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Abstract
The slope parameter in simple linear regression measures the change in mean of

distribution of response variable for unit change in predictor variable. Some estimators based
on sample quasi ranges of predictor variables are proposed. The mean and variance of the
proposed estimators are derived. The relative efficiencies among the proposed estimators are
obtained. Also, these estimators are compared with the estimators available in the literature.
Few datasets are considered to illustrate the fitting of simple linear regression using proposed
estimators and comparing their performances.
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1. Introduction

Regression analysis helps in understanding the nature and strength of the relationship
among two or more variables. Linear regression model is helpful in modeling the relationship
among response variable (y) and the predictor variable (x). This model is used by economists
to relate variables such as consumption, savings with income; by environmental scientists to
relate environmental factors such as temperature, pollution levels with ecosystem or public
health; psychologists to relate human behavior with mental health and stress levels with
academic performances, etc. In addition, it is used in various domains of studies like finance,
marketing, real estate, pharmaceuticals, clinical trials, national development, education and
many others. The least square estimator is widely used in linear regression to estimate
the slope parameter. The literature reveals that the method of least squares was due to
Legendre (1805). Gauss (1809) claimed that he had been using the procedure since 1795.
Harter (1974), Stigler (1986) and Hald (1998) noticed that, “Euler (1749) and Mayer (1750)
independently developed a method known as method of averages” for fitting a linear equation
to observed data. Their method deals with arranging the predictor variables in descending
order and grouping them into as many numbers of existing parameters.
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Bose (1938) proposed three estimators based on method of successive differences,
method of differences at half range and method of range as alternative to least square esti-
mator for slope parameter in simple linear regression, when predictor variables are equidis-
tant. Wald (1940) observed that the efficiency of slope estimator will be maximum when
xi’s are arranged in ascending order. Nair and Shrivastava (1942) generalized procedure of
Bose (1938) to method of group averages to improve the relative efficiency of the estimators.

Liu and Preve (2016) proposed estimators to slope parameter in simple linear re-
gression based on robust measures of location, viz. median and trimmed mean. The focus
is on the case where predictor variable is assumed to be stochastic, having symmetric sta-
ble distribution and error having distribution either symmetric stable or a normal mixture.
Cliff and Billy (2017) developed simple averaging method based on the average of succes-
sive slopes. Prabowo et al. (2020) simplified this method and investigated its performance.
Singthongchai et al. (2021) developed improved simple averaging method replacing median
in the place of mean in the method due to Cliff and Billy (2017). Jlibene et al. (2021)
studied the least square estimator when the error has uniform distribution. Yao et al. (2021)
proposed best linear unbiased estimators using moving extremes ranked set sampling.

Bhat and Bijjargi (2023) proposed estimation procedures generalizing the methods
due to Bose (1938) including some adaptive estimators, in the presence of unequal distances
among predictor variables. Among the methods proposed, the method of differences among
ordered predictors lying equally on either side of the half range outperforms all other esti-
mators. Basically, this estimator is based on quasi ranges. The immediate quest that arises
is, whether the estimator is improved by taking some weights to quasi ranges. To investigate
this fact, we develop few estimators based on different types of weights to quasi ranges.

In this paper, we propose some estimators for slope parameter of simple linear re-
gression model based on sample quasi ranges given in Govindarajulu (2007). Suppose
xi , 1 ≤ i ≤ n are arranged in ascending order of magnitude, x(i) is the ith order statistic,
then, for n = 2m, the jth quasi range, j = 1, 2, · · · , m−1 is defined as the range of (n−2j)
sample values. Suppose qj is the jth quasi range, then qj is given by qj = x(n−j) − x(j+1). We
observe that, q0 = x(n) − x(1) is the range of n observations. Mosteller (2006) and Harter
(1959) used quasi ranges to estimate population standard deviation.

The proposed estimators are given in section 2, their mean and variance are derived in
section 3 and their performance using relative efficiency is investigated in section 4. The sim-
ple linear regression using proposed estimators along with their performances are illustrated
through examples in section 5. Section 6 contains conclusions.

