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Abstract
Non-probability sampling involves selecting samples from a population in which the

probability of selection is unknown and some population units may have zero selection prob-
abilities. This differentiates it from probability sampling where selection is governed by a
probability model and every population unit has a non-zero chance of being selected. Non-
probability samples usually suffer from selection bias and hence may not represent the target
population accurately. An important problem that arises in this context is the prediction of
responses corresponding to non-sampled units, which should ideally have been sampled. In
this article, we propose three modeling frameworks to address this issue. We use propensity
scores to balance the sampled and non-sampled units and a Bayesian estimation scheme for
parameter inference and prediction. We incorporate a spatial poststratification scheme to
assess the predictive ability of our models on a simulated dataset. In addition, we perform
model selection routines to identify the optimal model having the best predictive ability.

Key words: Beta-Bernoulli; Metropolis Hastings sampler; Non-probability samples; Propen-
sity scores; Spatial poststratification.
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1. Introduction

One of the most important aspects of any statistical investigation is the formulation
of a realistic and objective plan for data collection. These data should ideally be derived from
a sample that is a good representation of the target population in the sense that it reflects all
the conspicuous categories of the population adequately. Traditionally, the selection of such
samples is guided by an underlying probabilistic mechanism which ensures that each and
every population unit has a positive probability of being selected. The most well known of
these selection mechanisms is the so called simple random sampling, which has the property
that every sample of size, say n, has the same chance of being selected. This implies that each
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population unit has the same chance of being selected in the final sample. As a result, this
kind of sample is known as a probability sample and the corresponding plan is designated
as a probability sampling plan. Commonly used sampling mechanisms such as stratified,
cluster or systematic sampling (Neyman, 1934) and their combinations are all grounded in
the principle of probability sampling as opposed to non-probability sampling.

However, obtaining a truly parsimonious and representative probability sample is
often prohibitively difficult in a real setting due to various constraints. Even if such a
sampling scheme is implemented, it is a formidable task to obtain the requisite responses
from the selected sample units. In fact, response rates of major surveys have been declining
rapidly, casting doubts on the validity of probability samples as a proper representation of
the population. According to Pew Research Center, the response rates in typical telephone
surveys dropped from 36% in 1997 to only 9% in 2012 (Kohut et al., 2012). Such low response
rates, coupled with the complexity of implementation of probability-based survey designs
raise serious doubts as to the viability of such sampling frameworks in real-life settings.

The above considerations along with an explosion of data being generated through
various channels have led to an upsurge in the usage of non-probability sampling schemes.
These schemes, as the term suggests, does not involve any underlying probabilistic mech-
anism for implementation. As a result, such schemes are convenient to use and hence are
also referred to as convenience sampling schemes. Inferences from such samples are generally
model based. However, as population units “self-select” themselves, the samples so obtained,
often suffer from selection bias. This often results in the sample being non-representative of
the target population in the sense that the sample may fail to incorporate all the relevant
segments of a target population in the correct proportion. For example, in an email survey,
only those who are willing to participate respond, probably having particular demographic
characteristics. As a result, the demographic characteristics of those who do not participate
are under-represented in the sample. Having said that, there is a subtle difference between
selection bias and undercoverage in which certain sections of the population have absolutely
no representation in the sample. In other words, it can be said that undercoverage is an
extreme form of selection bias where a certain section of the population have absolutely zero
chance of being selected in the sample. In this context, we would like to state that the pro-
posed modeling frameworks have been designed to account for selection bias, not necessarily
undercoverage.

In order to explore the applicability of non-probability sampling schemes for sampling
from finite populations, the American Association of Public Opinion Research (AAPOR) con-
stituted two task forces, neither of which favoured their use (Baker et al., 2013). It was also
suggested that inferences about a population drawn from a non-probability sample is valid
subject to the verification of the modeling assumptions underlying the sampling scheme,
a rather difficult proposition. The report also outlined various forms of non-probability
samples such as convenience, snowball, network, mall-intercept and volunteer samples. One
common aspect of all these schemes is the non-probabilistic aspect of sample selection, which
results in biases, as mentioned before. Techniques for controlling biases have also been pro-
posed such as sampling match which involves selecting non-probability sample units such
that their characteristics match those in the population. This leads to the reduction of se-
lection bias specially when the distribution of covariates used for matching are similar for
the non-probability sample and the target population. A modified matching principle can
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be adopted for observational studies in which the non-probability sample units are matched
with those in a probability sample. Each unit in the non-probability sample can then be
assigned a weight as a form of quantification of its degree of matching with the probabil-
ity sample (Rubin, 1979). Rosenbaum and Rubin (1983) illustrated the use of propensity
scores in the context of observational studies when the distribution of covariates is different
in the treatment and control groups. This technique can be adopted for non-probability
sampling as well, since the covariate characteristics may differ between the sampled and
non-sampled groups. An extensive overview of matching procedures for causal inference and
their applicability in diverse fields have been provided by Stuart (2010).

Smith (1983) introduced the notion of non-probability sampling and discussed gen-
eral approaches for making inference from such samples. The basic formulation outlined
therein is to model the joint distribution of the response observations and the selection
probabilities of the population units. This formulation resembles the works of Rubin (1976),
Little (1982) and Little and Rubin (2002) on selection mechanisms and survey responses.
Smith (1983) also introduced the concept of poststratification and discussed its application
on quota sampling. In the context of the above framework, Elliott and Valliant (2017)
proposed two specific approaches of inference from non-probability samples, namely quasi-
randomization and super-population. The underlying idea for these two approaches is to
decompose the aforementioned joint distribution into the product of a conditional distribu-
tion of the response vector given that of the selection probabilities and the distribution of
the response vector given the covariates. Quasi-randomization involves modelling the first
component and estimating the selection probabilities as a way of correcting for the selection
bias. On the other hand, the superpopulation approach involves modeling the second com-
ponent. Although both approaches involve modeling, those are fundamentally different in
their character. However, both approaches are aimed at nullifying or correcting for the effect
of selection bias so as to make the resulting non-probability sample a better representation
of the population.

One approach is to use propensity scores to estimate the survey weights of the non-
probability sample and then proceed as in a regular probability sample; see Elliott and
Valliant (2017) for an informative review of quasi-randomization and the super-population
approach for non-probability samples. Chen et al. (2020) supplemented a non-probability
sample with a probability sample using only the observed covariates to estimate propensity
scores via logistic regression. Another approach is to use a nonignorable selection model to
remove the selection bias; see Smith (1983) for pioneering work in this direction. Xu and
Nandram (2019) used this approach to obtain full Bayesian analyzes; the references therein
provide a historical development of this area. It is difficult to make valid inference from a
non-probability sample with considerable selection bias. After all, a probability sample is
the gold standard (high quality), but a non-probability sample is likely to have low quality
(large bias, large mean squared error but unrealistically small variance). The key problem
of a non-probability sample is that it is very likely to lead to seriously biased estimates of
finite population quantities. Therefore, the large well-documented literature on selection
bias is pertinent in the study of non-probability samples; these articles are too numerous to
mention here; see Xu et al. (2020) and Choi et al. (2021) for recent applications, and the
references therein.

It is also possible to make inference about a finite population quantity using a sin-
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gle non-probability sample only; see Rao (2021) for a discussion. Supplementing a non-
probability sample with a small probability sample has recently received some attention.
But it is not quite practical to run a small probability survey in parallel with a non-
probability sample. Therefore, if one can make accurate finite population inference from
a non-probability sample only, this can be useful and economical. After all it costs money
and time to design and field even a small survey, and it is less practical that both a non-
probability sample and a probability sample will be available at the same time.

