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Abstract

This paper presents improved population mean estimators using auxiliary variable in
Stratified Ranked Set Sampling. We have derived the expressions for bias and mean square
errors up to the first order of approximation and shown that the proposed estimators under
optimum conditions are more efficient than other estimators taken in this paper. In an
attempt to verify the efficiencies of proposed estimators, theoretical results are supported by
empirical study and simulation study for which we have considered two populations.
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1. Introduction

In theory of sampling it is evident that suitable use of auxiliary information improves
the efficiency of the estimator. These auxiliary information may be used either at the design
phase or the estimation phase or at both phases. Cochran (1940) was the first to introduce a
ratio estimator of Population Mean using auxiliary information. Shabbir and Gupta (2007),
Koyuncu and Kadilar (2009) and Chaudhary et al. (2009) have considered the problem of
estimating population mean taking into consideration information on auxiliary variable.

When population is heterogenous stratified random sampling (SSRS) is used for better
accuracy. Several authors like Kadilar and Cingi (2003), Shabbir and Gupta (2006) and Haq
and Shabbir (2013) have proposed estimators in stratified random sampling using information
on a single auxiliary variable. Singh and Kumar (2012) have proposed improved estimators
of population mean using two auxiliary variables in stratified random sampling. Recently,
Muneer et al. (2020) have proposed family of chain exponential estimators in SSRS.

Ranked set sampling (RSS) is an improved sampling method over Simple Random Set
Sampling (SRS). Mclntyre (1952) was the first to explain RSS for estimating the population
means. Takahasi and Wakimoto (1968) gave the necessary mathematical theory of RSS.
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Samawi and Muttlak (1996) suggested ratio estimators of population mean in RSS and
showed that the RSS estimators gave improved results over their SRS counterparts. Shiva
(2006) compared RSS with SRS for estimation of the unknown mean of study variable and the
ratio of study variable to auxiliary variable. He concluded that RSS gives a better estimate
for both the mean and the ratio. Singh et al. (2014) suggested a general procedure for
estimating the population mean using RSS. Bouza (2014) and Bouza et al. (2018) provided
a review of RSS, its modification, and its application.

Stratified ranked set sampling (SRSS) was first introduced by Samawi (1996) for
increasing the efficiency of estimator of population mean. Samawi and Siam (2003) have
proposed the combined and the separate ratio estimators in SRSS.

2. Sampling methodology

In ranked set sampling (RSS), we rank randomly selected units from the population
merely by observation or prior experience after which only a few of these sampled units
are measured. In RSS, k independent random sets each of size k are selected from the
population and each unit in the set is being selected with equal probability. The members
of each random set are ranked with respect to the characteristic of the auxiliary variable.
Then the smallest unit is selected from the first ordered set and the second smallest unit
is selected from the second ordered set. By this way, this procedure is continued until the
largest rank is chosen from the k' set. This cycle may be repeated r times, so rk (=n) units
have been measured during this process.

SRSS takes the following steps.

o Step 1: Select k? bivariate sample units randomly from the h" stratum of the popula-
tion.

o Step 2: Arrange these selected units randomly into kj, sets, each of size k.

» Step 3: The procedure of ranked set sampling (RSS) is then applied, on each of the
sets to obtain the kj, sets of ranked set sample units. Here ranking is done with respect
to the auxiliary variable Xj,.

o Step 4: Repeat the above steps r times for each stratum to get the desired sample of
size ny, = kyr.

Consider a finite population U = (Uy, Us, ..., Uy) based on N identifiable units with
a study variable Y and auxiliary variables X associated with each unit U;, i = 1,2,...,N of
the population. Let the population be divided into L disjoint strata with stratum A based
on Ny, h = 1,2,...,L units.

Let (Yapgj: Xna);), (Yaiis Xn@)j)s s Yapenljs Xn(en);) be the stratified ranked set sam-
ple for j*. j=1,2,...,r cycle in h*" stratum.

Let Yispss) = S, Winprss) a0d T(srss) = SF 1t WaThjrss)

respectively be the stratified ranked set sample means corresponding to the population
means
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? = Zﬁ:l Wh?h and y = Zﬁ:l Whyh
of variables Y and X, where W), = % is the weight in stratum h.

