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Abstract
In an era of “big data” the challenge of managing large-scale multiplicity in sta-

tistical analysis has become increasingly crucial. The concept of r-power, introduced by
Dasgupta et al. (2016), presents an innovative approach to addressing multiplicity with a
focus on the reliability of selecting a relevant list of hypotheses. This manuscript advances
the r-power conversation by relaxing the original assumption of independence among hy-
potheses to accommodate a block diagonal correlation structure. Through analytical
exploration and validation via simulations, we unveil how the underlying dependence
structure influences r-power. Our findings illuminate the nuanced role that dependence
plays in the reliability of hypothesis selection, offering a deeper understanding and novel
perspectives on managing multiplicity in large datasets. Furthermore, we highlight the
practicality and applicability of our results in the context of a Genome-Wide Association
Study (GWAS).

Key words: r-power; Multiplicity; Multiple hypotheses testing; Dependence; False posi-
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1. Introduction

Multiple hypotheses testing has always been a concern in scientific research due
to the challenge of increasing false discoveries with growing multiplicity. However, the in-
creasing prevalence of large-scale testing has brought this topic front and center. Despite
the progress made, researchers continue to seek the “holy grail” that balances statistical
power and control of false discoveries. The review of the literature, in this work aims to
contribute to the understanding and advancement of multiple hypotheses testing, foster-
ing the development of practical, feasible, and sensible methods in this field.

Multiple hypotheses testing has gained significant importance in various scien-
tific disciplines, including chemistry (metabolomics), biology (genomics, proteomics),
medicine (fMRI), and social sciences. As the scale of testing has expanded, controlling
for multiplicity has become a critical concern due to the inflation of Type I error rates
resulting from simultaneous testing. Traditional approaches like the Bonferroni Family-
wise Error Rate (FWER), which has been used for a long time, are conservative and
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hence, impractical when dealing with millions of hypotheses being tested. This research
area starting with Holm (1979), Simes (1986), Hochberg (1988), Hommel (1988), Sarkar
(1998) has persevered for the “gold standard” and has see-sawed between techniques that
are very conservative or too liberal. The introduction of the FDR (False Discovery Rate)
by Benjamini and Hochberg (1995) has marked a significant advancement, providing a
flexible and powerful framework for controlling false discoveries. The False Discovery Rate
(FDR) is a measure that estimates the expected proportion of false discoveries among all
the hypotheses that are rejected. Since the introduction of the FDR, numerous studies
have enhanced and refined its methodology. Benjamini and Yekutieli (2001) proposed
a modified procedure to accommodate dependence structures, ensuring valid control of
the FDR. Efron et al. (2001) introduced empirical Bayes methods that borrow strength
across hypotheses to improve FDR estimation. Building on these ideas, Efron (2004)
developed the “local FDR” approach, allowing for more precise estimation of the FDR.
Storey (2002) introduced the concept of q-values, which provide an intuitive interpreta-
tion of the FDR, enabling researchers to control the proportion of false discoveries at
various thresholds. Furthermore, Storey (2003), Storey (2007), Heller et al. (2006), Du-
doit et al. (2002), Dudoit et al. (2003), Pan (2002), Nichols and Holmes (2002), Nichols
and Hayasaka (2003), Worsley (2003), Ge et al. (2003), Storey (2011) provides a gen-
eral discussion of further developments related to FDR. These studies have significantly
enhanced our understanding of the False Discovery Rate (FDR) framework, shedding
light on its practical applications and uncovering its potential limitations. Storey (2011)
also provided a comprehensive review of these advancements, offering a valuable resource
for researchers in the field. While the FDR has been widely adopted and has greatly
influenced the field of multiple hypotheses testing, researchers continue to search for an
optimal method that balances statistical power and control of false discoveries.

Looking from a different perspective, practitioners often rely on available software
and commonly used packages in R, which incorporate a ranked “top-table” approach
following multiplicity corrections. Smyth et al. (2003) and Smyth and Speed (2003)
highlight this practice and emphasize the importance of revisiting the top-table approach
through the lens of multiplicity control. The fundamental question posed by practitioners
is how to design studies that allow the identification of features of interest without being
overwhelmed by multiplicity corrections and rigid notions of statistical significance. In re-
sponse to this question, researchers have explored selection-based-on-ranking approaches
within the multiplicity framework. Notable contributions in this line of research include
works by Smyth et al. (2003), Smyth (2005), Kuo and Zaykin (2011), Kuo and Zaykin
(2013), Knecht et al. (2003), Abbott et al. (2010).

Continuing in the same vein of research, Dasgupta et al. (2016) introduced the
notion of “r-power” to provide a mathematical framework for the top-table approach.
r-power is defined as the probability that no false positives exist among the test candi-
dates included in the top-table. However, their analysis assumes independence among
the hypothesis testing units, which is often an unreal assumption to implement in prac-
tice. Our study aims to relax the assumption of independence and re-formulate r-power
under dependence making it applicable to real-life scenarios. It begins by considering the
simplest case of equicorrelation and subsequently extends the analysis to more realistic
scenarios involving block diagonal correlation structures.

While numerous approaches have been proposed to assess dependence among test
candidates in multiple hypotheses problems, our method based on r-power offers a fresh
perspective on this issue. Recent methods, such as the one proposed by Leek and Storey
(2008), construct a dependence kernel to ensure independence of test statistics. Kim
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and van de Wiel (2008) propose a method that assesses dependence using a constrained
random correlation matrix. Sun and Tony Cai (2009) introduce a data-driven approach to
minimize the false non-discovery rate, assuming a two-state hidden Markov model for the
observed data. Additionally, Friguet et al. (2009) propose a conditional false discovery
rate (FDR) based on a factor model. Furthermore, Liu et al. (2016) develop a method
to assess dependence in multiple hypotheses testing using graphical models, where latent
binary Markov random fields represent the underlying true states of hypotheses, and the
observed test statistics appear as coupled mixture variables.