Survey samplers have long been using probability samples from one or more sources
in conjunction with census and administrative data to make valid and efficient inferences
on finite population parameters. This topic has received a lot of attention more recently in
the context of data from non-probability samples such as transaction data, web surveys and
social media data. Rao (2021) reviewed various probability survey methods that are used
to make valid inferences about finite population parameters. This allowed him to show how
these models can be extended to non-probability samples that can lead to “valid inferences
by themselves or when combined with probability samples”. Beaumont (2020) also reviewed
some approaches that can “reduce, or even eliminate the use of probability surveys, all
while preserving a valid statistical inference framework”. However, naive use of such data
can lead to serious sample selection bias and without adjustment to reduce selection bias
it can lead to the “big data paradox: the bigger the data, the surer we fool ourselves”
(Meng, 2018). Inevitably, non-probability samples will be more widely used in the future,
and we need to continue researching methods for obtaining valid (or at least acceptable)
inferences from them, possibly in combination with probability samples as illustrated in
several papers. Falling response rates and increasing respondent burden are often given as
reasons for using non-probability samples, especially in socioeconomic surveys. Robustness
to model misspecification is also important in non-probability samples; see, for example,
Marella (2023) and Rafei et al. (2022).

It is possible to use post-stratification to make satisfactory inference from a non-
probability sample only, and it is convenient to do so. It is not necessary to estimate
directly the selection probabilities for the non-probability sample; see Little (1993), Wang
et al. (2015), Wang et al. (2021), Nandram and Choi (2005, 2010). Propensity scores are
used to stratify the population, and they are not used as survey weights. However, too
many strata can lead to sparseness and some strata can be empty. Cochran and Chambers
(1965) suggested an optimal number of five strata (using quintiles); while this is good for
small samples, it may not be so good for large samples. For larger samples, we can use more
thinning, and a larger number of strata might be more efficient, say ten strata (using deciles).
We may not know the nonsampled covariates, but the minimal we can assume is that the
population size and the average covariates are known, a practical scenario. It is then possible
to generate surrogates of the the nonsampled covariates using a bootstrap procedure.

Here, we are not concerned with data integration nor small area estimation. But
there is also an emerging area in this direction; see Nandram and Rao (2024), Nandram and
Rao (2023), Nandram and Rao (2021) and Nandram et al. (2021) for a Bayesian approach
using propensity scores to estimate the selection probabilities with assistance from a small
probability sample; there are other Bayesian approaches such as Sakshaug et al. (2019),
Wísniowski et al. (2020), Salvatore et al. (2024) and Rafei et al. (2022), who used the non-
probability sample to supplement the probability sample. There has been a non-Bayesian
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literature also. One leading paper is Chen et al. (2020), who use the design approach with
double robustness and asymptotic theory. However, models will be better, if in fact, inference
about the finite population parameters is robust to the of assumptions of the models for
both the study variable and the participation variable. Other non-Bayesian approaches are
discussed by Elliot (2009), Elliott and Haviland (2007) and Robbins et al. (2021).

The primary objective of this article is to propose methodologies aimed towards re-
ducing selection bias when there exists significant difference in the characteristics between
sampled and non-sampled units. A related problem that will be addressed is the prediction
of the response observations for the non-sampled units for given values of their covariates. In
doing so, we will build on established ideas, for instance, post-stratification (Smith, 1983),
superpopulation approach (Elliot and Valliant, 2017) and propensity scores matching (Rosen-
baum and Rubin, 1983). The crux of our methodology will be to treat the non-sampled units
vis-a-vis their response as missing data (Rubin, 1976; Little and Rubin, 2002). Propensity
scores and post-stratification will be used to balance the covariate distributions between
the sampled and non-sampled groups. Lastly, we will perform the analysis in a hierarchical
Bayesian setup through Markov chain Monte Carlo methodology. Application of Bayesian
methodology in the context of non-probability sampling is a relatively unexplored domain. A
recent article in this space is by Sakshaug et al. (2019) which examines the exchangeability of
probability and non-probability sampling schemes by supplementing small probability sam-
ples with non-probability ones in a Bayesian paradigm. Their proposed method is applied
simultaneously on probability and non-probability surveys and is shown to reduce the vari-
ance and mean squared error of model based predictions corresponding to non-probability
samples relative to probability-only samples. However, the novel aspect of the methodology
proposed in this article is the integration of a spatial dimension in the model for binary
responses which enables us to better predict the response for the non-sampled units. Hav-
ing said so, we must emphasize that our target of inference and/or prediction is the finite
population proportion of success in the non-sampled group. However, we believe that our
framework can be effortlessly extended to estimate population means in general, arising from
continuous or discrete response variables by broadening the distributional structure of the
said variables.

This paper is organized as follows. In Section 2, we describe the simulation mechanism
for generating test data. In Section 3, we outline a modeling framework based on the Beta-
Bernoulli distribution for the purpose of prediction of responses for non-sampled units. In
Section 4, we introduce a modified model that incorporates a spatial dimension to the existing
modeling framework. In Section 5, we propose another spatial model that leads to more
precise prediction of responses for the non-sampled units. For each of these frameworks,
we discuss the mechanism of estimation and prediction in a hierarchical Bayesian setup. In
Section 6, we discuss some diagnostic measures for comparing the relative predictive abilities
of the aforementioned models, followed by concluding remarks and a discussion of future work
in Section 7.

2. Data simulation

As mentioned before, one of the principal characteristics of non-probability sampling
is that the distribution of covariates is different for the sampled and non-sampled groups.
This will be the basis for our simulation exercise aimed at generating the dataset on which
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our proposed methodologies will be tested later. For the purpose of simulation, let the
population size be 10,000, denoted as N , while the size of the sampled group be 1000,
denoted as n. We consider four (4) covariates, namely Age (X1), Race (X2), Gender (X3)
and Education level (X4) and a response Y such that

X2i = {
1 if ith subject is white
0 if ith subject is black; X3i = {

1 if ith subject is male
0 if ith subject is female;

X4i = {
1 if ith subject’s education is college or higher
0 if ith subject’s education is highschool or lower;

Yi = {
1 if ith subject’s response is Yes
0 if ith subject’s response is No,

where i = 1, ..., N . Finally, we assume the following distributions for the covariates

X1i ∼ N(55, 52), X1i ∼ N(65, 52);
X2i ∼ Bernoulli(0.3), X2i ∼ Bernoulli(0.5);
X3i ∼ Bernoulli(0.5), X3i ∼ Bernoulli(0.4);
X4i ∼ Bernoulli(0.5), X4i ∼ Bernoulli(0.6),

where the distributions in the first (left) column correspond to the subjects in the sampled
group (i = 1, ..., n) while those in the second (right) column correspond to those in the non-
sampled group (i = n+1, ..., N). The above choice of parameters was guided by the fact that
the distributions of each covariate for the sampled and non-sampled groups should not be too
different. This is critical, because in the poststratification step to be implemented next, it is
necessary for every stratum to have some sampled units. In other words, if the distributions
of particular covariates in the sampled and non-sampled groups are very different, there may
be stratum which will be devoid of any units from the sampled group. If so, it would not be
possible for us to predict the response of the non-sampled units for that stratum.

Finally, we assume that Yi∣pi
ind∼ Bernoulli (pi). Once the above covariate values are

simulated, we generate the probability of success (i.e.., Yi = 1) using the following logistic
regression function

pi = P (Yi = 1) = eα0 + α1X1i + α2X2i + α3X3i + α4X4i + ϵi

1 + eα0 + α1X1i + α2X2i + α3X3i + α4X4i + ϵi
, i = 1, 2, ..., N,

where the ϵ follow a standard normal distribution i.e.. ϵi ∼ N(0, 1). We assume (α0, α1, α2,
α3, α4) = (0.1, 0.01, 4,−5,−1). Once the N simulated values of pi are obtained, the corre-
sponding values of Yi are drawn from Bernoulli (pi). Table 1 depicts part of the simulated
data.

Here Ri is such that

Ri = {
1 if unit i belongs to the sampled group
0 if unit i belongs to the non-sampled group, i = 1, 2, ..., N.

It is important to note that Yi, (i = 1001, ..., 10, 000) will be assumed to be unobserved since
they relate to the non-sampled units. However, the covariates, Xi’s are always observed.
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Table 1: Simulated data set of the population

i Ri X1i X2i X3i X4i Yi

1 1 48 0 0 0 1
2 1 63 1 0 1 1
3 1 50 0 0 0 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

999 1 54 0 0 0 0
1000 1 56 1 1 1 0
1001 0 47 1 1 0 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

9998 0 64 1 0 0 1
9999 0 66 1 0 0 1
10000 0 59 1 0 0 1

Our sole purpose will be to predict these unobserved responses corresponding to the non-
sampled units using data from the sampled units. Towards that end, we will formulate various
modeling frameworks and will apply those on the above data. These will be illustrated in
the next sections.