— _ <k r Yh[s kp r Xn)j
Let Yhlrss] =22 J=1 Tepr and Thirss) = Doim1 G=1 "Rpr

be the stratified ranked set sample means corresponding to the population means

o <Ny Yau N Xntiys
=21 N, * and Xh—ijl ]V(h)]

of variables Y and X in stratum h.
_ 2 _ 2
Let 53, = 7 Sict (Yai) = Tnjrss) s Son = 77 et (Xn(s) = Taprss))” and

Szyh = ﬁ 2}111:1 (Yh[z} - gh[rss])(Xh(i) - Th[rss])

respectively be the sample variances and covariances corresponding to the population
variances and covariances.

— 2 = \2
5§h = ﬁ ZiLz:1 (Yh[z‘] = Yy), Sg%h = ﬁ Eﬁ:l (Xh(i) — Xn)
and Syyn = v Soh—1 (Ya — Yr)(Xae) — X)) in the stratum h.
Let Cy;, and th respectively be the population coefficient of variation of variables Y
and X.
3. Existing estimators

The conventional separate estimator of the population mean Y under SRSS is given
by

L
t° = Z Whyh[rss} (1)
h=1

The variance of the estimator t° is given by

h=1

The classical separate ratio estimator of the population mean Y under SRSS is defined
as

X
t = Z Whyh[rss]— (3)

Lhrss)

The Mean Squared Error (MSE) of the estimator t¢ is given by

MSE(t)) Z Wth Uson + Ugan — 2Un14] (4)
h=1

The classical separate regression estimator of the population mean Y under SRSS is
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given as

tlr Z Whyh [rss] + B( [TSS]> (5)

h=1
The Mean Squared Error (MSE) of the estimator #f, is given by

~

MSE(t;,) = Z YhU20h + BhX Uoon — 260Y 1 X nUi1] (6)

where 3, is the regression coefficient of Y}, on Xj.

4. Proposed estimators

Motivated by Bhushan et al. (2020), we suggest some estimators of the population
mean Y using SRSS as

= T T8SsS
t;l = Z Whyh[ms] exp (alh (i} — 1)) (7)

h=1 h
p2 - Z Whyh[rss €Xp | Qap IOg h[TSS] (8)
h=1 Xh

where oy, and oy, are constants such that MSE of the estimators is minimum.

The biases of the proposed estimators are

2

(0%
Bias(t;,) Z WiYh <21hU02h + Oéthnh) (9)

s (Oégh — Quap)
Bias( tpo Z W,Y s, onzh + aopUnip, (10)

h=1
The mean square errors of the proposed estimators are

MSE(ts,) Z WY (Ua0n + 03, Usen + 201, U111) (11)
h=1
MSE( ts Z Whyh (Uzoh, + Oé2hU02h + QOéghUuh) (12)

The minimum mean square errors at the optimum values are

U2
MinMSE(t,) Z W2y, <U20h - m) (13)
Uoz2n
s o U121h
MinMSE(t, Z W2, | Uson o (14)
02h

Outline of the derivations are given in Appendlx
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5. Some other proposed estimators

We propose modified estimators of population mean by Y under SRSS as

L
s — Xh
tpS = Z Wh[(l + wlh)yh[rss] + w2h<Xh - xh[rss])]m (15>
L N —
_ v _ Xp — Lhrss)
t?, = Wil(1 + Xy — rS8 = |, = 16
p4 hz_:l R[(1+ W31 )Ypfrss] Wan(Xn — Thfrss])] €xp (Xh T Thjres) (16)
Xh - mh[rss]) ( h[rss]
= > Wi |WsnYpjpss] + Wen €XP ( + log 17
p5 hzjl " [ ohIhirss] o Xh +xh[rss] Xh ( )
L — _
_ Xy Xp — Thlrss]
o, = Wi, |w rss] T Wsh | = exp | =—— 18
70 hz=:1 h[ hires] " <xh[r881> P (Xh"‘%[rss} (8)
The biases of the proposed estimators are
bias(tys) Z WilY pwin + Y 1 (Uoon + winUoon + w2, 6Ugon — Uri — wipUip)] (19)
h=1
i L 3 3 1 1 1
bias( bpa Z Wi, [th:Sh + Y, (8U02h + 8w3hU02h + 2w4h5hUo2h *Unh 2w3hU11h>}
h=1
(20)
L — 5
Bias(t,s) = Z [ wsp, — )Y + wep, (1 — 8U02h)] (21)
. 15
Bias( b6 Z Wi [( [ wrn — )Y + wsp, (1 + 8U02h>] (22)

