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Abstract
In the area of selection and ranking, partitioning of treatments by comparing them to

a control treatment is an important statistical problem. For over seventy years this problem
has been investigated by a number of researchers via various statistical designs to specify
the partitioning criteria and optimal strategies for data collection. Tong (1969) had pro-
posed a design which had generalized many formulations known at that time. Relying upon
Bechhofer’s (1954) indifference-zone formulation, Tong (1969) had designated the region be-
tween the boundaries for “good” and “bad” treatments as the indifference-zone. Since then
the formulation presented in Tong (1969) has been adopted by a number of researchers to
study various aspects of the partition problem. However, in “Tong’s formulation” the dual
role the indifference zone plays, in defining the preference-zone and boundaries for “good”
and “bad” treatments, could potentially make the formulation impractical when there is a
large difference between the “good” and “bad” treatments. In Solanky and Jhou (2015), a
generalization of the “Tongs formulation” was introduced so that the treatments which fall
between the “good” and “bad” treatments can be partitioned as a separate identifiable group
by introducing two indifference-zones. It was also shown that the formulation design in Tong
(1969) is a special case of Solanky and Jhou’s (2015) formulation. However, the second-order
expansions of the probability of correct partition given in Solanky and Zhou (2015) does not
make it clear how close one really gets to the target probability requirement. In this paper,
we have proposed a fine-tuned purely sequential procedure which is asymptotically unbiased
and guarantees the probability requirement by taking a few additional samples along the
lines of Mukhopadhyay and Datta (1995). The “first-order” and “second order” asymptotics
of the fine-tuned procedure are derived and it is shown that the second-order expansion of
the stopping time has the same order of the remainder as that for the original procedure in
Solanky and Zhou (2015). The performance of the proposed fine-tuned procedure is studied
via Monte Carlo simulations.
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1. Introduction

The problem of comparisons with a control has intrigued the researchers for the last
seventy plus years. It has been investigated under different designs and sampling methodolo-
gies. Among the oldest investigations available in the statistical literature, Roessler (1946),
Paulson (1952), and Dunnett (1955) are three studies which had introduced the need for sta-
tistical methodologies to compare treatments with a control treatment and had formulated
designs for such a comparison.

For a somewhat related problem of selecting or isolating the best population, two
pioneering papers in 1950s had presented contrasting formulations. The first formulation
was in Bechhofer (1954) which introduced the idea of indifference-zone for selecting the
best normal population from a group of several normally distributed populations. This
formulation, known as “indifference-zone” formulation, had the property of selecting the
best population with the pre-determined probability specified by the practitioner for the
populations that are in the preference-zone. The region outside of the indifference-zone is
referred to as the preference-zone. From a practical point of view, the indifference zone was
envisioned to be small enough so that the experimenter could be easily be indifferent to
the treatments that fall inside this region. The other pioneering formulation, introduced in
Gupta (1956), did not restrict the selection from the preference-zone but rather the selection
was carried out from the entire parameter space. The formulation in Gupta (1956), known as
“subset-selection formulation”, is designed to select a subset of random size which includes
the best treatment with the pre-determined probability of correct selection. Since then, the
literature in this area has grown enormously extending Bechhofer’s (1954) indifference-zone
formulation and Gupta’s subset-selection formulation, to solve problems related to selecting
the best treatment and by defining the “best-treatment” in many ways to meet the goals of
the study. This area of research is broadly known as the area of selection and ranking in
the statistical literature. Along side with the research in the selection and ranking to select
the best population, another research problem has also been quite active which is concerned
with comparisons of treatments with a specific treatment of choice. What made this research
area different from selecting the best treatment is the experimenters requirement that the the
population to be selected must be some “specified amount better” than some other treatment
typically referred to as a control or standard. This area of research is typically known as the
problem of “comparisons with a control” or the “partition problem” in statistical literature.

1.1. Tong’s formulation of partition problem

We will start by presenting the partition problem formulation introduced in Tong
(1969) for the populations that follow a normal distribution. The formulation starts by
specifying the “good” and “bad” populations based on the input from experts in the area
of the application. The region that falls in between these two boundaries is next defined in
Tong (1969) as the “indifference zone”.

The concept of indifference-zone was introduced in Bechhofer (1954) for selecting the
best normal population in order to create a spacing between the best and the rest of the
treatments under consideration with the underlying requirement that the experimenter would
be “indifferent” to the treatments falling inside the indifference-zone. In other words, any
population that is inside the indifference-zone cannot be miss-classified.
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This dual role the indifference zone, in specifying the “good” and “bad” populations
boundaries and also the “indifference zone” itself, could potentially make the formulation
impractical in cases when there is a large difference between “good” and “bad” populations.
We will revisit this issue a bit later in this paper.