In contrast, our method takes a different perspective. We focus specifically on esti-
mating the probability of false positives within the selected list of hypotheses, rather than
considering the entire dataset and we incorporate block diagonal correlation structure to
assess dependence among the test candidates. By adopting this approach, our computa-
tional framework becomes efficient and easily understandable from a practitioner’s point
of view.

2. Introducing r-power

In the following, we reintroduce r-power, dropping the assumption of indepen-
dence. We only present the one-sided case: one-sided hypotheses, for one-sample prob-
lems, as it is the foundation of our main results in the sections to follow. Further details
on the formulation of r-power in the two-sided case are available in Dasgupta et al. (2016).
A practical approach to large scale testing, r-power focuses on selection-based ranking
and answer the question: can one merely rank a test-statistic and identify the top r
candidates from a set of hypotheses generated? By determining r-power, we measure
the reliability of this “top table”, with a focus on prioritizing features of interest over
multiplicity corrections. We now present the underlying multiple testing problem in its
canonical form.

2.1. Testing for normal means

Let X⃗ be a random vector following a multivariate normal distribution such that
X⃗ ∼ N(µ, Σ⃗), where µ = (µ1, . . . , µN) is the mean vector and Σ⃗ is the covariance matrix,
which can be one of the following: (i) an identity matrix (ii) an equicorrelated matrix
(iii) a block diagonal matrix with each block being equi-correlated.

Focusing on t-tests as the statistic of interest, we assume that the number of
observations is large, and that the t statistics can be approximated by normal z statistics.
Without loss of generality, we define our alternative hypothesis to be in the greater than
direction. Comparing to a known mean µ0, our hypotheses of interest are given by
H0i : µi ≤ µ0 and HAi : µi > µ0. We assume that for K of them are from µi = µ0 and
N − K of them are from µi = µ1, where µ1 > µ0. Letting ȳi, si denote the sample mean
and sample standard deviation for the ith hypothesis of interest, in the one-sided case, we
define our test statistic ti =

√
n(ȳi − µ0)/si. We assume that the number of observations

is large, and thus, ti are approximately N(0, 1) for K of the hypotheses and N(δ, 1) for
N − K of the hypotheses, with corresponding effect size δ =

√
n(µ1 − µ0)/σ.

2.2. Determining r-power

To determine r-power in the testing problem above, we consider the top r hy-
potheses among the test statistics t1, . . . , tN . Let G0, GA denote the groups of hypotheses
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supporting the null and alternative hypotheses respectively, with respective test statistics
t0
i and tA

i . In the case of independence, it is assumed that the N hypotheses are indepen-
dent, with equal variances, reducing the covariance structure to the identity matrix, and
t0
i and tA

i are i.i.d. N(0, 1) and N(δ, 1), respectively. We denote the respective null and
alternative order statistics by Z(i), U(j), i = 1, . . . , K, j = 1, . . . , N − K. Misclassification
occurs if the largest member of G0 is greater than or equal to the (N − K − r)th order
statistic from GA, or equivalently, Z(K) ≥ U(N−K−r). We define r-power as the probability
of correct classification, that is,

rP = P (Z(K) < U(N−K−r)). (1)

Assuming independence, we can write Σ⃗ = σ2I⃗N , resulting in an r-power of

rP
(1)(N, K, r, δ) =

� 1

0
Φ(Φ−1(t) + δ)Kβ(N − K − r, r + 1, t) dt, (2)

where Φ, ϕ denote the respective standard normal distribution and density. In
practice, r ≤ N − K is chosen by the researcher. Ranking selection based methods
such as r-power require some knowledge on the true number of null hypotheses. There
have been various methods proposed for estimating the null proportion K/N , such as Jin
(2008), Chen (2018), Sijuwade et al. (2023).

3. Incorporating dependence

With growing dimension and complexity comes an increased risk of Type I error
inflation and thus the assumption of independence becomes less realistic. We consider a
more general but practical option: a block diagonal correlation structure. This approach
is inspired by the success or similar methods from omics studies, in which genes, lipids
and metabolites tend to be related based on common chemical or biological properties.
Some compelling examples include the following. Perrot-Dockès et al. (2019) estimated
block diagonal covariance matrices to study seed quality based on omics information.
Pacini et al. (2017) established a method to reduce false discoveries in gene expression
studies using block diagonal correlation structures. To reduce computation complexity in
a sensitivity analysis problem, Broto et al. (2020) developed a method to estimate high
dimensional block-diagonal covariance matrices for Gaussian data. In practice, unstruc-
tured dependence is most realistic to consider for multiple testing, however, we show that
our proposed method is general enough to approximate it, but simple enough to obtain
reasonable estimates of r-power for implementation.

4. Motivating example: A GWAS study

Genome-Wide Association Studies (GWAS) aim to identify associations between
genetic variants, specifically Single-nucleotide polymorphisms (SNPs), and observed traits
or phenotypes. This study focuses on the association between SNPs and human choles-
terol levels. The dataset used in this study is based on 323 individuals from India, China,
and Malaysia, with 2,527,458 SNPs and cholesterol level measurements based on the Sin-
gapore Integrative Omics Study Saw et al. (2017). The purpose of this study was to
use this data as an example and understand the performance of r-power when the test
candidates (here, SNPs) are dependent. We focused our analysis on a subset consisting
of 316 individuals and 32,010 SNPs from Chromosome 1.
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Data description:

We downloaded the dataset from a public github repository basing their GWAS
analysis and tutorial on data from the Singapore Integrative Omics Study https://
github.com/monogenea/GWAStutorial/tree/master/public. Along with their meth-
ods in this tutorial, we also followed the GWAS methods for data pre-processing from
Reed et al. (2015). The dataset includes three sub-parts:

• Genotype: A SNP matrix with columns representing SNPs and rows representing
sample IDs. Genotype values range from 0 to 2, indicating different allele combi-
nations.