The mean square errors of the proposed estimators are

MSE ts Z Wth Alh —I— wlhBlh —I— ’LUthlh —I— 2w1hD1h — QthElh — 2w1hw2hF1h) (23)
h=1

MSE ts Z Wh Yh AQh + w3hBQh + w4h02h + QlU3hD2h — 2w4hE2h — 2’LU3hlU4hF2h> (24)

The minimum mean square errors at the optimum values are

CinD3?, + Bi,E? — 2D, Eq L F
MinMSE(t;;) ZWth (Alh D1y 21h 1h 1h 1 1h> (25)
h=1 Flh—Bthm
CopD? BopE2, — 2Dop, Eop, F.
MinMSE(t; ZWth (A% 2nDap + 22h 2h 2h2h 2h> (26)
F3, — BapCoy,

Outline of the derivations are given in Appendix
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5.1. Case 1: Sum of weights is unity (w5 + wg = 1 and w; + wg = 1)

The mean square errors of the proposed estimators are

MSE ts Z Wh U20h + w6hU02h - 2w6hvllh> (27>
MSE(t Z WEY o (Uson + w2, Uoon — 2wspUsip) (28)
h=1

The minimum mean square errors at the optimum values are

U
MinMSE(t Z WEYs <U20h - m) (29)
Uo2n
_ Ut
MZ”MSE Z Wh Yh UQQh (30)
h=1 U02h

Outline of the derivations are given in Appendix

5.2. Case 2: Sum of weights is flexible (w5 + ws # 1 and w7 + wg # 1)

The mean square errors of the proposed estimators are

~

MSE ts Z Cgh + w5hA3h + wGthh 2w5hC’3h — 2w6hD3h + 2w5hw6hE3h] (31)

MSE(t Z WE[Cun + w2y Ay, + w3, Ban — 2winCan — 2ws Dapy + 2wppwsn Ea]  (32)

The minimum mean square errors at the optimum values are

| BanC%, + As, D3, — 2Cs;, Dy, B3|
MinMSE(t ZWh Cap + —2 5+ 23h 3h 3h D3n Lo (33)

I E3y, — AsnBsn ]

| BinC%, + A D%, — 2C1,DanEgp |
MinMSE(t ZWh Oy + =20 ah T 24h 4h ahan Fogn (34)

I Ef, — AanBap |

Outline of the derivations are given in Appendix

6. Empirical study

In this section, we compare the performance of the proposed estimators with the
other estimators considered in this paper. For comparison, we have taken a stratified pop-
ulation with 3 strata of sizes 20, 30, 17 respectively from the Singh (2003) (page no. 1119
(Appendix)). Where y is production (study variable) in metric tons and z is area (auxiliary
variable) in hectares. For the above population, the parameters are given as below: For total
population, N=67, Y =72247.6, X =26438
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Table 1
Stratum 1 Stratum 2 Stratum 3
N1=20 No=30 N3=17
n1:12 n2:18 ’I’L3:9
W1=0.29851 Wo=0.44776 Ws3=0.25373
X1=6801.25 X,=11025.3 X3=82464.1
Y1=17511.7 Y 2=18937.4 Y 3=377960.5
52, =175539558 52,=595679198.4 52,=20255478994
52,=1366895911 52,=2421559069 52;=687956456787
Sy121=489224338 Sy200=1174423304 Sy323=46735680920
C1=1.94804 Cr2=2.21368 Cr3=1.72586
D2, =0-322701311 | D20 = 0.284750439 | D2 4= 0.352112122
D317 =0-277106302 | DZ;o0= 0.191404888 | D7, 0= 0.201142044
Dy (=0.298636371 | D,pojij= 0.227030958 | Dyypap= 0.01248969
R=2.57477 Ry=1.71763 R3=4.58333

From this population we took ranked set samples of sizes k=4 , ks=6 and k3=3 from
the stratum 1% | 2"¢ and 3" respectively. Further each ranked set sample from each stratum
were repeated with number of cycles r=3. Hence sample size of stratifird ranked set sample
is equivalent to n, = kyr.