2. Estimators based on sample quasi ranges

Consider the simple linear regression model,

yi = α + βxi + ei , 1 ≤ i ≤ n (1)

where, yi is response variable, xi is predictor variable, ei is independent and identically
distributed random error from distribution with zero mean and finite variance σ2. Here, α is
intercept parameter and β is slope parameter to be estimated from the data to explore the
linear relation between xi and yi. The slope parameter β represents the change in mean of



2024] LINEAR SLOPE ESTIMATORS BASED ON SAMPLE QUASI RANGES 31

distribution of y for unit change in x. The least square estimator of β is given by

β̂ul =
∑n

i=1 (xi − x) (yi − y)∑n
i=1 (xi − x)2 , (2)

where, x =
∑n

i=1 xi

n
and y =

∑n

i=1 yi

n
.

Among the methods proposed by Bose (1938), the estimator β̂eh obtained by method
of differences at half range outperforms other estimators and is given by

β̂eh =
∑m

i=1 (ym+i − yi)
m2d

, (3)

where d is distance among ordered xi.

In case of unequal distances among predictor variables, estimator due to Bhat and
Bijjargi (2023) based on method of distances among ordered observations lying equally on
either side of half range outperforms other proposed estimators and is given by

β̂ud =
∑m

i=1

(
y∗

m+i − y∗
m−i+1

)
∑m

i=1

(
x(m+i) − x(m−i+1)

) . (4)

Here, y∗
i is y observation corresponding to x(i), ith order statistic. β̂ud reduces to the method

of differences at half range given by

β̂uh =
∑m

i=1

(
y∗

m+i − y∗
i

)
∑m

i=1

(
x(m+i) − x(i)

) . (5)

Also, when distances among ordered predictor variables are equal, β̂ud = β̂uh reduces to β̂eh.

We propose estimators β̂k, k = 1, 2, · · · , 6 using quasi ranges respectively based
on the weights wk, k = 1, 2, · · · , 6. Representing arbitrary weight by aki, k = 1, · · · , 6,
i = 1, · · · , m, w1 is given by a1i = 1

m−i+1 , w2 by a2i = 1
i

, w3 by a3i = m−i+1∑m

i=1 m−i+1 ,
a4i = i∑m

i=1 i
, a5i = m − i + 1 and a6i = i. We see that, a1i, a4i and a6i relatively assign

heavier weights to quasi range with extreme order statistics, where as, a2i, a3i and a5i assign
lower weights. That is, a1i, a4i and a6i assign highest weight to q0, relatively lesser weight to
q1, q2, · · · and qm−1. Similarly, a2i, a3i and a5i assign lowest weight to q0, relatively heavier
weights to q1, q2, · · · and qm−1. As efficiency and robustness are vital to estimators, the
motivation for assigning various weights to the quasi ranges is to develop adaptive estimators
in terms of efficiency and robustness. In the presence of several estimators, researcher seeks
efficient estimator that closely estimates the parameter, whereas, robust estimator is sought
to estimate the parameter sensibly in the presence of outliers in the data.

The weights employed to propose various estimators are given in detail in Table 1.
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Table 1: Weights for proposition of estimators

range/quasi ranges y values w1 w2 w3 w4 w5 w6

q0 = x(n) − x(1) y∗
n − y∗

1 1 1
m

1∑m

i=1(m−i+1)
m∑m

i=1 i 1 m

q1 = x(n−1) − x(2) y∗
n−1 − y∗

2
1
2

1
m−1

2∑m

i=1(m−i+1)
m−1∑m

i=1 i 2 m−1
· · · · · · · ·
· · · · · · · ·
· · · · · · · ·

qm−2 = x(m+2) − x(m−1) y∗
m+2−y∗

m−1
1

m−1
1
2

m−1∑m

i=1(m−i+1)
2∑m

i=1 i m−1 2

qm−1 = x(m+1) − x(m) y∗
m+1 − y∗

m
1
m

1 m∑m

i=1(m−i+1)
1∑m

i=1 i m 1

The proposed estimators are given by

β̂1 =
∑m

i=1

(
y∗

m+i−y∗
m−i+1

m−i+1

)
∑m

i=1

(
x(m+i)−x(m−i+1)

m−i+1

) , (6)