• Mapping File: Contains sample IDs, SNP IDs, chromosome numbers, SNP posi-
tions, and allele types.

• Phenotype: Includes sample IDs and continuous-scale cholesterol level measure-
ments.

Data pre-processing

SNPs with high missingness, low variability and genotyping errors were filtered
out. We conducted our entire analysis in R and utilized the libraries SNPRelate and
snpStats from the BiocManager package in R alongside commonly used packages for
data handling, visualization and parallel processing - tidyverse, doParallel, foreach
and wrote our own function for conducting the GWAS, based on the following

• Call Rate: The percentage of individuals in the study with available SNP informa-
tion. SNPs with a call rate below 1 were discarded, removing missing information.

• Minor Allele Frequency (MAF): MAF denotes the proportion of least common
alleles for each SNP. SNPs with MAF below 0.1 were discarded, focusing on those
with a higher frequency of less common alleles.

• Heterozygosity & Hardy Weinberg Equilibrium (HWE): Heterozygosity
occurs when each of the two alleles are present at a given SNP within an individual.
HWE is a condition where the population does not evolve over generations. More
specifically, this means that the alleles and genotype frequencies in a population will
remain constant from generation to generation in the absence of other evolutionary
influences.
A measure of HWE is given by the Inbreeding Coefficient: |F | = |1 − H/Hexp|,
where H is the observed heterozygosity, Hexp = 2pq is the expected heterozygosity
and p, q are the frequencies of the respective dominant and recessive alleles ‘A’ and
‘a’. We retain samples that are not too heterozygous (affecting sample quality) or
too homozygous (indicating inbreeding), discarding those with |F | > 0.1.

• Linkage Disequilibrium (LD): The presence of a statistical association between
allelic variants within a population due to the history of recombination, mutation,
and selection in a genomic region.

• Kinship Coefficient: A measure of relatedness among the individuals. It denotes
the probability that a pair of randomly sampled homologous alleles is identical
by descent. SNPs with a kinship coefficient above 0.2 were discarded, reducing
relatedness bias.

https://github.com/monogenea/GWAStutorial/tree/master/public
https://github.com/monogenea/GWAStutorial/tree/master/public
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After filtering based on call rate and MAF, 795668 SNPs remained. Following
preprocessing, 316 individuals and 32010 SNPs were retained for analysis.

Analysis and results

We fitted a generalized linear model for each of the 32010 SNPs using the top 20
principal components and the Origin variable (dichotomized) as the covariates with our
model structure. Our approach was motivated by Reed et al. (2015), Lipka et al. (2012);
Price et al. (2006), and Wang and Zhang (2021). We conducted principal component
analysis on a LD pruned dataset with an LD cut-off of 0.2. To understand the population
structure, we have conducted a principal component analysis on the SNPs. We have
pruned the SNPs with a linkage disequilibrium value higher than 0.2. We did so to
understand the underlying population substructure, if any, through principal components.
In our analysis, the top 21 principal components explained approximately 70% of the
variability and we included these PCs as covariates in our model. The first two principal

Figure 1: PCA Plot and Difference by Origin

Figure 2: PCA Plot and Difference by Gender
components account for 2.42% of the variability in the data. When we plot PC1 versus
PC2, we observe that SNPs originating from the same population tend to cluster together
(see Figure 1). Interestingly, when we examine the distribution of gender, we find it to
be fairly uniform across the different origins (see Figure 2). To ensure the reliability of
our findings and minimize the occurrence of false positives, we employed a robust set of
statistical procedures, including the Benjamini-Hochberg, Holmes, Sidak, and Benjamini-
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Yukuteli methods. SNPs identified by these methods are shown in Table 1.

Table 1: Comparison of Methods to Control False Discovery

Method SNPs Identified SNP ID
No Correction 1502 rs7527051, rs12406924, rs4844688,...
Bonferroni 1 rs7527051
Benjamini Hochberg 2 rs7527051, rs12140539
Benjamini & Yekutieli 0 -
Holm 1 rs7527051
Sidak Single-Step 1 rs7527051

The effect of the multiplicity correction methods on the number of identified SNPs
can been seen in 1, with 1502 SNP selections in the absence of any correction. Bonfer-
roni’s method, known for its stringent control of family-wise error rate (FWER), only
selected 1 SNP. On the other hand, Benjamini Hochberg’s method, aimed at control-
ling the false discovery rate (FDR), chose 2 SNPs. Interestingly, the Benjamini-Yekutieli
method, which considers positive regression dependency among SNPs instead of assuming
independence, did not select any SNPs. Additionally, Holm’s and Sidak’s procedures each
reported 1 SNP. The discrepancy between the number of significant SNPs obtained from
the various correction methods raises an important question: How many SNPs should we
follow up on? Whilst no multiplicity correction resulted in a large number of significant
SNPs, FDR & FWER corrections, yielded one or two significant SNPs. Striking the
right balance is essential to ensure the accuracy and reliability of our findings. Hence, in
addition to these established methods, we introduce our formulation of r-power allowing
dependence in our formulation. In the following section, we generalize the idea of r-power
under dependence.

5. Equicorrelation

Returning to the testing problem 2.1, we consider the equicorrelated case corre-
sponding to a joint distribution NN(µ, Σ⃗), where Σ⃗ = σ2[ρ⃗1N 1⃗T

N + (1 − ρ)I⃗N ], 0 ≤ ρ < 1.
We present the following result, from which the probability of correct classification can
readily be determined.