Table 2: The MSE and PRE of the estimators

Estimators MSE Bias PRE
t* 1759632517 0.0000 100.0000
s 1204001473 | 17677.2090 | 146.1400
iy 11702271788 0.0000 150.3600
o1 11702271788 | -2020.0767 | 150.3600
2 11702271788 321.8933 150.3600
23 811711525 | -18442.3400 | 216.7800
o 545563651 | -27933.6290 | 281.5500
o5 425689034 11761.6920 | 413.3600
26 315596791 -8835.3558 | 557.5500

The formula for Percent Relative Efficiency (PRE) is

PRE (estimators) = #tffnim x 100

From Table 2, it is observed that

« The estimators ¢, and ¢, are almost equally efficient estimators as separate linear
regression estimators under SRSS as these estimators show the MSE almost equal to
the MSE of the combined linear regression estimator (¢;,.). These two estimators ¢;,
and ¢, are more efficient estimators than that the other competitive estimators.

o o3 stps » L5 and tg are more efficient than other estimators used in this paper. It is
toy 5 b5 and tg are more efficient than convention, ratio estimator

observed that &5 ,
and linear regression estimator under SRSS.
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o From Table 2, we can conclude that the proposed estimators perform better than
existing estimators as our proposed estimators have greater PRE.

7. Simulation study

To generalize the results of the numerical study, we have conducted simulation study
over two hypothetically generated normal populations. The simulation procedure is ex-
plained in the following points:

o We generated bivariate random observations of size N=600 units from a bivariate
normal distribution with parameters p,, =20, o, =15, and u,=15, 0,=10 and possibly
chosen values of p,,= 0.6, 0.7, 0.8, 0.9.

 Similarly, generate the population-2 with the parameters 1, =120, o, =25, and p,=100,
0,=20 .

o The population generated above is divided into 3 equal strata and a stratified ranked
set sample of size 12 units with number of cycles 4 and set size 3 is drawn from each
stratum.

o Compute the required statistics.

o Iterate the above steps 10,000 times to calculate the MSE and PRE of various combined
estimators using the following expression.

1 10000 s
MSE(T) = —— T, -Y
~ Var(t°)
PRE = 3 reppy < 100 (36)

The MSE and PRE of the separate estimators are calculated using (35) and (36) and
the results are reported for various values of correlation coefficients in Table 3.

Table 3 also shows that our proposed estimators perform better than the existing
estimators. The MSE of the estimators decreases when the correlation and sample size
increases for the population 1 and 2.

8. Conclusions

In this article we have proposed estimators for the population mean in stratified
Ranked set sampling using the information of auxiliary variable. The expressions for Bias
and MSE of the suggested estimators have been derived up to the first order of approxima-
tion. Empirical approach and simulation study for comparing the efficiency of the proposed
estimators with other estimators have been used. The results have been shown the Tables
2 and 3. The Tables show that the proposed estimators turn out to be more efficient as
compared to the other estimators for both populations. The proposed estimators are found
to be rather improved in terms of lesser MSE and greater PRE as compared to the existing
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Table 3: The MSE and PRE of the estimators
Pye| Estimators| Populationl Population2
MSE Bias PRE MSE Bias PRE