3. Non-spatial model

Here we describe the general approach to predict the finite population proportion
using a non-spatial model.

3.1. Model specification

In order to specify the model framework, we need to define the propensity scores in the
context of our setup. The propensity score for a subject/entity is the conditional probability
of it being selected in a sample given its covariates. The foundational assumption in this
regard is that all pertinent covariates related to the sample units are included in the study.
Supposing xi is the covariate vector corresponding to the ith subject in the population, its
propensity score, π(xi) is given by

π(xi) = P (Ri = 1∣xi, ϕ), i = 1, 2, ..., N, (1)

where Ri has been defined in Sec 2 and ϕ is a vector of unknown parameters. We use a
logistic regression model to model π(xi) i.e..

π(xi) =
ex′iβ

1 + ex′iβ
, (2)

where β = (β0, β1, β2, β3, β4) is our target of inference. We assume a non-informative prior
on β i.e.. π(β) = 1. Assuming independence, the conditional distribution of Ri is given by

Ri∣β ∼ Bernoulli{π(xi)}.
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Accordingly, the posterior density of β can be expressed as

π(β∣R) ∝
N

∏
i=1

⎛
⎝

ex′iβ

1 + ex′iβ

⎞
⎠

Ri ⎛
⎝

1 − ex′iβ

1 + ex′iβ

⎞
⎠

1−Ri

=
N

∏
i=1

⎛
⎝

eRix′iβ

1 + ex′iβ

⎞
⎠

. (3)

It is important to note that our target of inference in this case is the finite population
proportion i.e.. 1

N ∑
N
i=1 Yi, where the sample values (Yi, i = 1, 2, ..., n) are observed and the

non-sample values (Yi, i = n + 1, ..., N) are missing. In the context of non-probability sam-
pling, the missing data mechanism can be assumed to be missing-at-random (MAR), given
the covariates (Little and Rubin, 2002). However, this is not a binding condition since in-
ference can be performed on non-probability samples accommodating for both nonignorable
nonresponse and selection biases (Nandram and Choi, 2010; Nandram, 2022).

3.2. Bayesian computation

Since the above posterior is not in closed form, we will need to perform the Metropolis-
Hastings algorithm (Hastings, 1970) in order to draw samples from it. For that purpose,
we need to define a suitable proposal density. We use Laplace approximation for that pur-
pose. The advantage of the Laplace approximation is that for small degrees of freedom, it
has increased flexibility to accommodate skewness, thus enhancing its effectiveness as an
approximation. It is worth noting that the Laplace approximation is simply used as a pro-
posal density (first approximation) in the Metropolis sampler. Accordingly, we assume that
β approximately follows a multivariate t distribution parametrized as

β∣σ2 ∼ N(β̂, γ2Σ̂); ν

γ2 ∼ χ2
ν

where Σ̂ = −(H(β̂))−1, β̂ being the mode of β.

Here ν is the degrees of freedom of the multivariate t distribution and acts as a tuning
parameter. The values of β̂ and −(H(β̂))−1 are obtained through numerical approximation.
For posterior simulation, we use Metropolis-Hastings algorithm with the following candidate
density for β

p(β)∝ 1

[1 + (β − β̂)′Σ̂−1(β − β̂)
ν ]

5+ν
2

.

We first draw 10,000 sets of β = (β0, ..., β4). Then we drop the first B = 5000 iterates and
take every 5th of the remaining iterates i.e.. we take iterate number B + 1, B + 1 + k, B + 1 +
2k, ..., B+1+m×k where k = 5 and m = 1000 being the final sample size. Table 2 depicts the
posterior summaries of β = (β0, β1, β2, β3, β4) obtained from the simulated samples, which
are provided under Section 3.2 in the Annexure.

We use various diagnostics to assess the convergence of the chains, like trace and
autocorrelation plots, Geweke test and effective sample sizes. The trace and auto-correlation
plots are shown under Section 3.2 in the annexure. The plots and the diagnostics tests
indicate satisfactory mixing and convergence of the chains. In the context of simulated data,
the above estimates indicate that all the predictors have a significant effect on the response,
Ri. Specifically, being younger, being black, being male or having a high school or lower
degree significantly increase the odds of being sampled.
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Table 2: Posterior summaries of β for Beta-Bernoulli model

Parameter Mean Standard Deviation 95% HPD Interval
β0 9.957 0.448 (9.089, 10.775)
β1 -0.196 0.006 (-0.219, -0.189)
β2 -0.785 0.073 (-0.935, -0.652)
β3 0.264 0.071 (0.122 0.398)
β4 -0.416 0.074 (-0.551, -0.261)

3.3. Poststratification and prediction

As mentioned before, our principal aim is to predict the responses for the non-sampled
subjects using data from the sampled subjects. Towards that end, it is imperative to balance
(or adjust) the covariate distributions between the sampled and non-sampled groups. We
will achieve that through a combination of propensity scores and poststratification (Baker
et al., 2013) as depicted by Rubin (1979) and in Nandram and Choi (2010) who applied it
in the analysis of body mass index data in a small area context.

3.3.1. Poststratification

The poststratification procedure will be described in this section.

For the hth set of simulated values of β, the corresponding propensity score values
are given by

π
(h)
i = ex′iβ

(h)

1 + ex′iβ
(h)

, h = 1, 2, ..., 1000; i = 1, 2, ..., 10, 000.

Thus, we will have m = 1000 propensity score values for each of N = 10, 000 simulated
population units resulting in a N ×m = 10, 000 × 1000 matrix of propensity scores. Part
of this matrix is shown under Sec 3.3.1 in the Annexure. Given the simulated values of
the propensity scores, we create ten (10) strata by forming ten intervals from their deciles
for implementing the poststratification procedure. The ten intervals are shown in Table 3,
where Ij denotes the jth interval. Now, for each simulated value of β, we allocate the 10,000
population units into these strata/intervals based on their respective propensity score value.
Table 4 depicts the number of subjects allocated to each of these strata corresponding to
the sampled and non-sampled groups for four simulated values of β. Note that the sample
frequencies vary across the sub-strata because the deciles are based on 107(10, 000 × 1000)
propensity score values.

Table 3: Propensity score intervals

I1 I2 I3 I4 I5
(0, 0.0143] (0.0143, 0.0237] (0.0237, 0.0337] (0.0337, 0.0459] (0.0459, 0.0613]

I6 I7 I8 I9 I10
(0.0613, 0.0815] (0.0815, 0.1110] (0.1110, 0.1550] (0.1550, 0.2366] (0.2366, 0.9302]
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Table 4: Stratum allocation frequencies for sampled and non-sampled groups for
different values of β

Stratum Frequency
β Group I1 I2 I3 I4 I5 I6 I7 I8 I9 I10

Sampled 8 20 28 36 36 70 105 133 225 339
β(1) Non-sampled 985 916 955 1050 825 1042 911 874 820 622

Sampled 8 30 23 38 38 77 92 115 240 339
β(2) Non-sampled 1033 1208 852 967 825 1066 712 805 910 622
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

Sampled 9 20 32 35 48 59 101 134 205 357
β(999) Non-sampled 1012 947 1057 967 960 926 846 823 783 679

Sampled 13 25 27 37 40 74 83 133 206 362
β(1000) Non-sampled 1203 1038 985 924 890 833 781 871 774 701

It can be easily verified that the cumulative frequencies of the sampled and non-
sampled units across all the strata/intervals are 1000 and 9000 respectively for all simulated
values of β. Conditional on the above poststratification, the covariate distribution for the
sampled and non-sampled groups can be assumed to be similar for each stratum. Hence,
for each stratum/interval, we can predict the response for the non-sampled units using data
for the sampled units. Prediction will be carried out using the superpopulation approach
mentioned in Section 1 by modeling the conditional density of the response vector (say, Y s)
given the covariate vector (say, Xs) for the sampled group respectively.

3.3.2. Prediction

The prediction procedure is described in this section.