Theorem 1: r-power under Compound Symmetry

Under the equicorrelated testing scenario, we have

1. Σ⃗−1/2 = a1⃗N 1⃗T
N + (b − a)I⃗n, where

a = 1
σN

 1√
1 + (N − 1)ρ

− 1√
1 − ρ

 , b = a + 1
σ

√
1 − ρ

.

2. Σ⃗−1/2Y⃗ ∼ NN(Σ⃗−1/2µ, I⃗N).

3. For 1 − σ−2 < ρ < 1, the probability of misclassification is always less than the
equivalent probability under the independent testing scenario 2.1 with equivalent
dimensions, with corresponding classification probability rP

(1)(N, K, r, (b − a)δ),
following (2).
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Proof:

1. Let e⃗k denote the kth standard basis vector of RN , S⃗k =
k∑

i=1
e⃗i. Since ρ ̸= (N − 1)−1,

the Sherman-Morrison formula (A⃗ + u⃗v⃗T )−1 = A⃗−1 − (A⃗−1u⃗v⃗T A⃗−1)/(1 + v⃗T A⃗−1u⃗)
with u⃗ = v⃗ = 1⃗N , A⃗ = (1 − ρ)I⃗N , implies that Σ⃗ has symmetric positive definite
inverse Σ⃗−1 = C1(I⃗N − C2ρ⃗1N 1⃗T

N), C1 = σ−2(1 − ρ)−1, C2 = (1 + (N − 1)ρ)−1, since
1⃗N 1⃗T

N has spectrum λ1 = N, λ2 = · · · = λN = 0, and eigenvectors u⃗1 = 1⃗N , u⃗j =
e⃗1 − e⃗j, j = 2, . . . , N .

Let D⃗ = diag(l1, . . . , lN) where lj = 1/
√

C1(1 − C2ρλj), and let U⃗ denote the
matrix with columns u⃗j. Letting H⃗ = (⃗1N 1⃗T

N + diag(0, −N, . . . , −N))/N , H⃗U⃗ =
[⃗1N , 0⃗N , . . . , 0⃗N ]T + [(e⃗1 − S⃗N), e⃗2, . . . , e⃗N ]T = I⃗N . Since H⃗, U⃗ and their product are
symmetric, they commute, and we write H⃗ = U⃗−1.

Let d1 = D⃗11 = 1/(σ
√

1 + (N − 1)ρ), d2 = D⃗22 = 1/(σ
√

1 − ρ) and determine the
inverse square root Σ⃗−1/2 = U⃗D⃗U⃗−1, as indeed by the Spectral Theorem, (Σ⃗−1/2)2 =
U⃗D⃗2U⃗−1 = Σ⃗−1. Finally, we have the inverse square root Σ⃗−1/2 = U⃗ [d11⃗N , d2(S⃗N −
Ne⃗2), . . . , d2(S⃗N −Ne⃗N)]T /N , so set a = (d1−d2)/N, b = (d1+(N−1)d2)/N = a+d2.

2. Using characteristic functions, let i =
√

−1 denote the imaginary unit and r⃗ =
(r1, . . . , rN) denote an arbitrary deterministic vector. Setting s⃗ = (Σ⃗−1/2)T r⃗, we
have E(eir⃗T Y⃗ ∗) = E(eir⃗T Σ⃗−1/2Y⃗ ) = E(eis⃗T Y⃗ ) since Y⃗ ∼ NN(µ, Σ⃗). Observing that
Σ⃗−1/2Σ⃗(Σ⃗−1/2)T = I⃗N and s⃗T s⃗ = r⃗T r⃗ due to the symmetry of Σ⃗−1/2, we have
eis⃗T µ−s⃗T Σ⃗s⃗/2 = eir⃗T (Σ⃗−1/2µ)−r⃗T Σ⃗r⃗/2, as desired.

3. Without loss of generality, the mean vector can be written as µ = µ0(S⃗N − S⃗k) +
µ1(S⃗N − S⃗N−k). Then, Σ⃗−1/2µ = (µ0

∗)(S⃗N − S⃗k) + (µ1
∗)(S⃗N − S⃗N−k), where µ0

∗ =
µ0(a + (k − 1)b) + µ1b(N − k), µ1

∗ = µ0bk + µ1(a + b(N − k − 1)). The result follows
from the monotonicity of Φ and the observation that in the two-sided case, with
effect size δ∗ =

√
b(µ1

∗ − µ0
∗)/σ, we have δ∗/|µ1 − µ0| = (b − a) = (σ

√
1 − ρ)−1 > 1

when 1 − σ−2 < ρ < 1. We then compare with equation (2).

6. Block diagonal approach

We now move to a more general scenario based on the equicorrelated testing prob-
lem in our theorem, as equicorrelation is still too restrictive for practical applications. As
we mentioned on in Section 3, we extend the equicorrelated case to obtain an analytic
form for the probability of correct classification. Based on this recent research, and its
adjacency to r-power in application, we consider a block-diagonal correlation structure
based on the equicorrelated case which tends toward unstructured as the block size in-
creases. The probability of misclassification can be determined based on the distribution
of the within-block order statistics. We assume independent blocks in which each block
corresponds to test candidates belonging to either the null or alternative hypotheses or
a mix of both.

We now define the N × N block diagonal correlation matrix B⃗. For j = 1, 2, 3,
we assume respective null, mixed and alternative test candidate counts bj : ∑j bj = N
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and define the respective null, mixed and alternative major blocks and indices by B⃗(j) =
diag(B⃗(j)

1 , . . . , B⃗
(j)
bj

), defined as follows: each minor block B⃗
(j)
i is compound symmetric,

corresponding to test statistic vectors t⃗
(j)
i as in the normal means problem, with assumed

joint distribution N
N

(j)
i

(µ(j)
i , B⃗

(j)
i ), i = 1, . . . , bj for j = 1, 2, 3, based on a common effect

size δ > 0:

µ
(j)
i = δ


0⃗

K
(j)
i

j = 1
S⃗

N
(j)
i

− S⃗
K

(j)
i

j = 2
1⃗

N
(j)
i

j = 3
(3)

B⃗
(j)
i = σ2

ij[ρij 1⃗N
(j)
i

1⃗T

N
(j)
i

+ (1 − ρij)I⃗N
(j)
i

].