Let π0, π1, · · · , πk denote the (k + 1) independent and normally distributed populations
with respective means µi, i = 0, 1, · · · , k, and common variance σ2. Assume that all the
parameters µi, i = 0, 1, · · · , k, and variance σ2 are unknown. We will denote the population
π0 as the control population with which remaining k populations will be compared.

Based on the guidelines of “good” and “bad” treatments from the practitioner in the
area, Tong (1969) defined two appropriate constants δ1 and δ2, with the requirement that δ1 <
δ2, to split the parameter space Ω into three sets following Bechhofer’s (1954) indifference-
zone formulation, as follows

ΩBT = {πi : µi ≤ µ0 + δ1, i = 1, · · · , k},
ΩIT = {πi : µ0 + δ1 < µi < µ0 + δ2, i = 1, · · · , k},
ΩGT = {πi : µi ≥ µ0 + δ2, i = 1, · · · , k}.

(1)

Without loss of generality, the set ΩGT will be used to denote “good” populations
and the set ΩBT the “bad” populations. From the applications point of view, the values of
constants δ1 and δ2 are determined based on input from the experts to specify which popu-
lation should be classified as “good” population compared to control population and which
as a “bad” population compared to control population. The partition problem formulated
in Tong (1969) was designed to correctly partition the populations which belonged to only
ΩBT and ΩGT . Whereas, since the set expressed as ΩIT was the “indifference-zone” set, the
mathematical formulation was indifferent to the populations which are in this set. In other
words, the populations that are in ΩIT could be partitioned in ΩBT or ΩGT without any
penalty. The decision rule proposed in Tong (1969) was to partition or classify the set Ω of
the k populations into non-overlapping subsets SBT and SGT of Ω, such that, ΩGT ⊆ SGT
and ΩBT ⊆ SBT . A decision rule which classifies all populations in ΩBT or ΩGT correctly was
termed as a “correct decision (CD)”. The design constants used in the partition rule used in
Tong (1969) are defined below

d1 = δ1+δ2
2 , a1 = δ2−δ1

2 , λ = σ
a1
,

m1 =
{

k
2 for even values of k,
k+1

2 for odd values of k.
(2)

Mathematically, for any pre-specified probability P ∗, where 1
2k < P ∗ < 1, Tong (1969)

presented a decision rule ℘T to obtain sets SBT and SGT , which satisfy the probability
requirement

P{CD|µ, σ2, ℘} ≥ P ∗ ∀ µ ∈ Rk+1, σ ∈ R+, (3)
where µ = (µ0, µ1, · · · , µk).

Adopting a sampling design to determine the sample size of N observations from all the
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k+1 populations and control, the decision rule to partition the k populations in Ω presented
in Tong (1969) was the following:

SBT = {πi : X̄iN − X̄0N ≤ d1, i = 1, · · · , k},
SGT = {πi : X̄iN − X̄0N ≥ d1, i = 1, · · · , k}, (4)

where d1 comes from (2).

For “partition problem” as outlined above, Tong (1969) derived a fixed sample size so-
lution for the case when σ2 is known by determining the optimal sample size needed to meet
the probability condition specified in (3). Tong (1969) also considered the case when the
common variance σ2 unknown by designing a two-stage stopping rule and a purely-sequential
in order to meet the probability requirement (3). Tong’s (1969) formulation was utilized by
Datta and Mukhopadhyay (1998) to construct a fine-tuned purely sequential procedure, an
accelerated sequential procedure and a three-stage procedure focusing on the second-order
asymptotics for each procedure. Also following Tong’s (1969) formulation, with the addi-
tional goal of reducing the sampling from populations which can be partitioned based on
smaller sample sizes due to being significantly better or worse than the control population,
Solanky (2001) constructed an elimination type purely-sequential stopping rule. Using trian-
gular boundaries, Solanky (2001) was designed to reduce the sampling cost by not following
“vector-at-a-time” sampling methodology and instead it presented a sampling design that
eliminated and partitioned the non-contending populations early during the sampling pro-
cess. The operational inconvenience of purely-sequential stopping rules was also the focus of
Solanky (2006) which designed a two-stage sampling rule which had the desirable property
of eliminating “too inferior” or “too superior” populations based on samples collecting dur-
ing the first stage by tactfully implementing Gupta’s subset selection for screening of such
populations. In the stage two of sampling in Solanky (2006), only the competing treatments
which were shortlisted in stage one were sampled from and partition was implemented us-
ing Bechhofer’s indifference zone approach. Also relying on the Tong’s (1969) formulation,
Solanky and Wu (2004) had constructed an “unbalanced sampling design” which allows
an experimenter to collect a bigger sample size from the control population while reducing
the sample size from the non-control populations from which “vector-at-a-time” sampling
methodology is adopted. For references on partition problem for Binomial treatments the
reader is referred to Buzaianu (2019).