Let yij denote the response for the jth unit in the ith stratum for the sampled group,
where i = 1, 2, ..., 10 and j = 1, 2, ..., ni, ni being the number of sampled subjects in stratum
i. For example, for β(1), the number of sampled subjects in the 1st stratum is 8 i.e.. ni = 8.
Let pi be the probability of success (i.e.. yij = 1) for the ith stratum. We have the following
model specification

Yij ∣pi ∼ Bernoulli(pi), i = 1, 2, ..., 10; j = 1, 2, ..., ni,

pi ∼ Beta(0, 0), i = 1, 2, ..., 10. (4)

The above prior is clearly improper and is also known as the Haldane prior. We have chosen
this prior for pi in order to make the inference as data driven as possible. The posterior of
pi is

π(pi∣yi) ∝ f(yi∣pi)π(pi) = p
∑ni

j=1 yij−1
i (1 − pi)ni−∑

ni
j=1 yij−1

i.e.. pi∣yi ∼ Beta(
ni

∑
j=1

yij, ni −
ni

∑
j=1

yij) . (5)

Here ∑ni
j=1 yij and ni − ∑ni

j=1 yij are respectively the number of 1’s and 0’s of the response
variable for the sampled data in the ith stratum. As an illustration, for β(1), there are 8
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sampled units and 985 non-sampled units in the 1st stratum. The response values for the
8 sampled units are (1, 0, 0, 1, 1, 0, 1, 1) i.e.. ∑ni

j=1 yij = 5 and ni − ∑ni
j=1 yij = 3. Hence, the

posterior distribution of p1 will be Beta(5, 3). Now, we can draw a random sample of p1
from a Beta(5, 3) distribution (say p̃1) and finally draw 985 values of yij from Bernoulli(p̃1).
The simulated values of y so drawn will be the predicted values of Y corresponding to the
1st stratum. Similarly, we can predict all the non-sampled response observations for all the
strata.

Once the above prediction is complete, we compute the proportion of successes i.e..
Y = 1 for the sampled and non-sampled groups separately as well as for all the N subjects
in the combined set corresponding to each β(h), h = 1, 2, ..., 1000. These are given by

P
(h)
all =

∑N
k=1 Y

(h)
k

N
and P

(h)
ns =

∑N
k=n Y

(h)
k

N − n
, h = 1, 2, ..., 1000.

The true values of the above quantities for the sampled, non-sampled and all individuals
taken together are 0.398, 0.509 and 0.498 respectively. The kernel density plots of the above
quantities are given in Figure 1. Here the bold (dashed) curve correspond to P

(h)
all (P (h)ns )

respectively.

(a) Combined (bold: P
(h)
all ; dashed: P

(h)
ns )

Figure 1: Kernel density plots of the proportion of positive responses predicted
for all individuals and non-sampled individuals for Beta-Bernoulli model

3.4. Model accuracy

To evaluate the accuracy of our prediction, we compute the 95% highest posterior
density (HPD) intervals of P

(h)
all and P

(h)
ns . If the true proportion values, reported above, lies

within and near the centre of the above intervals, it would indicate an accurate fit. However,
if the true value lies outside the intervals or towards the edge, that would be indicative of a
sub-optimal fit. The HPD interval for the true population proportion of positive responses
for all the sampled units taken together (P (h)all ) is found to be (.450, .559) while that for
the proportion of non-sampled subjects is (0.456, 0.577). In both cases, the true values i.e..
0.498 and 0.509 falls within and near the centre of the corresponding intervals. This indicates
that our prediction is pretty accurate.



372
SPECIAL ISSUE IN MEMORY OF PROF. C R RAO
DHIMAN BHADRA AND BALGOBIN NANDRAM [Vol. 22, No. 3

In addition to testing prediction accuracy, we also compare the predictive ability of
our modeling framework, based on the superpopulation methodology, with that of quasi-
randomization strategy, mentioned in Section 1, using the Horvitz-Thompson (Horvitz and
Thompson, 1952) and the Hajek estimators of the population proportion (of positive re-
sponses for all the N units). These are given by

P̂
(h)
HT =

Ŷ
(h)

HT

N
= 1

N

n

∑
i=1

Yi

Pr
(h)
i

and P̂
(h)
H = ∑

n
i=1 Yi/Pr

(h)
i

∑n
i=1 1/Pr

(h)
i

, h = 1, 2, ..., 1000,

where “HT” and “H” in the suffix denotes “Horvitz-Thompson” and “Hajek” respectively
while

Pr
(h)
i = nπ

(h)
i

∑N
i=1 π

(h)
i

, h = 1, 2, ..., 1000; i = 1, 2, ..., N.

Here n = 1000, N = 10, 000 while π
(h)
i is the propensity score for the ith subject

corresponding to the hth case. The histograms of the 1000 simulated values of P̂
(h)
HT and P̂

(h)
H

for the above estimators are shown in Figure 2. The corresponding 95% H.P.D interval of
the true population proportion (for all subjects taken together) are (0.478, 0.584) and (0.496,
0.543) respectively. In both cases, the true value, 0.498, falls within the above intervals but
more towards one of the edges. This is specially true for the Hajek estimator as the true
population proportion is nearly equal to the lower bound of the H.P.D interval, 0.496. Thus,
we can conclude that our proposed model has superior predictive properties compared to
the Horvitz-Thompson and Hajek estimators. This also indicates that the superpopulation
approach fares better than the quasi-optimization approach in predicting the response values
for the non-sampled units.

(a) Horvitz-Thompson (b) Hajek

Figure 2: Histograms of the proportion of positive responses for Horvitz-
Thompson and Hajek estimators

4. Standard spatial model

The Beta-Bernoulli framework developed in Section 3 enabled us to predict the pro-
portion of positive responses in the non-sampled group for each stratum. In doing so, it was
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assumed that the strata are independent of each other (i.e.. are uncorrelated). However,
since the boundaries of strata are fuzzy, subjects close to the edges of two adjacent strata
may have non-negligible correlation. Hence, it may be worthwhile to develop a modeling
framework taking into account the spatial relationship between neighbouring strata. In this
section, we will develop a Bayesian hierarchical model that incorporates this spatial asso-
ciation. Accordingly, we would like to test whether incorporating this spatial dimension in
the modeling framework improves the ability of the model to predict the responses for the
non-sampled individuals. This is a novel contribution in non-probability sampling.

4.1. Hierarchical model specification

For the proposed spatial modeling framework, the data and stratum-specific model
specification remain the same as for the Beta-Bernoulli model, depicted in (3.4). As men-
tioned in He and Sun (2000), we specify the following logistic mixed model for pi,

log(
pi

1 − pi

) = θ + νi,

where pi is the ith stratum-specific success probability for the sampled group, θ is the fixed
effect and νi is the ith stratum-specific random effect. Following He and Sun (2000), we use
a simultaneous conditional autoregressive model (SCAR) to specify the prior of νi. Towards
this end, we define the following 10×10 symmetric adjacency matrix (as we have 10 strata)

C =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 1 0 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0 0
0 1 0 1 0 0 0 0 0 0
0 0 1 0 1 0 0 0 0 0
0 0 0 1 0 1 0 0 0 0
0 0 0 0 1 0 1 0 0 0
0 0 0 0 0 1 0 1 0 0
0 0 0 0 0 0 1 0 1 0
0 0 0 0 0 0 0 1 0 1
0 0 0 0 0 0 0 0 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

,

where Cjk = 0(1) means the jth and kth strata are non-adjacent(adjacent) i.e.., does not
share (share) a boundary. According to He and Sun (2000), the eigenvalues of the adjacency
matrix C, given by λ = (λ1, λ2, ..., λ10), can be defined so that the following inequality holds

1
λmin
≤ ρ ≤ 1

λmax
.

where λmin and λmax are the minimum and maximum eigenvalues of C. Then, based on the
SCAR properties, discussed by Clayton and Kaldor (1987), the prior distribution of ν can
be shown to be

ν ∼MV N(0, δ2(I − ρC)−1), (6)

where ν = (ν1, ν2, ν3, ν4, ν5, ν6, ν7, ν8, ν9, ν10) and I is a 10 × 10 identity matrix. In order to
determine the prior distributions for θ, we employ the empirical logistic transform (Cox,
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2018). Suppose we have g sets of binary observations and in the jth set (j = 1, 2, ..., g), the
success probability, pj, is constant for that set. Let there be nj trials and Mj successes in
those trials. Then the empirical logistic transform is defined as

Zj = log(
Mj + 1

2

nj −Mj + 1
2
) with mean ϕj = log(

pj

1 − pj

) .