β̂2 =
∑m

i=1

(
y∗

m+i−y∗
m−i+1

i

)
∑m

i=1

(
x(m+i)−x(m−i+1))

i

) , (7)

β̂3 =
∑m

i=1
(m−i+1)(y∗

m+i−y∗
m−i+1)∑m

i=1(m−i+1)∑m
i=1

(m−i+1)(x(m+i)−x(m−i+1))∑m

i=1(m−i+1)

, (8)

β̂4 =
∑m

i=1
i(y∗

m+i−y∗
m−i+1)∑m

i=1 i∑m
i=1

i(x(m+i)−x(m−i+1))∑m

i=1 i

, (9)

β̂5 =
∑m

i=1 (m − i + 1)
(
y∗

m+i − y∗
m−i+1

)
∑m

i=1 (m − i + 1)
(
x(m+i) − x(m−i+1)

) = β̂3 (10)

and

β̂6 =
∑m

i=1 i
(
y∗

m+i − y∗
m−i+1

)
∑m

i=1 i
(
x(m+i) − x(m−i+1)

) = β̂4. (11)

To obtain these estimators under the situation that the predictor variables are equidistant,
d

∑m
i=1 (2i − 1) is substituted in the place of ∑m

i=1

(
x(m+i) − x(m−i+1)

)
.
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For odd number of sample sizes, i.e. n = 2m + 1, the middle pair of observation,
(y∗

m+1, x(m+1)) is not considered. When the distances among x(i)’s are unequal and the
weights are equal, the estimators β̂k, k = 1, 2, 3, 4 reduce to β̂ud and to β̂eh when distances
are equal.

3. Mean and variance of the proposed estimators

In this section, the mean of the proposed estimators and their variances are obtained.
The mean of β̂1 is given by

E
(
β̂1

)
= E

 ∑m

i=1

(
y∗

m+i
−y∗

m−i+1
m−i+1

)
∑m

i=1

(
x(m+i)−x(m−i+1)

m−i+1

) 
= 1∑m

i=1

(
x(m+i)−x(m−i+1)

m−i+1

)E
(∑m

i=1

(
y∗

m+i−y∗
m−i+1

m−i+1

) )
= 1∑m

i=1

(
x(m+i)−x(m−i+1)

m−i+1

) ∑m
i=1

1
m−i+1E

(
y∗

m+i − y∗
m−i+1

)
= 1∑m

i=1

(
x(m+i)−x(m−i+1)

m−i+1

) ∑m
i=1

β
m−i+1

(
x(m+i) − x(m−i+1)

)
= 1∑m

i=1

(
x(m+i)−x(m−i+1)

m−i+1

) ∑m
i=1 β

(
x(m+i)−x(m−i+1)

m−i+1

)

E
(
β̂1

)
= β. (12)

Hence, β̂1 is an unbiased estimator of β.

The variance of β̂1 is given by

V
(
β̂1

)
= V

 ∑m

i=1

(
y∗

m+i
−y∗

m−i+1
m−i+1

)
∑m

i=1

(
x(m+i)−x(m−i+1)

m−i+1

)
= 1[∑m

i=1

(
x(m+i)−x(m−i+1)

m−i+1

)]2 V
(∑m

i=1

(
y∗

m+i−y∗
m−i+1

m−i+1

) )
= 1[∑m

i=1

(
x(m+i)−x(m−i+1)

m−i+1

)]2

(∑m
i=1

1
(m−i+1)2 V (y∗

m+i − y∗
m−i+1)