1.2. Generalization of the partition problem

The formulation presented above due to Tong (1969) was constructed under the Bech-
hofer’s(1954) “indifference-zone formulation” to partition the k populations as either a
‘Good” treatments or a “Bad” treatments with respect to the control population. The
methodology of Tong (1969) was formulated to partition the populations which may fall
under the indifference-zone as either “Good” populations or “Bad” populations without any
penalty on the probability requirement specified in (3). This requirement of Tong’s (1969)
formulation would be intuitively serve the experimenter well as long as the distance between
the “Good” populations and “Bad” populations is is not large so that one could be “indif-
ferent” to how the populations which fall inside it are partitioned. However, when there
is large gap between the “Good” populations and “Bad” populations boundaries then this
could result in misleading results and would also violate the concept of minimum distance
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worth measuring as represented by the indifference-zone. One is referred to Solanky and
Zhou (2015) for illustrations and further insights.

In Solanky and Jhou (2015), the partition problem was formulated in such a fashion that
does not require the region that falls between the “Good” populations and “Bad” populations
boundaries to be designated as indifference zone. Instead, by utilizing the creation of two
indifference-zones, the generalized formation was able to partition the treatments which fall
between the “Good” populations and “Bad” populations as a group by itself. The two
indifference-zones thus created were based on the fundamentals of “indifference-zone” as
intended in Bechhofer (1954) and they could be as small as the experimenter desires and
also met the criteria to be minimum distance worth measuring. Put differently, the Solanky
and Jhou (2015) generalized formulation had the capability of creating indifference-zones
independently of the boundaries of “Good” populations and “Bad” populations. Next, we
represent the mathematical details of the generalized formulation of Solanky and Jhou (2015).

Based on the input from experts in the area, the statistical design would start by
selecting two design constants δ1 and δ4, δ1 < δ4, to define the “Good” populations and “Bad”
populations compared to the control population. Next, based on experts understanding of
how much distance is worth detecting or the “threshold”, one would quantify that information
by the design constants δ2 and δ3 so that δ2−δ1(> 0) and δ4−δ3(> 0) are the spacing’s which
will be used to construct two ‘indifference-zones”. Next, one would define the following sets
to split the entire parameter space Ω along the lines of Bechhofer’s (1954) “indifference-zone
formulation”

ΩB = {πi : µi ≤ µ0 + δ1, i = 1, · · · , k},
ΩI1 = {πi : µ0 + δ1 < µi ≤ µ0 + δ2, i = 1, · · · , k},
ΩM = {πi : µ0 + δ2 < µi ≤ µ0 + δ3, i = 1, · · · , k},
ΩI2 = {πi : µ0 + δ3 < µi ≤ µ0 + δ4, i = 1, · · · , k},
ΩG = {πi : µi > µ0 + δ4, i = 1, · · · , k}.

(5)

One may note that the sets ΩI1 and ΩI2 will serve as the two “indifference-zones”. It is
also apparent that the sizes of these two “indifference-zones” does not depend on the what
a practitioner may have picked to specify the “Good populations” and “Bad populations”
compared to the control population. Next, following Solanky and Jhou (2015), we define the
constants

d1 = (δ1 + δ2)/2, d2 = (δ3 + δ4)/2, a1 = (δ2 − δ1)/2, a2 = (δ4 − δ3)/2. (6)

We write Xij to denote a random sample of size n from the population πi where j = 1, · · · , n
and i = 0, 1, · · · , k. Writing X̄i and S2

i for the usual sample mean and sample variance from

the ith population πi as X̄i =
∑n

j=1Xij

n
, and S2

i =
∑n

j=1 (Xij−X̄i)2

n−1 , we obtain the pooled

estimator of the common variance σ2 to be denoted as U(n) =
∑k

i=0 S
2
i

k+1 . Next, as in Solanky
and Jhou (2015), we propose a intuitively defined decision rule Pn based on the vector-at-a-
time sampling strategy of size n from all the populations:
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SB = {πi : X̄in − X̄0n ≤ d1, i = 1, · · · , k},
SM = {πi : d1 ≤ X̄in − X̄0n ≤ d2, i = 1, · · · , k},
SG = {πi : X̄in − X̄0n ≥ d2, i = 1, · · · , k},

(7)

where SB is the set of populations that are classified as“Bad populations”, SM as “Medium
populations”, and SG as“Good populations”. As explained earlier, above decision rule does
not change the definition of “Good” populations and “Bad” populations compared to the
control population which are based on input from experts in the area.

