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Abstract
Small area estimation methods are important tools for applied statisticians to help

policymakers in need of reliable statistics for lower level disaggregated populations. While
aggregated statistics at the higher level may be available from surveys, they are not useful
to estimate characteristics for lower level subpopulations. Often useful covariates for these
subpopulations are available, which can be integrated through innovative small area estima-
tion methodology to leverage aggregated data to produce better estimates and measures of
uncertainty for the disaggregated subpopulation means.

To serve our need we generalize the celebrated Fay-Herriot model, which has been
extensively used for several decades by many National Statistical Offices around the world,
to produce reliable small area statistics. We consider the traditional independence for the
Fay-Herriot linking model errors as well as various important spatially dependent models for
these errors. We conduct a hierarchical Bayesian analysis for all these models based on a
popular class of noninformative improper prior densities for the linking model parameters.
We illustrate the usefulness of our proposal by producing estimates of statewide four-person
family median incomes for the U.S. states for the year 1990. We create for our illustration the
aggregated statistics from the 1990 Current Population Survey. We evaluate the accuracy of
our state predictions against the corresponding incomes, deemed to be reliable, produced by
the 1990 Census. For all models and for all improper prior densities for the model parameters
considered here we prove the propriety of the resulting posterior distributions. The result
in Corollary 1 of Chung and Datta (2022, Survey Methodology, vol. 48, No. 2, pp. 463-489)
follows as a special case. Our empirical assessments amply demonstrate the usefulness of
our novel approach.

Key words: Aggregated statistics; Conditional autoregression; Current Population Survey;
Fay-Herriot model; LCAR; Simple CAR; Simultaneous AR.

AMS Subject Classifications: 62K05, 05B05

Corresponding Author: Gauri S. Datta
Email: gauri@uga.edu

http://www.ssca.org.in/journal.html


450
SPECIAL ISSUE IN MEMORY OF PROF. C R RAO
J. LI, H. C. CHUNG, D. OKECH AND G. S. DATTA [Vol. 22, No. 3

1. Introduction

Preparation and implementation of effective social welfare and human development
policy proposals require reliable statistics measuring important population characteristics,
for example, income, employment, education, healthcare, agricultural productions and en-
vironmental safety. National statistical offices (NSO’s) around the world collect relevant
data and produce these statistics. Many nations and international organizations recognize
the need for these statistics at the national level as well as at su-bnational/sub-population
levels. These sub-populations may be geographic (states, counties or districts), demographic
(gender, race, age) or cross-classification of geographic and demographic factors (state level
poverty rates for the school-age children).

The NSOs and international organizations, for example, the World Bank, rely on
appropriate data to produce relevant statistics. Since national censuses are carried out every
five or ten years, these data will fail to capture the current state of the population when
the last census gets outdated. Decennial or quinquennial censuses are expensive. To gather
timely and less expensive data the NSOs conduct carefully planned sample surveys to collect
data from only a fraction of the population. It is well-documented in the statistics literature
that carefully planned surveys with reasonably large samples can be as accurate as a census.

Even if a nation may be doing well overall, often various segments of the nation
may not be doing as well. While any functioning government that cares to serve its peo-
ple requires accurate data for the entire nation, it also needs reliable disaggregated data
for various segments of the nation. For example, the U.S. government has mandated it by
law to produce timely and accurate disaggregated statistics measuring income, employment
and health service for various demographic groups at the county or state level. The Eu-
ropean Union and the United Nations have many programs that require accurate poverty
and income information for many geographic/demographic sub-populations. Production of
reliable, disaggregated statistics is known as small area estimation in survey sampling.

Sample surveys are generally designed to provide useful data in estimating various
characteristics of a population of interest. Sample sizes are so chosen to ensure that tra-
ditional design-based estimators are adequately accurate. Sample size is usually the key
thing, and when it comes to estimating a sub-population characteristic, based solely on the
part of the original sample which is in the sub-population, the sub-sample may be small or
empty. The version of the national level design-based direct estimate from the sub-sample
for a sub-population, if it has enough sample to be computed, may be highly variable, or
may be non-existent due to lack of sample. Sub-populations with low or no sample size
to produce reliable direct estimates are known as small areas. Due to limited resources, a
survey, by design, may not allocate any sample to many sub-populations. For example, the
American Community Survey (ACS) is conducted to produce reliable statistics for nearly
three thousand U.S. counties. However, the ACS usually samples about one-third of the
counties, resulting in many non-sampled small areas. Post-surveys some sub-populations
may also be defined for the current need, and there may not be any units selected from
these sub-populations. Again, resource constraints do not permit selection of new sample to
transform unreliable or unavailable small area estimates to reliable ones. To increase the ac-
curacy of inadequate direct estimates of small areas (or to produce estimates for non-sampled
areas), statistical methods advocate model-based approach to enable borrowing information
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from direct estimates of other domains and other data sources. In many applications, other
related surveys and administrative data provide useful covariates. A model-based estimate
of an area is produced by suitably shrinking a direct estimate (if available) to a synthetic
estimate of a regression function based on auxiliary variables.

In small area estimation if unit-level data are available, a unit-level small area model
by Battese et al. (1988) is often recommended for modeling. However, in many applications
to protect confidentiality of the respondents the organization conducting the survey releases
only summary data at the area-level for the areas sampled. In this setup, Fay and Herriot
(1979) introduced an area-level model. This popular model is known in small area estimation
as the Fay-Herriot model. In this model estimating the small area mean θi for a small area
i, if its direct estimator Yi is available, it is called a sampled area. We assume that Yi is
unbiased for θi. No direct estimator is available for an unsampled area.

Fay and Herriot (1979) proposed a linking model for all m small area means θi based
on a multiple linear regression of the θi’s on some available suitable covariates xi. For a
sampled area the model-based estimator of θi is obtained by shrinking its direct estimator Yi

to the synthetic regression estimator xT
i β̂, where β̂ is an estimator of the regression coefficient

β in the regression mean function xT
i β. If an area is unsampled, synthetic estimator xT

i β̂ is
the small area estimator of θi.

In small area estimation a population is partitioned into m sub-populations, and
a survey design samples m − m1 sub-populations and does not sample the other m1 sub-
populations (sometimes m1 = 0 but for the ACS it is positive). The Fay-Herriot model
described above uses the m − m1 direct estimators and covariate xi from all m areas to
estimate θi, ith sub-population mean, i = 1, . . . , m.