0.9] t* 0.007284 | 0.000000 | 100.000000 | 0.066100 | 0.000000 | 100.000000
t; 0.006384 | -0.000207 | 114.095495 | 0.043496 | 0.002922 | 151.969606
iy, 0.004961 | 0.000000 | 146.827826 | 0.042869 | 0.000000 | 154.189069
o 0.004945 | -0.000239 | 147.285914 | 0.042656 | -0.001315 | 154.960149
tho 0.004943 | -0.000279 | 147.352653 | 0.042767 | -0.002903 | 154.558070
ths 0.003387 | -0.000311 | 215.050896 | 0.034651 | -0.001423 | 190.761305
tha 0.003339 | 0.000190 | 218.094473 | 0.024678 | 0.001060 | 267.848401
ts 0.003245 | -0.000178 | 224.414416 | 0.020015 | -0.001060 | 330.255808
te 0.003090 | -0.000426 | 235.710841 | 0.019309 | -0.002208 | 342.320400

0.8] t* 0.006984 | 0.000000 | 100.000000 | 0.090219 | 0.000000 | 100.000000
t; 0.006809 | 0.000672 | 102.560246 | 0.070926 | 0.001426 | 127.201411
t7, 0.004670 | 0.000000 | 149.540410 | 0.059455 | 0.000000 | 151.741804
o 0.004634 | -0.000181 | 150.699420 | 0.059354 | -0.004426 | 152.000269
tho 0.004687 | -0.000102 | 148.992987 | 0.059456 | 0.004611 151.739251
ths 0.004174 | -0.000314 | 167.327264 | 0.043999 | -0.008287 | 205.046909
tha 0.003587 | 0.000145 | 194.697844 | 0.030173 | 0.001628 | 299.004742
s 0.002991 | -0.000314 | 233.454669 | 0.026272 | -0.001067 | 343.397088
e 0.002657 | -0.000537 | 262.768911 | 0.024469 | -0.002098 | 368.707344

0.7] t° 0.009693 | 0.000000 | 100.000000 | 0.074859 | 0.000000 | 100.000000
t; 0.006455 | 0.000136 | 150.158004 | 0.061038 | 0.002001 122.642758
ty, 0.005928 | 0.000000 | 163.507324 | 0.058294 | 0.000000 | 128.416597
o 0.005934 | -0.000124 | 163.345039 | 0.058345 | 0.002856 | 128.303578
tho 0.005976 | 0.000362 | 162.191669 | 0.058568 | 0.001072 | 127.814362
ths 0.005562 | -0.000330 | 174.267715 | 0.040771 | -0.007203 | 183.608732
toa 0.005109 | 0.000123 | 189.710173 | 0.038156 | 0.001765 | 196.189650
s 0.003267 | -0.000429 | 296.645336 | 0.036670 | -0.001165 | 204.142055
te 0.002752 | -0.000625 | 352.113929 | 0.020043 | -0.002084 | 373.482308

0.6] t° 0.008782 | 0.000000 | 100.000000 | 0.091577 | 0.000000 | 100.000000
t; 0.008134 | 0.000191 107.954650 | 0.086847 | 0.002652 | 105.447165
t7, 0.007273 | 0.000000 | 120.745030 | 0.078933 | 0.000000 | 116.018800
o 0.007145 | -0.000832 | 122.898593 | 0.078557 | 0.001270 | 116.573953
tho 0.007108 | 0.000521 123.537736 | 0.078345 | 0.001939 | 116.889576
ths 0.005597 | -0.000356 | 156.880083 | 0.030133 | -0.004797 | 303.904598
toa 0.003695 | 0.000945 | 237.630218 | 0.023471 | 0.002048 | 390.162195
s 0.002241 | -0.000552 | 391.795672 | 0.016980 | -0.009593 | 539.310974
te 0.001342 | -0.000719 | 654.023741 | 0.013250 | -0.001763 | 691.136804

estimators in both real and simulated data sets. It is also observed from the simulation that
the MSE of the proposed estimators decreases as the values of the correlation coefficient in-

crease whereas the PRE of the suggested estimators increases as the values of the correlation
coefficients increase. Based on our empirical study and simulation study, we can conclude
that our proposed estimators can be preferred over the other estimators taken in this paper

in several real situations.
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APPENDIX

This section consider the proof of the Theorems of Section 4 & 5.
To derive the MSE of the proposed estimators, the following notations will be used through-
out the paper.

gh[srss} = Yh(l + EOh)