Also, as it is customary for the selection and ranking problems, the decision rules and
the probabilities of correct decision are generally derived under the worst possible parametric
configurations, which are referred to as the “least favorable configurations (LFC)”. And, when
the parametric configurations become favorable, then the observed probabilities of correct
decision would exceed the target probability values. Using symmetry argument, it is apparent
that if ΩI1 and ΩI2 not equal in width then the LFC would become a function of constants
δ2 and δ3, and hence LFC would cease to exist in a general form. Also, intuitively because
there is no penalty for misidentifying the populations that fall inside the two “indifference-
zones” ΩI1 and ΩI2 , under the LFC should not have any population that falls inside any of
them. Utilizing the above information, in Solanky and Zhou (2015) the LFC was introduced
taking advantage of the symmetry in the decision rule (7). We rewrite the spacing’s using
a = δ4 − δ1, the distance between the “Good” populations and “Bad” populations, and a
constant ρ, 0 < ρ < 1

2 , which expresses the size of the two “indifference-zones” as a function
of a.

(1) δ4 − δ3 = δ2 − δ1 = ρa, 0 < ρ < 1
2 . Note that ρ is a design constant which is used to

define the size of the indifference-zones;

(2) r2 +r3 =
[
k
2

]
= k1, r1 +r4 = k−k1, r2 =

[
k1
2

]
, r3 = k1−r2, r1 =

[
k−k1

2

]
, r4 = k−k1−r1,

where r1, r2, r3, and r4 denotes the number of populations with the respective means:
µ0 + δ1, µ0 + δ2, µ0 + δ3, and µ0 + δ4, where [x] equals x

2 if x is even and x+1
2 if x is odd.

We denote this parametric configuration as µ0(r1, r2, r3, r4).

As explained in Solanky and Zhou (2015), the condition (1) above forces the two
indifference-zone’s ΩI1 and ΩI2 to be of same size, whereas, the condition (2) adds symmetry
to the problem and essentially allows equal number of populations at the four boundaries
µ0 + δ1, µ0 + δ2, µ0 + δ3, and µ0 + δ4. Solanky and Zhou (2015) had shown that LFC is
when r1 = r2 = r3 = r4. It is easy to note that as ρ becomes large and approaches 1

2 , the
size of the ΩI1 and ΩI2 increases and the size of “Medium populations” which are classified
as a separate group under generalized partition methodology becomes smaller. And, in this
case the generalized partition rule would approach the formulation presented in Tong (1969).
The constant ρ determines the “threshold” or “minimum distance worth detecting” along
the lines of Bechhofer (1954). Whereas, in the formulation of Tong (1969) the “indifference
zone” played the dual role of defining the “Good” and “Bad” populations and the role of the
“threshold” or the “minimum distance worth detecting”. As derived in Solanky and Jhou
(2015), for the known common variance σ2 case, the probability for the correct decision for
(7) can be shown to be
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P
[
CD|µ0(r1, r2, r3, r4), σ2

]
≥ P ∗ (8)

if the sample size from the k populations and the control population at least 8b2σ2

(ρa)2 (=C) and
the design constant b = b(k, P ∗) is obtained by solving:

� b

−b

� b

−b
...

� b

−b
(2π)−

k1
2 |Σ|− 1

2 exp(−1
2y
′Σ−1y)dy1...dy k1

2
= P ∗ + 1

2 . (9)

In the statistical literature, C = 8b2σ2

(ρa)2 , is referred to as the fixed-sample solution to the
partition problem. The values of design constant b = b(k, P ∗) are available in Solanky and
Jhou (2015).

In section 2, we have proposed a fine-tuned purely sequential procedure that is asymp-
totically unbiased and guarantees the probability requirement by taking a few additional
samples along the lines of Mukhopadhyay and Datta (1995) and Woodroofe (1991). The
“first-order” and “second order” asymptotics of the proposed procedure are obtained and it
is shown that the second-order expansion of the stopping time has the same order of the
remainder as that for the original procedure in Solanky and Zhou (2015). The probabil-
ity of the correct decision for the fine-tuned version of the purely-sequential procedure for
the generalized partition problem will be shown to be at least P ∗ up to the second-order
approximation and will not have additional terms.

2. Fine-Tuned Purely Sequential Procedure

Next, we propose a “fine-tuned purely sequential procedure” for the generalized par-
tition problem described in (5). The procedure starts with initial sample size of m0 (≥ 2)
observations. Next, adopting the “vector-at-a-time” sampling design and it takes one obser-
vation at a time updating the statistic U(n) after each observation until the first time the
condition in the condition below is satisfied

N ≡ N (a) = Inf
{
n ≥ m0 : n+ ε ≥ 8b2U(n)

(ρa)2

}
, (10)

where the constant ε = ε (k, P ∗) is defined in (21) and b = b(k, P ∗) in (9). We first verify
that the stopping rule (10) will terminate with probability one. Note that for given values
of constants µ, σ2, m0, ρ and a, we can write

P (N <∞) = 1− lim
n→∞

P (N > n)

> 1− lim
n→∞

P

{
n+ ε <

8b2U(n)
(ρa)2

}

= 1, since U(n) P−→ σ2 as n→∞.