From cost and administrative considerations a survey, by design, may merge t1 sub-
populations and select a sample from this combined bigger sub-population. Suppose a direct
estimator S1 from this sample estimates η1, where, for example, η1 may represent the total
employment or total healthcare expenditure, then it is equal to the sum of θi’s for these
t1 sub-populations. In general, we assume that η1 is a known linear combination of the t1
θi’s. Similarly, t2 other sub-populations may be merged for sampling, and a direct estimator
S2 from a sample from this merged sub-populations may be formed which estimates the
corresponding population characteristic η2. Again, we assume that η2 is a known linear
combination of t2 θi’s. In this way, an estimator Sr is obtained which is an unbiased estimator
of ηr, where ηr is a known linear combination of θi’s. This setup is the motivation of the
problem that we will consider here. We assume that we have an r × 1 vector of estimators
S with its associated variance-covariance matrix DS. We assume that S is an unbiased
estimator of Cθ for an r × m known matrix C. We assume that rank of C is r and that DS

is a known, positive definite (p.d.) matrix. If r = m − m1 and each of the rows of C has all
elements 0 and one element 1 (first element in the first row, the second in the second row,
etc.), then η1 = θ1, η2 = θ2, etc. and we get the traditional Fay-Herriot setup (cf. Fay and
Herriot (1979)).

Alternatively, in the Fay-Herriot setup, suppose an area i is an union of ni sub-areas
and we are interested in estimating the sub-area mean θij based on available covariates
xij from that area. The ith area mean ηi is a known linear combination of the sub-area
means θij’s. A direct estimator Yi is available for ηi but there are no direct estimators
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of θij for the sub-areas. Our goal is to estimate the θij’s based on the survey estimates
Yi’s and the sub-area covariates xij’s. To address this problem we are expanding the scope
of the traditional Fay-Herriot model. Note that there is no direct estimate of θij. We
use θi to denote the vector (θi1, . . . , θini

)T and use the traditional independent Fay-Herriot
linking model where θij

ind∼ N(µij, σ2), j = 1, . . . , ni, i = 1, . . . , m, where for simplicity of
presentation we assume that µij’s and σ2 known. Suppose the survey estimator Yi is normally
distributed variance Di and mean ∑ni

j=1 cijθij, the coefficients cij’s are known. Under this
setup, simple algebra shows that (if we invoke a Bayesian setup), the posterior mean of θij

is θ̃ij = µij + {σ2cij/(Di + σ2 ∑ni
j=1 c2

ij)}(Yi − ∑ni
j=1 cijµij), and the posterior variance

σ̃2
ij =

σ2{Di + σ2 ∑
k ̸=j c2

ik}
Di + σ2 ∑ni

j=1 c2
ij

. (1)

This result makes sense. Since a θij appears only in the distribution of Yi and since all the
θij’s are independent, it follows that Yi|θij ∼ N(cij(θij − µij) + ∑ni

k=1 cikµik, Di + σ2 ∑
k ̸=j c2

ik)
and θij ∼ N(µij, σ2). These two distributions imply that θij|yi ∼ N(θ̃ij, σ̃2

ij). If r = [m/2],
and ni = 2 for i = 1, . . . , r, and ci1 = ci2 = 1, then θ̃i1 = θ̃i2 + µi1 − µi2, and σ̃2

i1 = σ̃2
i2. If

ni = 1 and ci1 = 1, the above expressions for the posterior mean and the variance for θi1 will
reduce to the results from the regular independent Fay-Herriot model.

For a comprehensive literature on small area estimation we refer to Rao and Molina
(2015) who documented the need for reliable small area statistics in many applications in
agriculture, education, healthcare, economy and industry. Here is an outline of the article. In
Section 2 we presented a generalized Fay-Herriot model for aggregated small area statistics.
We introduced the hierarchical Bayes (HB) model as well as the distribution of Fay-Herriot
linking model error under various spatial models. In Subsection 2.1, we introduced the
neighborhood matrix, an important element in spatial modeling. We outlined some useful
properties of the eigenvalues of this matrix and those of a couple of other matrices defined
from this matrix. In Section 3, we presented a set of sufficient conditions to ensure the
propriety of all the posterior distributions that result from the class of HB models and a
class of noninformative improper prior pdf’s introduced the last section. We illustrated our
novel ideas in Section 4 to the estimation of four-person households median incomes of the
forty-nine contiguous states of the US. Section 5 reviews the importance of the proposed
methodology. Finally, Section 6 presents detailed arguments to prove the propriety of the
posterior pdf’s for a couple of spatial models, and how these arguments can be modified for
the remaining models.

2. A generalized Fay-Herriot model for aggregated statistics

As it was described in Section 1, the aggregated statistics S is assumed to be an
unbiased estimator of Cθ. We present below an extended version of the popular Fay-Herriot
model to draw inference for θ based on the aggregated data S. The r × m matrix C is an
appropriate known matrix, described further in Remark 1.

The HB model:

(a) S|θ, β, σ2, ρ ∼ N(Cθ, DS),
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(b) θ|β, σ2, ρ ∼ N(Xβ, σ2Ω−1(ρ)),

(c) The prior pdf for β, σ2 and ρ is

π(β, σ2, ρ) = π(β) × g(σ2) × h(ρ), (2)

where π(β) is a bounded positive function corresponding to a prior pdf (may be improper),
g(σ2) is an appropriate (may also be improper) prior, and h(ρ) is a proper pdf for ρ defined
on an appropriate finite interval.

For the model above, DS is a known p.d. matrix. Also, X = [x1, . . . , xm]T is an
m × p matrix of covariates, with rank p. The regression coefficient β is a p × 1 vector. For a
particular model in (b), namely, the independent Fay-Herriot model, the matrix Ω = Im is
free from ρ. In this case, the model being free from ρ, a prior for ρ is not required. However,
we can use any proper prior for ρ and the posterior pdf of ρ will be the same as the prior
pdf. An improper uniform prior π(β) = 1 is extensively used in the Bayesian literature (see,
for example, Berger (1985) and Ghosh (1992)).