)
= 1[∑m

i=1

(
x(m+i)−x(m−i+1)

m−i+1

)]2

(∑m
i=1

1
(m−i+1)2 2σ2

)

V
(
β̂1

)
=

2σ2 ∑m
i=1

1
(m−i+1)2[∑m

i=1

(
x(m+i)−x(m−i+1)

m−i+1

)]2 (13)

Under equidistant x(i)’s,

V
(
β̂1

)
=

2σ2 ∑m
i=1

1
(m−i+1)2[

d
∑m

i=1

(
2i−1

m−i+1

)]2 (14)
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Similarly, we observe that, all the proposed estimators are unbiased estimators of β and
they have different variances. The variances of β̂k , k = 1, 2, 3, 4. for equal and unequal
distances among x(i)’s are furnished in Table 2.

Table 2: Variance of β̂k , k = 1, 2, 3, 4

Estimator V
(
β̂k

)
under unequal distances V

(
β̂k

)
under equal distances

β̂1

2σ2
∑m

i=1
1

(m−i+1)2[∑m

i=1

(
x(m+i)−x(m−i+1)

m−i+1

)]2
2σ2

∑m

i=1
1

(m−i+1)2

[d ∑m

i=1( 2i−1
m−i+1)]2

β̂2

2σ2
∑m

i=1
1
i2[∑m

i=1

(
x(m+i)−x(m−i+1)

i

)]2
2σ2

∑m

i=1
1
i2

[d ∑m

i=1( 2i−1
i )]2

β̂3
2 σ2

∑m

i=1(m−i+1)2

[∑m

i=1 (m−i+1)(x(m+i)−x(m−i+1))]2
48 σ2

d2n(n+1)(n+2)

β̂4
2 σ2

∑m

i=1 i2

[∑m

i=1 i(x(m+i)−x(m−i+1))]2
48 (n+1)σ2

d2n(n+2)(2n−1)2

When the distances among x(i)’s are equal, the least square estimator given in (2)
reduces to

β̂el =
∑n

i=1 (xi − x) (yi − y)
d2 n(n2−1)

12

(15)

and its variance given by
V

(
β̂el

)
= 12 σ2

d2n (n2 − 1) (16)

When d = 1, σ = 1, V (β̂k) is computed from Table 2 for various values of n and are given
in Table 3 and plotted in Figure 1.

Table 3: V
(
β̂k

)
, k = 1, 2, 3, 4 for various values of n

n V
(
β̂4

)
V

(
β̂1

)
V

(
β̂3

)
V

(
β̂2

)
V

(
β̂el

)
V

(
β̂eh

)
6 0.057851 0.058299 0.142857 0.15680 0.057143 0.074074
8 0.024000 0.024638 0.066667 0.081333 0.023810 0.031250
10 0.012188 0.012810 0.036364 0.049158 0.012121 0.016000
14 0.004409 0.004879 0.014286 0.023236 0.004396 0.005831
18 0.002068 0.002409 0.007018 0.013380 0.002064 0.002743
22 0.001131 0.001384 0.003953 0.008650 0.001129 0.001503
26 0.000684 0.000877 0.002442 0.006033 0.000684 0.000910
30 0.000445 0.000595 0.001613 0.004440 0.000445 0.000593
40 0.000188 0.000276 0.000697 0.002409 0.000188 0.000250
50 0.000096 0.000154 0.000362 0.001506 0.000096 0.000128
70 0.000035 0.000064 0.000134 0.000746 0.000035 0.000047
100 0.000012 0.000026 0.000047 0.000356 0.000012 0.000016
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Figure 1: Variance of various slope estimators for different values of n

From Table 3 and Figure 1, we observe that, for all n, V
(
β̂4

)
< V

(
β̂1

)
< V

(
β̂3

)
<

V
(
β̂2

)
. Among the proposed estimators, β̂4 has minimum variance and for n > 22, V

(
β̂4

)
is equal to V (β̂el). The V

(
β̂4

)
is less than V

(
β̂eh

)
and for n ≤ 30, V

(
β̂1

)
is less than

V
(
β̂eh

)
. Also, for increasing value of n, V

(
β̂k

)
, k = 1, 2, 3, 4 is decreasing.

