also shows that our proposed estimators perform better than the existing
estimators. The MSE of the estimators decreases when the correlation and sample size
increases for the population 1 and 2.

8. Conclusions

In this article we have proposed estimators for the population mean in stratified
Ranked set sampling using the information of auxiliary variable. The expressions for Bias
and MSE of the suggested estimators have been derived up to the first order of approxima-
tion. Empirical approach and simulation study for comparing the efficiency of the proposed
estimators with other estimators have been used. The results have been shown the Tables
2 and 3. The Tables show that the proposed estimators turn out to be more efficient as
compared to the other estimators for both populations. The proposed estimators are found
to be rather improved in terms of lesser MSE and greater PRE as compared to the existing
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Table 3: The MSE and PRE of the estimators

ρyx Estimators Population1 Population2
MSE Bias PRE MSE Bias PRE

0.9 ts 0.007284 0.000000 100.000000 0.066100 0.000000 100.000000
ts
r 0.006384 -0.000207 114.095495 0.043496 0.002922 151.969606

ts
lr 0.004961 0.000000 146.827826 0.042869 0.000000 154.189069

ts
p1 0.004945 -0.000239 147.285914 0.042656 -0.001315 154.960149

ts
p2 0.004943 -0.000279 147.352653 0.042767 -0.002903 154.558070

ts
p3 0.003387 -0.000311 215.050896 0.034651 -0.001423 190.761305

ts
p4 0.003339 0.000190 218.094473 0.024678 0.001060 267.848401

ts
p5 0.003245 -0.000178 224.414416 0.020015 -0.001060 330.255808

ts
p6 0.003090 -0.000426 235.710841 0.019309 -0.002208 342.320400

0.8 ts 0.006984 0.000000 100.000000 0.090219 0.000000 100.000000
ts
r 0.006809 0.000672 102.560246 0.070926 0.001426 127.201411

ts
lr 0.004670 0.000000 149.540410 0.059455 0.000000 151.741804

ts
p1 0.004634 -0.000181 150.699420 0.059354 -0.004426 152.000269

ts
p2 0.004687 -0.000102 148.992987 0.059456 0.004611 151.739251

ts
p3 0.004174 -0.000314 167.327264 0.043999 -0.008287 205.046909

ts
p4 0.003587 0.000145 194.697844 0.030173 0.001628 299.004742

ts
p5 0.002991 -0.000314 233.454669 0.026272 -0.001067 343.397088

ts
p6 0.002657 -0.000537 262.768911 0.024469 -0.002098 368.707344

0.7 ts 0.009693 0.000000 100.000000 0.074859 0.000000 100.000000
ts
r 0.006455 0.000136 150.158004 0.061038 0.002001 122.642758

ts
lr 0.005928 0.000000 163.507324 0.058294 0.000000 128.416597

ts
p1 0.005934 -0.000124 163.345039 0.058345 0.002856 128.303578

ts
p2 0.005976 0.000362 162.191669 0.058568 0.001072 127.814362

ts
p3 0.005562 -0.000330 174.267715 0.040771 -0.007203 183.608732

ts
p4 0.005109 0.000123 189.710173 0.038156 0.001765 196.189650

ts
p5 0.003267 -0.000429 296.645336 0.036670 -0.001165 204.142055

ts
p6 0.002752 -0.000625 352.113929 0.020043 -0.002084 373.482308

0.6 ts 0.008782 0.000000 100.000000 0.091577 0.000000 100.000000
ts
r 0.008134 0.000191 107.954650 0.086847 0.002652 105.447165

ts
lr 0.007273 0.000000 120.745030 0.078933 0.000000 116.018800

ts
p1 0.007145 -0.000832 122.898593 0.078557 0.001270 116.573953

ts
p2 0.007108 0.000521 123.537736 0.078345 0.001939 116.889576

ts
p3 0.005597 -0.000356 156.880083 0.030133 -0.004797 303.904598

ts
p4 0.003695 0.000945 237.630218 0.023471 0.002048 390.162195

ts
p5 0.002241 -0.000552 391.795672 0.016980 -0.009593 539.310974

ts
p6 0.001342 -0.000719 654.023741 0.013250 -0.001763 691.136804

estimators in both real and simulated data sets. It is also observed from the simulation that
the MSE of the proposed estimators decreases as the values of the correlation coefficient in-
crease whereas the PRE of the suggested estimators increases as the values of the correlation
coefficients increase. Based on our empirical study and simulation study, we can conclude
that our proposed estimators can be preferred over the other estimators taken in this paper
in several real situations.
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APPENDIX