Remark 1: The part (b) of the above hierarchical model is known as the linking model (see
Rao and Molina (2015)). In order for the sampling and the linking models in the above
hierarchical model to be capable of producing inference for β under the frequentist setup
(without part (c) for prior specification), the matrix C needs to have certain structure.
In particular, the row space of CX must be the same as that of X. It is equivalent to
rank(CX) = rank(X), the estimability requirement of β based on the design matrix for S.
It implies that r ≥ rank(C) ≥ rank(CX) = rank(X) = p is a necessary condition on r.

The part (b) of the above hierarchical model implies a representation for the ith
component of θ, which is given by

θi = xT
i β + vi, i = 1, . . . , m, (3)

where the vi’s are also called random effects in mixed linear model. This decomposition
implies that the random effects vector v = (v1, . . . , vm)T is normally distributed with mean
vector 0 and variance-covariance matrix σ2Ω−1(ρ). We appropriately choose various forms
of m × m the p.d. matrix Ω to specify a class of models for θ. For the independent Fay-
Herriot model, Ω = Im which means that the θi’s are independently distributed. It is not
unreasonable to anticipate that if effective covariates are available, they can capture most
of the variability of the θi’s. Any unexplained variation among the θi’s will be modeled by
the random effects, and across small areas these random effects will not have any particular
pattern. This variability may be modeled through Ω = Im.

While the independent Fay-Herriot model is the default model, in a recent paper
Chung and Datta (2022) showed that in the absence of good covariates some spatially-
dependent models for the random effects vector improve the prediction of θi’s. In our case
when a majority of small areas have no direct estimators, and only a few (no less than p)
aggregated statistics are available that estimate some linear combinations of the small area
mean vector θ, importance of both effective covariates and good linking models explaining
the dependence of the components of θ cannot be overemphasized.
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2.1. A neighborhood matrix for spatial models with some useful results

For the Fay-Herriot model, Chung and Datta (2022) considered four different spatial
models for the random effects and showed that many of these models yielded better pre-
dictions of small area means for the non-sampled areas than the independent Fay-Herriot
model. They considered four spatial models which are determined by suitable structure of
the matrix Ω. These Ω matrices depend on a special matrix W, known as neighborhood or
incidence matrix.

The incidence matrix W is determined by the neighborhood structure of the small
areas. This matrix is an m × m non-null, symmetric, square matrix. All the diagonal
elements of this matrix are zero. In the popular version if two areas i and j are neighbors,
then Wij = 1, and it is zero otherwise. We now introduce additional matrices derived from
W and describe some properties of these matrices that would be useful in exploration of our
spatial models. For i = 1, . . . , m, we define the ith row sum of W by Wi·. We assume that
Wi· ≥ 1 for all i, and we define the diagonal matrix L = diag(W1·, . . . , Wm·). Using L and
W, we define two more matrices: W̃ = L−1W and R = L − W. The matrices W, W̃ are
non-null. Each matrix must have at least one nonzero eigenvalue. Since tr(W) = 0 = tr(W̃),
all the eigenvalues of each matrix sum to zero. Since W is symmetric, all its eigenvalues
are real. Let L−1/2 be a diagonal matrix such that the ith diagonal is W

−1/2
i· . Then all the

eigenvalues of the matrix L−1/2WL−1/2 will be real. Further, these eigenvalues are the same
as the eigenvalues of W̃. Hence, for both W, W̃, the smallest eigenvalue must be negative
and the largest must be positive.

Suppose λ̃i, i = 1, . . . , m, are the eigenvalues of W̃, which are real. We can order
them as λ̃m ≤ · · · ≤ · · · ≤ λ̃1. Note that the elements of the matrix W̃ are nonnegative,
diagonals are zero, and each row of the matrix sums to 1. It is a stochastic matrix. That
ensures that at least one of its eigenvalues is 1, and all other eigenvalues must be between
−1 and 1. Thus, −1 ≤ λ̃m < 0 < λ̃1 = 1.

Similarly, if λi’s are the eigenvalues of W, then these are finite and real. With the
smallest, λm, and the largest λ1, we get −∞ < λm < 0 < λ1 < ∞.

We consider four spatially dependent random effects models with variance-covariance
matrix σ2Ω(ρ)−1, defined through their associated p.d. “precision” matrices, depending on
a spatial parameter ρ. These models are simultaneous autoregressive (SAR), conditional
autoregressive (CAR), simple CAR (SCAR) and Leroux CAR (LCAR). For these models we
have

SAR: Ω2(ρ) = (Im − ρW̃)T(Im − ρW̃), ρ ∈ (−1, 1), (4)
SCAR: Ω3(ρ) = Im − ρW, ρ ∈ (λ−1

m , λ−1
1 ), (5)

CAR: Ω4(ρ) = L − ρW, ρ ∈ (−1, 1), (6)
LCAR: Ω5(ρ) = ρR + (1 − ρ)Im, ρ ∈ [0, 1). (7)

For all the models the ranges of the parameter ρ are defined above so that the Ω matrices
are p.d. Even though we have used the same notation σ2, ρ for the scale and the spatial
parameters in all four models (see stage (b) of the HB model), neither they admit the
same interpretations nor a combination of their values signifies equal variability and spatial
strength of dependence across the models. Finally, the SAR, SCAR and LCAR models
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include the traditional independent Fay-Herriot linking model as a special case.

3. The posterior distribution of the small area mean vector

We carry out inference for θ by conditioning on S = s from the HB model given in
Section 2. Our approach is computing-based, we will use the Monte Carlo method to generate
multiple copies of sample of θ from its posterior pdf. We use the Hamiltonian Monte Carlo
(HMC) algorithm to sample the posterior distribution, and we implement this algorithm
using the RStan software package (see Stan Development Team (2018)). The samples for θ
from its posterior distribution will be meaningful provided the posterior distribution, π(θ|s),
is proper. In the Theorem below we provide a set of sufficient conditions for the propriety
of π(θ|s).

We now describe conditions for propriety of the posterior distributions under various
spatial small area models given in (4)–(7). Let I(·) be the indicator function taking the
value 1 when its argument is true and 0 otherwise. We first provide general conditions for
the posterior propriety of the proposed models.

Theorem 1: For all the HB spatial models given above, and equations (2), and (4)–(7), the
posterior probability density functions are proper if the following conditions hold for some
positive constant N > 0:

(a)
� ∞

0 g(σ2)I(σ2 ≤ N)dσ2 < ∞.

(b)
� ∞

0 (σ2)−(r−p)/2g(σ2)I(σ2 > N)dσ2 < ∞.