4. Performance of the proposed estimators

In this section, we study the performance of proposed estimators using relative effi-
ciencies. The relative efficiency (RE) of two estimators, namely, A and B is given by

RE(A, B) = V (B)
V (A) . (17)

We conclude that, A is better than B in terms of its performance if RE(A, B) > 1.
The RE among proposed estimators for both cases where in predictor variables have unequal
distance and equal distance are derived and given in Table 4. A comparison among β̂k , k =
1, 2, 3, 4 is carried out in Table 5 in terms of computed values of RE for various values of
n when x(i)’s are equidistant. Using Table 5, RE of β̂4 with respect to (wrt) β̂1, β̂2, β̂3, RE
of β̂1 wrt β̂2, β̂3 and RE of β̂3 wrt β̂2 are given in Figure 2.

From Table 5 and Figure 2, it is observed that, RE
(
β̂4, β̂2

)
> RE(β̂4, β̂3) > RE(β̂4, β̂1)

and RE
(
β̂1, β̂2

)
> RE

(
β̂1, β̂3

)
. Hence, β̂4 is performing better than all other proposed es-

timators, β̂1 performs better than β̂2, β̂3 and β̂3 outperforms β̂2. Also, RE of β̂4 wrt β̂1, β̂2,
β̂3, RE of β̂1 wrt β̂2 and RE of β̂3 wrt β̂2 increases for increasing values of n, whereas, RE of
β̂1 wrt β̂3 decreases for n > 14. As β̂4 outperforms β̂1, β̂2 and β̂3, we compute RE(β̂4, β̂el)
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Table 4: RE among proposed β̂k , k = 1, 2, 3, 4

For unequal distances among x(i)’s For equal distances among x(i)’s

RE(β̂1, β̂2)

[∑m

i=1

(
x(m+i)−x(m−i+1)

m−i+1

)]2[∑m

i=1

(
x(m+i)−x(m−i+1)

i

)]2
[∑m

i=1( 2i−1
m−i+1)]2

[∑m

i=1( 2i−1
i )]2

RE(β̂1, β̂3)

[∑m

i=1

(
x(m+i)−x(m−i+1)

m−i+1

)]2 ∑m

i=1(m−i+1)2

[∑m

i=1 (m−i+1)(x(m+i)−x(m−i+1))]2 ∑m

i=1
1

(m−i+1)2

48 [∑m

i=1( 2i−1
m−i+1)]2

n(n+1)(n+2)
∑m

i=1
1

(m−i+1)2

RE(β̂1, β̂4)

[∑m

i=1

(
x(m+i)−x(m−i+1)

m−i+1

)]2 ∑m

i=1 i2

[∑m

i=1 i(x(m+i)−x(m−i+1))]2 ∑m

i=1
1

(m−i+1)2

24(n+1)[∑m

i=1( 2i−1
m−i+1)]2

n(n+2)(2n−1)2 ∑m

i=1
1

(m−i+1)2

RE(β̂2, β̂3)

[∑m

i=1

(
x(m+i)−x(m−i+1)

i

)]2 ∑m

i=1(m−i+1)2

[∑m

i=1 (m−i+1)(x(m+i)−x(m−i+1))]2 ∑m

i=1
1
i2

24[∑m

i=1( 2i−1
i )]2

n(n+1)(n+2)
∑m

i=1
1
i2

RE(β̂2, β̂4)