This section consider the proof of the Theorems of Section 4 & 5.
To derive the MSE of the proposed estimators, the following notations will be used through-
out the paper.

yh[srss] = Yh(1 + ϵ0h)

xh[srss] = Xh(1 + ϵ1h)

such that E(ϵ0h)= E(ϵ1h)= 0

E(ϵ2
0h) = (ηhC2

yh − D2
yh[i]) = U20h

E(ϵ2
1h) = (ηhC2

xh − D2
xh[i]) = U02h

E(ϵ0hϵ1h) = (ηhCxyh − Dxyh[i]) = U11h

where ηh = 1
khr

, Cxh = Sxh

X
,Cyh = Syh

Y
, D2

xh[i] = 1
k2

h
rX

2
∑kh

i=1 (Xh(i) − Xh)2 ,

D2
yh[i] = 1

k2
h

rY
2
∑kh

i=1 (Y h(i) − Y h)2 and Dxyh[i] = 1
k2

h
rY X

∑kh
i=1 (Y h(i) − Y h)(Xh(i) − Xh)

where Y h[i] and Xh(i) are the means of the ith is ranked set and are given by

Y h[i] = 1
r

r∑
j=1

Yh[i]j, Xh(i) = 1
r

r∑
j=1

Xh(i)j

Now, consider the estimator

ts
p1 =

L∑
h=1

Whyh[rss] exp
(

α1h

(
xh[rss]

Xh

− 1
))

Using the above notations we have

ts
p1 =

L∑
h=1

WhY h(1 + ϵ0h) exp
(

α1h

(
Xh(1 + ϵ1)

Xh

− 1
))

(37)

The bias of the estimator ts
p1 is given by

Bias(ts
p1) =

L∑
h=1

WhY h

(
α2

1h

2 U02h + α1hU11h

)
(38)



32 RAJESH SINGH AND ANAMIKA KUMARI [Vol. 22, No. 1

The MSE of the estimator ts
p1 is given by

MSE(ts
p1) =

L∑
h=1

W 2
h Y

2
h

(
U20h + α2

1hU02h + 2α1hU11h

)
(39)

To find out the minimum MSE for ts
p1, we partially differentiate equation (39) w.r.t. α1h and

equating to zero we get
α∗

1h = −U11h

U02h

(40)

Putting the optimum value of α1h in the equation (39), we get a minimum MSE of ts
p1 as

MinMSE(ts
p1) =

L∑
h=1

W 2
h Y

2
h

(
U20h − U2

11h

U02h

)
(41)

Similarly, we can obtain the optimum values of constants and minimum MSEs of other
proposed estimators which are given as

ts
p2 =

L∑
h=1

WhY h(1 + ϵ0h) exp
(

α2h log Xh(1 + ϵ1h)
Xh

)
(42)

The bias of the estimator ts
p2 is given by

Bias(ts
p2) =

L∑
h=1

WhY h

(
(α2

2h − α2h)
2 U02h + α2hU11h

)
(43)

The MSE of the estimator ts
p2 is given by

MSE(ts
p2) =

L∑
h=1

W 2
h Y

2
h

(
U20h + α2

2hU02h + 2α2hU11h

)
(44)

To find out the minimum MSE for ts
p2, we partially differentiate equation (44) w.r.t. α2h and

equating to zero we get
α∗

2h = −U11h

U02h

(45)

Putting the optimum value of α2h in the equation (44), we get a minimum MSE of ts
p2 as