Here, S⃗k is defined as in our theorem, 0 < ρij < 1, σ2
ij > 0 denote the respective

correlation and variance of B⃗
(j)
i . Without loss of generality, we order the minor blocks

such that B⃗ = diag(B⃗(1), B⃗(2), B⃗(3)). We assume that each block corresponds to N
(j)
i test

candidates, null candidates K
(j)
i : ∑i,j K

(j)
i = K and research hypotheses r

(j)
i : ∑i,j r

(j)
i =

r, noting that N
(1)
i = K

(1)
i , K

(3)
i = 0, since j = 1, 3 correspond to only null or alternative

candidates respectively. We denote the null and alternative order statistics corresponding
to each sub-block B⃗

(j)
i by (Z(j)

i )(k), (U (j)
i )(l), k = 1, . . . , K

(j)
i , l = 1, . . . , N

(j)
i − K

(j)
i − r

(j)
i

and for convenience, denote the null, mixed and alternative major blocks by N⃗ , M⃗ , A⃗
corresponding to the null, mixed and alternative major blocks B⃗(j): N⃗ = B⃗(1), M⃗ =
B⃗(2), A⃗ = B⃗(3). Write B⃗ = diag(N⃗ , M⃗ , A⃗), where N⃗ = diag(N⃗1, . . . N⃗b1), and likewise for
M⃗, A⃗. We visualize the block diagonal B⃗ below,

adopting the notation ∏N⃗ = ∏
i,j:B⃗(j)

i ∈N⃗
and likewise for M⃗, A⃗. Under the above assump-

tions, misclassification occurs when any members of the top r table come from the null,
which occurs when any members the r

(j)
i -th hypotheses come from the corresponding

null group of any sub-block B⃗
(j)
i : the largest of the K

(j)
i -th null order statistics is at least
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the smallest of the N
(j)
i − K

(j)
i − r

(j)
i -th alternative test statistics. We compute r-power

corresponding to the block diagonal B⃗ as the classification probability

rP = P

(
max
N⃗,M⃗

(Z(j)
i )(K(j)

i ) < min
A⃗

(U (j)
i )(N(j)

i −K
(j)
i −r

(j)
i )

)
. (4)

We note that due to the structure of the means µ
(j)
i , the null and alternative test

statistics corresponding to the mixed block M⃗ are not exchangeable. However, the test
statistics corresponding to the null block N⃗ and alternative block A⃗ are (respectively), and
their distributions can be readily determined based on the normality in (3), via Theorem
5.3.1 of Tong (1990b) to obtain the r-power analytically. We show that if b2 ≤ 1, rP is
completely determined by the distribution

Fi,j,k,µ(x) =
�
R

Hijk

(
(x − µ)/σij + z

√
ρij√1 − ρij

)
ϕ(z) dz, (5)

where Hijk(z) =
N

(j)
i∑

m=k

(
N

(j)
i
m

)
Φ(z)mΦ(−z)N

(j)
i −m.

6.1. One-sided case, no mixed candidates

We use the shorthand Zij = (Z(j)
i )(K(j)

i ), Uij = (U (j)
i )(N(j)

i −K
(j)
i −r

(j)
i ), Kij = (K(j)

i )
and likewise for N

(j)
i , r

(j)
i . Define Mij = Nij − Kij − r

(j)
i > 0 and let Gij denote the

distribution function of Uij with corresponding density gij. Starting with the probability
of misclassification, due to our assumptions (3), we use the exchangeability of the t

(j)
i and

proceed as in Tong (1990a). The density corresponding to the distribution (5) is given
by

fi,j,k,µ = σ−1
ij (1 − ρij)−1/2

�
R

hijk

(
(x − µ)/σij + z

√
ρij√1 − ρij

)
ϕ(z) dz, (6)

where hijk(z) = k
(

Nij

k

)
Φk−1(z)ΦNij−k(−z)ϕ(z). Since b2 = 0, integrating by parts, we

obtain

rP = P

(
max

N⃗
Zij ≤ min

A⃗
Uij
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6.2. One-sided case, one mixed candidate

Let p denote the probability that the minimum of the top r table corresponds to
the mixed block M⃗ . Since the test candidates corresponding to the mixed block M⃗ are
not exchangeable, to streamline our analytical formulation, we assume the existence of
at most one mixed block. Since b2 = 1, using the density (6) and performing the change
of variables t = Φ

(
(x−µ)/σij+z

√
ρij√

1−ρij

)
, we obtain

p = P (min
A⃗

Uij = U12) =
∏
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0
ϕ

(
Φ−1(t) + (δ12 − u)σ−1

12

ρ
1/2
12 (1 − ρ12)−1/2

)

β(M12, K12 + r12 + 1, t) dtdu
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where δij = δ1{i,j:B⃗(j)
i ∈M⃗,i>Kij}. We apply our theorem to obtain
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and finally, we have rP = p(1 − P1) + (1 − p)(1 − P2).

6.3. Limiting behavior and the two-sided case

We examine 6.1 to determine the limiting behavior of rP due to the structural
similarity in each case. As the null proportion K/N tends to 1, since r ≤ N − K, across
A⃗, Fi,j,Mij ,µ tends to Fi,j,0,µ =

�
R ϕ(z)dz = 1 (using the binomial theorem), resulting in

vanishing products over A⃗ and an r-power of zero. The situation in which r → N − K
is similar. Likewise, as δ → ∞, Fi,j,k,δ → 0, following the limiting behavior of the terms
Φm(z) as z → −∞, rP tends to ∏N⃗

�
R fi,1,Ni1,0(u) du = 1. This aligns with our intuition
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from the independent case that as the effect size increases, it is easier to distinguish the
alternative from the null, and vice versa with increasing null proportion.