If g(·) is a proper pdf, then (a) holds true automatically, and (b) is satisfied if r ≥ p.
We explained earlier the obvious necessity of the condition r ≥ p since at least p summary
statistics are needed to estimate p components of β when no substantive information about
β is available. Note that for all the spatial models we have the conditions (a) and (b) for
propriety of the respective posterior distribution. Under the popular family of noninformative
priors

π(β, σ2, ρ) ∝ (σ2)−αI(l < ρ < u), β ∈ Rp, σ2 > 0, (8)

the posterior pdfs are proper under the following conditions.

Corollary 1.1: For any of the HB spatial models given in (4)–(7) and with the prior in (8),
the posterior pdf is proper as long as α < 1 and r > p + 2 − 2α.

For the uniform prior with α = 0 (which is used in this paper), the propriety of the
posterior distributions for models (4)–(7) are guaranteed as long as r > p + 2. We prove the
Theorem in Section 6. The Corollary follows easily from the Theorem.

4. An illustration to a data from the current population survey

We illustrate our method to estimation of 1989 four-person family median incomes for
the U.S. forty-eight mainland states and the Washington, DC. We consider this application
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for two reasons. First, Chung and Datta (2022) used this application and applied the in-
dependent Fay-Herriot model and four spatial models to estimate the true median incomes,
θi’s, based on forty-nine direct estimates for these states coming from an annual supplement
of the Current Population Survey (CPS). Second, a reliable set of values of these incomes are
available from a large sample from the 1990 Census. Many SAE experts, for example, Ghosh
et al. (1996) treat these values as “true values” or “gold standards” and assess accuracy of
various sets of estimates against these values. The Census Bureau annually supplied accu-
rate estimates of median incomes for states to the U.S. Department of Health and Human
Service (HHS) agency that needed these estimates to implement a federal welfare program.
The annual state-level estimates of these parameters from the CPS data are less reliable due
to their large sampling standard deviations. To produce more reliable estimates the U.S.
Census Bureau considered model-based small area estimation by using effective auxiliary
data from other sources.

In our illustration for the four spatial and the independent Fay-Herriot model, we
consider two types of mean functions, specified by the regression function xT

i β. The most
effective regression function involves both the covariates x1 and x2 that are introduced above.
It has been found that x2 has more predictive power in predicting θi,s than x1. Here, x1 is
a weaker covariate and x2 is a stronger covariate. We consider two regression functions: one
with both the covariates (all covariates, k = 1), and the other with x1 (the weaker covariate,
k = 2).

Based on use of data types, we have full data case (Yi’s available for all areas, F ) and
aggregated data case (based on Sj’s, A). Within each mean function and data type, we have
fitted five versions of the Fay-Herriot model, resulting in a combination of 20 models and 20
sets of predictions of the θi’s.

Our goal is to estimate θi, the true 1989 four-person family median income of the ith
state, i = 1, . . . , 49, excluding Alaska and Hawaii. From the 1990 CPS we get Yi, the direct
estimate of θi. The Census Bureau statistician Bob Fay found out that the corresponding
1980 Census median income figure (xi1), and an adjusted 1980 Census median income xi2,
adjusted by per capita income data from 1979 and 1989, are two powerful covariates for
prediction of θi. The CPS data also provided Di, the sampling variance of Yi. In our
illustration we create a set of aggregated statistics S by grouping 49 states into 25 “super-
areas”, 24 groups of two states, and one lone state. In our illustration, we create required
aggregated statistics by calculating Si = Y2i−1 + Y2i, DSi = D2i−1 + D2i, i = 1, . . . , 24, and
S25 = Y49, DS25 = D49. We apply five versions of the Fay-Herriot model mentioned above to
this data and compare results from each of these models with the similar results presented by
Chung and Datta (2022). We will also compare the five proposed models among themselves
in terms of their prediction accuracy when we have only aggregated data but no data for the
individual states.

4.1. Four-person family median income estimation with all covariates

We have twenty different settings formed by combination of five types of model vari-
ance matrices in the Fay-Herriot model, two linear regressions and two data types for the
response. In our Bayesian analysis for these twenty settings we used uniform prior for the
regression and variance parameters that appear in the corresponding model. For each setting
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we used Rstan to generate 24000 representative, nearly independent, Monte Carlo samples
of all the parameters from the respective posterior distribution. Based on the posterior
samples for the jth model error variance type, kth mean function type, and the T th data
type, we computed Bayes estimate of θi, denoted by θ̂T,j,k,i. We also compute the posterior
standard deviation σT,j,k,i associated with θ̂T,j,k,i. We also computed summary and relative
frequency histograms of the spatial parameters ρ for the models that have this parameter
(j = 2, 3, 4, 5).

We use gi as the gold standard for θi from the 1990 Census to empirically evaluate
performance of θ̂T,j,k,i, i = 1, . . . , m, we compute for each set of predictions based on data type
T , the empirical mean squared error eMSPET,j,k = ∑49

i=1(θ̂T,j,k,i − gi)2/49 for j = 1, . . . , 5,
k = 1 (k = 2 is considered in Subsection 4.2). These values for k = 1 are presented in
the second column of Table 1 (for aggregated data), and Table 2 (for full data). We also
computed average posterior standard deviations σ̄T,j,k = ∑49

i=1 σT,j,k,i/49, T = A, F . These
values are given in the sixth column of the tables we created. Additionally, within each
model, using appropriate posterior quantiles, we constructed 95% central credible interval
for each θi. Using these intervals and the gold standard values we calculated empirical
coverage rates of these intervals by computing the fraction of the 49 intervals that included
the gi values (presented in the fifth column). We also presented in the fourth column average
length of these intervals.

In the absence of a direct estimate for a small area, a synthetic estimate based on
the estimated regression function and covariates from that area is a reasonable alternative.
In our case where we only have access to aggregated statistics based on data from multiple
areas, we do not typically have direct estimates for any areas. In this scenario, synthetic
estimates for all the areas may appear to be appealing. A synthetic estimate of θi for a
typical model is θ̂syn,T,j,k,i = xT

i β̂T,j,k, where T = A, F , j = 1, . . . , 5, and k = 1, 2. Here,
β̂T,j,k is a Bayes estimator of β under the T, j, kth setting. We note that all these results
corresponding to T = F for full data were obtained by Chung and Datta (2022).