MinMSE(ts
p2) =

L∑
h=1

W 2
h Y

2
h

(
U20h − U2

11h

U02h

)
(46)

ts
p3 =

L∑
h=1

Wh[(1 + w1h)Y h(1 + ϵ0h) + w2hϵ1h](1 − ϵ1h + ϵ2
1h) (47)

ts
p3 − Y =

L∑
h=1

WhY h[(ϵ0h + w1h + ϵ0hw1h − ϵ1h − ϵ1hw1h − ϵ0hϵ1h − ϵ0hϵ1hw1h + ϵ2
1h + w1hϵ2

1h)

− w2hδ(ϵ1h − ϵ2
1h)] (48)
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The bias of the estimator ts
p3 is given by

Bias(ts
p3) =

L∑
h=1

Wh[Y hw1h + Y h(U02h + w1hU02h + w2hδU02h − U11 − w1hU11h)] (49)

The MSE of the estimator ts
p3 is given by

MSE(ts
p3) =

L∑
h=1

W 2
h Y

2
h[U20h + U02h − 2U11h + w2

1h(1 + U20h + 3U02h − 4U11h) + w2
2hδ2

hU02h

+ 2w1h(U20h + 2U02h − 3U11h) − 2w2hδ(U11h − U02h) − 2w1hw2hδ(U11h − 2U02h)] (50)

MSE(ts
p3) =

L∑
h=1

W 2
h Y

2
h(A1h + w2

1hB1h + w2
2hC1h + 2w1hD1h − 2w2hE1h − 2w1hw2hF1h) (51)

where
A1h = U20h + U02h − 2U11h

B1h = 1 + U20h + 3U02h − 4U11h

C1h = δ2U02h, δh = Xh

Y h

D1h = U20h + 2U02h − 3U11h

E1h = δh(U02h − U11h)
F1h = δh(U02h − 2U11h)

To find out the minimum MSE for ts
p3, we partially differentiate equation (51) w.r.t. w1h

and w2h and equating to zero we get

w∗
1h = C1hD1h − E1hF1h

F 2
1h − B1hC1h

(52)

w∗
2h = D1hF1h − B1hC1h

F 2
1h − B1hC1h

(53)

Putting the optimum values of w1h and w2h in the equation (51), we get a minimum MSE
of ts

p3 as

MinMSE(ts
p3) =

L∑
h=1

W 2
h Y

2
h

(
A1h + C1hD2

1h + B1hE2
1h − 2D1hE1hF1h

F 2
1h − B1hC1h

)
(54)

ts
p4 =

L∑
h=1

Wh[(1 + w3h)Y h(1 + ϵ0h) + w4hϵ1h]
(

1 − 3
2ϵ1h + 15

8 ϵ2
1h

)
(55)

ts
p4−Y =

L∑
h=1

WhY h[(ϵ0h+W3h+ϵ0hw3h−1
2ϵ1h−1

2ϵ1hw3h−1
2ϵ0hϵ1h−1

2ϵ0hϵ1hw3h+3
8ϵ2

1h+3
8w3hϵ2

1)

− w4hδh(ϵ1h − ϵ2
1h)] (56)
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The bias of the estimator ts
p4 is given by

Bias(ts
p4) =

L∑
h=1

Wh

[
Y hw3h + Y h

(3
8U02h + 3

8w3hU02h + 1
2w4hδhU02h − 1

2U11h − 1
2w3hU11h

)]
(57)

The MSE of the estimator ts
p4 is given by

MSE(ts
p4) =

L∑
h=1

W 2
h Y

2
h(U20h + 1

4U02h −U11 +w2
3h(1+U20h +U02h −2U11h)+w2

4hδ2
hU02h +2w3h

(U20h + 5
4U02h − 3

2U11h) − 2w4hδh(U11h − 1
2U02h) − 2w3hw4hδ(U11h − U02h)) (58)