Hence, with probability one the proposed “fine-tuned purely sequential procedure” (10) will
terminate. Based on the totality of all samples of size N , one computes the sample means
X̄0N , X̄1N , ..., X̄kN and implements the decision rule (7). Next, we will derive some theoretical
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properties to establish the performance of the “fine-tuned purely sequential procedure” (10)
asymptotically. It is easy to verify that as a becomes small, the sample size as determined
by the stopping rule (10) becomes larger. We start with presenting first-order asymptotics
“fine-tuned purely sequential procedure” (10).

Theorem 1: For N as defined by the“fine-tuned purely sequential procedure” (10), the
following properties are satisfied :

(i) N
C

P−→ 1 as a→ 0:

(ii) E(N
C

)→ 1 as a→ 0:

(iii) N−C
C

1
2

L−→ N(0, 2
k+1) as a→ 0:

(iv) lim infa→0 P (CD|PN) > P ∗ under the LFC;

where C = 8b2σ2

(ρa)2 , b = b(k, P ∗) is defined in (9) and has been tabulated in Solanky and Zhou
(2015), and the constant ε = ε(k, P ∗) is defined in (21).

Proof: We start the proof by noting that the N is well-defined and is a non-decreasing
function of a. Next, along the lines of Theorem 2.4.1 of Mukhopdahyay and Solanky (1994)
we use the Lemma 1 of Chow and Robbins (1965) to note N

P−→ ∞ as a → 0. Also,
U(N) P−→ σ2 and U(N − 1) P−→ σ2 as a → 0. Next, inequality (2.4.3) from Mukhopadhyay
and Solanky (1994) for the stopping rule (10) simplifies to

8b2U(N)
(ρa)2 − ε ≤ N ≤ m0 − ε+ 8b2U(N − 1)2

(ρa)2 . (11)

We can rewrite (11) as

8b2U(N)
(ρa)2C

− ε

C
≤ N

C
≤ m0 − ε

C
+ 8b2U(N − 1)2

(ρa)2C
,

which simplifies to

U(N)
σ2 − ( ερ2

8b2σ2 )a2 ≤ N

C
≤ ((m0 − ε)ρ2

8b2σ2 )a2 + U(N − 1)
σ2 .

Above with U(N) P−→ σ2 and U(N − 1) P−→ σ2 as a→ 0 completes the part (i) of the Theorem.
Next, as in Mukhopadhyay and Solanky’s (1994) Theorem 3.5.1, we rewrite the estimator
U(n) by using the “Helmert’s orthogonal transformation” to obtain R′1, R′2, · · · which are
i.i.d. (k + 1)−1 σ2χ2

k+1 to express U(n) = 1
n−1

∑n−1
i=1 R

′
i. Considering only one side of (11),

and writing R∗ = supn≥2

{
1

n−1

n−1∑
i=1

R′i

}
, we have

N ≤ m0 − ε+ 8b2R∗

(ρa)2 .
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This can be rewritten as
N

C
≤ m0 − ε

C
+ R∗
σ2 , (12)

and when a is small enough so that 1
C

become less than 1, the inequality (12) simplifies to
N
C
≤ m0 − ε+ R∗

σ2 . By “Wiener’s (1939) dominated ergodic theorem” we have E (R∗) <∞.
By applying the “dominated convergence theorem” and using Theorem’s (i) result, have the
proof for part (ii). The proof for part (iii) of the Theorem can be derived by comparing the
“fine-tuned purely sequential procedure” (10) with (3.5.1) of Mukhopadhyay and Solanky
(1994). The details are omitted for brevity.

Next, to prove the part (iv), note that without loss of generality we will assume that
πi, i = 1, ..., r1 have means µ0 + δ1; πj, j = r1 + 1, ..., r1 + r2 have means µ0 + δ2; πl, l =
r1 + r2 + 1, ..., r1 + r2 + r3 have means µ0 + δ3; and πm,m = r1 + r2 + r3 + 1, ..., k have means
µ0 + δ4. Next, the probability of correct decision can be written as

P
(
CD|PN ;µ0(r1, r2, r3, r4), σ2

)
= P

[
X̄i − X̄0 < d1, d1 < X̄j − X̄0 < d2, d1 < X̄l − X̄0 < d2, X̄m − X̄0 > d2,

0 < i ≤ r1, r1 < j ≤ r1 + r2, r1 + r2 < l ≤ r1 + r2 + r3, r1 + r2 + r3 < m ≤ k
]
.