At the early stage of small area estimation— pre-dating use of random effects or
hierarchical models— practitioners used synthetic estimates. For the synthetic estimates we
computed empirical MSPE by averaging the squares differences of the estimates from the gold
standard values, gi. We present these measures, represented as “syn MSPE” in the eighth
column of the tables. Under any Bayesian model, the accuracy of corresponding synthetic
estimates are evaluated by the posterior root mean squared error of each estimate. Averages
of these values are reported as synthetic average root posterior mean squared error (syn
ARPME) in the last column. Synthetic estimators usually tend to be biased, particularly
if the regression function is an inadequate fit for the θi’s, but they have smaller variances.
In the case of poor model fit, the bias term of the synthetic estimator usually gets elevated,
and the variance may fail to compensate for the larger bias, resulting in a large posterior
MSE of synthetic estimator.

Both Table 1 and Table 2 show that the synthetic estimates for each model have
smaller empirical MSPE than for their Bayesian counterparts. This is rather unusual unless
the covariates are very effective, which appears to be the case here. However, the Bayes
estimates have average posterior standard deviations in column 6 which are smaller than
the average root posterior means squared error of their synthetic estimate counterparts,
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Table 1: Aggregated data with all covariates

eMSPE eMSPE-PI AL CP APSD APSD-PI syn MSPE syn ARPME
FH 4.02 - 14.30 0.9509 3.15 - 2.10 3.47
SAR 3.87 3.70 % 14.21 0.9507 3.15 -0.07 % 2.12 3.70
SCAR 4.10 -2.03 % 14.26 0.9510 3.12 0.88 % 2.10 3.45
CAR 4.41 -9.72 % 14.62 0.9471 3.19 -1.37 % 2.13 3.56
LCAR 3.37 16.09 % 13.74 0.9489 3.09 1.82 % 2.42 3.98

empirical Mean squared prediction error (eMSPE), average posterior standard deviation (APSD), and re-
spective percentage improvements (PI) of spatial models over the independent FH model for Bayes predictor
of θ and synthetic estimator XT β̂, and also average length (AL), coverage probability (CP).

Table 2: Full data from forty-nine states with all covariates

eMSPE eMSPE-PI AL CP APSD APSD-PI syn MSPE syn ARPME
FH 2.88 - 7.63 0.9592 1.93 - 1.86 2.57
SAR 2.61 9.55 % 7.58 0.9592 1.94 0.34% 2.00 2.74
SCAR 3.03 -5.14 % 7.66 0.9592 1.95 -0.91% 1.86 2.57
CAR 2.64 8.47 % 7.48 0.9592 1.91 1.24% 1.98 2.63
LCAR 2.47 14.50 % 7.31 0.9592 1.85 4.19% 2.37 3.02

Table 3: Posterior mean/mode (standard deviation) of ρ for various models ans
data types.

Data type Covariate included SAR SCAR CAR LCAR
Aggregated x1,x2 -0.10 /-0.22(0.44) -0.09 /-0.09(0.14) -0.20 /-0.25(0.59) 0.47 / 0.22(0.28)

data x1 0.43 / 0.68(0.39) 0.02 / 0.17(0.13) 0.41 / 0.95(0.54) 0.71 / 0.98(0.24)
Full x1, x2 0.10 / 0.38(0.48) -0.06 / 0.11(0.14) 0.21 / 0.98(0.55) 0.57 / 0.78(0.27)
data x1 0.76 / 0.83(0.14) 0.14 / 0.18(0.04) 0.93 / 0.98(0.09) 0.85 / 0.98(0.13)

reported in column 9. Actually, by being the Bayes estimates, they will have smaller posterior
means squared error. Since few applications provide any set of gold standards to compare
estimates against, it is important to compare various estimates in terms of their variability
or concentration.

Even in the presence of powerful predictors Table 1 showed that only the LCAR
model emerged to be the best among the five sets (including the independent Fay-Herriot)
in terms of eMSPE, AL and APSD. Other spatial models turned out to be less competitive
or inferior to the independent FH model. If we turn to Table 2, even when we have direct
estimates from all 49 states, the LCAR model still turned out to be the best of the five
models in terms of the same measures. Among the other models, the SAR and CAR models
also improved over the independent FH model.

To assess efficiency loss due to data compression through aggregation, we compare
the results of Table 1 with those of Table 2. Across models the percentages increase in
eMSPE’s for the aggregated data over their counterparts for the full data, respectively, are
40, 48, 35, 67 and 36; the two smaller of the increases are for the SCAR and the LCAR
models. We note that in both the tables that all the CP’s are practically at the target 95%.
When we compare the average length of the credible intervals, the percentage increases for
the aggregated data across models over their counterparts for the full data, respectively, are
87, 87, 86, 95 and 88; this time, the smaller of the increases are for the models other than the
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Figure 1: Posterior relative frequency histogram of ρ for aggregated data with
all covariates

CAR. Among these spatial models, the LCAR model produced the smallest eMSPE and the
AL values. Finally, the rows corresponding to x1, x2 in Table 3 show that for both data types
the spatial parameter only for the LCAR model appears to be the one that is more likely
to be non-zero. The same conclusion emerges about the spatial models from the posterior
relative frequency histograms of ρ presented in Figures 1 and 2.

4.2. Four-person family median income estimation with the weaker covariate

Research shows that spatial random effects models tend to have better predictive
power than a corresponding independent Fay-Herriot model when no effective covariates are
available, see, for example, Chung and Datta (2022) and Vogt et al. (2023). For the median
income estimation problem based on direct estimates from all 49 mainland states Chung
and Datta (2022) showed that in the absence of any covariates some of the spatial models
do better than the independent Fay-Herriot model. Usually, the SAR or the LCAR model
provides the best prediction. In this section, we plan to investigate based on modeling of
only aggregated statistics if any of the spatial models would be better than the independent
Fay-Herriot model.