As per Gart and Zweifel (1967), an approximate unbiased estimator of the variance of Zj is
given by

V 2
j =

(nj + 1)(nj + 2)
nj(Mj + 1)(nj −Mj + 1).

In fact, it can be shown that Zj approximately follows a normal distribution with mean ϕj

and variance V 2
j i.e.. Zj ∼ N(ϕj, V 2

j ) (McCullagh, 2019). Using the above transformation,
the prior distribution of θ can be expressed as

π(θ) =
1

V π
⎛
⎝

1 + (θ − θ̂

V
)

2⎞
⎠

, −∞ < θ <∞, (7)

which is a location-scale Cauchy distribution. Now, yk ∼ Bernoulli(
eθ

1 + eθ
) for k = 1, 2, ..., n

implying that p̂ = ȳ = 0.398. Thus, θ̂ = log(
p̂

1 − p̂
) = −0.4138. On the other hand, V is

obtained as

V =

¿
ÁÁÀ (n + 1)(n + 2)

n(M + 1)(n −M + 1) = 0.0646,

where M = ∑n
k=1 yk = 398 which is the total number of positive responses in the sampled

group. Finally, the prior for (δ2, ρ) is given by

π(δ2, ρ) =
1

(1 + δ2)2, δ2 > 0,
1

λmin

≤ ρ ≤ 1
λmax

. (8)

Combining the likelihood and priors specified in (6-9), the joint posterior density of (θ, δ2, ν, ρ)
is given by

π(θ, δ2, ν, ρ∣Y)∝ f(Y∣θ, νi)π(ν ∣δ2, ρ)π(δ2, ρ)π(θ),

where

f(Y∣θ, νi) =
10
∏
i=1

ni

∏
j=1
{

eθ+νi

1 + eθ+νi
}

yij

{1 −
eθ+νi

1 + eθ+νi
}

1−yij

=
10
∏
i=1

ni

∏
j=1
{

e(θ+νi)yij

1 + eθ+νi
}
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and

π(ν ∣δ2, ρ) = 1√
∣δ2(I − ρC)−1∣

exp{−1
2νT (δ2(I − ρC)−1)−1ν} .

Combining these forms, the joint posterior density becomes

π(θ, δ2, ν, ρ∣Y)∝
10
∏
i=1

ni

∏
j=1
{

e(θ+νi)yij

1 + eθ+νi
} × 1√

∣δ2(I − ρC)−1∣
exp{−1

2νT (δ2(I − ρC)−1)−1ν}

× 1
(1 + δ2)2 ×

1
V π((1 + ( θ−θ̂

V )2)
, (9)

where δ2 > 0, θ̂−10×V < θ < θ̂+10×V (the entire unimodal density lies in a narrower interval)
and 1

λmin
< ρ < 1

λmax
.

4.2. Bayesian computation

Based on the full posterior density specified in (9) above, the full conditional posterior
densities are given by

ν ∣θ, δ2, ρ, Y∝
10
∏
i=1
{

e(θ+νi)Ri

[1 + eθ+νi]ni
} exp{−1

2νT (δ2(I − ρC)−1)−1ν} ; (10)

θ∣ν, δ2, ρ, Y∝
10
∏
i=1
{

e(θ+νi)Ri

[1 + eθ+νi]ni
} × 1

V π((1 + ( θ−θ̂
V )2)

; (11)

δ2∣θ, ρ, ν, Y∝ 1√
δ2

exp{−1
2νT (δ2(I − ρC)−1)−1ν} × 1

(1 + δ2)2 ; (12)

ρ∣δ2, θ, ν, Y∝ 1√
∣(I − ρC)−1∣

exp{−1
2νT (δ2(I − ρC)−1)−1ν} . (13)

Since the full conditionals are not in closed form, we need to use a combination of specialized
sampling schemes to draw sample from those. Specifically, we use

1. Metropolis-Hastings algorithm to sample from π(ν ∣θ, δ2, ρ, Y).

2. Grid method to sample from the remaining three full conditionals, namely π(θ∣ν, δ2, ρ, Y),
π(δ2∣θ, ρ, ν, Y) and π(ρ∣δ2, θ, ν, Y).

In the first case, we need to determine the candidate generating density to be able to apply
Metropolis-Hastings algorithm. We apply the empirical logistic transformation towards this
end. As per this procedure,



376
SPECIAL ISSUE IN MEMORY OF PROF. C R RAO
DHIMAN BHADRA AND BALGOBIN NANDRAM [Vol. 22, No. 3

Zi∣νi ∼ N(θ + νi, V 2
i ) where V 2

i =
(ni + 1)(ni + 2)

ni(Mi + 1)(ni −Mi + 1) and Zi = log(
Mi + 0.5

ni −Mi + 0.5).

This implies that

ν ∼MVN((Z − θ), Σ),

where MVN implies multivariate normal distribution and Σ = diag(V 2
1 , V 2

2 , ..., V 2
10). Assum-

ing H = δ2(I − ρC)−1, the proposal density will be

ν ∣θ, δ2, ρ, Y ∝ exp{−1
2
[(ν − (Z − θ))T Σ−1(ν − (Z − θ))]} × exp{−1

2[ν
T H−1ν]}

= exp{−1
2
[νT Σ−1ν − 2νT Σ−1(Z − θ) + (Z − θ)T Σ−1(Z − θ) + νT H−1ν]}

= exp{−1
2
[νT (Σ−1 +H−1)ν − 2νT (Σ−1 +H−1)(Σ−1 +H−1)−1Σ−1(Z − θ)]} ,

which implies that the proposal density of ν ∣θ, δ2, ρ, Y is

ν ∣θ, δ2, ρ, Y ∼MV N {(Σ−1 +H−1)−1Σ−1(Z − θ), (Σ−1 +H−1)−1} . (14)

We use the grid method to draw samples from θ∣ν, δ2, ρ, Y and ρ∣δ2, θ, ν, Y. This is particu-
larly straightforward in the first case since θ and ρ are bounded, that is

θ̂ − 10 × V < θ < θ̂ + 10 × V , and 1
λmin
< ρ < 1

λmax
.

For the conditional posterior density ρ∣δ2, θ, ν, Y, we apply the following transformation on
δ2, since δ2, being positive, does not have an upper bound.

ϕ =
δ2

1 + δ2, 0 < ϕ < 1,

which results in the transformed density

ϕ∣θ, ρ, ν, Y∝
√

1 − ϕ

ϕ
exp{−1

2νT ( ϕ

1 − ϕ
(I − ρC)−1)

−1
ν} .

Once we have simulated the values of ϕ, we can back-transform to obtain the corresponding

values of δ2 since δ2 =
ϕ

1 − ϕ
.

Given the above discussion, it will now be straightforward to simulate observations
from the respective full conditionals. In doing so, we randomly select 100 sets of propensity
scores among the 1000 and the Gibbs sampler is run for each such set as follows:

1. Initial values for the parameters are selected as: ρ(0) = 0, δ2(0) = 1, θ(0) = 0.



2024]
SPECIAL ISSUE IN MEMORY OF PROF. C R RAO

NONPROBABILITY SAMPLES WITH SPATIAL POSTSTRATIFICATION 377

2. Given the intital values, a sample is drawn from ν ∣θ(0), δ2(0), ρ(0), Y using the Metropolis-
Hastings sampler through the candidate density derived in (15). Let the sampled value
be ν(1).

3. Given ν(1), a sample is drawn from θ∣ν(1), δ2(0), ρ(0), Y through the Grid method. Let
the sampled value be denoted as θ(1).

4. Given ν(1) and θ(1) obtained above, we sample from ρ∣ν(1), θ(1), δ2(0), Y again using the
Grid method. Let the sampled value be denoted as ρ(1).

5. Given the sampled values of ν(1), θ(1) and ρ(1), we draw a sample from ϕ∣θ(1), ρ(1), ν(1), Y
by applying Grid method again and perform the transformation δ2 = ϕ

1 − ϕ
to get the

corresponding value of δ2.