In the two-sided case, the test statistics t
(j)
i =

√
Nij|Xij − X̄|/σ are assumed to

be jointly distributed according to the folded normal, with mean vector entries 0 or δ
depending on whether or not they correspond to the null or alternative groups for their
respective blocks. We assume a Gaussian copula C(U1, . . . , UN) = ΦB⃗ (Φ−1(F1(X1)), . . . ,
Φ−1(FN(XN))) with covariance matrix B⃗ as in (3) and σij ≡ 1. For 1 ≤ l ≤ N , the
distributions Fl are given by 2Φ(z) − 1 and Φ(z + δ) + Φ(z − δ) − 1 respectively. We
then determine the r-power as rP = P (max

⃗N,M
Φ−1(Fk(Zij)) < max

A⃗
Φ−1(Fl(Uij)), 1 ≤ k ≤

b1 + b2 ≤ l ≤ N and proceed as in 6.1 and 6.2, replacing Φ, ϕ with Fl and its derivative in
Hijk(z) from (5). Since rP has no closed form expression in the block diagonal scenarios,
we approximate it numerically. One approach is to reexamine Fi,j,k,µ(x) in (5):

�
R

N∑
m=k

(
N

k

)
Φ(Az + B)m(1 − Φ(Az + B))N−mϕ(z)dz

=
N∑

m=k

N−k∑
j=0

(
N

k

)(
N − k

j

)
(−1)j

�
R

Φm+j(Az + B)ϕ(z)dz.

As in Owen (1980), Hartmann (2017), an application of the Fubini-Tonelli theorem and
a change of variables zk = yk + x − B/A, k = 1, . . . , m, s⃗ = (x, y1, . . . , ym) yields
�
R

Φm(Az + B)ϕ(z)dz

=
�
R

m∏
k=0

Φ(Az + B)ϕ(z)dz

=
�
R

� z

−∞
· · ·

� z
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m∏
k=0

ϕ(Azk + B)ϕ(x) dz1 . . . dzkdx.

1√
(2π)m+1|V⃗ |

�
R

� z

−∞
· · ·

� z

−∞
exp

(−1
2 s⃗T V⃗ −1/2s⃗

)
dy⃗dx,

= 1√
(2π)m|Σ⃗A|

� −B/A

−∞
· · ·

� −B/A

−∞
exp

(−1
2 s⃗T Σ⃗−1

A s⃗
)

dy⃗,

V⃗ = e⃗T
1 e⃗1 − 2(e⃗T

1 1⃗m + 1⃗T
me⃗1) + 4(⃗1T

m1⃗m) + diag(0, 1, . . . , 1)/A2, Σ⃗A = 1⃗m1⃗T
m + A−2I⃗m.

We obtain the multivariate normal distribution function F⃗m(⃗0m, −(B/A)⃗1m, Σ⃗A),
which can be accurately approximated, as in Genz (1992). The two-sided case can be
handled similarly using Fl(z) = 2Φ(z)−1 or Φ(z+δ)+Φ(z−δ)−1 respectively, depending
on correspondence with the null or alternative.

7. Simulation study

In Section 6, we provided analytical formulae and examined the structure of r-
power under our block diagonal assumptions. To support our results, we conducted
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an empirical simulation study. We simulated rP under different scenarios for the one
and two-sided cases, letting b1 = b3 = 2, b2 = 1, Nij ≡ 104. We also varied the
number of nulls (Kij = (1, 3, 5, 7, 9) · 103), null proportions 10−4Kij, top-table size
(r = 50, 100, 250, 500, 750) and effect size (δ = 0.1, 0.5, 1, 2, 3). We compare the results
for the block diagonal against the independence and equicorrelated scenarios.

Our results are plotted in Figure 3 for the one-sided case and Figure 4 for the
two-sided case. In each figure, we look at r-power as a function of effect size, δ and top-
table/list size r. For illustration, we have provided the case with N = 5 blocks, assuming
b1 = b3 = 2 and writing ρk, k = 1, . . . , N as the correlation corresponding to block B⃗k,
i.e., ρ1 = ρ11, ρ2 = ρ21, ρ3 = ρ12, ρ4 = ρ13, ρ5 = ρ23. To highlight the impact of changing
correlation, we vary ρ across the null and alternative blocks respectively, starting with
(ρ1 = ρ2 = .7 and ρ4 = ρ5 = .6 with ρ3 = .5). Our findings support our expectations from
part 3 of our theorem and the tendency of the misclassification probability to increase
with r, mentioned in section (6.3). Since 1 − σ−2

ij = 0 < ρ < 1, equicorrelation overtakes
independence, given equal top table size and effect size with the block diagonal case
generally falling somewhere in between the two. The situation changes depending on
how the null and alternative correlations compare to each other. Additional results are
available upon request from the authors.