Thjsrss) = Xn(1 + €1n)
such that E(epn)= E(e1n)= 0
(M Cip — D) = Uson
B(et, (7 D?ah ) Uo2n
E(eonern) = (nhCmyh — Daynpiy) = Urin

(fh

)=
)=

WheI‘e ’r]h == ﬁ , Olrh = S%h 7Cyh = % ; Dgh[l} — 2 Zkh (Xh 1/) - Xh) 9
Doy = 5o S (Vi) — Ya)? and Dyyppi) = kirﬁ Y Ve — Yu) (Xng) — Xa)

where Yh[i] and X n(i) are the means of the i'" is ranked set and are given by

— 1
Yh[i]:;zyh 1j» X h(s) ZXh

Now, consider the estimator

L _
s — Lhlrss
tpl - Z Whyh[’rss] exp <a1h ( )[( } - 1))
h=1 h

Using the above notations we have

Xn(1+
t, = Z WY h(1 + eon) exp <a1h (’1()(61) - 1)) (37)
h=1 h

The bias of the estimator ¢3; is given by

o2
Bias(t Z WLY <2th02h + Oé1hU11h> (38)
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The MSE of the estimator ¢, is given by

L
MSE( ts Z (UQOh + OéthOQh + 20é1hU11h> (39)

To find out the minimum MSE for ¢;,, we partially differentiate equation (39) w.r.t. oy, and
equating to zero we get

== (40)

Putting the optimum value of ay; in the equation (39), we get a minimum MSE of ¢, as

2
MinMSE(t,) Z W2Y, <U20h - gﬂh) (41)
02h

Similarly, we can obtain the optimum values of constants and minimum MSEs of other
proposed estimators which are given as

Xu(l+e
Z WLY 1 (1 + €op,) exp (Oégh log (m)) (42)
Xh
The bias of the estimator ¢, is given by
- (03, — azn)
Bias(t,,) Z onzh + anUiin (43)
The MSE of the estimator ¢, is given by
MSE ts Z Wh (UQOh + Oé%hU(]Qh + 2052hU11h) (44)
To find out the minimum MSE for ¢5,, we partially differentiate equation (44) w.r.t. ooy, and
equating to zero we get
Uiin
ok, = — 45
2h U02h ( )
Putting the optimum value of asyy, in the equation (44), we get a minimum MSE of ¢7, as
L U2
MinMSE(t,) Z <U20h — “h) (46)
h=1 Uozn
L p—
tls)g = Z Wh[(l —|— wlh)Yh(l + €0h) —f- wghelh](l — €1h —|— E%h) (47)
h=1

~

s N N 2 2
g =Y =Y WiYh[(€on + Win + €onWin — €1n — E1aW1L — €0n€LL — E0nE1AWL + €1, + Win€T,)
h=1

— wopd(ern — €7,)]  (48)
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The bias of the estimator 55 is given by

Bias(ty3) Wh[Y hwin + Y a(Uoan + winUsen + warndUgen — Uni — wiUny)] (49)

HMh

The MSE of the estimator ¢7; is given by

MSE(t;3) Z WEY p[Uson + Uga — 2Uv1 + w, (1 + Uson, + 3Usan — 4Un1s) + w2, 82Ugon
h=1

+ 2w (Uson + 2Uo2n — 3U11n) — 2we,0 (Urin — Upan) — 2wipwapd(Urin — 2Ugan)]  (50)

MSE ts Z Wth Alh —I— wlhBlh —I— wghclh —I— 2w1hD1h — 2w2hE1h — 2w1hw2hF1h) (51)
h=1

where
A = Uson, + Ugan, — 2U115
By = 1+ Usop, + 3Ugop, — 4Uq1p
X
1h 020 00 = 3

D1, = Usop, + 2Upon — 3Un1n
Ey, = 6n(Uoan, — Uian)
Fiy, = 6n(Uoan, — 2U111)

To find out the minimum MSE for ¢°

o3, we partially differentiate equation (51) w.r.t. wyy
and wy, and equating to zero we get

Clthh - Ethlh
F12h - Blhclh

*

Wip = (52)