6. For implementing the grid samplers in steps (3 - 5), we use the upper and lower bounds
of the respective parameters and come up with the grid points.

7. At the completion of the above iteration, we obtain the first set of simulated values of
the parameters vis (ν(1), θ(1), ρ(1), δ2(1)).

We repeat the above steps 2 to 5 step for 11,000 times and do a burn-in of the first 2000
iterates. Then we do some thinning and keep the following iterates,

(ν(2001+9m), θ(2001+9m), ρ(2001+9m), δ2(2001+9m)),

where m = 1, 2, ..., 1000. In doing so, we are finally left with 1,000 sets of iterates.

As usual, we verify the convergence of the chains using trace and autocorrelation plots
along with Gweke test and effective sample sizes. The associated plots and tables are shown
under Section 4.2 in the Annexure. The plots are indicative of satisfactory convergence of
the chains. Posterior summaries are shown in Table 5.

Some notable observations can be made from the above table. For instance, random
effects corresponding to the second, fourth and tenth strata are significant which implies that
observations/subjects within these sub-classes have significant dependence. In addition the
fixed effect component, θ is also significantly negative. More importantly, the SCAR model
of He and Sun (2000) cannot capture the spatial correlation as the 95% credible interval of
ρ is (-0.342, 0.488) and hence contains zero. We will address this issue using an improved
modeling framework discussed in the next section.
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Table 5: Posterior summaries of parameters for first spatial model

Parameter Mean Standard deviation 95% Credible interval
ν1 0.817 0.708 (-0.559, 2.165)
ν2 0.886 0.458 (0.059, 1.846)
ν3 0.703 0.396 (-0.061, 1.453)
ν4 1.204 0.365 (0.420, 1.886)
ν5 0.539 0.297 (-0.093, 1.131)
ν6 0.438 0.260 (-0.046, 0.968)
ν7 0.334 0.195 (-0.051, 0.697)
ν8 0.007 0.174 (-0.371, 0.313)
ν9 -0.223 0.141 (-0.505, 0.051)
ν10 -0.431 0.119 (-0.665, -0.192)
θ -0.413 0.016 (-0.440, -0.378)
ρ 0.0744 0.231 (-0.342, 0.488)
δ2 3.925 3.554 (0.243, 11.423)

4.3. Prediction

Given the sampled values of the parameters obtained above, it is straightforward to
predict the responses for the non-sampled units. For each β, the number of non-sampled
individuals for each stratum is known (see Table 4). Moreover, for the ith stratum,

yij ∣pi ∼ Bernoulli(pi), i = 1, 2, ..., 10; j = 1, 2, ..., ni.

Hence, we can get a sample of the responses corresponding to the non-sampled group for
the ith stratum by drawing the requisite number of yij’s from Bernoulli(pi). Based on the
sampled values, we can evaluate the proportion of positive responses. This exercise should
be repeated for other sets of propensity scores as well. Accordingly, we randomly selected
100 sets of propensity scores and obtained 100 proportion values (of positive responses in
the non-sampled group). Based on those values, we form the highest posterior density
(HPD) intervals of the true proportion of positive responses as was done for the Beta-
Bernoulli model. The resulting interval is (0.449, 0.551) which is clearly narrower than those
corresponding to the Beta-Bernoulli, Hajek and Horvitz-Thompson estimators. In addition,
the true value of the proportion for all the subjects and for the non-sampled subjects lie near
the centre of the interval corresponding to the spatial model. Both of these implies that
the predictive ability of the spatial model is superior to the other models i.e.. the predicted
values of the response in the non-sampled group and the corresponding proportions obtained
from the spatial model is more accurate compared to those obtained from the other models,
namely Beta-Bernoulli, Horvitz-Thompson and Hajek. Histograms and density plots of the
proportions are shown under Section 5.2 in the Annexure.

5. Modified spatial model

In this section, we show how to improve the standard spatial model.
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5.1. Model specification

The spatial regression model outlined in Section 4 is motivated by the work of He and
Sun (2000). One shortcoming of their formulation is that it fails to account for positive and
monotonically weakening spatial correlation. To account for that, we introduce a modified
spatial model in this section for which we define the following 10 × 10 adjacency matrix:

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 ρ ρ2 ρ3 ρ4 ρ5 ρ6 ρ7 ρ8 ρ9

ρ 1 ρ ρ2 ρ3 ρ4 ρ5 ρ6 ρ7 ρ8

ρ2 ρ 1 ρ ρ2 ρ3 ρ4 ρ5 ρ6 ρ7

ρ3 ρ2 ρ 1 ρ ρ2 ρ3 ρ4 ρ5 ρ6

ρ4 ρ3 ρ2 ρ 1 ρ ρ2 ρ3 ρ4 ρ5

ρ5 ρ4 ρ3 ρ2 ρ 1 ρ ρ2 ρ3 ρ4

ρ6 ρ5 ρ4 ρ3 ρ2 ρ 1 ρ ρ2 ρ3

ρ7 ρ6 ρ5 ρ4 ρ3 ρ2 ρ 1 ρ ρ2

ρ8 ρ7 ρ6 ρ5 ρ4 ρ3 ρ2 ρ 1 ρ
ρ9 ρ8 ρ7 ρ6 ρ5 ρ4 ρ3 ρ2 ρ 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, 0 < ρ < 1.

The structure of the adjacency matrix distinguishes it from the spatial model dis-
cussed in Section 4. Specifically, the underlying assumption for the above structure is that
subjects belonging to strata in close proximity have higher dependence than those belonging
to strata which are further apart. The logistic mixed model specification for pi remains the
same as was done for the standard spatial model in Sec 4.1 i.e..

log(
pi

1 − pi

) = θ + νi i = 1, 2, ..., 10,

θ and νi having the same connotation as before. The conditional distribution of yij remains
the same as for the standard spatial model i.e..

yij ∣θ, νi ∼ Ber(
eθ+νi

1 + eθ+νi
) , i = 1, 2, ..., 10, j = 1, 2, ..., ni.

The following priors are specified for the parameters (ν, θ, δ2, ρ)
ν ∣θ, δ2, ρ ∼ MV N(θj, δ2A),

π(θ, δ2, ρ) ∝
1

(1 + δ2)2,

where j is a 10 × 1 dimensional vector of 1’s while 0 < θ < 1 and 0 < ρ < 1. Combining the
likelihood and priors, the joint posterior density of (ν, θ, δ2, ρ) is given by

π(θ, δ2, ν, ρ∣Y)∝ f(Y∣νi)π(ν ∣θ, δ2, ρ)π(θ, δ2, ρ),

where

f(Y ∣θ, νi) =
10
∏
i=1

ni

∏
j=1
{

eθ+νi

1 + eθ+νi
}

yij

{1 −
eθ+νi

1 + eθ+νi
}

1−yij

=
10
∏
i=1

ni

∏
j=1
{

e(θ+νi)yij

1 + eθ+νi
}
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and

π(ν ∣θ, δ2, ρ) = 1√
∣δ2A∣

exp{−1
2(ν − θj)T (δ2A)−1(ν − θj)} .

Thus, the joint posterior density is

π(θ, δ2, ν, ρ∣Y) ∝
10
∏
i=1

ni

∏
j=1
{

e(θ+νi)yij

1 + eθ+νi
} 1√
∣δ2A∣

exp{−1
2(ν − θj)T (δ2A)−1(ν − θj)} × 1

(1 + δ2)2

=
10
∏
i=1
{

e(θ+νi)Mi

(1 + eθ+νi)ni
} 1√
∣δ2A∣

exp{−1
2(ν − θj)T (δ2A)−1(ν − θj)} × 1

(1 + δ2)2 ,

where Mi = ∑ni
j=1 yij is the total number of positive responses in the ith subclass of the sampled

group.