As in Solanky and Zhou (2015), the P(CD) can be tactfully written as probability expres-
sions for the correct partition of the populations which are “Good” or “Bad populations”
and probability expressions for the correct partition of the populations which are “Medium
populations”. Assuming that the practitioner considers the correct partition of these two
groups of populations as equal, then the P(CD) expression would simplify to:

P (CD|PN) ≥ (−1) + 2P
{
d1 < X̄j − X̄0 < d2, r1 + 1 ≤ j ≤ r1 + r2;

d1 < X̄l − X̄0 < d2, r1 + r2 + 1 ≤ l ≤ r1 + r2 + r3
}
.

Above can be simplified as

P (CD|PN) ≥ (−1) + 2P

d1 − δ2√
σ2

N

<

(
X̄j − µj

)
√

σ2

N

−

(
X̄0 − µ0

)
√

σ2

N

<
d2 − δ2√

σ2

N

;

r1 + 1 ≤ j ≤ r1 + r2; ρa√
σ2

N

<

(
X̄l − µl

)
√

σ2

N

−

(
X̄0 − µ0

)
√

σ2

N

<
d2 − δ3√

σ2

N

, r1 + r2 + 1 ≤ l ≤ r1 + r2 + r3

 .
Denoting, b = ρa/2√

σ2
N

, and c = (2a−3ρa)/2√
σ2
N

, then the above can be rewritten as

P (CD|PN) ≥ (−1) + 2P {−b < Zj − Z0 < c, r1 + 1 ≤ j ≤ r1 + r2;
−c < Zl − Z0 < b, r1 + r2 + 1 ≤ l ≤ r1 + r2 + r3} .
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In order to obtain a simpler closed form expression for P (CD) note that for ρ < 1
2 , b < c,

and hence −b > −c giving the P (CD) as

P (CD|PN) ≥ (−1) + 2P (−b < Zj − Z0 < b, r1 + 1 ≤ j ≤ r1 + r2, −b < Zl − Z0 < b,

r1 + r2 + 1 ≤ l ≤ r1 + r2 + r3)
= (−1) + 2P (−b+ Z0 < Zi < b+ Z0, r1 + 1 ≤ i ≤ r1 + r2 + r3)

= (−1) + 2E[
� +∞

−∞
{Φ(z + b)− Φ(z − b)}r2+r3 φ(z)dz|Z0 = z]. (13)

Rewriting the first result in the Theorem, we have
√
N ρa√

8σ
P−→ b as a → 0, and next using

the “dominated convergence theorem” completes the proof of part (iv).

Next, for the the “fine-tuned purely sequential procedure” (10) the “second-order ex-
pansions” are presented to asymptotically quantify the number of observations the procedure
will sample compared to the optimal same size. We will also show that the proposed pro-
cedure is asymptotically unbiased version of the procedure in Solanky and Zhou (2015) in
achieving the targeted value of probability requirement.

Theorem 2: The“fine-tuned purely sequential procedure” (10), have the following proper-
ties as a→ 0 :

(i) E (N) = C − ε+ ν−2
k+1 + ◦ (1) , provided that m0 ≥ 1 + 2

k+1 ;

(ii) E (Nω) = Cω + [ω(ν−2
k+1 − ε) + 1

2ω(ω − 1) 2
k+1 ]Cω−1 + ◦ (1) , provided that (a) m0 ≥

1 + (3− ω) 2
k+1 for ω ∈ (∞, 2)− {−1, 1}; (b) m0 ≥ 1 + 2

k+1 for ω = 1 and ω ≥ 2;
(c) m0 ≥ 1 + 4

k+1 for ω = −1.

(iii) P (CD|PN ;µ0(r1, r2, r3, r4), σ2) > P ∗+o( 1
C

) provided that m0 >
5

k+1 +1 for the LFC;

where C = 8b2σ2

(ρa)2 , and the constant ν (k) is defined in equation (16).

Proof: First note that as in Woodroofe (1977) and Theorem 2.4.8 of Mukhopadhyay and
Solanky (1994), the pooled estimator U(n) of σ2 can be written as sum of i.i.d. random
variables as U(n) = 1

n−1
∑n−1
i=1 R

′
i, where R′1, R′2, · · · are i.i.d. 1

k+1σ
2χ2

k+1 random variables.
Let’s write Ri = (k + 1)σ−2R′i, with Ri being i.i.d. χ2

k+1. Using this the purely sequential
procedure could be rewritten as

N = Inf
{
n ≥ m0 : n+ ε ≥ 8b2

(ρa)2 (n− 1)−1 σ2

k + 1

n−1∑
i=1

Ri

}
.