ρ1 = 0.7, ρ2 = 0.7, ρ3 = 0.4, ρ4 = 0.5, ρ5 = 0.5 ρ1 = 0.4, ρ2 = 0.4, ρ3 = 0.8, ρ4 = 0.9, ρ5 = 0.9

ρ1 = 0.9, ρ2 = 0.9, ρ3 = 0.4, ρ4 = 0.4, ρ5 = 0.4 ρ1 = 0.4, ρ2 = 0.4, ρ3 = 0.9, ρ4 = 0.9, ρ5 = 0.9

Figure 3: One-sided case: r-power vs effect size δ (top left, top right) and
hypothesis selection size r for (bottom left, bottom right)

Since r-power depends upon the size of the top-table r and the number of nulls k,
if r > N −k, the top-table becomes unreliable as its length exceeds that of the number of
alternatives, thus containing members from the null. This supports our findings in Figure
3 (bottom left): as we increase r, we run the risk of this scenario occurring regardless of
the dependence structure. However, as the dependence among the alternatives increases,
dimensionality is impacted, reducing N −K, and when the true N −K tends to be smaller
than a given estimate, we are more likely to undershoot for a given choice of top-table size
r, reducing the r-power. On the other hand, if the dependence among the alternatives
is much smaller than that of the nulls (max

A⃗
ρij ≪ min

N⃗
ρkl), we see a reversal and expect
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ρ1 = 0.7, ρ2 = 0.7, ρ3 = 0.4, ρ4 = 0.5, ρ5 = 0.5 ρ1 = 0.4, ρ2 = 0.4, ρ3 = 0.9, ρ4 = 0.9, ρ5 = 0.9

Figure 4: r-power vs effect size

larger r-power than the compound symmetry case. This is supported by Figure 4, also
where the null correlations are lower than that of the alternatives (e.g. .4 vs .9, as shown),
r-power for the block diagonal performs worse than the independent case.

8. Revisiting GWAS results

We have seen in 4 that there was a clear discrepancy between the number of
significant SNPs obtained from the various correction methods which raised an important
question: How many SNPs should we follow up on? Whilst no multiplicity correction
resulted in a large number of significant SNPs, FDR & FWER corrections yielded one or
two significant SNPs. Hence, in addition to these established methods, we introduced r-
power for the block diagonal testing setup as in (3), comparing the reliability of selecting
top-5 SNPs. The Manhattan Plots denote the position of top-1 SNP with Bonferroni’s
cut-off and with Top-5 SNPs based on the ranked test statistic value, respectively.

The Manhattan Plots in Figure 5 show the SNP that was selected from the existing
methods (Bonferroni,Holm,Sidak,Benjamini-Hochberg) (above) and the position of the
top-5 SNPs (below). From these, we determine the confidence of these selected lists
based on r-power. First, we need to estimate the proportion of null hypotheses before
using r-power. For this study, we employed the Laplace-transform-based estimator from
Sijuwade et al. (2023) for its low mean square error in comparison to other estimators.
The resulting estimate yielded a null proportion of π0 = 0.9017, indicating that there
are 28,864 null hypotheses and 3,146 alternative hypotheses. Before evaluating r-power,
we also need to determine the block diagonal correlation approximation from the SNP
correlation matrix. We construct this by dividing the null and alternative groups and
performing variable clustering. The steps involved in determining the parameters of
r-power are as follows:

1. Conduct a cluster analysis on the SNPs in both the alternative and null groups
based on their mean values, assuming that the null and the alternative groups are
well separated.

2. Perform a clustering analysis using CLARA, an extension of the k-medoids al-
gorithm, which is suitable for handling large-scale data Kaufman and Rousseeuw
(2008).

3. Assess cluster quality using the widely adopted silhouette method to determine the
optimal number of clusters.

We analyzed the alternative group, identifying the top r = 5 SNPs, as depicted
in Figure 6 and observed two clusters displaying a wide range of correlation values.
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Figure 5: Bonferroni SNPs (top), Top 5 SNPs(bottom)

Figure 6: Cluster Plot of the Test Candidates
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Figure 7: Cluster Plot of the Null Candidates

To enhance the analysis, we subdivided each of these clusters into different blocks of
approximately equicorrelated variables using LD-pruning, resulting in an approximated
block diagonal correlation matrix. LD is calculated based on R2 values, and we considered
the absolute correlation values of the SNPs since our formulation on r-power is based on
positive correlation. Thus, for evaluating r-power, we consider 8 blocks, as illustrated in
Table 2.

In the analysis of the null group, we also identified two clusters. However, due to
the large number of candidates in the null hypothesis, calculating the correlation matrix
for all SNPs was not feasible. Instead, we focused on the number of null candidates with
a linkage disequilibrium (measured as R-squared) less than or equal to 0.4 from each
cluster. Since our goal in calculating r-power is to ensure that none of the selected top−r
candidates are from the null group, we want to avoid over-penalizing the probability by
considering all SNPs in the null group, regardless of their correlation. To do so, we choose
SNPs with low correlation within the null group to calculate r-power. Cluster 1 in the
null group which originally consisted of 14639 SNPS, has 5675 markers, with a linkage
disequilibrium threshold value of 0.4. Cluster 2 from the null group, which originally
consisted of 14225 SNPs and also has 5682 markers with linkage disequilibrium threshold
value 0.4.

We calculated rP for a block diagonal correlation with 10 blocks - 8 blocks from
alternative and 2 from the null as illustrated in Table 2. Although we have 10 blocks, we
needed to find the block allocation of the top-5 SNPs to calculate r-power. In our study,
the top-5 selected SNPs are “rs7527051” , “rs12140539” ,“rs1222153” , “rs1656014” and
“rs929137”. The cluster allocation is described in Table 2.

Under the assumption of block diagonal correlation, the r-power for selecting the
top 5 significant SNPs with an effect size of 4 was reported to be 91%, indicating a high
probability of correctly identifying the relevant SNPs. At an effect size of 3, the r-power
was reported to be 60%. Thus, the r-power method not only provides a powerful tool for
confidently selecting relevant SNPs but also offers valuable insights into the relationship
between effect size and r-power. By visualizing the r-power as a type of power curve,
researchers can gain a better understanding of how to choose the optimal value for r in
their r-power analysis.
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Table 2: Cluster Information and Correlation Among SNPs

Cluster Hypothesis Group Block Size Cluster Correlation No of SNPs
Cluster 1 Null 5675 0.4 0
Cluster 2 Null 5682 0.4 0
Cluster 1 Alternative 56 0.1 0
Cluster 1 Alternative 921 0.5 0
Cluster 1 Alternative 232 0.7 1
Cluster 1 Alternative 437 1 0
Cluster 2 Alternative 45 0.1 0
Cluster 2 Alternative 855 0.5 2
Cluster 2 Alternative 142 0.7 1
Cluster 2 Alternative 466 1 1