We note from Table 4 and Table 5 that for both aggregated data and full data cases
in the absence of powerful predictors of θi’s, all the spatial models provide better predictions
than the independent FH model when compared in terms of eMSPE, AL and APSD. In this
setting with low quality predictor, all synthetic estimators of θi’s have bigger average MSPE’s
than their Bayesian counterparts (see columns 2 and 8). In this case, the LCAR is the best



460
SPECIAL ISSUE IN MEMORY OF PROF. C R RAO
J. LI, H. C. CHUNG, D. OKECH AND G. S. DATTA [Vol. 22, No. 3

SAR

ρ

D
e
n
s
ity

-1.0 -0.5 0.0 0.5 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

CAR

ρ

D
e
n
s
ity

-1.0 -0.5 0.0 0.5 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

SCAR

ρ

D
e
n
s
ity

-0.3 -0.2 -0.1 0.0 0.1 0.2

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

LCAR

ρ

D
e
n
s
ity

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

1
.2

Figure 2: Posterior relative frequency histogram of ρ with all covariates and 49
states data

spatial model across both data settings. Results from Table 4 and those corresponding to
the x1 rows in Table 3 show that the LCAR is the best of the spatial models and the spatial
parameter of this model appeared most likely to be different from zero. Moreover, from the
two relative frequency histograms of ρ in Figure 3 and Figure 4 it is obvious that for the
LCAR model 95% highest posterior density credible intervals of ρ will not include the zero
value. For the full data case we also note from the last row of Table 3 and Figure 4 that
the respective spatial parameter in all the spatial models appears very likely to be different
from zero.

Before concluding Subsection 4.1 and Subsection 4.2, from a quick look at the APSD’s
for the independent FH model reported in the first row of Table 1, Table 2, Table 4 and Table
5, we found out that the average of the posterior variances of the θi’s under the aggregated
data setting is nearly three times that quantity under the full data case. This substantial
increase in the posterior variances of θi under the aggregated data setting compared to the
full data setting can reasonably be explained by the expression of the posterior variance of
θi in equation (1) under the assumption of known model parameters.
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Table 4: Aggregated data with a weaker covariate

eMSPE eMSPE-PI AL CP APSD APSD-PI syn MSPE syn ARPME
FH 11.78 - 20.47 0.9513 4.02 - 14.44 4.77
SAR 6.76 42.64% 17.53 0.9507 3.77 6.09% 14.29 6.63
SCAR 10.60 10.06% 19.88 0.9513 3.99 0.75% 14.73 4.84
CAR 8.52 27.67% 18.58 0.9476 3.85 4.08% 14.17 5.06
LCAR 6.03 48.80% 16.39 0.9480 3.48 13.31% 14.20 6.55

Table 5: Full data from forty-nine states with a weaker covariate

eMSPE eMSPE-PI AL CP APSD APSD-PI syn MSPE syn ARPME
FH 7.27 - 9.09 0.9388 2.31 - 14.45 4.04
SAR 4.34 40.22% 7.73 0.9796 1.98 14.25% 14.61 7.65
SCAR 5.62 22.62% 8.75 0.9592 2.22 3.52% 15.36 4.27
CAR 4.62 36.35% 7.84 0.9388 2.01 12.97% 14.70 5.06
LCAR 4.54 37.51% 7.77 0.9592 1.97 14.36% 14.67 6.17
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Figure 3: Posterior relative frequency histogram of ρ for aggregated data and a
weaker covariate

5. Importance of the study

This study addresses an important problem in area-level small area estimation when
most or all of the small areas do not have a direct estimates for θi’s. Such data can not
be had due to not having a survey that collects data from the individual areas. Due to
administrative or budgetary considerations, a survey may do stratified sampling where each
stratum is formed by merging multiple targeted small areas. If the goal is to estimating
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Figure 4: Posterior relative frequency histogram of ρ with a weaker covariate
and 49 states data

total agricultural productions or total employments for the strata, our study shows that
the stratified means can be leveraged to reliably estimate the means for the original small
areas by integrating the strata level means of a response variable with area-level data from
covariates that have good predictive power to predict the small area means for the response.

For the setup we are considering here, the success of a generalization of the Fay-
Herriot model depends on the availability of effective predictor variables for the response
variable. In the absence of effective covariates, from the studies by Chung and Datta (2022)
and Vogt et al. (2023), it is known that various spatial alternatives to the independent
Fay-Herriot model produce significantly better predictions by accounting for the spatial
variation of the small area means. Even when no substantial spatial variation exists among
the means, the spatial models make marginally better predictions than the independent FH
model without sacrificing model fit. We demonstrated the usefulness and the strength of our
proposed method by applying this to an application that has been important to both the
HHS Department and the Census Bureau of the United States.

6. Proof of propriety of the posterior pdfs

We know that our vector of aggregated statistics S is r × 1 with r ≥ p. We assume
that

S|θ ∼ N(Cθ, DS), (9)
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where C is a known r ×m matrix of rank r, θ is an m×1 vector, and DS is a known positive
definite (p.d.) matrix of rank r.

Suppose the largest eigenvalue of DS is δ, which is finite and positive. Let N(x|µ, Σ)
denote the multivariate normal pdf with mean µ and p.d. variance-covariance matrix Σ
at x. Since δ−1 > 0 is the smallest eigenvalue of D−1

S , from the property of the minimum
eigenvalue we get that

(s − Cθ)T D−1
S (s − Cθ) ≥ δ−1(s − Cθ)T (s − Cθ)

⇒ N(s|Cθ, DS) ≤ KN(s|Cθ, δIr), (10)

where K > 0 is a generic known suitable constant, dependent on DS but free from s or θ.

We can select a matrix F((m−r)×m), dependent on C but known so that the m×m
matrix M = (CT , FT )T is non-singular. This implies that the rank of F is m − r. For an
(m − r) × 1 vector h2 note that

�
Rm−r

N(h2|Fθ, δIm−r)dh2 = K < ∞, (11)

where K is a generic and positive constant. By (10)-(11) we get that

N(s|Cθ, DS) ≤ KN(s|Cθ, δIr)
�

Rm−r

N(h2|Fθ, δIm−r)dh2

= K

�
Rm−r

N(h|Mθ, δIm)dh2, (12)

where h = (sT , hT
2 )T is an m × 1 vector.

Let M−1 = B. Let k be the smallest eigenvalue of the p.d. matrix MT M. Using
h − Mθ = M(Bh − θ) we get

(h − Mθ)T (h − Mθ) = (Bh − θ)T MT M(Bh − θ)
≥ k(Bh − θ)T (Bh − θ).