MSE(ts
p4) =

L∑
h=1

W 2
h Y

2
h(A2h + w2

3hB2h + w2
4hC2h + 2w3hD2h − 2w4hE2h − 2w3hw4hF2h) (59)

where
A2h = U20h + 1

4U02h − U11h

B2h = 1 + U20h + U02h − 2U11h

C2h = δ2U02h, δh = Xh

Y h

D2h = U20h + 5
4U02h − 3

2U11h

E2h = δ
(

U02h − 1
2U11h

)
F2h = δ(U02h − U11h)

To find out the minimum MSE for ts
p4, we partially differentiate equation (59) w.r.t. w3h

and w4h and equating to zero we get

w∗
3h = C2hD2h − E2hF2h

F 2
2h − B2hC2h

(60)

w∗
4h = D2hF2h − B2hC2h

F 2
2h − B2hC2h

(61)

Putting the optimum values of w3h and w4h in the equation (59), we get a minimum MSE
of ts

p4 as

MinMSE(ts
p4) =

L∑
h=1

W 2
h Y

2
h

(
A2h + C2hD2

2h + B2hE2
2h − 2D2hE2hF2h

F 2
2h − B2hC2h

)
(62)

ts
p5 =

L∑
h=1

Wh

[
w5hY h(1 + ϵ0h) + w6h exp

( −ϵ1h

2 + ϵ1h

)
(1 + log(1 + ϵ1h))

]
(63)

ts
p5 − Y =

L∑
h=1

Wh

[
(w5h − 1)Y h + w5hY hϵ0h + w6h

(
1 + ϵ1h

2 − 5
8ϵ2

1h

)]
(64)
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Bias(ts
p5) =

L∑
h=1

Wh

[
(w5h − 1)Y h + w6h

(
1 − 5

8U02h

)]
(65)

ts
p6 =

L∑
h=1

Wh

[
w7hY h(1 + ϵ0h) + w8h exp

( −ϵ1h

2 + ϵ1h

)
(1 + ϵ1h)−1

]
(66)

ts
p6 − Y =

L∑
h=1

Wh

[
(w7h − 1)Y h + w7hY hϵ0h + w8h

(
1 − 3

2ϵ1h − 15
8 ϵ2

1h

)]
(67)

Bias(ts
p6) =

L∑
h=1

Wh

[
(w7h − 1)Y h + w8h

(
1 + 15

8 U02h

)]
(68)

CASE 1: SUM OF WEIGHTS IS UNITY (w5 + w6 = 1 and w7 + w8 = 1)

The MSE of the estimator ts
p5 is given by

MSE(ts
p5) =

L∑
h=1

W 2
h Y

2
h(U20h + w2

6hU02h − 2w6hV11h) (69)

To find out the minimum MSE for ts
p5 , we partially differentiate equation (69) w.r.t. w6h,

and equating to zero we get
w∗

6h = V11h

V02h

(70)

Putting the optimum value of w6h in the equation (69), we get a minimum MSE of ts
p5 as

MinMSE(ts
p5) =

L∑
h=1

W 2
h Y

2
h

(
U20h − U2

11h

U02h

)
(71)

The MSE of the estimator ts
p6 is given by

MSE(tc
p6) =

L∑
h=1

W 2
h Y

2
h(U20h + w2

8hU02h − 2w8hU11h) (72)

To find out the minimum MSE for ts
p6 , we partially differentiate equation (72) w.r.t. w8h,

and equating to zero we get
w∗

8h = U11h

U02h

(73)

Putting the optimum value of w8h in the equation (72), we get a minimum MSE of ts
p6 as

MinMSE(ts
p6) =

L∑
h=1

W 2
h Y

2
h

(
U20h − U2

11h

U02h

)
(74)

CASE 2: SUM OF WEIGHTS IS FLEXIBLE (w5 + w6 ̸= 1 and w7 + w8 ̸= 1)

ts
p5 − Y =

L∑
h=1

Wh

[
(w5h − 1)Y h + w5hY hϵ0h + w6h

(
1 + ϵ1h

2 − 5
8ϵ2

1h

)]
(75)
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Squaring on both sides we get