Figure 8: r-power of the top 5 selected SNPs

9. Conclusion

In this article, we addressed a fundamental issue concerning dependence with
respect to the normal means problem, making positive steps towards addressing the
complexity of the unstructured scenario by investigating dependence patterns, deriving
analytical formulae and offering practical solutions to multiplicity issues in large-scale
multiple-hypothesis testing problems. Our comprehensive simulation experiments serve
to support our findings and demonstrate robustness. Our simulation results consistently
show that a positive equicorrelated structure yields higher r-power compared to indepen-
dence among hypotheses and that the correlation structure within blocks significantly
effects the classification probability calculation.

Focusing on top tables, r-power offers insights into the robustness of the systematic
selection of candidates based on combinatorial methods. We find that high within-group
correlation reduces the effective dimensionality of the top-r table, in which case testing
becomes more conservative and in this way, r-power provides insight into test reliability.
From our findings, the correlation within the null group surpasses that of the research
group, r-power under the block diagonal setup tends to outperform the equicorrelated
scenario. Our formulation is built to address scenarios in which sources of variation are
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difficult to identify and various features are clustered. Examples of relevant domains for
future consideration and applications include but are not limited to large-scale testing
within genomics, metabolomics, proteomics and fMRI studies. Our GWAS results in par-
ticular, highlight the advantage of our approach in determining test reliability compared
to traditional methods, especially in in SNP detection and we are developing an R library
for its implementation.
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Perrot-Dockès, M., Lévy-Leduc, C., and Rajjou, L. (2019). Estimation of large block
structured covariance matrices: Application to “multi-omic” approaches to study
seed quality. arXiv:1806.10093 [stat], . arXiv: 1806.10093.

Price, A. L., Patterson, N. J., Plenge, R. M., Weinblatt, M. E., Shadick, N. A., and Reich,
D. (2006). Principal components analysis corrects for stratification in genome-wide
association studies. Nature Genetics, 38, 904–909.

Reed, E., Nunez, S., Kulp, D., Qian, J., Reilly, M. P., and Foulkes, A. S. (2015). A guide
to genome-wide association analysis and post-analytic interrogation. Statistics in
Medicine, 34, 3769–3792.



448
SPECIAL ISSUE IN MEMORY OF PROF. C R RAO

S. CHAKRABORTY, A. SIJUWADE AND N. DASGUPTA [Vol. 22, No. 3

Sarkar, S. K. (1998). Some probability inequalities for ordered mtp2 random variables:
a proof of the simes conjecture. Annals of Statistics, , 494–504.

Saw, W.-Y., Tantoso, E., Begum, H., Zhou, L., Zou, R., He, C., Chan, S. L., Tan, L.
W.-L., Wong, L.-P., Xu, W., et al. (2017). Establishing multiple omics baselines
for three southeast asian populations in the singapore integrative omics study.
Nature Communications, 8, 653.

Sijuwade, A. J., Chakraborty, S., and Dasgupta, N. (2023). An inverse Laplace transform
oracle estimator for the normal means problem. Metrika, 1, 1–18.

Simes, R. J. (1986). An improved Bonferroni procedure for multiple tests of significance.
Biometrika, 73, 751–754.

Smyth, G. K. (2005). Limma: linear models for microarray data. In Bioinformatics
and Computational Biology Solutions using R and Bioconductor, pages 397–420.
Springer.

Smyth, G. K. and Speed, T. (2003). Normalization of cDNA microarray data. Methods,
31, 265–273.

Smyth, G. K., Yang, Y. H., and Speed, T. (2003). Statistical issues in cDNA microarray
data analysis. In Functional Genomics, pages 111–136. Springer.

Storey, J. D. (2002). A direct approach to false discovery rates. Journal of the Royal
Statistical Society: Series B (Statistical Methodology), 64, 479–498.

Storey, J. D. (2003). The positive false discovery rate: A Bayesian interpretation and the
q-value. The Annals of Statistics, 31, 2013–2035.

Storey, J. D. (2007). The optimal discovery procedure: A new approach to simultaneous
significance testing. Journal of the Royal Statistical Society: Series B (Statistical
Methodology), 69, 347–368.

Storey, J. D. (2011). FDR. In International Encyclopedia of Statistical Science, pages
504–508. Springer.

Sun, W. and Tony Cai, T. (2009). Large-scale multiple testing under dependence. Journal
of the Royal Statistical Society Series B: Statistical Methodology, 71, 393–424.

Tong, Y. L. (1990a). Order statistics of normal variables. In Tong, Y. L., editor, The
Multivariate Normal Distribution, Springer Series in Statistics, pages 123–149.
Springer, New York, NY.

Tong, Y. L. (1990b). Positively dependent and exchangeable normal variables. In Tong,
Y. L., editor, The Multivariate Normal Distribution, Springer Series in Statistics,
pages 91–122. Springer, New York, NY.

Wang, J. and Zhang, Z. (2021). GAPIT version 3: Boosting power and accuracy for
genomic association and prediction. Genomics, Proteomics & Bioinformatics, 19,
629–640.

Worsley, K. (2003). Detecting activation in fMRI data. Statistical Methods in Medical
Research, 12, 401–418.


	Introduction
	Introducing r-power
	Testing for normal means
	Determining r-power

	Incorporating dependence
	Motivating example: A GWAS study
	Equicorrelation
	Block diagonal approach
	One-sided case, no mixed candidates
	One-sided case, one mixed candidate
	Limiting behavior and the two-sided case

	Simulation study
	Revisiting GWAS results
	Conclusion