5.2. Bayesian computation

The following full conditional posterior densities can be derived from the full posterior
shown above

ν ∣θ, δ, ρ, Y ∝
10
∏
i=1
{

e(θ+νi)Mi

(1 + eθ+νi)ni
} 1√
∣δ2A∣

exp{−1
2(ν − θj)T (δ2A)−1(ν − θj)} ; (15)

θ∣ν, δ, ρ, Y ∼ N (
jT (δ2A)−1ν

jT (δ2A)−1j
,

1
jT (δ2A)−1j

) ; (16)

δ2∣θ, ρ, ν, Y ∝ 1
(δ2)5 exp{−1

2(ν − θj)T (δ2A)−1(ν − θj)} × 1
(1 + δ2)2 ; (17)

ρ∣δ2, θ, ν, Y ∝ 1√
∣A∣

exp{−1
2(ν − θj)T (δ2A)−1(ν − θj)} . (18)

Following a similar method that was detailed in Section 4.2, we obtain the following proposal
density of ν ∣θ, δ, ρ, Y

ν ∣θ, δ, ρ, Y ∼MV N {(Σ−1 +H−1)−1(Σ−1Z +H−1θj), (Σ−1 +H−1)−1} ,

where H = δ2A and Σ = diag(V 2
1 , V 2

2 , ..., V 2
10) and

Zi = log
Mi + 0.5

ni −Mi + 0.5, V 2
i =

(ni + 1)(ni + 2)
ni(Mi + 1)(ni −Mi + 1),

The simulation steps will be similar to those mentioned in Section 4.2. As usual, convergence
is verified using trace plots, autocorrelation plots, Geweke test and effective sample size
procedures. All these tests indicate adequate convergence. Tables showing the p-values for
the Geweke test and effective sample sizes are shown under Section 5.2 in the Annexure
along with trace and kernel density plots of all the parameters. As shown in that table,
the effective sample sizes of all but one parameter is 1000, the same length as the chain,
thus indicating satisfactory convergence. Table 6 depicts the posterior summaries of all the
parameters.
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Table 6: Posterior summaries for modified spatial model

Parameter Mean Standard deviation 95% Credible interval
ν1 0.429 0.442 (-0.491, 1.229)
ν2 0.722 0.340 (0.061, 1.382)
ν3 0.691 0.299 (0.125, 1.264)
ν4 0.449 0.271 (-0.131, 0.955)
ν5 0.171 0.240 (-0.316, 0.614)
ν6 -0.029 0.212 (-0.426, 0.418)
ν7 -0.210 0.170 (-0.547, 0.137)
ν8 -0.377 0.151 (-0.684, -0.100)
ν9 -0.417 0.141 (-0.671, -0.127)
ν10 -0.914 0.113 (-1.116, -0.687)
θ -0.024 0.463 (-0.963, 0.897)
ρ 0.664 0.203 (0.274, 0.972)
δ2 0.405 0.254 (0.077, 0.864)

A comparison of Tables 5 and 6 results in some important observations. Firstly, in the
modified spatial model, the random effects corresponding to five sub-classes are significant,
namely those for second, third, eighth, ninth and tenth subclasses. For the first spatial model,
this was true for only three subclasses. This indicates that the modified spatial model has
better discriminatory ability in capturing intra-subclass-specific spatial dependence com-
pared to the first spatial model. Secondly, the credible intervals for the modified spatial
model are in general narrower than those corresponding to the previous spatial model. This
implies that the modified spatial model generates more precise estimates of the parameters
relative to the original spatial model. Moreover, the correlation parameter (ρ) is significant
for the modified spatial model but was insignificant in the previous model. This is a major
finding since it implies that the modified model is more capable of capturing the underlying
spatial dependence between the sub-strata compared to the previous model. Thirdly, the
estimate for the variance component δ2 is much smaller for the modified model as compared
to the previous model. This indicates that the modified model has superior ability to control
for variance inflation of the strata specific random effects which indicate a better predictive
ability of the responses for the non-sampled units.

5.3. Prediction

Since the chains have converged, we can use the parameter estimates to predict the
responses corresponding to the non-sampled units as was done for the Beta-Bernoulli and
standard spatial models. The 95% highest posterior density intervals corresponding to the
modified spatial model along with those for the Beta-Bernoulli model, standard spatial model
and those of Horvitz-Thompson and Hajek estimators are shown in Table 7. All the intervals
relate to the prediction of the proportion of positive responses for all the subjects (sampled +
non-sampled). It is clear from Table 7 that the modified spatial model has superior predictive
ability compared to all the other models since it results in the narrowest HPD interval among
the model-based intervals; the width under the Hajek model is much too small. Moreover,
the true value of the proportion of positive responses for all the units viz. 0.4976, lies near
the centre of the above interval as well. So, we conclude that the modified spatial model is
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the optimal model for prediction. It is important to note here that the Hajek estimator is
usually more precise in a design-based situation Särndal et al. (1992). However, it is difficult
to evaluate the standard errors because it involves second-order inclusion probabilities. So,
we have used an output analysis from the Metropolis sampler to get repeated values of
the Hajek estimator like a bootstrap sample. These may not be the best estimates of the
standard errors as they might be small.

Table 7: 95% credible intervals for the different models

Model 95% HPD interval Width
Horvitz-Thompson (0.478, 0.584) 0.106

Hajek (0.497, 0.543) 0.046
Beta-Bernoulli (0.455, 0.559) 0.104

Spatial (0.433, 0.517) 0.084
Modified spatial (0.456, 0.537) 0.081

6. Model comparison

Based on the discussion in the previous section, specifically with regard to the param-
eter estimates and credible intervals depicted in Tables 5 and 6, it is evident that the modified
spatial model is more robust and has better predictive ability than the Beta-Bernoulli and
standard spatial models. In this section, we will use two more diagnostic tools, namely con-
ditional predictive ordinate (CPO) and log-pseudo marginal likelihood (LPML) to validate
this fact.

The conditional predictive ordinate (CPO), introduced by Geisser (1980), is used to
detect observations which are fitted poorly by a given parametric model. The CPO values can
be calculated based on the output of the Markov chain Monte Carlo simulation procedure.
The Monte Carlo approximation of CPO for the ith stratum is given by

ˆCPOi =
⎡⎢⎢⎢⎢⎣

1
M

M

∑
h=1

1
f(yi∣p(h)i )

⎤⎥⎥⎥⎥⎦

−1

, i = 1, 2, ..., 10; h = 1, 2, ..., 1000,

where ˆCPOi is the harmonic mean of f(yi∣p(h)i ). For the Beta-Bernoulli model, M = 1000,
p
(h)
i is the hth sample drawn from the posterior density of pi∣yi while yi ∼ Binomial(ni, pi)

for ith stratum (i = 1, 2, ..., 10, h = 1, 2, ..., 1000). For the spatial model, M = 100 and pi is
obtained from the following expression

pi =
eθ+νi

1 + eθ+νi
,

where (θ, νi) are drawn from their respective posterior densities through the Monte Carlo
simulation. Here also, yi∣pi ∼ Binomial(ni, pi) for the ith stratum (i = 1, 2, ..., 10). For our
proposed frameworks, each CPO value will correspond to a particular stratum and will
indicate which, if any, stratum is an outlier in terms of model fit. Table 8 depicts the CPO
values for each strata corresponding to the Beta-Bernoulli, basic spatial and modified spatial
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Table 8: CPO values for the proposed models

Stratum Beta-Bernoulli Spatial I Spatial II
1 0.061 0.119 0.206
2 0.029 0.041 0.071
3 0.046 0.021 0.074
4 0.041 0.077 0.082
5 0.037 0.037 0.063
6 0.039 0.047 0.047
7 0.028 0.039 0.041
8 0.023 0.035 0.034
9 0.021 0.027 0.027
10 0.0004 0.009 0.017

models. The spatial models are denoted as Spatial I (basic spatial) and Spatial II (modified
spatial) respectively.

In terms of assessing model fit, observations with CPO values less than 0.025 are
deemed as possible outliers while those with values less than .014 are regarded as extreme
observations (Ntzoufras, 2011). From the CPO values depicted in Table 8, it can be concluded
that for Beta-Bernoulli model, there are three outlying strata, namely strata 8, 9 and 10. Of
this, stratum 10 seems to be an influential point since the CPO value is lesser than 0.014.
For Spatial model I, there are two outlying strata (strata 3 and 10). Again, stratum 10 seems
to be an influential point. Finally, for Spatial model II, only the last stratum is identified as
an outlier but not an influential point. Hence, it is apparent that the modified spatial model
(Spatial II) performs better than the other models as per this diagnostic measure since it
has the lowest number of outlier strata and no influential strata.