(ts
p5 − Y )2 =

L∑
h=1

W 2
h

[
Y

2
h + Y

2
hw2

5h(1 + ϵ2
0h) + w2

6h(1 − ϵ2
1h) − 2w5hY

2
h − 2w6hY h

(
1 − 5

8ϵ2
1h

)
+ 2w5hw6h

(
1 − 5

8ϵ2
1h + 1

2ϵ0hϵ1h

)]
(76)

Taking expectations on both sides we get

MSE(ts
p5) =

L∑
h=1

W 2
h

[
Y

2
h +Y

2
hw2

5h(1+U20h)+w2
6h(1−U02h)−2w5hY

2
h −2w6hY h

(
1− 5

8U02h

)
+ 2w5hw6h

(
1 − 5

8U02h + 1
2U11h

)]
(77)

MSE(ts
p5) =

L∑
h=1

W 2
h [C3h + w2

5hA3h + w2
6hB3h − 2w5hC3h − 2w6hD3h + 2w5hw6hE3h] (78)

where
A3h = Y

2
h(1 + U20h)

B3h = 1 − U02h

C3h = Y
2
h

D3h = Y h

(
1 − 5

8U02h

)
E3h = Y h

(
1 − 5

8U02h + 1
2U11h

)
To find out the minimum MSE for the estimator ts

p5 , we partially differentiate equation (78)
w.r.t. w5h and w6h and equating to zero we get

w∗
5h = B3hC3h − D3hE3h

A3hB3h − E2
3h

(79)

w∗
6h = A3hD3h − C3hE3h

A3hB3h − E2
3h

(80)

Putting the optimum values of w5h and w6h in the equation (78), we get a minimum MSE
of ts

p5 as

MinMSE(ts
p5) =

L∑
h=1

W 2
h

[
C3h + B3hC2

3h + A3hD2
3h − 2C3hD3hE3h

E2
3h − A3hB3h

]
(81)

tc
p6 − Y =

L∑
h=1

Wh

[
(w7h − 1)Y h + w7hY hϵ0h + w8h

(
1 − 3

2ϵ1h + 15
8 ϵ2

1h

)]
(82)

Squaring on both sides we get
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(ts
p6 − Y )2 =

L∑
h=1

W 2
h

[
Y

2
h + Y

2
hw2

7h(1 + ϵ2
0h) + w2

8h(1 + 6ϵ2
1h) − 2w7hY

2
h − 2w8hY h

(
1 − 15

8 ϵ2
1h

)
+ 2w7hw8h

(
1 + 15

8 ϵ2
1h − 3

2ϵ0hϵ1h

)]
(83)

Taking expectations on both sides we get

MSE(ts
p6) =

L∑
h=1

W 2
h

[
Y

2
h+Y

2
hw2

7h(1+U20h)+w2
8h(1+6U02h)−2w7hY

2
h−2w8hY h

(
1+ 15

8 U02h

)
+ 2w7hw8h

(
1 + 15

8 U02h − 3
2U11h

)]
(84)

MSE(ts
p6) =

L∑
h=1

W 2
h [C4h + w2

7hA4h + w2
8hB4h − 2w7hC4h − 2w8hD4h + 2w7hw8hE4h] (85)

where
A4h = Y

2
h(1 + U20h)

B4h = 1 + 6U02h

C4h = Y
2
h

D4h = Y h

(
1 + 15

8 U02h

)

E4h = Y h

(
1 + 15

8 U02h − 3
2U11h

)
To find out the minimum MSE for the estimator ts

p6, we partially differentiate equation (85)
w.r.t. w7h and w8h and equating to zero we get

w∗
7h = B4hC4h − D4hE4h

A4hB4h − E2
4h

(86)

w∗
8h = A4hD4h − C4hE4h

A4hB4h − E2
4h

(87)

Putting the optimum values of w7h and w8h in the equation (85), we get a minimum MSE
of ts

p6 as

MinMSE(ts
p6) =

L∑
h=1

W 2
h

[
C4h + B4hC2

4h + A4hD2
4h − 2C4hD4hE4h

E2
4h − A4hB4h

]
(88)
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