This can rewritten as

N = Inf
{
n ≥ m0 : C−1(n+ ε) (n− 1) (k + 1) ≥

n−1∑
i=1

Ri

}
. (14)
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Next, following Mukhopadhyay and Solanky’s (1994) Theorem 2.4.8 we express N as T + 1,
for the stopping rule T defined as

T = Inf
{
n ≥ m− 1 : C−1n2 (k + 1)

(
1 + ε+ 1

n

)
≥

n∑
i=1

Ri

}
. (15)

The stopping rule T has been expressed in the general form of “equation (2.4.7) in Mukhopad-
hyay and Solanky (1994)” with the values: L0 = ε+ 1; δ = 2; h∗ = k+1

C
; θ = E (R1) = k+ 1;

r2 = E (R2
1) − θ2 = 2 (k + 1); β∗ = 1

δ−1 which simplifies to 1; the value of n∗0 = ( θ
h∗ )β∗

simplifies to C; and the constant p = β∗2r2

θ−2 becomes 2
k+1 . Also, note that with Ri being i.i.d.

χ2
k+1, we can express

P (Ri ≤ r) =
� r

0

e
−x
2 x

k+1
2 −1

2 k+1
2 Γ( k+1

2 )
dx.

Since e−x
2 ≤ 1, replacing e−x

2 by 1 and carrying out the integral one will obtain

P (Ri ≤ r) ≤ 2
k + 1

1
2 k+1

2 Γ( k+1
2 )
r
k+1

2 .

Also, note that for the random variable R, we have

P (Ri ≤ r) ≤ Hrh, where H = 2
k+1

1
2
k+1

2 Γ( k+1
2 )

and h = (k + 1)
/

2. Next, using the
nonlinear renewal theory from “Mukhopadhyay and Solanky (section 2.4.2)” we define the
constant ν = ν (k) as below:

ν = ν (k) = k + 3
2 −

∞∑
n=1

1
n
E
[
max

{
0, χ2

(k+1)n − 2 (k + 1)n
}]
. (16)

Next, following “equation (2.4.10) in Mukhopadhyay and Solanky (1994)” the constant η =
β∗ν
θ
− L0β

∗ − δβ∗2r2

2θ2 would become

η = (k + 1)−1(ν − 2)− (ε+ 1). (17)

Since T = N − 1 and therefore E(T ) = E(N) − 1, next with η as defined above in (17),
applying the “Theorem 2.4.8(v) of Mukhopadhyay and Solanky (1994)” would lead to

E (N) = C − ε+ ν − 2
k + 1 + ◦ (1) ,

provided that m > 1 + 2 (k + 1)−1. This completes the proof of part (i).

The proof of the part (ii) follows by expressing the stopping variable T in the form of
“Mukhopadhyay and Solanky (1994)’s equation (2.4.7)” and applying the “Theorem 2.4.8
of Mukhopadhyay and Solanky (1994)”. The details are omitted for brevity. One may note
that the part (i) is a special case of part (ii) when ω = 1.
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For part (iii), note that from (13) we can express the probability of correctly partition-
ing all k populations using the decision rule PN under the LFC as

P (CD|PN) ≥ (−1) + 2E[
� ∞
−∞
{Φ(z + b)− Φ(z − b)}k1 φ(z)dz|Z0 = z].

Next, we write b = 21/2x and define a function β(x) as

β(x) =
� ∞
−∞

{
Φ(z + 21/2x)− Φ(z − 21/2x)

}k1
φ(z)dz.

It is easy to verify that

β′(x) =
� ∞
−∞

k121/2
{

Φ(z + 21/2x)− Φ(z − 21/2x)
}k1−1

(φ(z + 21/2x) + φ(z − 21/2x))φ(z)dz

β′′(x) =
� ∞
−∞

2k1(k1 − 1)
{

Φ(21/2x+ z)− Φ(−21/2x+ z)
}k1−2

(φ(21/2x+ z) + φ(−21/2x+ z))2 − 2k1
{

Φ(21/2x+ z)− Φ(−21/2x+ z)
}k1−1

(
(21/2x+ z)φ(21/2x+ z) + (21/2x− z)φ(−21/2x+ z))

)
φ(z)dz.

Next, we write g(x) for the function β(bx 1
2 ) and then we can express

g′(x) = 1
2bx

− 1
2β′(bx 1

2 )

g′′(x) = 1
4b

2x−1β′′(bx 1
2 )− 1

4bx
− 3

2β′(bx 1
2 ) (18)

and
|g′′(x)| ≤ a1x

− 1
2 + a2x

−1 + a3x
− 3

2 ,

where a1, a2 a3 are positive constants. For the fine-tuned purely sequential procedure
(10), one can verify that the distribution of N does not depend on the mean vector and
P (N < ∞) = 1. Hence, by using “Theorem 3.2.1 of Mukhopadhyay and Solanky (1994)”,
we have

inf
a→0

P [CD|PN ;µ0(r1, r2, r3, r4), σ2] > (−1) + 2E(g(N
C

)). (19)

Next, taking a series expansion of the function g(x) at x = 1 for random Z ∈ (1, N
C

), we can
write

g(x) = g(1) + g′(1)(x− 1) + 1
2g
′′(Z(x))(x− 1)2.