[∑m

i=1

(
x(m+i)−x(m−i+1)

i

)]2 ∑m

i=1 i2

[∑m

i=1 i(x(m+i)−x(m−i+1))]2 ∑m

i=1
1
i2

24(n+1)[∑m

i=1( 2i−1
i )]2

n(n+2)(2n−1)2 ∑m

i=1
1
i2

RE(β̂3, β̂4) [∑m

i=1 (m−i+1)(x(m+i)−x(m−i+1))]2

[∑m

i=1 i(x(m+i)−x(m−i+1))]2
(n+1)2

(2n−1)2

Table 5: RE among proposed estimators for various n

n RE(β̂4, β̂1) RE(β̂4, β̂2) RE(β̂4, β̂3) RE(β̂1, β̂2) RE(β̂1, β̂3) RE(β̂3, β̂2)
6 1.007729 2.710394 2.469380 2.689600 2.450440 1.097598
8 1.026578 3.388911 2.777778 3.301130 2.705850 1.220003
10 1.050994 4.033234 2.983472 3.837540 2.838730 1.351845
14 1.106672 5.270092 3.240021 4.762070 2.927710 1.626545
18 1.165107 6.469979 3.393396 5.553050 2.912470 1.906650
22 1.223496 7.649354 3.495281 6.251810 2.856780 2.188423
26 1.280902 8.815233 3.567861 6.881760 2.785450 2.470600
30 1.337024 9.971084 3.622270 7.457780 2.709190 2.752773
40 1.471540 12.835320 3.712642 8.722070 2.523000 3.456978
50 1.598491 15.673980 3.768181 9.804740 2.357310 4.159215
70 1.834458 21.303790 3.832739 11.613810 2.089310 5.558644
100 2.155869 29.691210 3.882138 13.772790 1.800680 7.648769

and RE(β̂4, β̂eh) for various values of n and furnish in Table 6.

From Table 6, we notice that, RE(β̂4, β̂eh) > 1, increases as n increases, stabilizes at
1.3333 and RE(β̂4, β̂el) ∼= 1 for increasing values of n.

5. Illustration

In this section, we illustrate the performance of β̂k , k = 1, 2, 3, 4 through some
examples considered in literature. We compute β̂∗ and its variance, where β̂∗ is any estimator
of β. Also, we compute RE(β̂4, β̂∗). To fit the simple linear regression model given in (1),
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Figure 2: RE among proposed estimators
Table 6: RE of β̂4 wrt β̂el and β̂eh

n RE(β̂4, β̂el) RE(β̂4, β̂eh)
6 0.987755 1.280423
8 0.992063 1.302083
10 0.994490 1.312727
14 0.996923 1.322449
18 0.998045 1.326619
22 0.998650 1.328782
26 0.999012 1.330046
30 0.999246 1.330848
40 0.999565 1.331921
50 0.999718 1.332424
70 0.999853 1.332866
100 0.999927 1.333103

the intercept parameter α is estimated using various β̂∗,

α̂∗ = y − β̂∗x (18)

and
α̂′

∗ = ỹ − β̂∗x̃, (19)

where x̃, ỹ are median of x and y values respectively. Using various estimators, the regression
lines are fitted.

Example 1: The data due to Anscombe (1973) taken from R software consists of four
datasets known as Anscombe’s quartet. Here, we consider the data of third quartet given in
Table 7.

Using equation (2), (5), (6), (7), (8) and (9), β̂ul, β̂uh, β̂1, β̂2, β̂3 and β̂4 and their variances
are computed. The relative efficiency of β̂4 wrt other estimators are computed.
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Table 7: Third quartet due to Anscombe (1973)

x 10 8 13 9 11 14 6 4 12 7 5
y 7.46 6.77 12.74 7.11 7.81 8.84 6.08 5.39 8.15 6.42 5.73

Table 8: Computed values of β̂∗, V(β̂∗) and RE(β̂4, β̂∗) for example 1

β̂∗ Value of β̂∗ V(β̂∗) ( in 10−2) RE(β̂4, β̂∗)
β̂ul 0.49972 0.9090 σ2 1
β̂uh 0.48700 1.1111 σ2 1.22222
β̂1 0.46727 0.9660 σ2 1.06353
β̂2 0.45175 2.9272 σ2 3.21994
β̂3 0.46700 2.2448 σ2 2.46939
β̂4 0.49972 0.9090 σ2 -