From the above, using k > 0, we get that

N(h|Mθ, δIm) ≤ KN(Bh|θ, δk−1Im). (13)

By (12)-(13), writing δk−1 = δ∗, we get

N(s|Cθ, DS) ≤ K

�
Rm−r

N(h|Mθ, δIm)dh2

≤ K

�
Rm−r

N(Bh|θ, δ∗Im)dh2. (14)

Recall that for the class of spatial models, the linking model is given by

θ|β, σ2, ρ ∼ N(Xβ, σ2Ω−1), (15)
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where X is a known m × p matrix of covariates of rank p, and Ω is an m × m p.d. matrix
that depends on a parameter ρ which varies on a known finite interval.

Let fS(s|β, σ2, Ω) =
�

Rm N(s|Cθ, DS)N(θ|Xβ, σ2Ω−1)dθ be the pdf of S given
β, σ2, ρ. Then from (14) we get

fS(s|β, σ2, Ω) ≤ K

�
Rm

�
Rm−r

N(Bh|θ, δ∗Im)N(θ|Xβ, σ2Ω−1)dh2dθ

= K

�
Rm−r

N(Bh|Xβ, δ∗Im + σ2Ω−1)dh2

= K

�
Rm−r

N(Bh − Xβ|0, δ∗Im + σ2Ω−1)dh2. (16)

Now, Bh − Xβ = B(h − MXβ). Let d = (hT
1 , 0T )T and

G =
[
CX 0
FX −Im−r

]
.

Then, we have
h − MXβ = d − Gϕ, (17)

where ϕ = (βT , hT
2 )T is a (p + m − r) × 1 vector. Now, define submatrices G1 and G2 to

introduce a column partition of the matrix G, where G1 is given by the first p columns of G,
and G2 is given by the last m − r columns of G. Columns of G2 are linearly independent.
So rank(G2) = m − r. Also, since we require CX ̸= 0, the columns of G1 cannot be linearly
expressed by the columns of G2. However, G1 = MX implies rank(G1) = rank(X) = p.
Hence, rank(G) = rank(G1) + rank(G2) = p + m − r.

Let Bd = d∗, BG = G∗. Then, by (17)

Bh − Xβ = B(h − MXβ) = B(d − Gϕ) = d∗ − G∗ϕ. (18)

Using (16) and (18) we get,

fS(s|β, σ2, Ω) ≤ K

�
Rm−r

N(d∗ − G∗ϕ|0, δ∗Im + σ2Ω−1)dh2. (19)

Further,

N(d∗ − G∗ϕ|0, δ∗Im + σ2Ω−1) = K|δ∗Im + σ2Ω−1|−1/2

× exp[−(d∗ − G∗ϕ)T (δ∗Im + σ2Ω−1)−1(d∗ − G∗ϕ)
2 ]. (20)

We consider four spatially dependent random effects models with variance-covariance
matrix σ2Ω(ρ)−1, defined through their associated p.d. “precision” matrices, depending on
a spatial parameter ρ: for all the models the parameter ρ is defined on an appropriate finite
interval so that the Ω matrices are p.d.

To continue our propriety proof, for convenience of notation, we denote Ωk(ρ) by Ωk,
for k = 1, . . . , 5. Here, Ω1(ρ) = Im is for the independent Fay-Herriot model. In the next
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two subsections we present detail arguments establishing the propriety of the posterior pdfs
for the SCAR and the SAR models. Under the same conditions, similar arguments can be
made for proving the propriety of the posterior pdfs for the CAR and the LCAR models; see
also Appendices A.3 and A.4 of Chung and Datta (2022). Result for the independent model
follows from the SAR or the SCAR model with ρ = 0.

Finally, suppose C =
[
0 Ir

]
, an r × m matrix. This is a special case of the general

setup considered in this paper. This special case was considered in Chung and Datta (2022).

6.1. The propriety for the SCAR model

For the eigenvalues λi’s of W, let Λ = diag(λ1, . . . , λm) and PW be an orthogonal
matrix such that W = PW ΛPT

W . For the SCAR model, Ω = Ω3 and

Ω−1
3 = PW [Im − ρΛ]−1PT

W . (21)

From this we get

(δ∗Im + σ2Ω−1
3 )−1 = PW [δ∗Im + σ2{Im − ρΛ}−1]−1PT

W ,

which implies that

(d∗ − G∗ϕ)T (δ∗Im + σ2Ω−1
3 )−1(d∗ − G∗ϕ)

= (d∗∗ − G∗∗ϕ)T [δ∗Im + σ2{Im − ρΛ}−1]−1(d∗∗ − G∗∗ϕ)

=
m∑

i=1

{d∗∗i − gT
∗∗iϕ}2

δ∗ + σ2(1 − ρλi)−1 (22)

where d∗∗ = PT
W d∗, G∗∗ = PT

W G∗, d∗∗i is the ith element of d∗∗ and gT
∗∗i is the ith row of

G∗∗.

Clearly,

rank(G∗∗) = rank(G∗) = rank(G) = p + m − r = q (say).

We can select q linearly independent rows of G∗∗. By rearrangement of those rows we can
assume that the first q rows of G∗∗ could be taken as linearly independent. Then from (22)
we get

(d∗ − G∗ϕ)T (δ∗Im + σ2Ω−1
3 )−1(d∗ − G∗ϕ) ≥

q∑
i=1

{d∗∗i − gT
∗∗iϕ}2

δ∗ + σ2(1 − ρλi)−1 .
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Using this inequality in equations (19)-(20) we get
�

Rp

fS(s|β, σ2, Ω)π(β)dβ ≤ K|δ∗Im + σ2Ω−1|−1/2

×
� �

π(β) exp[−(d∗ − G∗ϕ)T (δ∗Im + σ2Ω−1
3 )−1(d∗ − G∗ϕ)

2 ]dh2dβ

≤ K
m∏

i=1
{δ∗ + σ2(1 − ρλi)−1}−1/2

×
� �

π(β) exp[−1
2

q∑
i=1

{d∗∗i − gT
∗∗iϕ}2

δ∗ + σ2(1 − ρλi)−1 ]dβdh2

≤ K
m∏

i=1
{δ∗ + σ2(1 − ρλi)−1}−1/2

×
�

Rq

exp[−1
2

q∑
i=1

{d∗∗i − gT
∗∗iϕ}2

δ∗ + σ2(1 − ρλi)−1 ]dϕ

= K
m∏

i=q+1
{δ∗ + σ2(1 − ρλi)−1}−1/2, (23)

where we assumed that π(β) is bounded above, which is satisfied by a uniform prior on Rp.