Wt — Dy Fyy — BipCin
" FL — BuCu
Putting the optimum values of wy;, and wy, in the equation (51), we get a minimum MSE
of t35 as

(53)

CinD3, + BipE?, — 2D, B F
MZnMSE ts Z Whyh (Alh 1h1h + 21h 1h 1hLo1h 1h> (54>
Ff, — BipChy
. L _ 3 15 ,
oy => Whl(1+wsn)Y (1 + €on) + wan€rn] (1 56 + 8€1h> (55)
h=1
L 1 1 1 1 3 3
ths -Y = ZWth[(€0h+WSh+€0h@U3h—§€1h—§€1hw3h—§€0h€1h_550h61hw3h+8€1h+8w3h61)

h=1
— wanbp(e1n — €1,)]  (56)
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The bias of the estimator ¢;, is given by

L
3 3 1 1 1
Bias(t;,) Z [th?)h +Y, <8U02h + §w3hU02h + §w4h5hU02h - §U11h - 2w3hU11h)]
. (57)
The MSE of the estimator ¢}, is given by
L 1
MSE(t;,) Z U20h+ U02h_U11 + w3y, (1+ Uson + Ugan — 2U11s) + w3, 07 Ugan + 2wsp,
5 3 1
(Uson, + ZUOQh - §Ullh> — 2wy 05 (Ur1p, — §U02h> — 2wspwapd (Ur1n — Uoan))  (58)

L
MSE(t;,) Z WY s (Agp, + w3y, Bap, + w3, Cop, + 2wsn Doy, — 2wap, Eop — 2wgpwan Fop) (59)

where

1
Aoy, = Usop, + ZUOQh — Upip

Bay, = 1+ Usop, + Upap, — 2U11n

><|

Cop = 82Ugap, 6 = —
2h 02n: 00 =
5 3
Dy, = Usop, + ZUOQh — §U11h

1
Eop =196 <U02h — 2U11h>
Fop, = 6(Uoan — Un1p)

To find out the minimum MSE for ¢3,, we partially differentiate equation (59) w.r.t. ws,
and wy, and equating to zero we get

ConDap, — Eop Fop,

Wi, = 60

3h F22h . BQhCQh ( )
Doy Fop — BopCop,

Wy, = 61

4h F22h _ BQhOQh ( )

Putting the optimum values of ws;, and wy, in the equation (59), we get a minimum MSE
of t?, as
p4

D2, + By, E2, — 2Dsy, Eo F.
MinMSE(t;,) Z WY (Agh + ConDiy + 22h 2h 2nto2n 2h> (62)
F2h - B2hc2h
tys = Z Wi [w5th(1 + €on) + Wer, €XP (2; eh ) (14 log(1 + €1h))] (63)
1h

h=1

L
_ — — € 5

by —Y = hz: Wi [(w5h — )Y, + wspY neon + wen, (1 + %h - SG%hﬂ (64)

=1
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Bias(t Z Wi | ( [ wsp, — )Y}, + wep, (1 - UOZh)] (65)
_ —€
=S W [meh(l + o)+ wmnexp (52 ) (14 en) | (66)
= 2+ €y
oz _ _ 3 15 ,
—Y =W, [(wm — DYy 4w Y neon + wsp, (1 T 8€1h)] (67)
h=1
o L — 15
Bias(ths) = > Wi [(wm — 1Y} + wsp ( + 3 Uo%)] (68)

CASE 1: SUM OF WEIGHTS IS UNITY (w5 + wg = 1 and w; + wg = 1)

The MSE of the estimator ¢35 is given by
MSE(ty;) Z Wth (Uaon + wgy,Uoan — 2wen Vinn) (69)

To find out the minimum MSE for ¢?

ss » we partially differentiate equation (69) w.r.t. wep,
and equating to zero we get

W — Viin
6h = T
Vozn

Putting the optimum value of we, in the equation (69), we get a minimum MSE of ¢7; as

(70)