In order to have a confirmatory assessment of model fit, we next calculate the log-
pseudo marginal likelihood (LMPL), which is a function of CPO, given by

LPML =
N

∑
i=1

log( ˆCPOi).

Larger values of LMPL indicate a better fit. The following table depicts the values of LMPL
for all the three models. Since the modified spatial model has the highest value of LMPL,
we conclude that it has superior predictive ability compared to the Beta-Bernoulli and the
standard spatial models. This validates the findings derived in Section 5.

Model LMPL
Beta-Bernoulli -38.11

Spatial -32.97
Modified spatial -29.39

7. Discussion

The standard method of obtaining a representative sample from a target population
is through a probability sampling scheme which involves the selection of population units
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according to a certain specified probability distribution. The most common of these methods
is simple random sampling in which each and every population unit is assigned the same
probability of selection. Having said that, implementation of an ideal probability sampling
scheme in a real life setting is prohibitively difficult due to restrictions on costs, manpower
and time among other things. This has led to the popularization of alternate sampling
schemes which are easier to implement on the field as well in the online space. Some examples
are convenience sample, volunteer sample, online polls etc.

However, one major disadvantage of these schemes is that selection of units are heav-
ily dependent on the choice and preference of the survey designer and is often guided by
convenience rather than an underlying probabilistic framework. Hence, these kinds of sam-
ples are known as non-probability samples and the generating scheme, a non-probability
sampling scheme. Consequently, the sample, so chosen, often comes with various biases
which may lead to a unreliable estimate of the parameter of interest. Selection bias is one
such bias which results in a sample that may lack representation of certain segments of the
target population. This results in a sample that is not a proper representation of the target
population.

Regardless of the above shortcomings, non-probability sampling schemes are becom-
ing increasingly popular due to the ease with which they can be implemented, both on the
ground and in the virtual space. However, it is equally critical not to sacrifice on the “rep-
resentativeness” of the final sample and the unbiasedness of the final estimate as it reflects
the true population parameter. Hence, it is utmost importance to come up with a general
framework that would enable us to predict the responses of sample units which should have
been sampled but were left out in a non-probability sampling scheme.

In this article, we have proposed three modeling frameworks that will enable us to
predict the non-sampled individuals responses from information obtained from the sampled
units. The underlying idea behind each of these frameworks was to first balance the covariate
distributions of the sampled and non-sampled groups/units. This was implemented using
the propensity scores for those units. The propensity scores quantified the probability that a
particular unit is incorporated in a sample given the values of its covariates and were obtained
using a Bayesian hierarchical model. Ten strata were constructed based on the quantiles of
the propensity scores so obtained. Finally, prediction of the unknown responses of the non-
sampled units were carried out using three models - a Beta-Bernoulli model and two spatial
models which accounted for possible spatial autocorrelation between the strata. Between
the two spatial models we proposed, one incorporated postive and gradually weakening
correlation structure while the other did not. We tested our models on a simulated dataset.
Estimation was carried out through Markov chain Monte Carlo simulation and Bayesian
bootstrap.

A comparison of the predictive abilities of the aforementioned models unambiguously
indicated the superiority of the spatial modeling framework over the non-spatial ones, namely
the Beta-Bernoulli, Horvitz-Thompson and Hajek estimators. Moreover, the spatial model
incorporating the gradually weakening spatial correlation structured performed considerably
better than the one which did not incorporate this feature and had the best predictive
ability of all the models. This points to the veracity of our assumption about the presence of
long range but diminishing spatial autocorrelation between strata, which was an interesting
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finding in its own right. Overall, we believe that our proposed methodology will contribute
to ongoing research in this important field of research. Our proposed methodology was
built on the superpopulation modeling framework. An interesting extension of our work
would be the formulation of predictive approaches combining the superpopulation and quasi-
randomisation frameworks.
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ANNEXURE BY SECTIONS

Section 3.2

The following table depicts part of the 1000 simulated values of β obtained using the
Metropolis-Hastings sampler on π(β∣R).

m β0 β1 β2 β3 β4
1 9.7473 -0.2002 -0.8234 0.2845 -0.4375
2 10.3579 -0.2096 -0.8713 0.2202 -0.4657
3 9.5018 -0.1960 -0.6962 0.1437 -0.5264
⋮ ⋮ ⋮ ⋮ ⋮

998 9.1859 -0.1921 -0.6716 -0.2068 -0.3391
999 10.1561 -0.2094 -0.6304 0.3223 -0.4608
1000 10.3528 -0.2090 -0.9777 0.1989 -0.5132

The following figures depict the autocorrelation plots, trace plots and the kernel density plots
for the simulated values of β = (β0, β1, β2, β3, β4) obtained from the Markov Chain Monte
Carlo run of the Bayesian Bootstrap model.

[β0] [β1]

[β2] [β3]
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[β4]

Section 3.3.1

Following is part of the propensity score matrix where the rows correspond to the subjects
(N = 10000) and columns correspond to 1000 simulated values of β.

i β(1) β(2) β(3) β(1000)

1 0.5331 0.5614 0.5552 0.5836
2 0.0158 0.0146 0.0178 0.0134
3 0.4336 0.4593 0.4518 0.4790
⋮ ⋮ ⋮ ⋮ ⋮ ⋮

9998 0.0199 0.0188 0.0246 0.0181
9999 0.0135 0.0125 0.0168 0.0119
10000 0.0526 0.0519 0.0632 0.0497

Section 4.2

The following table shows the p-values corresponding to the Gweke test and the effective
sample sizes for (ν, θ, ρ, δ2) of the spatial model. All of the effective sample sizes are close
to the size of chain 1, 000, which is desirable.

Parameter P-value Effective sample size
ν1 0.098 1000
ν2 0.186 1000
ν3 0.459 874
ν4 0.357 1000
ν5 0.881 1000
ν6 0.752 1000
ν7 0.978 1000
ν8 0.049 899
ν9 0.285 1000
ν10 0.768 1000
θ 0.667 1000
ρ 0.796 890
δ2 0.721 926
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[β0]

[β1]

[β2]

[β3]

[β4]
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The following figures depict the trace plots, autocorrelation plots and the kernel density
plots for the simulated values of (ν, θ, ρ, δ2) obtained from the Markov Chain Monte Carlo
run of the Spatial model.

[ν1]

[ν2]

[ν3]

[ν4]

[ν5]
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[ν6]

[ν7]

[ν8]

[ν9]

[ν10]
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[ν11]

[ν12]

[ν13]

[ν1] [ν2]
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[ν3] [ν4]

[ν5] [ν6]

[ν7] [ν8]
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[ν9] [ν10]

[θ] [ρ]

[δ2]
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Section 4.3

The following figures depict the histogram and kernel density plots of the proportions of
positive responses predicted for i) all individuals P

(h)
all and ii) non-sampled individuals (P (h)ns )

based on the Spatial model. In the kernel density plot, the bold (dashed) curve corresponds
to P

(h)
all (P

(h)
ns ).

(a) All individuals (b) Non-sampled individuals

(c) Combined (bold: all subjects; dashed:
non-sampled subjects)
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Section 5.2

The following table shows the p-values corresponding to the Gweke test and the effective
sample sizes for (ν, θ, ρ, δ2) corresponding to the modified spatial model. All but one of the
effective sample sizes are equal to the size of chain i.e.. 1, 000, which is desirable.

Parameter P-value Effective sample size
ν1 0.10080200 1000
ν2 0.95000090 1000
ν3 0.45674993 1000
ν4 0.28452094 1000
ν5 0.91671578 1000
ν6 0.22139337 1000
ν7 0.47038949 1000
ν8 0.06734535 1000
ν9 0.11521862 1000
ν10 0.34214527 1000
θ 0.38160805 1000
ρ 0.74996683 905
δ2 0.94700833 1000

The following figures depict the trace and kernel density plots for the simulated values of
(ν, θ, ρ, δ2) obtained from the Markov Chain Monte Carlo run of the modified Spatial model.
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[ν1]

[ν2]

[ν3]

[ν4]

[ν5]
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[ν8]

[ν9]

[ν10]

[ν11]

[ν12]

[ν13]
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