Now, we notice that for any positive constant N

δ∗ + σ2(1 − ρλi)−1 ≥ δ∗I(σ2 ≤ N) + σ2(1 − ρλi)−1I(σ2 > N)
⇒ {δ∗ + σ2(1 − ρλi)−1}−1/2 ≤ KI(σ2 ≤ N) + (σ2)−1/2(1 − ρλi)1/2I(σ2 > N). (24)

Since λi’s are finite and ρ is integrated over a finite interval, it follows that 1 − ρλi is a finite
positive quantity. Then, using q = m − r + p,

m∏
i=q+1

{δ∗ + σ2(1 − ρλi)−1}−1/2 ≤ K[I(σ2 ≤ N) + (σ2)−(m−q)/2I(σ2 > N)]

≤ K[I(σ2 ≤ N) + (σ2)−(r−p)/2I(σ2 > N)]. (25)

Now using π(σ2, ρ) = g(σ2)h(ρ) and that h(ρ) is a pdf, we get

� ∞

0

� u

l

m∏
i=q+1

{δ∗ + σ2(1 − ρλi)−1}−1/2g(σ2)h(ρ)dρdσ2

≤ K

� N

0
g(σ2)dσ2 + K

� ∞

N

g(σ2)(σ2)−(r−p)/2dσ2 < ∞, (26)

by sufficient conditions (a) and (b) in Theorem 1.

In particular, if g(σ2) = (σ2)−α, 1 − α > 0 ensures (a), and (r − p)/2 + α > 1 ensures
(b). Equivalently, we need α < 1 and r > p + 2 − 2α.
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6.2. The propriety of the posterior pdf under the SAR model

We now consider the SAR model. For this model

Ω2(ρ) = (Im − ρW̃)T(Im − ρW̃), −1 < ρ < 1.

Note that tr[Ω2(ρ)] = m + ρ2 ∑ ∑
w̃2

ij ≤ 2m. Let W∗ = L−1/2WL−1/2. Again,

Ω2(ρ) = L1/2(I − ρW∗)L−1(I − ρW∗)L1/2. (27)

Let ν1 ≥ · · · ≥ νm be the eigenvalues of W∗. From our discussions in Subsection 2.1 all νi’s
are real. Moreover, ν1 = 1 and |νi| ≤ 1. Since 1 − ρνi are the eigenvalues of I − ρW∗, for
−1 < ρ < 1, these eigenvalues are all positive. Hence the matrix is p.d. Actually, for all i,
0 < 1 − ρνi < 2.

Let l(1) = min Wi· and l(m) = max Wi·. Note that 1 ≤ l(1) ≤ l(m) < m. Define the
matrix

H = δ∗L + σ2(I − ρW∗)−1L(I − ρW∗)−1.

Since the matrix L − I is n.n.d., the matrix H − {δ∗I + σ2(I − ρW∗)−2} is n.n.d. It easily
follows that

|H| ≥ |δ∗I + σ2(I − ρW∗)−2| =
m∏

i=1
{δ∗ + σ2(1 − ρνi)−2}.

Let Σ2 = δ∗I + σ2Ω−1
2 . Note that Σ2 = L−1/2HL−1/2, and |L| < mm. Using these, and if

we use K to denote a suitable finite, positive and generic constant, not depending on any
parameters, we get that

|Σ2|−1/2 ≤ K
m∏

i=1
{δ∗ + σ2(1 − ρνi)−2}−1/2. (28)

Let PW∗ be the matrix of eigenvectors of W∗ such that PT
W∗W∗PW∗ = diag(ν1, . . . , νm) =

N∗. Then,

(d∗ − G∗ϕ)T (δ∗Im + σ2Ω−1
2 )−1(d∗ − G∗ϕ)

= (L1/2d∗ − L1/2G∗ϕ)T H−1(L1/2d∗ − L1/2G∗ϕ)
≥ l−1

(m)(r − Fϕ)T {δ∗I + σ2(I − ρW∗)−2}−1(r − Fϕ)
= (r̃ − S̃ϕ)T {δ∗I + σ2(I − ρN∗)−2}−1(r̃ − S̃ϕ), (29)

where r = L1/2d∗, F = L1/2G∗, r̃ = l
−1/2
(m) PW∗r, and S̃ = l

−1/2
(m) PW∗F.

Suppose {i1, . . . , iq} is a subset of {1, . . . , m} so that the matrix S̃1 formed by plucking
the rows of S̃ corresponding to the indices {i1, . . . , iq} is non-singular. Note that this matrix
is determined by W.

From (29) we get

(d∗ − G∗ϕ)T (δ∗Im + σ2Ω−1
2 )−1(d∗ − G∗ϕ) ≥

q∑
j=1

(r̃ij
− s̃T

ij
ϕ)2

δ∗ + σ2(1 − ρνij
)−2 . (30)
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Using equations (29)-(30) we get
�

π(β) exp[−(d∗ − G∗ϕ)T (δ∗Im + σ2Ω−1
2 )−1(d∗ − G∗ϕ)

2 ]dϕ

≤ K

�
exp[−1

2

q∑
j=1

(r̃ij
− s̃T

ij
ϕ)2

δ∗ + σ2(1 − ρνij
)−2 ]dϕ

= K
q∏

i=1
{δ∗ + σ2(1 − ρνij

)−2}1/2. (31)

Hence we get

|Σ2|−1/2
�

π(β) exp[−(d∗ − G∗ϕ)T (δ∗Im + σ2Ω−1
2 )−1(d∗ − G∗ϕ)

2 ]dϕ

≤ K
∏

i/∈{i1,...,iq}
{δ∗ + σ2(1 − ρνi)−2}1/2

≤ K[I(σ2 ≤ N) + I(σ2 > N)(σ2)−(m−q)/2 ∏
i/∈{i1,...,iq}

(1 − ρνi)]

≤ K[I(σ2 ≤ N) + I(σ2 > N)(σ2)−(r−p)/2], (32)

where we use the facts that −1 < ρ < 1 and −1 ≤ νi ≤ 1 to claim that 0 < 1 − ρνi < 2
for all i. From equation (32) if we continue our proof along the lines of the proof for the
SCAR model, we will get the propriety of the posterior pdf for the SAR model under the
same conditions.
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