Figure 3: RE of β̂4 wrt β̂∗

From Figure 3 and computed V(β̂∗) given in Table 8, it is observed that, performance
of β̂4 and β̂ul are equivalent. Also, β̂4 and β̂1 are better than β̂uh. From Figure 4(a) and
4(b), it is observed that, all the regression lines fitted using various β̂∗ show slight change in
their slopes. In Figure 4(b), as α is estimated using α̂′

∗, we see a shift in the intercept and
the outlier present in the data has not influenced the regression lines where as the influence
of outlier observation is evident in Figure 4(a).

Example 2: This example is due to Montgomery et al. (2021) and is given in Table 9. The
dataset explains, the shear strength (Y i) of bond between two types of propellant used to
manufacture a rocket motor and age in weeks (X i) of the batch of propellant.

From Figure 5 and Table 10, it is observed that, the performance of β̂4 and β̂ul is
almost identical. Also, β̂1 and β̂4 are performing better than β̂uh. From Figure (6), we
observe that, various regression lines fitted using α̂∗ differ in their intercepts than those
fitted using α̂′

∗. In both cases β̂4 and β̂ul are the lines of best fit.
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Figure 4: The fitted regression lines using α̂∗ and α̂′
∗

Table 9: Data due to Montgomery et al. (2021)

Sr. no. y x Sr. no. y x
1 2158.7 15.5 11 2165.2 13
2 1678.15 23.75 12 2399.55 3.75
3 2316 8 13 1779.8 25
4 2061.3 17 14 2336.75 9.75
5 2207.5 5.5 15 1765.3 22
6 1708.3 19 16 2353.5 18
7 1784.7 24 17 2414.4 6
8 2575 2.5 18 2200.5 12.5
9 2357.9 7.5 19 2654.2 2
10 2256.7 11 20 1753.7 21.5

Table 10: Computed values of β̂∗, V(β̂∗) and RE(β̂4, β̂∗) for example 2

β̂∗ Value of β̂∗ V(β̂∗) ( in 10−2) RE(β̂4, β̂∗)
β̂ul -35.9 0.09037 σ2 0.994988
β̂uh -34.62457 0.11788 σ2 1.297978
β̂1 -36.31487 0.11260 σ2 1.240828
β̂2 -33.28090 0.63480 σ2 6.989736
β̂3 -32.74453 0.29373 σ2 3.234026
β̂4 -35.6700 0.09082 σ2 -

Example 3: The dataset studied by Graybill and Iyer (1994) is considered. The variable y
is average systolic blood pressure (BP) at 8 A.M. over two weeks and x is age of individuals
ranging 21 to 70 years. The dataset is given in Table 11.
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Figure 5: RE of β̂4 wrt β̂∗

Figure 6: The fitted regression lines using α̂∗ and α̂′
∗

Figure 7: RE of β̂4 wrt β̂∗

From computed values of β̂∗, V(β̂∗) given in Table 12 and Figure 7, it is observed
that, all the values of β̂∗ are nearly same. β̂4 performs better than β̂1, β̂2, β̂3, β̂uh and is
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Table 11: Data due to Graybill and Iyer (1994)

Sr. no. x y Sr. no. x y
1 34 116 13 40 135
2 26 112 14 34 126
3 51 151 15 67 172
4 58 161 16 23 100
5 34 122 17 47 139
6 40 129 18 42 135
7 31 119 19 61 163
8 57 158 20 38 128
9 56 144 21 57 159
10 53 150 22 66 177
11 29 111 23 42 135
12 50 148 24 53 149