U
MinMSE(t3;) Z W2y, <U20h - ”") (71)
h=1 UOQh

The MSE of the estimator ¢34 is given by

MSE tc Z Whyh UQ()h + wShUogh 2w8hU11h) (72)
To find out the minimum MSE for t5 , we partially differentiate equation (72) w.r.t. wsy,
and equating to zero we get
Unin
Wy, = 73
8h U02h ( )
Putting the optimum value of wgy, in the equation (72), we get a minimum MSE of £5; as
L U2
MinMSE(t3) Z <U20h — “h) (74)
h=1 Uo2n

CASE 2: SUM OF WEIGHTS IS FLEXIBLE (w5 + wg # 1 and w7 + wg # 1)

L
— — — € 5

by —Y = hz: Wh [(w5h — 1Y, +wsnY néon + wen (1 + %h - SG%hﬂ (75)

=1
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Squaring on both sides we get

L
2 - 5)
=)W [Yh +Ywd, (14 €,) +wd,(1— €)) — 2w, — QwGth(l - gﬁfh)

>
[y

5 1
+ 2w5hw6h(1 — ge%h + §€0h61h)} (76)
Taking expectations on both sides we get

L
— — 5}
MSE ts Z |:Y +th5h(1—|—U20h)—|—w6h( _U02h) —2w5th—2w6th(1— §U02h)
h=1
+ 2wspwen (1 — §U02h + 1U11h (77)
8 2

MSE ts Z Wh Cgh + w5hA3h + wGhB3h — 2w5hC’3h — 2w6hD3h —f- 2w5hw6hE3h] (78)
where .,
Agh = Yh<1 + UQOh)
B, =1 — Upas
Cop =Y,

— 5
Dsp, =Y, <1 - 8U02h>

5

— 1
Esp, =Y, (1 — §U02h + 2U11h)

To find out the minimum MSE for the estimator t;; ,
w.r.t. ws, and wg, and equating to zero we get

Bsy,Csp, — Dap Esy,

we partially differentiate equation (78)

w; 79

5h — A3hBBh . E3h ( )
Asp D3y, — Csp By,

wey = 80

6h A3hB3h _ Egh ( )

Putting the optimum values of ws;, and wg, in the equation (78), we get a minimum MSE
of t75 as

B;3,C3, + AspD3, — 2C5, D3, E
MinMSE(t;;) Z 4% lcgh 3nCap + 23h 3h 3h/3n 3h] (81)
E3), — AsnBsp,
v_\ i - 3 15 5
—-Y = Z Wi, {(wm — )Y, + wnY neon + wsp, (1 — 51 + 8€1h>} (82)

h=1
Squaring on both sides we get



2024] SEPARATE ESTIMATORS UNDER SRSS 37

Y S e - - 15
(ty — V)2 = Y WR{Y, + Vyud, (1+ &) + wd,(1+664,) — 2wn Y, — 2ws Y5 (1 - ge?h)

h=1

15 2 §€Oh€1h)} (83)

+ Q@U7hwgh(1 + @Elh — 5

Taking expectations on both sides we get

™~

_ — 15
MSE ts Z }?[Yh+th7h(1+U20h)+w8h(1+6U02h) 2w7th—2w8th(1+§Uogh)
h=1

15 3
+ 2w7hw8h(1 -+ §U02h — §U11h)} (84)

MSE ts Z Wh C4h + w7hA4h + w8hB4h — 2w7hC’4h — 2w8hD4h + 2w7hw8hE4h] (85)
h=1

where .,
By, =14+ 6Ugyy,
Cop=Y

5

— 1
Dy, =Y (1 + 3 U02h>

_ 15 3
Eug =Y <1 + 3 —Upan — U11h>

To find out the minimum MSE for the estimator ¢°

*6, we partially differentiate equation (85)
w.r.t. wr, and wg, and equating to zero we get

« _ BunCuyp — Dy Egy,

Wey, = 86
Th A4hB4h . Eih ( )

wr AupDap — CypEyp
sh A4hB4h - th
Putting the optimum values of wy;, and wgy, in the equation (85), we get a minimum MSE
of t3; as
p6

(87)

B4hCZh + Ay, D3, — 2C4, Dy, By,

MinMSE( ts w2 |C
mn Z n | Can + th_ A B

(83)
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