As shown above, we can express |g′′(x)| ≤ ∑3
i=1

ai
xαi

, with ai > 0 and α1 > 0, by applying
“Lemma 3.5.1 of Mukhopadhyay and Solanky (1994)”, we can show that for m0 >

5
k+1 + 1,

one will obtain

E(g(N
C

)) = g(1) + 1
C
g′(1)E(N − C) + 1

2C2E(g′′(Z(x))(N − C)2).
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With α1 = 1
2 , α2 = 1, and α3 = 3

2 and maximum of (α1, α2, α3) = 3
2 , the “Lemma 3.5.1 of

Mukhopadhyay and Solanky (1994)” leads to

E(g(N
C

)) = g(1) + 1
C
g′(1)E(N − C) + 1

k + 1
1
C
g′′(1) + o( 1

C
) (20)

Following “Mukhopadhyay and Datta (1995)’s Theorem 2.1” with the function g(.) defined
as above, and ε as:

ε = ε (k, P ∗) = (k + 1)−1[ν − 2 + g′′(1)(g′(1))−1], (21)

the E(N) would simplify to

E(N) = C − (k + 1)−1[g′′(1)(g′(1))−1] + o(1), provided m0 > 1 + 2
k + 1 . (22)

Using the equations (20) and (22), one can obtain

E(g(N
C

)) = g(1) + o( 1
n∗

), provided m0 > 1 + 5
k + 1 .

That is,

inf
a→0

P [CD|PN ;µ0(r1, r2, r3, r4), σ2] > (−1) + 2g(1) + o( 1
n∗

), provided m0 > 1 + 5
k + 1 .

Note that g(1) = 1
2(P ∗ + 1) to conclude part(iii) of the theorem.

3. Simulation Study for the Fine-tuned Purely Sequential Procedure

In this section using the Monte Carlo simulation study, the “fine-tuned purely sequential
procedure” (10) is replicated independently 5,000 times by picking different values of design
constants to study how the asymptotic values provided in the Theorems 2.1 and 2.2 compare
with the observed values when the procedure is simulated for small and moderate sample
sizes. For the simulation results presented in the Table 1, we selected k = 8 and P ∗ = 0.95
and generated two independent normal populations at each of the four boundaries to generate
data from LFC, as outlined in the Section 1. In order to obtain the value of constant b for
given choice of k and P ∗, we used the “Table 1 in Solanky and Zhou (2015)”. For example, the
value of constant b for k = 8 and P ∗ = 0.95 is 2.6959. By picking the values of the “optimal
sample sizes” (=C) as 25, 50, 100, 200, 400, and 800 and taking r = 1

3 , we obtained the
values of constant a which are reported in the Table 1. In a practical application, the values
δ1 and δ4 would be chosen so as to reflect the “Good populations” and “Bad populations”
based on the situation. Note that the difference between the “Good populations” and “Bad
populations” is a = δ4−δ1. In the Table 1, by picking r = 1

3 we have divided the indifference-
zone of Tong (1969) into three non-overlapping regions of equal size. The “middle” of these
three regions would serve as the region which we will serve as ΩM and the other two as
indifference-zones ΩI1 and ΩI1 as defined in (5).

The procedure (10) starts with the initial sample size of m0 = 5 observations from
each of the 8 populations and the control population. Then, each additional observation is
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Table 1: Performance of the Fine-Tuned Purely Sequential Procedure (10)

(k = 8, P ∗ = 0.95, ρ = 1
3 , σ = 1.0, m0 = 5)

C ρa a N̄ std(N̄) P̄ std(P̄ )
25 1.5250 4.575 25.3246 0.0347 0.9710 0.0024
50 1.0784 3.2351 50.2660 0.0481 0.9720 0.0023
100 0.7625 2.2875 100.2612 0.0682 0.9776 0.0021
200 0.5392 1.6175 200.2736 0.0943 0.9746 0.0022
400 0.3813 1.1437 400.2050 0.1327 0.9772 0.0021
800 0.2696 0.8088 800.2242 0.1890 0.9750 0.0022

collected according to the following stopping rule (10). In the Table 1, the average value of
the stopping time N and the proportion of the times all the 8 populations were partitioned
correctly are reported as N̄ and P̄ respectively. The Table also reports the standard deviation
of these two reported statistics as std(N̄) and std(P̄ ). For all the cases considered in the
Table 1, the P̄ is larger than the desired probability of correct decision which was selected to
be 0.95. Also, the N̄ matches the optimal sample size values (=C) indicating that the “fine-
tuned purely sequential procedure” (10) over-samples by less than half an observation on
the average. The overall findings in the Table 1 confirm the theoretical results which were
derived asymptotically in the Theorems 2.1 and 2.2 for the “fine-tuned purely sequential
procedure” (10) are met even for small and moderate sample sizes.
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