Table 12: Computed values of β̂∗, V(β̂∗) and RE(β̂4, β̂∗) for example 3

β̂∗ Value of β̂∗ V(β̂∗) ( in 10−2) RE(β̂4, β̂∗)
β̂ul 1.60900 0.02771 σ2 0.98823
β̂uh 1.59288 0.03749 σ2 1.33702
β̂1 1.61958 0.03296 σ2 1.17546
β̂2 1.59735 0.21211 σ2 7.56455
β̂3 1.56162 0.10074 σ2 3.59272
β̂4 1.60938 0.02804 σ2 -

Figure 8: The fitted regression lines using α̂∗ and α̂′
∗

almost equivalent to β̂ul. Also, β̂1 performs better than β̂uh, β̂2 and β̂3. From Figure 8(a)
and 8(b), we observe that, all the regression lines plotted using various β̂∗, α̂∗ and α̂′

∗ are
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identical.

Example 4: The data is taken from from nseindia.com and bseindia.com. It explains
daily closing price (x) of index NIFTY50 from National Stock Exchange (NSE) and daily
closing price (y) of index SENSEX50 from Bombay Stock Exchange (BSE). The data consists
of 988 observations of 4 years from 2017 to 2020. Here, we furnish the values of estimators,
their variances and relative efficiencies along with fitting of regression lines using various
estimators.

Table 13: Computed values of β̂∗, V(β̂∗) and RE(β̂4, β̂∗) for example 4

β̂∗ Value of β̂∗ V(β̂∗) ( in 10−10) RE(β̂4, β̂∗)
β̂ul 1.05800 8.593147 σ2 0.94391
β̂uh 1.06240 13.97219 σ2 1.53477
β̂1 1.00837 38.82940 σ2 4.26520
β̂2 1.09918 3754.035 σ2 412.3605
β̂3 1.06689 57.23892 σ2 6.28739
β̂4 1.06061 9.10377 σ2 -

Figure 9: RE of β̂4 wrt β̂∗

From Table 13, the computed values of β̂∗ and V (β̂∗), RE(β̂4, β̂2) is too high to record
in Figure 9. The proposed estimator, β̂4 performs better than β̂1, β̂3 and β̂uh. From Figure
10, we notice that all the regression lines fitted either using α̂∗ or α̂′

∗ seem to be the same as
number of observations are very large.

6. Conclusions

• Some estimators based on quasi ranges are proposed for slope parameter of simple
linear regression model, yi = α + βxi + ei, i = 1, 2, · · · , n.

• Among the proposed estimators, viz. β̂k, k = 1, 2, · · · , 6 based on weighted sample
quasi ranges, β̂5 reduces to β̂3 and β̂6 reduces to β̂4.

• When equal weights are assigned to each quasi range, all the proposed estimators
reduce to β̂ud.

nseindia.com
bseindia.com
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Figure 10: The fitted regression lines using α̂∗ and α̂′
∗

• For equal weights and equidistant x(i)’s, all the proposed estimators reduce to β̂eh, due
to Bose (1938).

• All the proposed estimators are unbiased estimators of slope parameter β.

• The variance of proposed estimators is decreasing with the increasing values of n.

• Among the estimators proposed, β̂4 outperforms β̂1, β̂2, β̂3; β̂1 outperforms β̂2, β̂3 and
β̂3 outperforms β̂2.

• RE
(
β̂4, β̂1

)
, RE(β̂4, β̂2), RE(β̂4, β̂3), RE(β̂1, β̂2) and RE(β̂3, β̂2) increase as n in-

creases, but RE(β̂1, β̂3) increases upto n = 14 and decreases for n > 14.

• β̂4 outperforms β̂uh, due to Bhat and Bijjargi (2023) and its performance is equivalent
to least square estimate β̂ul.

• As a4i and a1i assign relatively heavier weights to quasi ranges with extreme order
statistics, the estimators β̂4 based on a4i and β̂1 based on a1i are relatively more
efficient than other estimators.

• β̂2 based on a2i and β̂3 based on a3i exhibit robustness to outliers if present in the data,
since a2i and a3i assign lower weights to quasi ranges with extreme order statistics.
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